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PURELY PERIODIC β-EXPANSIONS
IN CUBIC SALEM BASE IN Fq((X−1))

Faïza Mahjoub

Abstract. Let Fq be the finite field with q elements and β Salem series in
Fq((X−1)). It is proved in [15] that, in this case, all elements in Fq(X, β)
have purely periodic β-expansion. We characterize the formal power series f

in Fq(X, β) with purely periodic β-expansions by the conjugate vector f̃ when
β is a cubic unit. No similar results exist in the real case.

1. Introduction

Let β > 1 be a real number. The β-expansion of a real number x ∈ [0, 1]
is defined as the sequence (xi)i>1 with values in {0, 1, · · · , [β]} produced by the
β-transformation Tβ : x → βx (mod 1) as follows:

∀i > 1, xi = [βT i−1
β (x)], and thus x =

∑

i>1

xi

βi
.

This expansion was first introduced by Rényi [14]. A β-expansion is periodic if there
exists p > 1 and m > 1 such that xk = xk+p, holds for all k > m. When xk = xk+p

holds for all k > 1, then it is purely periodic. We denote by P er(β) the numbers in
[0,1) with periodic β-expansions, Pur(β) the numbers in [0,1) with purely periodic
β-expansions and Fin(β) the numbers in [0,1) with finite β-expansions.

Let Q(β) be the smallest field containing Q and β. An easy argument shows
that Per(β) ⊆ Q(β) ∩ [0, 1) for every real number β > 1. In [17], Schmidt showed
that if β is a Pisot number (an algebraic integer whose conjugates have modulus
<1), then Per(β)=Q(β) ∩ [0, 1).

Ito and Rao discussed the purely periodic β-expansions in the statement [9]
and they characterized all reals in [0, 1[ having purely periodic β-expansions with
Pisot unit base. In [6], Berthé and Siegel completed the characterization in the
Pisot non-unit base.

Set

γ(β) = sup{c ∈ [0, 1) : ∀r ∈ Q ∩ [0, c], dβ(r) is purely periodic}.
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Akiyama proved in [3] that if β is a Pisot unit number satisfying the finiteness
property (Fin(β) = Z[β−1] ∩ R+), then γ(β) > 0.

In the quadratic case, Schmidt [17] proved that if β satisfied β2 = nβ + 1 for
some integer n > 1, then γ(β) = 1. Until now, it has been clear that for only known
family is the γ(β) of which equals 1. Authors of [2] have proved that if β is not a
Pisot unit, then γ(β) = 0. They showed that if β is a cubic Pisot unit satisfying
the finiteness property such that the number field Q(β) is not totally real, then
0 < γ(β) < 1.

In 2006, Hbaib and Mkaour [8] introduced the β-expansion in the field of formal
power series over a finite field Fq. They developed some results concerning the β-
expansion of unity. Later, Scheicher [15] proved that P er(β) = Fq(X, β) if and only
if β is a Pisot or Salem series. In [1], Abbes and Hbaib gave families of Pisot and
Salem elements β in Fq((X−1)) with the curious property that the β-expansion of
any rational series in the unit disk D(0, 1) is purely periodic. Ghorbel, Hbaib and
Zouari showed in [7] that if β is a quadratic Pisot unit base, then every rational f
in the unit disk has a purely periodic β-expansion.

In [5], the authors proved that the β-expansion of any rational element in
the unit disk D(0, 1) is purely periodic when β is a Pisot or Salem unit series in
Fq((X−1)).

Here, we continue in the same context: we take β a cubic Salem unit series
in Fq((X−1)) and characterize the formal power series f ∈ Fq(X, β) with purely

periodic β-expansions by the norm of the conjugate vector f̃ .
Our work is organized as follows: In section 2, we introduce the field of formal

power series over a finite field Fq and the β-expansion theory in this field. In Section
3, we give our main result with its proof.

