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DECOMPOSITIONS OF 2 x 2 MATRICES
OVER LOCAL RINGS

Huanyin Chen, Sait Halicioglu, and Handan Kose

ABSTRACT. An element a of a ring R is called perfectly clean if there exists an
idempotent e € comm?(a) such that a —e € U(R). A ring R is perfectly clean
in case every element in R is perfectly clean. In this paper, we completely
determine when every 2 X 2 matrix and triangular matrix over local rings are
perfectly clean. These give more explicit characterizations of strongly clean
matrices over local rings. We also obtain several criteria for a triangular matrix
to be perfectly J-clean. For instance, it is proved that for a commutative local
ring R, every triangular matrix is perfectly J-clean in T, (R) if and only if R
is strongly J-clean.

1. Introduction

The commutant and double commutant of an element a in a ring R are defined
by comm(a) = {z € R | za = ar}, comm?(a) = {x € R | 2y = yx forally €
comm(a)}, respectively. An element a € R is strongly clean provided that there
exists an idempotent ¢ € comm(a) such that a — e € U(R). A ring R is called
strongly clean in the case that every element in R is strongly clean. Strongly clean
matrix rings and triangular matrix rings over local rings have been extensively
studied by many authors (cf. [1, 2, 5, 6] and [12, 13]. An element a € R is
quasipolar provided that there exists an idempotent e € comm?(a) such that a+e €
U(R) and ae € R where R = {z € R | 1+ ar € U(R) for any r € comm(z)}.
A ring R is called quasipolar if every element in R is quasipolar. As is well known,
a ring R is quasipolar if and only if for any @ € R there exists a b € comm?(a) such
that b = bab and b — b*a € R, This concept has evolved from Banach algebra.
In fact, for a Banach algebra R,

a€ R™ & lim ||la”|* = 0.
n—oo

It is shown that every quasipolar ring is strongly clean. Recently, quasipolar 2 x 2
matrix rings and triangular matrix rings over local rings were also studied from
different point of views (cf. [7, 9, 11]).

2010 Mathematics Subject Classification: 16S50; 16S70; 16U99.
Key words and phrases: perfectly clean ring; perfectly J-clean ring; quasipolar ring; matrix;
triangular matrix.
Communicated by Zarko Mijajlovié.
287



288 CHEN, HALICIOGLU, AND KOSE

The motivation for this article is to introduce a medium class between strongly
clean rings and quasipolar rings, and then explore more explicit decompositions
of 2 x 2 matrices over a local ring. An element a of a ring R is called perfectly
clean if there exists an idempotent e € comm?(a) such that a — e € U(R). A
ring R is perfectly clean in the case every element in R is perfectly clean. We
completely determine when every 2 x 2 matrix and triangular matrix over local rings
are perfectly clean. These also give more explicit characterizations of strong clean
matrices over local rings, and enhance many known results, e.g., [5, Theorem 8],
[11, Theorem 2.8] and [12, Theorem 7]. Replaced U(R) by J(R), we introduce
perfectly J-clean rings as a subclass of perfectly clean rings. Furthermore, we show
that strong J-cleanness for triangular matrices over a local ring can be enhanced
to such stronger properties. These also generalize the corresponding properties of
J-quasipolarity, e.g., [8, Theorem 4.9].

We write U(R) and J(R) for the set of all invertible elements and the Jacobson
radical of R; M,(R) and T,(R) stand for the rings of all n x n matrices and
triangular matrices over a ring R.

2. Perfect rings

Clearly, an abelian exchange ring is perfectly clean. Every quasipolar ring
is perfectly clean. For instance, every strongly m-regular ring. In fact, we have
{quasipolar rings} C {perfectly clean rings} C {strongly clean rings}. In this
section, we explore the properties of perfect rings, which will be used in the sequel.
We begin with

THEOREM 2.1. Let R be a ring. Then the following are equivalent:
(1) R is perfectly clean.
(2) For any a € R, there exists an x € comm?(a) such that x = zaz and
l—z€(l-a)RNR(1—a).

