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BIVARIATE GENERALIZED BERNSTEIN

OPERATORS AND THEIR APPLICATION

TO FREDHOLM INTEGRAL EQUATIONS

Donatella Occorsio and Maria Grazia Russo

Abstract. We introduce and study the sequence of bivariate Generalized
Bernstein operators {Bm,s}m,s, m, s ∈ N,

Bm,s = I − (I − Bm)s, B
i
m = Bm(Bi−1

m ),

where Bm is the bivariate Bernstein operator. These operators generalize
the ones introduced and studied independently in the univariate case by Mas-
troianni and Occorsio [Rend. Accad. Sci. Fis. Mat. Napoli 44 (4) (1977), 151–
169] and by Micchelli [J. Approx. Theory 8 (1973), 1–18] (see also Felbecker
[Manuscripta Math. 29 (1979), 229–246]). As well as in the one-dimesional
case, for m fixed the sequence {Bm,s(f)}s can be successfully employed in
order to approximate “very smooth” functions f by reusing the same data

points f
(

i
m

,
j

m

)
, i = 0, 1, . . . , m, j = 0, 1, . . . , m, since the rate of convergence

improves as s increases. A stable and convergent cubature rule on the square
[0, 1]2, based on the polynomials Bm,s(f) is constructed. Moreover, a Nys-
tröm method based on the above mentioned cubature rule is proposed for the
numerical solution of two-dimensional Fredholm integral equations on [0, 1]2.
The method is numerically stable, convergent and the involved linear systems
are well conditioned. Some algorithm details are given in order to compute
the entries of the linear systems with a reduced time complexity. Moreover
the procedure can be significantly simplified in the case of equations having
centrosymmetric kernels. Finally, some numerical examples are provided in or-
der to illustrate the accuracy of the cubature formula and the computational
efficiency of the Nyström method.

1. Introduction

The Generalized Bernstein polynomials Bm,s(F ) of a continuous function F in
[0, 1] were introduced in [15] (see also [16, 7]) and defined by

Bm,s(F ; x) =
s∑

i=1

(
s

i

)
(−1)i−1Bi

m(F ; x),
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where Bi
m = Bm(Bi−1

m ), i = 1, . . . , s, s ∈ N, and Bm,1(F ) ≡ Bm(F ) is the ordinary
m-th Bernstein polynomial. Therefore Bm(F ) approximates the function F by
using the values of F on equidistant points of the interval [0, 1].

A remarkable property shared by the sequence {Bm,s(F )}m is the improve-
ment of the rate of convergence to the function F , as well as the smoothness of F
increases (see [16]). This means that the sequence does not suffer of the saturation
phenomena that occurs in the case of the classical Bernstein polynomials.

In the present paper we introduce the bivariate Generalized Bernstein (shortly
GB) operator Bm,s, defined as the tensor product of two univariate operators Bm,s.
The sequence {Bm,s(f)}m uniformly converges to f , for any continuous function in
the square S = [0, 1] × [0, 1]. Moreover for m fixed {Bm,s(f)}s → Lm,m(f), where
Lm,m(f) denotes the bivariate Lagrange polynomial interpolating f at the grid of
(m + 1)2 equally spaced points in the square S.

We first prove that, similarly to the univariate case, the rate of convergence of
the sequence {Bm,s(f)}m to the function f improves, as well as the smoothness of
the function increases. Moreover by incrementing the parameter s, with m fixed,
the most relevant consequence is an acceleration of the approximation process by
reusing the same values of the function f , computed for a fixed m.

An application of Bm,s is obtained by replacing f with Bm,s(f) in integrals
of the type

∫
S f . In this way we obtain a cubature rule on the grid of equally

spaced points in the square S. We prove that this formula, which can be easily
implemented, is stable and convergent. As a consequence of the contribution of s
in speeding up the convergence, we will discuss the connection between m and s in
order to obtain the maximum rate of convergence of the cubature formula with the
minimal number of data. Hence, for any m, a maximum value will be determined
up to which incrementing s.

Finally we give a possible application of the aforesaid cubature rule in a Nys-
tröm method for approximating the solution of integral equations of the type

(1.1) f(x, y) − µ

∫

S
f(z, t)k(x, y, z, t)dz dt = g(x, y), (x, y) ∈ S,

where µ ∈ R, k, g are given functions and f is the unknown function. This kind
of equations is of interest in engineering areas, Computer Graphics, Mathematical
Physics etc., where many problems can be modeled by one or two dimensional
Fredholm integral equations of the second kind.

About the problem in two dimensions there are few results in the literature.
The proposed numerical strategies make use of collocation, Galerkin or Nyström
methods based on piecewise approximating polynomials [1, 9, 11] or Monte Carlo
methods [10]. Recently Nyström methods based on the global polynomial approx-
imation using the zeros of orthogonal polynomials have been proposed in [19] and
[14] for equations defined on squares and triangles, respectively. Both of the in-
volved procedures give very good results, especially when the kernel and the known
function are smooth inside the domain and with possible singularities on the bound-
aries. However several times in the practice, the kernel and the right–hand side in
(1.1) are only pointwise given on equally spaced grids. For this type of problems,
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if on one hand the numerical methods based on piecewise polynomials are cheap,
on the other they provide a low order of convergence, even if the involved functions
are very smooth.

We will prove that, under suitable conditions, the Nyström method based on
the GB polynomials leads to a linear system which is uniquely solvable and well-
conditioned too. In addition we will give error estimates in some Sobolev-type
spaces and we will show that the rate of convergence of the method follows the
degree of smoothness of the known functions.

Moreover we will discuss how the computational effort can be reduced when
the kernel k is a centrosymmetric function, i.e.,

k(x, y, z, t) = k(1 − x, 1 − y, 1 − z, 1 − t).

Here, since the matrices of the linear systems are centrosymmetric too, the solution
can be carried out with a reduction of time complexity exceeding the 90%.

The outline of the paper is as follows. Section 2 contains some notation and
preliminary results. In Section 3 we define the bivariate Generalized Bernstein
operator Bm,s proving some convergence results and studying the behavior of the
sequence {Bm,s} w.r.t. both the parameters m and s. Section 4 is devoted to the
cubature rule based on Bm,s, giving the computational details and some numerical
tests. In Section 5 some results about the Nyström method approximating the
solution of the integral equation (1.1) are given. A particular attention is paid to
the cases of kernel functions leading to matrices with suitable symmetry properties
and the consequent reduction of the computational cost. Some numerical tests are
given showing the efficiency of the proposed method. Finally Section 6 contains
the proofs.