2. β-expansions in Fq((X−1))

Let Fq be the finite field with q elements, Fq[X ] the ring of polynomials with
coefficients in Fq, Fq(X) the field of rational functions, Fq(X, β) the minimal exten-
sion of Fq containing X and β and Fq[X, β] the minimal ring containing X and β.
Let Fq((X−1)) be the field of formal power series of the form:

f =

l∑

k=−∞

fkXk, fk ∈ Fq

where

l = deg f :=

{
max{k : fk 6= 0} for f 6= 0;

−∞ for f = 0.

We define the absolute value by

|f | =

{
qdeg f for f 6= 0;

0 for f = 0.
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Since |.| is not archimedean, |.| fulfills the strict triangle inequality

|f + g| 6 max(|f |, |g|) and

|f + g| = max(|f |, |g|) if |f | 6= |g|.

Let f ∈ Fq((X−1)), define the integer (polynomial) part [f ] =
∑l

k=0 fkXk where
the empty sum, as usual, is defined to be zero. Therefore [f ] ∈ Fq[X ] and (f − [f ])
is in the unit disk D(0, 1) for all f ∈ Fq((X−1)).

Lemma 2.1. Let f =
∑

i>1
αi

Xi ∈ Fq((X−1))∩D(0, 1). Then (αi)i>1 is periodic

if and only if f ∈ Fq(X).

Lemma 2.2. Let f =
∑

i>1
αi

Xi ∈ Fq((X−1)) ∩ D(0, 1). Then (αi)i>1 is purely

periodic if and only if f ∈ Fq(X) and 0 is not a pole of f .

Proposition 2.1. [13] Let K be complete field with respect to (a non archime-
dean absolute value |.|) and L/K (K ⊂ L) be an algebraic extension of degree m.
Then |.| has a unique extension to L defined by : |a| = m

√
|NL/K(a)| and L is

complete with respect to this extension.

We apply Proposition 2.1 to algebraic extensions of Fq((X−1)). Since Fq[X ] ⊂
Fq((X−1)), every algebraic element over Fq[X ] can be evaluated. However, since
Fq((X−1)) is not algebraically closed and such an element is not necessarily ex-
pressed as a power series over X−1. For a full characterization of the algebraic
closure of Fq[X ], we refer to Kedlaya [10].

An element β = β1 ∈ Fq((X−1)) is called a Pisot (respectively, Salem) element
if it is an algebraic integer over Fq[X ], |β| > 1 and |βj | < 1 holds for all its
conjugates βj (respectively, |βj | 6 1 and there exists at least one conjugate βk such
that |βk| = 1).

Bateman and Duquette [4] characterized the Pisot and Salem elements in
Fq((X−1)):

Theorem 2.1. Let β ∈ Fq((X−1)) be an algebraic integer over Fq[X ] and

P (y) = yn − A1yn−1 − · · · − An, Ai ∈ Fq[X ],

be its minimal polynomial. Then

(i) β is a Pisot element if and only if |A1| > max26i6n |Ai|
(ii) β is a Salem element if and only if |A1| = max26i6n |Ai|.

Let β, f ∈ Fq((X−1)) with |β| > 1. A representation in base β (or β-
representation) of f is an infinite sequence (di)i>1, di ∈ Fq[X ], such that

f =
∑

i>1

di

βi
.

A particular β-representation of f is called the β-expansion of f in base β, noted
dβ(f), which is obtained by using the β-transformation Tβ in the unit disk which

is given by Tβ(f) = βf − [βf ]. Then dβ(f) = (ai)i>1 where ai = [βT i−1
β (f)].
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An equivalent definition of the β-expansion can be obtained by a greedy al-
gorithm. This algorithm works as follows. We set r0 = f , ai = [βri−1] and
ri = βri−1 −ai for all i > 1. The β-expansion of f will be noted as dβ(f) = (ai)i>1.

We note that dβ(f) is finite if and only if there is a k > 0 such that T k(f) = 0,
dβ(f) is ultimately periodic if and only if there is some smallest p > 0 (the pre-

period length) and s > 1 (the period length) for which T p+s
β (f) = T p

β (f).