PRrOOF. (1) = (2) For any a € R, there exists an idempotent e € comm?(a)
such that u:=a—e € U(R). Set x = u~!(1—e¢). Let y € comm(a). Then ay = ya.
Asuy = (a— e)y = y(a —e) = yu, we get u~ly = yu~l. Thus, 2y = u= (1 —e)y =
uly(l —e) = (1 — ) = yx. This implies that * € comm?(a). Further,
xaxzu‘l(l—e (u—l—eu 1—e)=u"t(1—e) = 2. Clearly,u = (1—¢)— (1 —a),
andsol—u1(1—e)=u"1(1- a) This implies that 1 — 2 € R(1 — a). Likewise,
l-ze€e(l—a)Ras (1— e) -1 (1 —e). Therefore 1 —x € (1—a)RNR(1 —a),
as required.

(2) = (1) For any a € R, there exists an € comm?(a) such that z = zaz and
l—-z€(1—a)RNR(1—a). Write e = 1 —az. If y € comm(a), then ay = ya, and
so axy = ayx = yax. This shows that ey = ye; hence, e € comm?(a). In addition,
ex =ze=0. Write 1 —2 = (1 —a)s =t(1 — a) for some s, € R. Then

(a—e)(x —es) =ax —aes+es =ax+ (1 —a)es
=ar+e(l—a)s=ar+e(l—2)=ax+e=1.
Likewise, (z — te)(a — ) = 1. Therefore a — e € U(R), as desired. O
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COROLLARY 2.1. Let R be a ring. Then the following are equivalent:
(1) R is perfectly clean.
(2) For any a € R, there exists an idempotent e € comm?(a) such that
eae € U(eRe) and (1 —e)(1—a)(1—e) € U((1 —e)R(1 —e)).

PROOF. (1) = (2) For any a € R, it follows from Theorem 2.1 that there
exists an o € comm?(a) such that * = rax and 1 —2 € (1 —a)RN R(1 — a). Write
1—2=(1-—a)s =t(1 —a) for some s,t € R. Set e = ax. For any y € comm(a),
we have ay = ya, and so ey = (ax)y = a(yz) = (ay)xz = y(ax) = ye. Hence,
e? = e € comm?(a). Clearly, (eae)(exe) = (exe)(eae) = e; hence, eae € U(eRe).
Furthermore, 1 —e = (1—2)+(1—a)z = (1 —a)(s+x). This shows that (1—e)(1—
a)(l—e)(1—z)(1—e) = 1—e. Likewise, (1—e)(1—xz)(1—e)(1—e)(1—a)(1—e) = 1—e.
Therefore (1 —¢e)(1 —a)(1 —€) € U((1 —e)R(1 —¢)).

(2) = (1) For any a € R, we have an idempotent e € comm?(a) such that
eaec € U(eRe) and (1 —e)(1—a)(1—e) € U((1 —e)R(1 —¢)). Hence, a— (1 —¢€) =
(eae — (1 —e)(1 —a)(1 —¢)) € U(R). Set p=1—e. Then a —p € U(R) with
p € comm?(a), as desired. O

Recall that a ring R is strongly nil clean provide that every element in R is the
sum of an idempotent and a nilpotent element that commutate (cf. [4] and [10]).

THEOREM 2.2. Let R be a ring. Then R is strongly nil clean if and only if
(1) R is perfectly clean, (2) N(R)={rxe€ R|1—zecU(R)}.