2. Notations and preliminary results

All along the paper the notation C 6= C(a, b, c, . . .) will mean that the positive
constant C is independent of the parameters a, b, c, . . . . On the contrary C =
C(a, b, c, . . .) will highlight that C depends on a, b, c, . . . .

Moreover by Nm
0 we will indicate the set Nm

0 = {0, 1, . . . , m} and therefore
Nm

0 × Nm
0 = {(i, j)}i=0,1,...,m; j=0,1,...,m.

From now on Pm,m will denote the space of all bivariate algebraic polynomials
of degree at most m in each variable separately.

Setting S := [0, 1] × [0, 1], C(S) will indicate the space of continuous functions
in two variables, equipped with the uniform norm on the square S:

‖f‖∞ = max
(x,y)∈S

|f(x, y)|.

Now set ϕ1(x) =
√

x(1 − x), ϕ2(y) =
√

y(1 − y) and denote by fx and fy the
function f(x, y) as a function of the only variable y or x respectively.

For smoother functions, i.e., for functions having some partial derivatives which
can be discontinuous on the boundaries of S, we introduce the following Sobolev–
type space

Wr =
{

f ∈ C(S) : Mr(f) := max
{∥∥f (r)

y ϕr
1

∥∥
∞

,
∥∥f (r)

x ϕr
2

∥∥
∞

}
< ∞

}
, r > 1,
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where the superscript (r) denotes the rth derivative of the one-dimensional function
fy or fx. Wr will be equipped with the norm ‖f‖Wr

= ‖f‖∞ + Mr(f).
Finally, following [14] we introduce a modulus of smoothness on C(S). Recall-

ing the definition of the ϕ modulus of smoothness of Ditzian and Totik [6] for a
one-variable continuous function F:

ωk
ϕ(F, t) = sup

h6t
max

x∈[4h2k2,1−4h2k2]
|∆k

hϕF (x)| + inf
P ∈Pk−1

max
x∈[0,4t2k2 ]

|F (x) − P (x)|

+ inf
P ∈Pk−1

max
x∈[1−4t2k2,1]

|F (x) − P (x)|,

where ϕ(x) =
√

x(1 − x) and

∆k
hϕF (x) =

k∑

i=0

(−1)i−1
(

k

i

)
F

(
x + hϕ(x)

(k

2
− i

))
,

we set

(2.1) ωk
S(f, t) = max

{
sup

x∈[0,1]
ωk

ϕ(fx, t), sup
y∈[0,1]

ωk
ϕ(fy, t)

}
.

It is well known [6] that if in addition maxx∈[0,1] |F (r)(x)ϕr(x)| < ∞, then

(2.2) ωk
ϕ(F, t) 6 Ctr max

x∈[0,1]
|F (r)(x)ϕr(x)|, k > r.

Therefore, if f ∈ Wr, by using (2.2) it results

(2.3) ωk
S(f, t) 6 CtrMr(f), k ≧ r.

Now we recall some basic facts about the univariate Generalized Bernstein operator
(see [8, 18] and the reference therein).

For any continuous function F in [0, 1] let Bm(F ) be the m-th Bernstein poly-
nomial

Bm(F ; x) =

m∑

k=0

pm,k(x)F (tk), pm,k(x) =

(
m

k

)
xk(1 − x)m−k,

where tk = k
m , k ∈ Nm

0 . The Generalized Bernstein operators {Bm,s}s are defined
as

Bm,s = I − (I − Bm)s, B1
m = Bm, Bi

m = Bm(Bi−1
m ), i = 2, . . . , s, s ∈ N,

where I denotes the identity operator on the space of continuous functions.
From the definition it follows that

(2.4) Bm,s(F ; x) =

m∑

j=0

p
(s)
m,j(x)F (tj),

where

(2.5) p
(s)
m,j(x) =

s∑

i=1

(
s

i

)
(−1)i−1Bi−1

m (pm,j; x).
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Setting

p(s)
m (x) := [p

(s)
m,0(x), p

(s)
m,1(x), . . . , p(s)

m,m(x)]T and pm(x) := [pm,0(x), . . . , pm,m(x)]T ,

the following vectorial expression holds true [17]

(2.6) p(s)
m (x)

T
= pm(x)T Cm,s,

where Cm,s ∈ R
(m+1)×(m+1) is defined as

Cm,s = Im + (Im − Am) + . . . + (Im − Am)s−1(2.7)

= Am
−1[Im − (Im − Am)s] = [Im − (Im − Am)s]Am

−1

being Am ∈ R
(m+1)×(m+1) the matrix

(Am)i,j = pm,j(ti), (i, j) ∈ Nm
0 × Nm

0 ,

and Im the identity matrix of order m + 1.
By induction on s, the following recurrence relation holds true

(2.8) Cm,2p = Cm,2p−1 + (Im − Am)2p−1

Cm,2p−1 ,

which allows a fast construction of the subsequence {Bm,2p}p=1,2,..., by means of
the identity

(2.9) Bm,2p(f ; x) = 2Bm,2p−1(f ; x) − B2
m,2p−1(f ; x).

Finally we recall that the eigenvalues of the matrix Am are given by [4]

(2.10) λ
(m)
0 = λ

(m)
1 = 1, λ

(m)
i =

i∏

j=1

(
1 − j − 1

m

)
, i = 2, 3, . . . , m.

Therefore, by (2.7), the eigenvalues µ
(m,s)
k of the matrix Cm,s are

(2.11) µ
(m,s)
k =

1 −
(
1 − λ

(m)
k

)s

λ
(m)
k

, k ∈ Nm
0 .

3. The bivariate GB operator

From now on denote by Pij = (ti, tj), (i, j) ∈ Nm
0 ×Nm

0 , with tk = k
m , k ∈ Nm

0 .
By Bm,s given in (2.4), we define the bivariate Generalized Bernstein operator

Bm,s as

Bm,s := Bm,s ⊗ Bm,s : C(S) → Pm,m, m, s ∈ N.

Let f ∈ C(S). For s = 1, Bm,s(f) reduces to the bivariate Bernstein polynomial
(see for instance [4]),

Bm(f ; x, y) =

m∑

i=0

m∑

j=0

pm,i(x)pm,j(y)f(Pij).