Now, let f ∈ Fq((X−1)) be an element with |f | > 1. Then there is a unique

k ∈ N such that |β|k 6 |f | < |β|k+1. Hence | f
βk+1 | < 1 and we can represent f

by shifting dβ( f
βk+1 ) by k digits to the left. Therefore, if dβ(f) = 0.d1d2d3 . . . ,

we obtain dβ(βf) = d1.d2d3 . . . . If we have dβ(f) = dldl−1 . . . d0.d−1 . . . dm, then
we put degβ(f) = l and ordβ(f) = m. In the sequel, we will use the following
notations:

• Fin(β) = {f ∈ Fq((X−1)) : dβ(f) is finite}.
• Per(β) = {f ∈ Fq((X−1)) : dβ(f) is eventually periodic}.
• Pur(β) = {f ∈ Fq((X−1)) and |f | < 1 : dβ(f) is purely periodic}.

Remark 2.1. In contrast to the real case, there is no carry occurring, when we
add two digits. Therefore, if z, w ∈ Fq((X−1)), we have dβ(z + w) = dβ(z) + dβ(w)
digitwise.

Theorem 2.2. [8] A β-representation (dj)j>1 is the β-expansion of f in the
unit disk if and only if |dj | < |β| for j > 1.

In the field of formal series case, Scheicher, Jellali and Mkaouar [16] had studied
the characterization of purely periodic β-expansions in the Pisot unit base. Later,
Hbaib-Mkaouar and Scheicher proved independently the following:

Theorem 2.3. [15] β is a Pisot or Salem element if and only if Per(β) =
Fq(X, β).

Theorem 2.4. [8] β is Pisot or Salem element if and only if dβ(1) is periodic.

The authors of [5] gave the following result.

Theorem 2.5. [5] Let β be a Pisot or Salem unit series in Fq((X−1)) and
r ∈ Fq(X) ∩ D(0, 1). Then dβ(r) is purely periodic.

In [11] and [12], metric results were established and the relation to continued
fractions was studied. Stating

γ(β) = sup{c ∈ [0, 1) : ∀f ∈ Fq(X) ∩ D(0, c), dβ(f) is purely periodic}.

The study of the quality γ(β) in Fq((X−1)) was interesting for some researchers in
the last years. Specifically, we have the following theorems.

Theorem 2.6. [1] Let β be a Pisot or Salem unit series. Then γ(β) > 0.

Theorem 2.7. [7] If β is a quadratic Pisot unit series, then γ(β) = 1
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3. Results

Let β be an algebraic unit series of minimal polynomial βd+Ad−1βd−1+· · ·+A0

where Ai ∈ Fq[X ] for i ∈ { 1, . . . , d − 1} and A0 ∈ F∗
q . Let β2, . . . , βd be the

conjugates of β. For f = r0 + r1β + · · · + rd−1βd−1 ∈ Fq(X, β), we define fi =

r0 + r1βi + · · · + rd−1βd−1
i ∈ Fq(X, β) with 2 6 i 6 d and f̃ the conjugate vector of

f by f̃ =

(
f2

...
fd

)
and ‖f̃‖ = sup26k6d |fk|.

Theorem 3.1. Let β be a Pisot unit series and f ∈ Fq(X, β) ∩ D(0, 1). If

dβ(f) is purely periodic, then ‖f̃‖ < |β|.

Proof. We have dβ(f) = a1, · · · , as with ai ∈ Fq[X ]. Then we can write

f =
a1

β
+ · · · +

as

βs
+

1

βs
(f).

Hence,

f(1 −
1

βs
) =

a1

β
+ · · · +

as

βs
.

Therefore, we obtain

(βs − 1)f = a1βs−1 + · · · + as.

Let (βj)26j6d the conjugates of β. Afterward |βj | < 1 for all 2 6 j 6 d which
leads to

(βs
j − 1)fj = a1βs−1

j + · · · + as.

Then, we get

|fj | = |a1βs−1
j + · · · + as| < |β|.

Finally, ‖f̃‖ < |β|. �

Remark 3.1. The same arguments as in the proof of the last theorem, one can
prove that if β is a Salem unit series and f ∈ Fq(X, β) ∩ D(0, 1), and if dβ(f) is

purely periodic then ‖f̃‖ 6 |β|.