PROOF. Let R be strongly nil clean. For any a € R, we see that a—a? € N(R).
Write (a —a?)" = 0. Let f(t) = > 1, (Qf)t%_i(l —t)" € Z[t]. Then we have
f(t) =0 (mod t™). Clearly,

2 (om ; ;
ft)+ (‘)tQ”_’l—t’:t—i— 1-t))" =1,

0+ 3 ()0 =
hence, f(¢t) =1 (mod (1—¢)™). This shows that f(¢)(1—f(t)) =0 (mod t"(1—¢)").
Let e = f(a). Then e € R is an idempotent. For any x € comm(a), we see that
ra = az, and so we = xf(a) = f(a)z = ex. Thus, e € comm?(a). Furthermore,
a—e=a—a>"+(a—a*)gla) = (a—a®)(1+a+a®*+ - +a® 2+ g(a)) € N(R),
where g(t) € Z[t]. Thus, a = (1 —e) + (2¢ — 1 +a — e) with 1 — e € comm?(a) and

2¢e —14+a—e € U(R). Therefore, R is perfectly clean.
Clearly, N(R) C{z € R|1—2 € U(R)}. If 1 —z € U(R), then x = e+ w with
e € comm(z) and w € N(R). Hence, 1 —e = (1 —z) + w € U(R). This implies
that 1 —e =1, and so = w € N(R). Therefore N(R) ={z € R|1 -2z € U(R)}.
Conversely, assume that (1) and (2) hold. For any a € R, there exist an
idempotent ¢ € comm?(a) and a unit v € R such that —a = e — u. Hence,
a=—-c+u=(1—-¢e)—(1—wu). By hypothesis, 1 —u € N(R). Accordingly, R is
strongly nil clean. O

COROLLARY 2.2. Let R be a ring. Then R is strongly nil clean if and only if
(1) R is quasipolar; (2) N(R)={z € R|1—-zcU(R)}.
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PROOF. Suppose that R is strongly nil clean. Then (2) holds by Theorem 2.2.
For any a € R, as in the proof of Theorem 2.2, a = e + w with e € comm?(a) and
w € N(R). Hence, a = (1—e)+ (2e—1+w) where 2e—1+w € U(R). Furthermore,
(1—e)a=(1—-e)w e N(R) C R®™L Therefore R is quasipolar.

Conversely, assume that (1) and (2) hold. Then R is perfectly clean. Accord-
ingly, we complete the proof by Theorem 2.2. (I

LEMMA 2.1. Let R be a ring. Then the following are equivalent:

(1) R is perfectly clean.
(2) For each a € R there exists an idempotent e € comm?(a)
such that a — e and a + e are invertible.

PROOF. (1) = (2) Let a € R. Then a? € R is perfectly clean. Thus, we can
find an idempotent e € comm?(a?) such that a? — e € U(R). Since a - a® = a® - a,
we see that ae = ea. Hence, a®? —e = (a —e)(a+e), and therefore we conclude that

a—e,a+eecU(R).
(2) = (1) is trivial. O

THEOREM 2.3. Let R be perfectly clean. Then for any A € M, (R) there exist
U,V € GL,(R) such that 2A=U+V.

PROOF. We prove the result by induction on n. For any a € R, there exists an
idempotent e € comm?(a) such that v :=a —e,v:=a+e € U(R), by Lemma 2.1.
Hence, 2a = u + v, and so the result holds for n = 1. Assume that the result
holds for n < k (k > 1). Let n = k+ 1, and let A € M, (R). Write A = (5 %),
where © € R, € M1xk(R), 8 € Migx1(R) and X € M(R). In view of Lemma 2.1,
we have a u € U(R) such that 2z —u = v € U(R). By hypothesis, we have a
U € GLk(R) such that 2(X — 28vta) — U =V € GLj(R). Hence

u 0 v 2c
24— (0 U) = (25 V+4ﬂv1a)'

It is easy to verify that

v 2¢ 1 v 2x
(25 V+4ﬂv1a) = (Qﬂvl Ik) (o v) € GLn(R).

By induction, we complete the proof. O

COROLLARY 2.3. Let R be a quasipolar ring. If% € R, then every n X n matrix
over R is the sum of two invertible matrices.