Revisiting some properties holding true in the univariate case, it is not hard to
deduce that

Bm,s(f ; 0, 0) = f(P00), Bm,s(f ; 0, 1) = f(P01),
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Bm,s(f ; 1, 0) = f(P10), Bm,s(f ; 1, 1) = f(P11),
m∑

i=0

m∑

j=0

p
(s)
m,i(x)p

(s)
m,j(y) = 1,

Bm,s(Q1; x, y) = Q1(x, y), Q1 ∈ P1,1,

that means that Bm,s(f) interpolates f at the corners of the square S and preserves
the bivariate polynomials of degree 1 in each variable separately.

By definition, and taking into account (2.4), the polynomial Bm,s(f ; x, y) can
be expressed as

(3.1) Bm,s(f ; x, y) =

m∑

i=0

m∑

j=0

p
(s)
m,i(x)p

(s)
m,j(y)f(Pij),

with
{

p
(s)
m,k

}
k∈Nm

0

defined in (2.5). By (2.6), Bm,s(f) can be also represented in

the Bernstein basis, i.e.,

(3.2) Bm,s(f ; x, y) = pm(x)T Cm,sFmCT
m,spm(y),

where the entries of the matrix Fm ∈ R
(m+1)×(m+1) are

(3.3) Fm(i, j) = f(Pij), (i, j) ∈ Nm
0 × Nm

0 .

Setting

(3.4) Gm,s = Cm,sFmCT
m,s,

by (3.2) it results

(3.5) Bm,s(f ; x, y) = pm(x)T Gm,spm(y),

i.e., the polynomial Bm,s(f) can be seen as the bivariate Bernstein polynomial of
a continuous function g such that g(Pij) = (Gm,s)(i, j), (i, j) ∈ Nm

0 × Nm
0 .

By (2.9) the following recurrence relation can be deduced

Bm,2p(f ; x, y) = 2Bm,2p−1(f ; x, y) − B2
m,2p−1(f ; x, y).

Therefore, for m fixed, we have a fast algorithm in order to construct the subse-
quence Bm,2p(f), p = 1, 2, . . . .

Now we want to state some results about the convergence of the sequence
{Bm,s(f)}m,s, discussing either the case m → ∞ and s fixed, and also the other
case s → ∞ and m fixed. Both situations show interesting aspects we want to
highlight. Consider s fixed at first. By using a result in [8] we get

Theorem 3.1. Let f ∈ C(S). For any fixed s it results

(3.6) (∀m) ‖Bm,s(f)‖∞ 6 22s‖f‖∞.

Moreover for m sufficiently large (say m > m0)

(3.7) ‖f − Bm,s(f)‖∞ 6 C
{

ω2s
S

(
f,

1√
m

)
+

‖f‖∞

ms

}
,

where C is a positive constant depending on s and independent of f and m.
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Corollary 3.1. If f ∈ Wr and s > r/2, there holds

(3.8) ‖f − Bm,s(f)‖∞ 6 C Mr(f)

mr/2
, C 6= C(m, f), C = C(s).

Remark 3.1. Inequality (3.6) states the uniform boundedness of the operator
sequence {Bm,s} w.r.t. m. As in the univariate case, {Bm,s(f)} comes out to be a
sequence of so-called “quasi-interpolant” polynomials, whose rate of convergence,
according to (3.7), improves as well as the smoothness of the function increases.
Therefore, when f ∈ W2r, for m → ∞, the sequence {Bm,r(f)}m approximates f
with order O(1/mr), being r the smallest value of the parameter s for obtaining
this order of convergence.

Now we explore the behavior of the polynomial sequence {Bm,s(f)}s with re-
spect to s, when m is fixed.

In what follows Lm,m(f) will denote the bivariate Lagrange polynomial interpo-
lating f at the equally spaced grid points {Pij}(i,j)∈Nm

0 ×Nm
0

, i.e., Lm,m(f) ∈ Pm,m

and
Lm,m(f ; Pij) = f(Pij), (i, j) ∈ Nm

0 × Nm
0 .

Theorem 3.2. Let m ∈ N be fixed and assume s > 1. With λ
(m)
m and µ

(m,s)
m

defined in (2.10) and (2.11), for any function f ∈ C(S) and for any grid point Pij,
(i, j) ∈ Nm

0 × Nm
0 , we have

(3.9) |f(Pij) − Bm,s(f ; Pij)| 6 C‖f‖∞(1 − λ(m)
m )2s,

and

(3.10) ‖Bm,s(f)‖∞ 6 C‖f‖∞

(
µ(m,s)

m

)2
,

where in both cases C 6= C(s, f), C = C(m). Moreover, for any function f ∈ C(S),

(3.11) lim
s→+∞

Bm,s(f ; x, y) = Lm,m(f ; x, y)

holds uniformly w.r.t. (x, y) ∈ S.

Remark 3.2. Since
(
1 − λ

(m)
m

)2s
= O(m−2s), (3.9) assures a very fast conver-

gence at the grid points Pij , (i, j) ∈ Nm
0 × Nm

0 . This kind of “point wise super
convergence” can be useful in those contexts in which the quality of the process
depends only on the behavior at the grid points. The Computer Aided Geometric
Design, for instance, is a field, where this property is especially advisable.

Remark 3.3. Taking into account that

lim
s

(
µ(m,s)

m

)2
=

( 1

λ
(m)
m

)2
,

(3.10) represents a bound for the operator norm when m is fixed and s → ∞, i.e.,

(3.12) sup
s

sup
f 6=0

‖Bm,s(f)‖∞

‖f‖∞

6 C
( 1

λ
(m)
m

)2
∼ e2m

2πm
< ∞.

This bound seems to be very pessimistic for “small" values of s. On the other hand
(3.12) is not surprising, since {Bm,s(f)}s uniformly converges to the Lagrange
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polynomial Lm,m(f) and the Lebesgue constants of the polynomial interpolation
at equidistant points diverge exponentially (see for instance [13]).

4. The GB cubature rule

The above introduced GB operator can be usefully employed in the numerical
cubature. Indeed for integrals of the type

∫
S f(x, y)dxdy it is possible to deduce

the following cubature rule,

(4.1)

∫

S
f(x, y)dxdy =

∫

S
Bm,s(f ; x, y)dxdy + Rm,s(f) =: Σm,s(f) + Rm,s(f).

By (3.5) and taking into account that
∫ 1

0
pm,k(t)dt =

1

m + 1
, k ∈ Nm

0 ,

it is not hard to prove that

(4.2) Σm,s(f) =
1

(m + 1)2

m∑

i=0

m∑

j=0

Gm,s(i, j),

where Gm,s is the matrix defined in (3.4).
An equivalent and more useful expression from the computational point of

view, is

(4.3) Σm,s(f) =

m∑

i=0

m∑

j=0

D
(s)
i,j f(ti, tj),

where, for any (i, j) ∈ Nm
0 × Nm

0 ,

D
(s)
i,j =

1

m + 1

( m∑

r=0

Cm,s(r, i)

)
1

m + 1

( m∑

k=0

Cm,s(k, j)

)
=: D

(s)
i D

(s)
j .