Now, here is our main theorem.

Theorem 3.2. Let β be a cubic Salem unit series in Fq((X−1)) and f ∈

Fq(X, β) ∩ D(0, 1). ‖f̃‖ < |β| if and only if dβ(f) is purely periodic.

Proof. The sufficient condition is deduced by Theorem 3.1. As for the nec-
essary condition, let f = r0 + r1β + r2β2 ∈ Fq(X, β) ∩ D(0, 1) and f1, f2 the two

conjugates of f in Fq(X, β). Let fi = r0 + r1βi + r2β2
i such that |fi| = ‖f̃‖. Since,

we have |r0 + r1β + r2β2| < 1. Then we obtain two cases:
Case 1: |r0| < 1 and |r1β + r2β2| < 1. If |r0| < 1 then thanks to Theorem 2.5

dβ(r0) is purely periodic. If |r1β + r2β2| < 1 then |r1 + r2β| < 1
|β| < 1. Hence, we

obtain two subcases:
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(i) |r1| < 1 and |r2β| < 1. If |r1| < 1 then by Theorem 2.5 dβ(r1) is purely
periodic. So, dβ(r1β) is purely periodic. If |r2β| < 1 then |r2| < 1

|β| < 1.

Therefore, from Theorem 2.5 dβ(r2) is purely periodic, consequently dβ(r2β2)
is purely periodic.

(ii) |r1| > 1, |r2β| > 1 and |r1| = |r2β|. If |r1| = |r2β| then |r1βi| = |r2ββi| >
|r2β2

i |. Reminding that we have |r0 + r1βi + r2β2
i | < |β| and |r0| < 1 < β,

we obtain |r1βi + r2β2
i | < |β|. However, when |βi| = 1 we get |r1βi + r2β2

i | =
|r1βi| = |r1|. Thus, |r1| < |β| and dβ(r1) is purely periodic and it follows
that dβ(r1β) is purely periodic. Moreover, we have |r1| = |r2β| then |r2| < 1.
Using Theorem 2.5 we get dβ(r2) is purely periodic. Then dβ(r2β2) is purely
periodic.

Case 2: |r0| > 1, |r1β + r2β2| > 1 and |r0| = |r1β + r2β2|. Reminding that
we have |r1β + r2β2| > |r1βi + r2β2

i |, we get |r0| < |β|. Therefore dβ(r0) is purely
periodic. We have |r1β + r2β2| = |r0| < |β| thereby |r1 + r2β| < 1. Thus we obtain
two subcases.

(i) |r1| < 1 and |r2β| < 1. If |r1| < 1 then from Theorem 2.5 dβ(r1) is purely
periodic. Consequently dβ(r1β) is purely periodic. If |r2β| < 1 then |r2| <

1
|β| < 1. Afterward, we use Theorem 2.5 which asserts that dβ(r2) is purely

periodic, moreover dβ(r2β2) is purely periodic.
(ii) |r1| > 1, |r2β| > 1 and |r1| = |r2β|. We have |r0 + r1βi + r2β2

i | < |β| and
|r0| < |β|, we get |r1βi + r2β2

i | < |β| afterward |r1 + r2βi| < |β|. Then we
obtain two subsubcases.
– |r1| < |β| and |r2βi| < |β|. If |r1| < |β| then dβ(r1) is purely periodic,

consequently dβ(r1β) is purely periodic. If |r2βi| < |β| then |r2| < |β|
when |βi| = 1, we get dβ(r2) is purely periodic and it follows that dβ(r2β2)
is purely periodic.

– |r1| > |β|, |r2βi| > |β| and |r1| = |r2βi| we obtain |r1| = |r2| when |βi| = 1.
However, |r1| = |r2β| afterward |β| = 1 impossible.

Since, we obtained in the last cases that dβ(r0), dβ(r1β) and dβ(r2β2) are purely
periodic, one can deduce that the desired result ( dβ(f) is purely periodic). �
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