PROOF. As every quasipolar ring is perfectly clean, the proof follows by The-
orem 2.3. 0

As a consequence, we derive the following known fact: Let R be a strongly
m-regular ring with % € R. Then every n x n matrix over R is the sum of two
invertible matrices.
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3. Matrices and triangular matrices

Recall that a ring R is local if it has only one maximal right ideal. A ring R
is local if and only if for any a € R either a or 1 — a is invertible. Necessary and
sufficient conditions under which 2 x 2 matrices over a local ring are attractive. In
this section, we extend these known results on strongly clean matrices to perfect
cleanness.

LEMMA 3.1. Let R be a ring, and uw € U(R). Then the following are equivalent:
(1) a € R is perfectly clean. (2) uau™' € R is perfectly clean.

PROOF. (1) = (2) By hypothesis, there exists an idempotent e € comm?(a)
such that a—e € U(R). Hence, uau™'—ueu=! € U(R). For any x € comm(uau’l),

we see that x(uau™!) = (uauil)x and so (u~tzu)a = a(u~ :cu) Thus, (v~ lzu)e =

e(u=tzu). Hence x(ueu™1) = (ueu™1)x. We conclude that ueu=! € come(uau b,
as required.

(2) = (1) is symmetric. d
A ring is weakly cobleached provided that for any a € J(R), b € 1 + J(R),

la — rp and Iy — r, are both injective. For instance, every commutative local ring,
every local ring with nil Jacobson radical.

THEOREM 3.1. Let R be a weakly cobleached local ring. Then the following are
equivalent:
(1) Ma(R) is perfectly clean. (2) Ma(R) is strongly clean.
(3) For any A € M3(R), A € GLy(R), or I — A € GLy(R),
or A is similar to a diagonal matriz.

PROOF. (1) = (2) is trivial.

(2) = (3) is obtained by [13, Theorem 7).

(3) = (1) For any A € M2(R), A € GL2(R), or I — A € GL2(R), or A is
similar to a diagonal matrix. If A or I — A € GL2(R), then A is perfectly clean.
Assume now that A is similar to a diagonal matrix with A, — A ¢ GLa(R). We
may assume that A is similar to (3 5 ), where A € U(R), p € J(R). If A € 1+ U(R),
then ( u) I, € GLa(R); hence, it is perfectly clean. In view of Lemma 3.1, A is
perfectly clean. Thus, we assume that A € 1 + J(R). By Lemma 3.1, it will suffice
to show that () € GLa(R) is perfectly clean. Clearly,

@ w010 20
where (3 ,%;) € GLa(R).

We show that the idempotent (39) € comm? (

comm((ég

9)). For any (7y) €
I Y
)) one has As = sy and ut = tA; hence, s =t = 0. This implies

e -6

Therefore (§9) € comm? ((3 1)), hence the result. O
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COROLLARY 3.1. Let R be a commutative local ring. Then the following are
equivalent:
(1) Ma(R) is perfectly clean. (2) Ma(R) is strongly clean.
(3) For any A € Ma(R), A€ GLa(R), or I, — A € GL2(R),
or A is similar to a diagonal matriz.

PRrROOF. It is a consequence of Theorem 3.1 as every commutative local ring is
weakly cobleached. O

Let p be a prime. We use Z\p to denote the ring of all p-adic integers. In view

of [6, Theorem 2.4], M, (Z;) is strongly clean, and therefore Mo (Z;) is perfectly
clean, by Corollary 3.1.

THEOREM 3.2. Let R and S be local rings. Then the following are equivalent:
(1) (BY) is perfectly clean.
(2) For anya € J(R),be 1+ J(S), veV, there exists a unique x € V such
that ax — xb = v.