Now we prove that the rule is numerically stable and convergent and that the
rate of convergence improves as well as the smoothness of the integrating function
increases.

Theorem 4.1. With the notation used in (4.1)–(4.3) and for any f ∈ C(S),
the cubature formula is convergent

(4.4) |Rm,s(f)| 6 C
{

ω2s
S

(
f,

1√
m

)
+

‖f‖∞

ms

}
, C 6= C(m, f), C = C(s)

and numerically stable, i.e.,

(4.5) sup
m

m∑

i=0

m∑

j=0

|D(s)
i,j | < ∞.

Moreover, for any f ∈ Wr and with s > r
2 , the following estimate holds true

(4.6) |Rm,s(f)| 6 C
mr/2

Mr(f), C 6= C(m, f), C = C(s).
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Remark 4.1. We want to discuss on the possible choices of m and s in order
to obtain the maximum rate of convergence with the minimal number of data. For
the sake of simplicity assume f ∈ W2s, for s large enough, and define the sequences

(cs)s→∞ :=
(M2s(f)

ms

)

s→∞
, (dm)m→∞ :=

(M2s(f)

ms

)

m→∞
,

which have different speeds of convergence, depending on the ratios

cs+1

cs
∼ 1

m
,

dm+1

dm
=

(
1 − 1

m + 1

)s

,

respectively.
Since m and s can be chosen independently, we fix m and we note that the

theoretical error decreases faster till s 6 s̃ := log(1/m)/ log(1 − 1
m+1 ), i.e., when

cs+1/cs 6 dm+1/dm. Therefore for s increasing, but s 6 s̃, the best performance
is obtained. For s > s̃ the situation is quite reversed. Indeed the ratio dm+1/dm is
less than the other and then the efficacy of incrementing s is reduced. Therefore,
in order to accelerate the convergence, m has to be increased. So, for any m the
value s̃ represents the maximum one for choosing s, being useless to overcome it.
Table 1 contains the values of the thresholds s̃ = s̃(m), computed for some values
of m.

Table 1. Tresholds for s

m 16 32 64 128 256 512 1024
s̃ 46 113 269 624 1423 3198 7102

Remark 4.2. Finally, we want to discuss about the stability of the cubature
formula w.r.t. s, i.e., when m is fixed and s → ∞. Setting

σm,s :=

m∑

i=0

m∑

j=0

|D(s)
i,j |,

as a consequence of (3.11), lims→∞ σm,s converges to the stability constant of the
Newton-Cotes cubature formula related to the grid points {Pij}, (i, j) ∈ Nm

0 ×Nm
0 .

Nevertheless for the values of s < s̃ that in practice are used, with s̃ as in
Table 1, {σm,s}s seems to have a good behaviour.

Fig. 1 shows the growth of σm,s for increasing values of s. For any fixed m,
σm,s was computed for s ∈ [2, 220].

4.1. Algorithm details and performance of the cubature rule. We start
with some details about the computation of Bm,s(f), analyzing at first the com-
putational effort in the general case and showing how it can be drastically reduced
for suitable choices of s.

As we have remarked before, Bm,s(f) can be regarded as the Bernstein polyno-
mial of a function g(x, y) s.t. g(Pij) = Gm,s(i, j), (i, j) ∈ Nm

0 × Nm
0 . Therefore, if

the matrix Gm,s is known, the computation of Bm,s(f) can be performed by means
of a double de Casteljau scheme w.r.t. g(x, y). As it is well known, this algorithm
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Figure 1

computes the univariate polynomial Bm,s(F ; x) with m2 long operations for any x
and it is numerically stable. Therefore, for any fixed (x, y) ∈ S the computational
effort will be O(m4).

Now we focus our attention on the matrix Gm,s = Cm,sFmCT
m,s, the construc-

tion of which is essentially reduced to that of Cm,s. On the other hand, for any
couple (m, s), the computation of Cm,s can be performed only once, since it does
not depend on the function f .

Starting by (2.7) we observe that Am is a centrosymmetric matrix, i.e., Am =
JmAmJm, where Jm is the counter-identity matrix of order m + 1 (Jm(i, j) =
δi,m−j , (i, j) ∈ Nm

0 × Nm
0 , being δh,k the Kronecker delta). Therefore, as remarked

in [20], the construction of Am can be performed in m3

2 long operations. Further-
more, since the set of centrosymmetric matrices is closed under product, if U, V
are centrosymmetric matrices the product UV can be performed in O(m3/4) long
operations (see for instance [22, 3]). Thus, we can conclude that the centrosym-
metric matrix Cm,s can be constructed in (s − 2)m3/4 flops, instead of (s − 2)m3

flops, i.e., with a 75% reduction in time complexity.
A more significant reduction is obtained by choosing s = 2p, i.e., considering

the subsequence {Cm,2p}p=0,1,.... Indeed, by using (2.8), the matrix Cm,s can be
determined by 2(log2 s − 1) products of centrosymmetric matrices and therefore in
m3

2 (log2 s − 1) flops. For instance, for s = 256, the cost is 3.5m3 instead of 63.5m3

needed in the incremental scheme one-by-one.
Now we give some details about the computation of the coefficients of the

cubature rule. Setting

D(s)
m =

1

(m + 1)2

[
D

(s)
0 , D

(s)
1 , . . . , D(s)

m

]T
,
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we rewrite the cubature rule in the following vectorial form

(4.7) Σm,s(f) = D(s)
m

T
FmD(s)

m .

In view of the centrosymmetry of Cm,s it follows D
(s)
i = D

(s)
m−i, i = 0, 1, . . . , m,

(or equivalently the vector D
(s)
m is centrosymmetric, i.e., D

(s)
m = JmD

(s)
m Jm), and

therefore only D
(s)
i , i = 0, 1, . . . , [m/2], have to be computed. Moreover, if the

integrand f(x, y) satisfies f(x, y) = f(1 − x, 1 − y) for each (x, y) ∈ S, then Fm,
defined in (3.3), is a centrosymmetric matrix, so it is completely defined by means
of (m + 1)2/2 computations of the function f(x, y).

