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RULED THREE-DIMENSIONAL CR
SUBMANIFOLDS OF THE SPHERE S6(1)

Miroslava Antić

Abstract. We investigate proper, three-dimensional CR submanifolds of the
nearly Kähler sphere S6(1) ruled by totally geodesic spheres S2(1), and classify
them by using a sphere curve and a vector field along that curve.

1. Introduction

It is well known that by using multiplication of the octonions O and identifying
the space of Im O with R

7, it is possible to introduce a vector cross product × in
the space R

7. This cross product induces an almost complex structure J on the
standard unit sphere S6(1) in R

7 which is Hermitian and almost complex, and
moreover gives a nearly Kähler structure to S6(1).

Recall that a submanifold M of a manifold with an almost complex struc-
ture J is also called almost complex, if its tangent bundle is invariant for J , i.e.,
JTpM ⊂ TpM , p ∈ M . If JTpM ⊂ T ⊥

p M , p ∈ M , where T ⊥M is a normal bundle
of the submanifold, M is called a totally real submanifold. One of the generaliza-
tions of almost complex and totally real submanifolds are CR submanifolds. By
the definition of Bejancu [2], a submanifold M is called a CR submanifold if there
exists on M a differentiable almost complex distribution U such that its orthogo-
nal complement U⊥ ⊂ T M is a totally real distribution. If a CR submanifold is
neither almost complex, nor totally real, it is a proper CR submanifold. Due to
the dimension restrictions it is clear that a proper CR submanifold of the sphere
S6(1) can be of dimensions three, four and five. All hypersurfaces of the sphere are
trivially CR so the focus of the investigation is mostly on those of dimension three
and four. Here, we deal with the three dimensional case. Such CR submanifolds
have been previously studied amongst others by K. Mashimo, H. Hashimoto, K.
Sekigawa, M. Djorić and L. Vrancken. Particularly in [7] and [6] one of the first
known families of the three dimensional minimal CR submanifolds was introduced,
and in [3] was obtained the classification of the minimal CR submanifolds which
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satisfy Chen’s basic equality. We also recall that the submanifold M of a Riemann-

ian manifold (M̃, g) is said to be ruled, if it admits a foliation with leaves that are

totally geodesically immersed into (M̃, g). Then, trivially, the second fundamental
form vanishes on the distribution corresponding to the foliation. Such distribution
is said to be totally geodesic.

In [1] it was shown that for a three dimensional CR submanifold of S6(1) it is
equivalent

(1) the CR submanifold is minimal and contained in a totally geodesic hyper-
sphere

(2) the CR submanifold is U and U⊥ totally geodesic

and that examples of [6] and [3] are of this type. Moreover, there it was shown
that such a submanifold is locally congruent to the immersion

F (s, y1, y2, y3) = y1(cos(µ1s)e1 + sin(µ1s)e5) + y2(cos(µ2s)e2

+ sin(µ2s)e6) + y3(cos(µ3s)e3 + sin(µ3s)e7),

µ1 + µ2 + µ3 = 0, µ2
1 + µ2

2 + µ2
3 6= 0,(1.1)

where e1, . . . , e7 is a standard G2 basis of the space R
7 and y2

1 + y2
2 + y2

3 = 1.
Note that these submanifolds are also ruled by totally geodesic spheres S2(1).

Here, we prove

Theorem 1.1. Let M be a proper three dimensional CR submanifold of S6(1)
ruled by S2(1). If | cos φ| is the length of the projection of the unit normal to the

leaf of ruling at a point, on the almost complex distribution, then φ is constant.

Moreover M is locally congruent to the immersion:

a) for cos φ 6= 0

p(x1, x2, x3) = sin(x2 + h)γ × γ′

+ cos(x2 + h)(cos x1σ + sin x1(cos φγ′ − sin φγ × γ′) × σ),

where γ is a curve in the sphere S6(1), with arc length parameter x3, such that

〈γ × γ′, γ′′〉 = 0, σ is a curve in S6(1) parameterized by x3 orthogonal to γ, γ′,

γ × γ′ such that

〈σ′, γ × γ′〉 = 〈σ × σ′, γ〉 = 0, 〈σ × σ′, sin φγ′ + cos φγ × γ′〉 = 1
2 cos φ,

〈σ, cos φ(γ × γ′) × γ′′ + sin φγ′ × γ′′〉 = 0,

and h is a function of x3 such that cos(x2 + h) > 0.

b) for cos φ = 0

f(x1, x2, x3) = cos x1 cos x2γ + sin x1 cos x2A2 + sin x2γ × A2,

where γ is a non constant curve in S6(1) parameterized by x3 and A2 a vector

field along γ orthogonal to γ, γ′ and γ × γ′.

Remark 1.1. Note that immersion (1.1) is of the second type. At least one
of the µi is different from zero, so we can assume that µ1 6= 0. Then we can
parameterise the sphere so that y1 = cos x1 cos x2, y2 = sin x1 cos x2, y3 = sin x2 and
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take γ to be the curve s 7→ cos(µ1s)e1+sin(µ1s)e5 with A2 = cos(µ2s)e2+sin(µ2s)e6

to obtain the immersion (1.1).

Remark 1.2. In Lemma 2.2 we prove that a three dimensional, totally real
submanifold of S6(1) ruled by S2(1) is totally geodesic.

2. Preliminaries

Here, we give a short exposition of how the standard nearly Kähler structure
on S6(1) arises from the multiplication of the octonions O.