PROOF. (1) = (2) Leta€ 1+ J(R),be J(S)andv € V. Set A= (&7"). By
hypothesis, we can find an idempotent E € comm?(A) such that A — F € (}0?' ‘é)
is invertible. Clearly, E = (8 5{) for some xz € V. Thus, ax — 2b = v. Suppose that
ay —yb=wv for a y € V. Then

o )= 1)n

and so () ¥) € comm(A). This implies that

o 1)=0 1)

hence, * = y. Therefore there exists a unique x € V such that ax — b = v, as
desired.

(2)= (1) Let T=(FY),andlet A= (§3) e (BY).

Case . a € J(R),b € J(S). Then A — (& 105) € U(T); hence, A is perfectly
clean.

Case II. a € U(R),b € U(S). Then A — 0 € U(T); hence, A is perfectly clean.

Caselll.a € U(R),b € J(S). (i)a € 14U(R),b€ J(S). Then A—('& ° ) €T
is invertible; hence, A € T is perfectly clean. (ii) a € 1+ J(R), b € J(S). Then we
can find a t € V such that at — tb = —v. Let (§ ;) € comm(A). Then

r s T S
A(O y) B (0 y)A’
and so ax = za, by = yb, and as — sb = xv — vy. Hence, we check that
a(xt —ty + s) — (xt — ty + s)b = x(at — tb) — (at — tb)y + (as — sb)

= —zv + vy + (as — sb)
=0.
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By hypothesis, xt — ty = —s, and so we get
0 t\ [z s\ _ (0 ty\ (0 xt+s\ [(x s\ [0 ¢
0 1/J\0 y) \O y/) \O Yy “\0 y)\O 1/)°

We infer that
( ) < i) € comm?(A).
cU
be

Furthermore, A — (1) (T). Therefore A is perfectly clean.
Case IV. a € J(R), U(S) Then A is perfectly clean, as in the preceding
discussion. O

A ring R is uniquely weakly bleached provided that for any a € J(R), b €
1+ J(R), lo — 7 and I, — r, are both isomorphisms.

COROLLARY 3.2. Let R be local. Then the following are equivalent:
(1) T2(R) s perfectly clean.  (2) R is uniquely weakly bleached.

PRrooOF. It is clear by Theorem 3.2. (]

For instance, if R is a commutative local ring or a local ring with nil Jacobson
radical, then T5(R) is perfectly clean.

4. Perfectly J-clean rings

An element a € R is said to be perfectly J-clean provided that there exists an
idempotent e € comm?(a) such that a — e € J(R). A ring R is perfectly J-clean if
every element in R is perfectly J-clean.

THEOREM 4.1. Let R be a ring. Then R is perfectly J-clean if and only if
(1) R is quasipolar. (2) R/J(R) is Boolean.

PROOF. Suppose that R is perfectly J-clean. Let a € R is perfectly J-clean.
Then there exists an idempotent e € comm?(a) such that w := a—e € J(R). Hence,
a—(1—e)=2e—1+w e U(R). Additionally, (1 —e)a = (1 —e)w € J(R) C Rl
This implies that a € R is quasipolar. Furthermore, a — a? = (e + w) — (e + w)? €
J(R), and then R/J(R) is Boolean.

Conversely, assume that (1) and (2) hold. Let a € R. Then there exists an
idempotent e € comm2( ) such that w := a — e € U(R). Moreover, R/J(R) is
Boolean, and so a — a? = (e + u) — (e + u)? = u(1 — 2e — u) € J(R). This shows
that 1 —2e —u € J(R), whence a— (1 —e) = (e+u)— (1 —e) =2e—14+u € J(R).
Therefore R is perfectly J-clean. O

COROLLARY 4.1. Let R be a ring. Then the following are equivalent:

(1) R is perfectly J-clean.
(2) R is perfectly clean, and R/J(R) is Boolean.
(3) R is quasipolar, and R is strongly J-clean.
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PROOF. (1) = (2) is obvious by Theorem 4.1, as every quasipolar ring is
perfectly clean.