A partial reuse of the values of the function can be performed by constructing
a sequence of the cubature rules with m = 2q, q > 1, i.e., {Σ2q,s}q=1,2,.... Indeed,
denoting by Fm the (m + 1)-order matrix in (4.7), the entries of the (2m + 1)-order
matrix F2m can be obtained with a reduction of 25 % of the evaluations of the
function.

In addition we remark that if the integrand f satisfies f(x, y) = f(1 − y, 1 − x)
for each (x, y) ∈ S, the computational reduction is drastic since Fm comes out to
be a persymmetric matrix (i.e., FT

m = JmFmJm) and, therefore, it is completely
defined by means of (m + 1)2/4 computations of f .

We close the section showing the performance of cubature rule (4.2) by means
of some numerical tests.

In the tables we report the approximating values of the integrals. For any choice
of m we consider different values of s. Moreover an empty cell means that there is
no improvement in the computation w.r.t. the value written in the corresponding
left cell.

Here and in what follows, all the computations were performed in double arith-
metic machine precision 2.2204 × 10−16.

Example 4.1. Consider the integral
∫

S

sin(x + y)

(1 + xy)4 dxdy.

Its value with 17 exact digits is 0.35054764241461881.
Here f ∈ Wr, for any r. According to Remark 4.1, we expect that for fixed m

and increasing values of s, chosen accordingly to Table 1, the performance of the
cubature rule improves.

As Table 2 shows the machine precision is attained for m = 256 and s = 8, or
for m = 128 and s = 16 or for m = s = 64.

Example 4.2. Now, we consider the integral
∫

S

ex2+y2

(1 + x + y)6 dx dy,

whose value with 17 exact digits is 0.05731445500095343.
Also in this case f ∈ Wr for any r and the machine precision is already attained

for m = 128, s = 32. We remark that by using (2.8), the global computational cost
is 2m3 instead of 7.5 m3. The numerical results are contained in Table 3.
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Table 2. Numerical results in Example 1

m s = 8 s = 16 s = 32 s = 64

8 0.3505 0.3505 0.35054

16 0.350547 0.3505476 0.3505476 0.35054764

32 0.35054764 0.350547642 0.3505476424 0.35054764241

64 0.3505476424 0.350547642414 0.3505476424146 0.350547642414619

128 0.3505476424146 0.350547642414619

256 0.350547642414619

Table 3. Numerical results in Example 2

m s = 8 s = 16 s = 32

8 0.057 0.0573 0.0573

16 0.05731 0.05731 0.057314

32 0.057314 0.0573144 0.057314455

64 0.057314455 0.0573144550 0.05731445500

128 0.05731445500 0.05731445500095 0.057314455000953

256 0.0573144550009 0.057314455000953

512 0.057314455000953

Example 4.3. The value of the integral

∫

S

(1 − xy)8.1

1 + x7y8 dx dy

with 17 exact digits is 0.31202047436387431.
Since f ∈ W16, according to the estimate in (4.6), the error behaves like O(m−8)

for any s s.t. s > 16. We point out that the seminorm M16(f) is at least of order
8×109. This means that it is impossible, in practice, to obtain the machine precision
in the computation. Neverthless the rate of convergence tells that m ∼ 720 nodes
occur at least in order to get 14 significant correct digits. As Table 4 shows, this
precision is obtained with significantly lower number of points.

Moreover we stress that until s is less than the threshold values, the speed of
convergence really improves for m fixed and large s (see in particular the results
for m = 16, 32).

Example 4.4. Finally, we consider the integral

∫

S

(1 − xy)2.1

1 + x7y8 dx dy,

whose value with 16 exact digits is 0.5998045286943496.
Since f ∈ W4, according to the estimate in (4.6), the error behaves like O(m−2)

for any s s.t. s > 4. In this case it is possible to get the machine precision with a
value of m that is far below the theoretical one, as Table 5 show.



BIVARIATE GENERALIZED BERNSTEIN OPERATORS 153

Table 4. Numerical results in Example 3

m s = 8 s = 16 s = 32

8 0.312 0.3120 0.31202

16 0.31202 0.312020 0.3120204

32 0.3120204 0.312020474 0.31202047436

64 0.312020474 0.312020474363 0.31202047436387

128 0.31202047436 0.31202047436387

256 0.31202047436387

m s = 64 s = 128

8

16 0.312020474

32 0.31202047436 0.312020474363

Table 5. Numerical results in Example 4

m s = 8 s = 16 s = 32 s = 64

16 0.599804 0.5998046 0.5998045 0.5998045

32 0.5998045 0.59980452 0.599804528 0.599804528

64 0.5998045286 0.5998045286 0.5998045286 0.5998045286

128 0.59980452869 0.59980452869 0.59980452869 0.59980452869

256 0.599804528694 0.599804528694 0.599804528694 0.599804528694

512 0.5998045286943 0.59980452869434 0.59980452869434 0.59980452869434

1024 0.5998045286943 0.599804528694349

m s = 128 s = 256 s = 512 s = 1024 s = 2048

16

32 5.998045286

64 0.5998045286 0.5998045286 0.5998045286 0.5998045286 0.59980452869

128 0.59980452869 0.599804528694

256 0.599804528694 0.5998045286943

5. The Fredholm integral equation on the square

Denoting by

Kf(x, y) = µ

∫

S
k(x, y, z, t)f(z, t)dz dt

(1.1) can be rewritten in operatorial form as

(5.1) (I − K)f = g,

where I is the identity operator on C(S). Here and in the sequel we will denote
k(z,t) for meaning that the function of four variables k is considered as a function
of the only pair (x, y).

Using standard arguments, it is possible to prove that if k(x, y, z, t) is continu-
ous then K : C(S) → C(S) is compact and consequently the Fredholm Alternative
holds true for (5.1) in C(S) (see for instance [1]). Moreover, if for some r ∈ N

(5.2) sup
(z,t)∈S

‖k(z,t)‖Wr
< +∞,
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then Kf ∈ Wr for any f ∈ C(S).
Starting with the cubature rule (4.2), we can define the following discrete op-

erator

Kmf(x, y) = µ

m∑

i=0

m∑

j=0

D
(s)
i,j k(x, y, ti, tj)f(ti, tj),

and consider the operator equation

(5.3) (I − Km)fm = g,

where fm is unknown. Collocating on the pairs (th, tℓ), (h, ℓ) ∈ Nm
0 × Nm

0 , the
quantities βij = f(Pi,j), (i, j) ∈ Nm

0 × Nm
0 , come out to be the unknowns of the

linear system

(5.4) βhℓ − µ

m∑

i=0

m∑

j=0

D
(s)
i,j k(th, tℓ, ti, tj)βij = g(th, tℓ), (h, ℓ) ∈ Nm

0 × Nm
0 .