(2) = (1) For any a € R there exists an idempotent p € comm?(a) such that
u:=a—p¢€U(R). As R/J(R) is Boolean, we have & = u?; hence, u € 1+ J(R).
Furthermore, 2 € J(R). Accordingly, a = p+u = (1 —p) + (2p — 1 + u) with
1 —p € comm?(a) and 2p — 1 +u € J(R), as desired.

(1) = (3) Suppose R is perfectly J-clean. Then R is strongly J-clean. By the
preceding discussion, R is quasipolar.

(3) = (1) Since R is strongly J-clean, R/J(R) is Boolean. Therefore the proof
is complete by the discussion above. (I

EXAMPLE 4.1. Let R = T5(Zan) (n € N). Then T5(R) is perfectly J-clean.

PRrROOF. As R is finite, it is periodic. This shows that R is strongly m-regular.
Hence, To(R) is quasipolar, by [9, Theorem 2.6]. As J(ZQW) = 27Zon, we see that
R/J(R) = Zj is Boolean. Hence, T>(R)/J(T2(R)) is Boolean. Therefore the result
follows by Theorem 4.1. O

Recall that a ring R is uniquely strongly clean provided that for any a € R
there exists a unique idempotent e € comm(a) such that a — e € U(R).

PROPOSITION 4.1. Let R be a ring. Then R is perfectly J-clean if and only if
(1) R is perfectly clean, (2) R is uniquely strongly clean.

PROOF. Suppose R is perfectly J-clean. Then R is perfectly clean. Hence, R
is strongly clean. Let a € R. Write a = e + u = f + v with e = ¢? € comm?(a),
f=f?€eRuecJ(R),veUR),ea=aecand fa =af. Then f € comm(a), and
soef = fe. Thus,e— f=v—uecU(R) and (e — f)(e + f —1) = 0. This implies
that f =1 — e, and therefore R is uniquely strongly clean.

Conversely, assume that (1) and (2) hold. Then R/J(R) is Boolean. Therefore
we complete the proof by Corollary 4.1. O

COROLLARY 4.2. A ring R is uniquely clean if and only if R is abelian perfectly
J-clean.

PROOF. As every uniquely clean ring is abelian (cf. [4, Corollary 16.4.16]), it
is clear by Proposition 4.1. O

THEOREM 4.2. Let R be a ring. Then the following are equivalent:
(1) R is perfectly J-clean.
(2) For any a € R, there exists a unique idempotent e € comm?(a)
such that a — e € J(R).

PROOF. (1) = (2) For any a € R, there exists an idempotent e € comm?(a)
such that a—e € J(R). Assume that a— f € J(R) for an idempotent f € comm?(a).
Clearly, e € comm?(a) C comm(a). As f € comm?(a), we see that ef = fe. Thus,
(e—f)> =e—f,andso (e—f)(1—(e—f)?) = 0. Bute— f = (a— f)—(a—e) € J(R),
asa— f,a—e € J(R). Hence, e = f, as desired.

(2) = (1) is trivial. d
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Recall that a ring R is strongly J-clean provided that for any a € R there exists
an idempotent e € comm(a) such that a — e € J(R) (cf. [3, 4]).

COROLLARY 4.3. A ring R is perfectly J-clean if and only if
(1) R is quasipolar, (2) R is strongly J-clean.

PROOF. Suppose R is perfectly J-clean. Then R is strongly J-clean. For any
a € R, there exists an idempotent p € comm?(a) such that w := a —p € J(R).
Hence, a = (1 —p) + (2p — 1 + w) with 1 — p € comm?(a) and 2p — 1 +w € U(R).
Furthermore, (1 — p)a = (1 — p)w € J(R) € R Therefore, R is quasipolar.

Conversely, assume that (1) and (2) hold. Since R is quasipolar, it is perfectly
clean. By virtue of [4, Proposition 16.4.15], R/J(R) is Boolean. Therefore the
proof is complete by Corollary 4.1. O

Following Cui and Chen [8], a ring R is called J-quasipolar provided that for
any element a € R there exists an e € comm?(a) such that a + e € J(R). We
further show that the two concepts coincide. But this is not the case for a single
element. That is,

PRrROPOSITION 4.2. A ring R is perfectly J-clean if and only if for any element
a € R there exists an e € comm?(a) such that a+ e € J(R).

PROOF. Let R be perfectly J-clean. Then R/J(R) is Boolean, by Theorem 4.1.
Hence, 22 = 2, i.e., 2 € J(R). For any a € R, there exists an idempotent e €
comm?(a) such that a — e € J(R). This implies that a + e = (a — e) + 2¢ € J(R).
The converse is similar by [8, Corollary 2.3]. O

EXAMPLE 4.2. Let R = Z3. Note that J(R) =0. Since 1 —1=0¢€ J(R), 1 is
perfectly J-clean, but we can not find an idempotent e € R such that 1+e¢ € J(R),
because 1+ 0 ¢ J(R) and 1+1=2¢ J(R).

Further, though 2 +1 = 0 € J(R), we can not find an idempotent e € R such
that 2 —e € J(R), because 2—0=2¢ J(R) and 2 —1=1 ¢ J(R).

LEMMA 4.1. Let R be a ring. Then a € R is perfectly J-clean if and only if
(1) a € R is quasipolar, (2) a —a® € J(R).

PROOF. Suppose that a € R is perfectly J-clean. Then there exists an idempo-
tent e € comm?(a) such that w:=a—e € J(R). Hence,a— (1 —¢e) =2e—1+w €
U(R). Additionally, (1 — e)a = (1 — e)w € J(R) € R This implies that a € R
is quasipolar. Furthermore, (e + w) — (e + w)? = —(2¢ — 1 + w)w € J(R).

Conversely, assume that (1) and (2) hold. Then there exists an idempotent
e € comm?(—a) such that (—a) + e € U(R). Set u := a —e. Then a — a? =
(e+u) — (e +u)? =u(l —2e—u) € J(R); hence, 1 — 2¢ —u € J(R). This shows
that a— (1—e) = (e+u)—(1—e) =2e—1+u € J(R). Therefore a € R is perfectly
J-clean. g

THEOREM 4.3. Let R be a commutative ring, and let A € T,(R). If 2 € J(R),
then the following are equivalent:

(1) A € T,,(R) is perfectly J-clean. (2) Each Aj;; € T, (R) is perfectly J-clean.
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PROOF. (1) = (2) is obvious.

2)=(1 ) Clearly, the result holds for n = 1. Suppose that the result holds
forn —1 (n >2). Let A = (%" 4 ) € Tn(R) where a;1 € R, € My (—1)(R)
and A; € Tn,l(R). Then we have an idempotent e;; € R such that wy; =
a11 — e11 € J(R). By hypothesis, we have an idempotent E; € T,,_1(R) such that
Wy =A,—F; € J(Tn_l(R)) and Fq € COme(Al). As2 e J(R),

Wi + (1 —2e11 — wll)In—l €lp_1+ J(Tn—l(R)) - U(Tn—l(R))-

Let £ = (811 B ), where 8 = a(F1 —e11Ln—1)(W1 + (1 — 2e11 7?1)11)]”71)*1_ Then
A-EeJ(T, (R)). As
e+ BE1 = B(E1 + e11ln—1)

= Oé(El - 611[n—1)(E1 + 611]n_1)(W1 + (1 —2e11 — wll)In_1)71 _ B’

we see that B = E2.
For any X = (%' ¥, ) € comm(4), we have 2110 + yA; = a117 + aX1; hence,

(X1 —z11lp—1) = y(A1 — a11lp—1).
As E; € comm?(A;), we get

V(A1 —anlp—1)(Er —eniln_1)
=a(X) —z11lh—1)(E1 —enln-1)