The matrix solution (β∗
ij)i,j=0,1...,m of this system, if it exists, allows us to construct

the Nyström interpolant in two variables

(5.5) fm(x, y) = µ
m∑

i=0

m∑

j=0

D
(s)
i,j k(x, y, ti, tj)β∗

ij + g(x, y),

which will approximate the unknown f . Now denote by Γm,s the coefficient matrix
of system (5.4), which is a (m + 1) block matrix, the entries of which are matrices
of order m + 1.

Denoting by cond(Γm,s) the condition number in infinity norm of Γm,s, the
following Theorem holds:

Theorem 5.1. Assume that k is continuous in S×S and that Ker{I−K} = {0}
in C(S). Denote by f the unique solution of (5.3) in C(S) for a given g ∈ C(S). If
in addition, for some r ∈ N, k satisfies (5.2), g ∈ Wr, and

(5.6) sup
(x,y)∈S

‖k(x,y)‖Wr
< +∞,

then, for m sufficiently large, system (5.4) is uniquely solvable and well conditioned
too, since

cond(Γm,s) 6 C, C 6= C(m), C = C(s).

Moreover, for any s > r/2 there results

(5.7) ‖f − fm‖∞ 6 C ‖f‖Wr

mr/2
,

where C 6= C(m, f) and C = C(s).
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5.1. Algorithm details and performance of the Nyström method. In
what follows we propose some numerical tests. In the tables for each m we give the
maximum relative error attained in the computation of fm, defined as in (5.5), at
the grid of equally spaced points [0 : 0.1 : 1] × [0 : 0.1 : 1].

All the linear systems were solved by the Gaussian elimination with partial
pivoting, and therefore the main computational effort was of the order of m6/3.

The computation were performed in double arithmetic machine precision. More-
over an empty cell means that there is no improvement in the computation w.r.t.
the value written in the corresponding left or up cell.

Example 5.1. We consider the following equation

f(x, y) − 1

5

∫

S
f(z, t)e−(1+x)(1+z)−(1+y)(1+t)dz dt

= 1 − e−2(2+x+y)(5e1+x − 1)(e1+y − 1)

(1 + x)(1 + y)
,

where µ = 0.2, k(x, y, z, t) = e−(1+x)(1+z)−(1+y)(1+t), and

g(x, y) = 1 − e−2(2+x+y)(5e1+x − 1)(e1+y − 1)

(1 + x)(1 + y)
,

as well as the exact solution f(x, y) = 1. Here, the known functions are very
smooth and according with (5.7) we expect a fast convergence. The numerical
results confirm our expectation.

Table 6. Numerical results in Example 5

m s = 16 s = 32 s = 64 s = 128 s = 256

5 0.14 × 10−6 0.48 × 10−7 0.46 × 10−7

10 0.94 × 10−9 0.11 × 10−9 0.29 × 10−10 0.95 × 10−11 0.14 × 10−11

15 0.21 × 10−10 0.14 × 10−11 0.10 × 10−12 0.17 × 10−13 0.19 × 10−14

20 0.11 × 10−11 0.31 × 10−13 0.15 × 10−14
0.22 × 10

−15

30 0.13 × 10−14
0.22 × 10

−15

Example 5.2. We consider the following equation

f(x, y) − 0.3

∫

S
f(z, t) cos(xz) cos(yt)dz dt = exy,

where µ = 0.3, k(x, y, z, t) = cos(xz) cos(yt), g(x, y) = exy. The kernel and the
known function g are very smooth. Also in this case we expect a rapid convergence.
The numerical results, given in Table 7, confirm our expectation.

Example 5.3. This example can be found in [21]:

f(x′, y′) −
∫ 1

−1

∫ 1

−1
f(z′, t′)[x′ sin y′ + t′ez′

] dz′dt′ = x′e−y′

+ 4x′ sin y′ − 7

3
.

By the transformations x′ = 2x−1, y′ = 2y−1, t′ = 2t−1, z′ = 2z −1, the equation
becomes
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Table 7. Numerical results in Example 6

m s = 16 s = 32 s = 64 s = 128 s = 256

10 0.22 × 10−8 0.12 × 10−9 0.12 × 10−9 0.36 × 10−10 0.17 × 10−11

15 0.92 × 10−9 0.31 × 10−10 0.51 × 10−11 0.60 × 10−13 0.50 × 10−13

20 0.12 × 10−9 0.20 × 10−11 0.47 × 10−13 0.41 × 10−14 0.23 × 10−14

30 0.59 × 10−11 0.32 × 10−13
0.45 × 10

−15

40 0.59 × 10−12 0.58 × 10−15

f(x, y) − 4

∫

S
f(z, t)[(2x − 1) sin(2y − 1) + (2t − 1)e2z−1]dz dt

= (2x − 1)e1−2y + 4(2x − 1) sin(2y − 1) − 7

3
.

i.e., the equation is of the type (1.1) with

µ = 4, k(x, y, z, t) = (2x − 1) sin(2y − 1) + (2t − 1)e2z−1,

g(x, y) = (2x − 1)e1−2y + 4(2x − 1) sin(2y − 1) − 7

3
.

In this case, the solution is known and it is f(x, y) = (2x − 1)e1−2y − 1. The
numerical results are shown in Table 8.

Table 8. Numerical results in Example 7

m s = 16 s = 32 s = 64

5 0.36 × 10−9 0.97 × 10−14

10 0.58 × 10−13 0.15 × 10−13 0.19 × 10−13

20 0.19 × 10−13

30 0.19 × 10−13

Now we give some computational details that are useful in constructing the
linear system. We start from the structure of the matrix Γm,s of linear system
(5.4).

It is a block-matrix of order (m + 1) having the following expression

Γm,s =




Γ(0,0) Γ(0,1) . . . Γ(0,m)

Γ(1,0) Γ(1,1) . . . Γ(1,m)

Γ(2,0) Γ(2,1) . . . Γ(2,m)

. . . . . . . . . . . .

Γ(m,0) Γ(m,1) . . . Γ(m,m)




The blocks Γ(h,l) of order m + 1 are defined as

Γ(h,ℓ) = δh,ℓIm − µK(h,ℓ)
m Uℓ, (h, ℓ) ∈ Nm

0 × Nm
0 ,

where Uℓ = diag
(
D

(s)
ℓ,0, D

(s)
ℓ,1 , . . . , D

(s)
ℓ,m

)
, Im denotes the identity matrix of order

m + 1 and the entries of the matrix K
(h,ℓ)
m , are

K(h,ℓ)
m (i, j) = k(xh, yi, xℓ, yj), (i, j) ∈ Nm

0 × Nm
0 .
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Setting

K∗
m =




K
(0,0)
m K

(0,1)
m . . . K

(0,m)
m

K
(1,0)
m K

(1,1)
m . . . K

(1,m)
m

K
(2,0)
m K

(2,1)
m . . . K

(2,m)
m

. . . . . . . . . . . .

K
(m,0)
m K

(m,1)
m . . . K

(m,m)
m




Dm = diag(D
(s)
0 , D

(s)
1 , . . . , D(s)

m ),

U∗
m = Dm ⊗ Dm, I∗

m = Im ⊗ Im,

the matrix Γm,s can be rewritten as follows

Γm,s = I∗
m − µK∗

mU∗
m.

Now we discuss on how the global time complexity can be reduced for some
choices of the kernel k given in (5.1). For the sake of brevity we assume m + 1 let
be even (the case m + 1 odd follows by a little bit elaborate scheme).

Assuming the kernel k satisfies

(5.8) k(x, y, z, t) = k(1 − x, 1 − y, 1 − z, 1 − t),

then the matrix Γm,s is centrosymmetric and therefore, in view of [12, Th. 1], the
following orthogonal block similarity holds

P T Γm,sP =




F1

F2

F3

F4


 ,

where P is a known orthogonal matrix and the matrices Fi ∈ R
(m+1)2

4 ×
(m+1)2

4 are
expressed in terms of suitable blocks of Γm,s. The complete and detailed expressions
of P and Fi, i = 1, . . . , 4 can be found in [12].

Therefore, the solution of the linear system (5.4) is obtained by solving 4 inde-
pendent linear systems of orders (m + 1)2/4. Hence the final solution is computed
with a a 93% time complexity reduction (as shown in the graphic).

If in addition the kernel k is “bisymmetric", i.e.,

(5.9) k(x, y, z, t) = k(y, x, t, z),

then the matrix Γm,s is both symmetric and centrosymmetric and therefore it
is a persymmetric matrix. In this case, Γm,s is completely defined by means of
(m + 1)2/2 symmetric blocks of order m + 1.

Example 5.4. We consider the following equation

f(x, y) − 0.4

∫

S
f(z, t)|x − z|4.5|y − t|7.3dz dt = ex+y,

where µ = 0.4, k(x, y, z, t) = |x − z|4.5|y − t|7.3, g(x, y) = ex+y. In this case k
satisfies both properties (5.8) and (5.9).
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Figure 2. Time complexity comparison

Table 9. Numerical results in Example 8

m s = 8 s = 16 s = 32 s = 64

10 0.86 × 10−4 0.61 × 10−4 0.18 × 10−4 0.36 × 10−5

20 0.13 × 10−5 0.13 × 10−5 0.85 × 10−7 0.57 × 10−8

30 0.86 × 10−7 0.84 × 10−7 0.16 × 10−8 0.46 × 10−9

40 0.10 × 10−7 0.10 × 10−7 0.18 × 10−9

50 0.19 × 10−8 0.19 × 10−8 0.65 × 10−10

60 0.46 × 10−9 0.46 × 10−9 0.31 × 10−10

70 0.13 × 10−9 0.13 × 10−9 0.66 × 10−11

80 0.47 × 10−10 0.46 × 10−10 0.46 × 10−11

Since the kernel k ∈ W4 the expected rate of convergence is O(1/m2). However,
as Table 9 evidences, 11 significant digits are obtained with m = 80, while the
theoretical estimates assure only 8 s.d.

About the time complexity, we observe that the solution has been obtained for
m = 80 by solving four linear systems of order of 1600.

6. The proofs

First of all we state some results concerning the univariate operator Bm,s de-
fined in (2.4).

Lemma 6.1. For any continuous function F in [0, 1] it results

(6.1) max
x∈[0,1]

|Bm,s(F, x)| 6 (2s − 1) max
x∈[0,1]

|F (x)|,

i.e., Bm,s is a bounded operator on the space of continuous functions.
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Proof. By (2.4) and (2.6)

|Bm,s(F ; x)| 6 max
x∈[0,1]

|F (x)|
m∑

j=0

|p(s)
m,j(x)|

= max
x∈[0,1]

|F (x)|
m∑

j=0

∣∣∣∣
m∑

i=0

pm,i(x)Cm,s(i, j)

∣∣∣∣

6 max
x∈[0,1]

|F (x)|
∣∣∣∣

m∑

i=0

pm,i(x)
m∑

j=0

Cm,s(i, j)Qj

∣∣∣∣

6 max
x∈[0,1]

|F (x)|‖Cm,s‖,

where Qj(x) := sgn
{ ∑m

i=0 pm,i(x)Cm,s(i, j)
}

and ‖D‖ = max
16k6n

∑n
h=1 |D(k, h)|

denotes the infinity norm of the matrix D ∈ R
n×n.

Taking into account that (see [18]).

(6.2) ‖Cm,s‖ 6 2s − 1,

this lemma follows. �

Now we recall a result in [8] about the convergence of the univariate operator
Bm,s (see also [18]). It was proved that for any continuous function F in [0, 1] there
holds

(6.3) max
x∈[0,1]

|F (x) − Bm,s(F, x)| 6 C
{

ω2s
ϕ

(
F,

1√
m

)
+

maxx∈[0,1] |F (x)|
ms

}
,

where C is a positive constant depending on s and independent of F and m.

Proof of Theorem 3.1. By (3.1) and (2.6) we get

|Bm,s(f ; x, y)| 6 ‖f‖∞

m∑

i=0

∣∣∣p(s)
m,i(x)

∣∣∣
m∑

j=0

∣∣∣p(s)
m,j(y)

∣∣∣

= ‖f‖∞

∣∣∣∣
m∑

j=0

m∑

k=0

pm,k(x)Cm,s(k, j)Qj

∣∣∣∣

∣∣∣∣
m∑

i=0

m∑

r=0

pm,r(y)Cm,s(r, i)Ti

∣∣∣∣,

where for any fixed x, y,

Qj := sgn

( m∑

k=0

pm,k(x)Cm,s(k, j)

)
, Ti := sgn

( m∑

r=0

pm,r(y)Cm,s(r, i)

)
.