(
=a(Ey —enln—1)(X1 —zuln-1)
= B(W1 + (1 —2e11 —wii)In—1)(X1 — z111n-1)
=08(X1 — 211 L) (W1 + (1 — 2611 — w11)Ipn—1).
Furthermore,
(A1 —an D 1)(Er —enn 1)

)
(Er —enndn—1)(Ey + Wi — (e1n + wi1)ln—1)

(Br —ennln1)(Br +ernln1+ (W1 — 2e11 —wir)ln—1)

(By — er1ln—1 + (By — exnlp—1)(W1 — 2e11 — wi1)In—1)

(B1 —e1nnlp—1)(W1 + (1 — 2e11 — wi1)In—1).

It follows from Wy + (1 — 2e11 — wi1)l-1 € U(Tn,l(R)) that y(E1 — e11ln—1) =
B(X1 — x111,—1). Hence, e11y + X1 = 118 + vE1, and so EX = XE. This

implies that F € comm?(A). By induction, A € T},(R) is perfectly J-clean for all
n € N. O

COROLLARY 4.4. Let R be a commutative ring. Then the following are equiv-
alent:

(1) R s strongly J-clean.
(2) Tn(R) is perfectly J-clean for all n € N.
(3) Tn(R) is perfectly J-clean for some n € N.
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PROOF. (1) = (2) As R is strongly J-clean, R/J(R) is Boolean. Hence, 2 €
J(R). For any n € N, T},(R) is perfectly J-clean by Theorem 4.3.
(2) = (3) = (1) These are clear by Theorem 4.3. O

Let R be Boolean. As a consequence of Corollary 4.4, T, (R) is perfectly J-clean
for all n € N.

LEMMA 4.2. Let R be a ring, and u € U(R). Then the following are equivalent:
(1) a € R is perfectly J-clean.  (2) uau™! € R is perfectly J-clean.
PROOF. (1) = (2) As in the proof of Lemma 3.1, uau™! € R is quasipolar.

Furthermore, uau=! — (uau*1)2 = u(a — a?)u~! € J(R). As in the proof of
Theorem 4.1, uau~"' € R is perfectly J-clean.
(2) = (1) is symmetric. O

We end this paper by showing that strong J-cleanness of 2 x 2 matrix ring over
a commutative local ring can be enhanced to perfect J-cleanness.
THEOREM 4.4. Let R be a commutative local ring, and let A € Ma(R). Then
the following are equivalent:
(1) A is perfectly J-clean.  (2) A is strongly J-clean.
(3) Ae J(M2(R)), or I — A € J(Ma(R)), or the equation
22 — tr(A)x + det(A) = 0 has a root in J(R) and a root in 1+ J(R).
PROOF. (1) = (2) is trivial.
(2) = (3) is proved by [4, Theorem 16.4.31].
(3) = (1) If A € J(M2(R)) or I, — A € J(M3(R)), then A is perfectly J-clean.
Otherwise, it follows from [4, Theorem 16.4.31 and Proposition 16.4.26] that there
exists a U € GLy(R) such that

var= ()= (" )+ (" 5l).

where a € J(R),3 € 1+ J(R). For any X € comm(UAU '), we have X (“ 3)
(aﬂ)X; hence, X2 = aXi2. This implies that X15 = 0. Likewise, Xo; =

Thus,
0 0
()= )x

and so (0 1) € comm?(UAU™1). As aresult, UAU ! is perfectly J-clean, and then
so is A by Lemma 4.2. O

0.

COROLLARY 4.5. Let R be a commutative local ring. Then the following are
equivalent:
(1) M3(R) is perfectly clean.
(2) For any A € M3(R), A € GLy(R), or I — A € GLy(R),
or A € Mx(R) is perfectly J-clean.
PROOF. (1) = (2) is proved by Theorem 3.1, [4, Corollary 16.4.33] and Theo-
rem 4.4.
(2) = (1) is obvious. O
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