Setting dk =
∑m

j=0 Cm,s(k, j)Qj, hr =
∑m

i=0 Cm,s(r, i)Ti, we can conclude that

(6.4) |Bm,s(f ; x, y)| 6 ‖f‖∞

∣∣∣∣
m∑

k=0

pm,k(x)dk

∣∣∣∣
∣∣∣∣

m∑

r=0

pm,r(y)hr

∣∣∣∣ 6 ‖f‖∞‖Cm,s‖2

and therefore (3.6) follows by (6.2).
In order to prove (3.7) we remark that we can consider the function f(x, y)

as a function of y (freezing x) or viceversa. Therefore, for instance, adding and
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subtracting the univariate Generalized Bernstein polynomial Bm,s(fx) defined in
(2.4), we can write

|f(x, y) − Bm,s(f ; x, y)| 6 |fx(y) − Bm,s(fx, y)| + |Bm,s(fx, y) − Bm,s(f ; x, y)|
= |fx(y) − Bm,s(fx; y)| + |Bm,s(fy − Bm,s(fy); x)|(6.5)

=: I1(x, y) + I2(x, y)

By using (6.3) it easily follows

(6.6) I1(x, y) 6 C
{

ω2s
ϕ

(
fx,

1√
m

)
+

maxy∈[0,1] |fx(y)|
ms

}
.

Moreover, using (6.1) and (6.3) once again, we get

(6.7) I2(x, y) 6 C
{

ω2s
ϕ

(
fy,

1√
m

)
+

maxx∈[0,1] |fy(x)|
ms

}
.

Therefore, (3.7) follows using (6.6)–(6.7) in (6.5) and taking the maximum on
(x, y) ∈ S. �

Proof of Corollary 3.1. If f ∈ Wr (3.8) follows immediately by using
(2.3) in (3.7). �

Proof of Theorem 3.2. First of all set

lm,k(z) =

m∏

i=0,i6=k

(z − ti)

(tk − ti)
, and lm(z) = [lm,0(z), lm,1(z), . . . , lm,m(z)]T .

Therefore the bivariate Lagrange interpolating polynomial at the grid points
Pij = (ti, tj), i, j = 0, 1, . . . , m, can be written as follows

Lm,m(f ; x, y) =

m∑

i=0

m∑

j=0

lm,i(x)lm,j(y)f(Pij) = lm(y)T Fmlm(x) = lm(x)T Fmlm(y),

where Fm is defined in (3.3). Recalling that [17]

(6.8) pm(z)T A−1
m = lm(z)T ,

in order to prove (3.9), start from the following identities:

f(Pij) − Bm,s(f ; Pij) = Lm,m(f ; Pij) − Bm,s(f ; Pij)

= lT
m(ti)Fmlm(tj) − pm(ti)

T Cm,sFmCT
m,spm(tj)

= pm(ti)
T [A−1

m FmA−T
m − Cm,sFmCT

m,s]pm(tj)

=: pm(ti)
T Qm,spm(tj).

By (2.7)

Qm,s = A−1
m (I − Am)sFm[(I − Am)s]T A−T

m

and consequently

f(Pij) − Bm,s(f ; Pij) = pm(ti)
T Qm,spm(tj)

= lm(ti)
T (I − Am)sFm((I − Am)s)T lm(tj)



BIVARIATE GENERALIZED BERNSTEIN OPERATORS 161

= ((I − Am)sFm((I − Am)s)T )ij .

Therefore, denoting by ρ(D) the spectral radius of a matrix D,

|f(Pij) − Bm,s(f ; Pij)| 6 ‖(I − Am)s‖2
∞‖f‖∞

6 C‖f‖∞ρ2((I − Am)s) = ‖f‖∞(1 − λ(m)
m )2s

and (3.9) follows.
Now we want to prove (3.10). By (6.4) we get

|Bm,s(f ; x, y)| 6 ‖f‖∞‖Cm,s‖2 6 C‖f‖∞ρ2(Cm,s)

with C = C(m). Therefore by (2.11), (3.10) follows.
Finally, taking into account (3.2) and lims→∞ Cm,s = A−1

m , by (6.8) we get

(∀f ∈ C(S)) lim
s→∞

Bm,s(f ; x, y) = lm(y)T Fmlm(x) = Lm,m(f ; x, y)

uniformly w.r.t. (x, y) ∈ S and (3.11) follows. �

Proof of Theorem 4.1. First we remark that (4.4) and (4.6) immediately
follow by (3.7) and (3.8), respectively.

Moreover stability condition (4.5) of the cubature rule is obtained by applying
the Uniform Boundedness Principle since (4.4) assures the convergence of the rule
for any function in C(S) (see for instance [2]). �

Proof of Theorem 5.1. Holding (4.4), the Nyström method (5.3) is based
on a cubature formula which is convergent for any continuous function. Hence, by
standard arguments (see [1]) the method is stable and convergent in C(S) and well
conditioned too. Moreover, it is also known that ‖f − fm‖∞ ∼ ‖Kf − Kmf‖∞.

On the other hand by (4.4) and taking into account (2.1), we get, since we are
assuming s > r/2,

(6.9) ‖Kf − Kmf‖∞ 6 C
{‖fk(x,y)‖∞

ms
+

Mr(fk(x,y))√
mr

}
, C 6= C(m, f).

Now assume for instance that Mr(fk(x,y)) = ‖ ∂(r)

∂zr (fk(x,y))ϕ
r‖∞. In the same way

we can proceed in the alternative case i.e., if Mr(fk(x,y)) = ‖ ∂(r)

∂tr (fk(x,y))ϕ
r‖∞.

By (6.9) we get

‖Kf − Kmf‖∞ 6
C√
mr

r∑

j=0

(
r

j

)∥∥∥∥
∂(j)f

∂zj

∂(r−j)k(x,y)

∂zr−j
ϕr

∥∥∥∥
∞

6
C√
mr

r∑

j=0

aj‖f
(j)
t ϕj‖∞

where C 6= C(m, f) and aj =
(

r
j

)
sup(x,y)∈S ‖ ∂(r−j)k(x,y)

∂zr−j ϕr−j‖∞. Hence, since by

(5.6) it follows that aj , j = 0, . . . , r, are bounded, using [5, p. 310, Lemma 2.1], it
results

r∑

j=0

aj‖f
(j)
t ϕj‖∞ 6 C(‖f‖∞ + ‖f

(r)
t ϕr‖∞),

with C 6= C(f), and then (5.7) follows. �
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