A vector cross product × of the purely imaginary octonions Im O = R
7 is given

by u × v = 1
2 (uv − vu). This cross product has many properties similar to those of

the cross product in the space R
3. In particular, if 〈, 〉 denotes the standard inner

product of the space R
7 we have that, see [5],

u × (v × w) + (u × v) × w = 2〈u, w〉v − 〈u, v〉w − 〈w, v〉u,(2.1)

〈u × v, u × w〉 = 〈u, u〉〈v, w〉 − 〈u, v〉〈u, w〉.(2.2)

An ordered orthonormal basis, respectively moving frame e1, . . . , e7 is said to
be a G2-basis, respectively frame, if

e3 = e1 × e2, e5 = e1 × e4, e6 = e2 × e4, e7 = e3 × e4.

The unit orthogonal vector fields e1 and e2 and further e4 orthogonal to e1, e2 and
e1 × e2 determine a G2-frame uniquely. We also give the multiplication table for
the cross product.

× e1 e2 e3 e4 e5 e6 e7

e1 0 e3 −e2 e5 −e4 −e7 e6

e2 −e3 0 e1 e6 e7 −e4 −e5

e3 e2 −e1 0 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 0 e1 e2 e3

e5 e4 −e7 e6 −e1 0 −e3 e2

e6 e7 e4 −e5 −e2 e3 0 −e1

e7 −e6 e5 e4 −e3 −e2 e1 0

The standard nearly Kähler structure on S6(1) is then obtained as follows:

JX = p × X, X ∈ TpS6(1), p ∈ S6(1).

It is clear that J is an orthogonal almost complex structure on S6(1). Also, straight-
forwardly we have that the group G2 of automorphisms of O is precisely the group
of isometries of R

7 preserving the vector cross product and the almost complex
structure of the sphere.

If we denote by 〈 , 〉, D̄ and D̃ metric and Levi Civita connections of M and

M̃ , respectively, and by D⊥ the corresponding normal connection of the immersion

M → M̃ then the formulas of Gauss and Weingarten are given respectively by

D̃XY = D̄XY + h(X, Y ), D̃Xξ = −AξX + D⊥

Xξ,
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where X and Y are vector fields on M and ξ is a normal vector field on M , and h

and A are the second fundamental form and the shape operator, respectively. The
second fundamental form and the shape operator are related by

〈h(X, Y ), ξ〉 = 〈AξX, Y 〉

Let us denote by ∇, ∇̃ and D the Levi–Civita connections of M, S6(1) and R
7.

Let h and h̃ be the second fundamental forms corresponding to the immersions
M → S6(1) and S6(1) → R

7, respectively. If we denote by p the position vector
field of the immersion of M into R

7, we have h̃(X, Y ) = −〈X, Y 〉p, and DXp = X,

where X, Y ∈ T M . Further, the Gauss and Codazzi equations imply that for
X, Y ∈ T M and ξ ∈ T ⊥M, ξ ∈ T S6(1) it holds

DXY = ∇̃XY + h̃(X, Y ) = ∇XY + h(X, Y ) − 〈X, Y 〉p,

DXξ = ∇̃Xξ + h̃(X, ξ) = ∇̃Xξ − 〈X, ξ〉p = −AξX + ∇⊥

Xξ,

where ∇⊥ denotes the normal connection corresponding to the immersion of M

into S6(1).
Also, if we denote

(∇h)(X, Y, Z) = ∇⊥

Xh(Y, Z) − h(∇XY, Z) − h(Y, ∇XZ),

for X, Y, Z ∈ T (M), then the Gauss, Codazzi and Ricci equations yield

R(X, Y, Z, W ) = 〈X, W 〉〈Y, Z〉 − 〈X, Z〉〈Y, W 〉

+ 〈h(X, W ), h(Y, Z)〉 − 〈h(X, Z), h(Y, W )〉,

(∇h)(X, Y, Z) = (∇h)(Y, X, Z),

〈R⊥(X, Y )ξ, µ〉 = 〈[Aξ , Aµ]X, Y 〉.

Also, the following lemma holds straightforwardly.

Lemma 2.1. DX(Y × Z) = DXY × Z + Y × DXZ.

Lemma 2.2. Let M be a totally real, three dimensional submanifold of S6(1),
ruled by totally geodesic S2(1). Then M is locally congruent to a totally geodesic

sphere S3(1).

Proof. Assume that the two dimensional totally geodesic distribution D is
spanned by unit and orthogonal vector fields E1, E2. Then we have that the second
fundamental form vanishes on D. Denote by E3 the unit, tangent vector field
orthogonal to D. Then the vector fields JE1, JE2, JE3 span the normal bundle.
Since every three dimensional, totally real submanifold of S6(1) is minimal, see [4],
we have that h(E3, E3) = 0. Note that, for tangent vector fields X, Y, Z we have

〈h(X, Y ), JZ〉 = 〈AJZX, Y 〉 = −〈Jh(Z, X), Y 〉 = 〈h(Z, X), Y 〉

implying that the form 〈h(X, Y ), JZ〉 is symmetric in all three components. There-
fore, h vanishes identically and M is three dimensional, totally geodesic submanifold
of S6(1). �
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3. Proof of the main theorem

Here we are dealing with proper, three dimensional, CR submanifolds of S6(1).
Since the almost complex distribution is even dimensional, and nontrivial, it follows
that dim U = 2 and then dim U⊥ = 1. We present one of the convenient moving
frames to work with and the relations between the connection coefficients in it, for
details see [1, 3].

We denote by p the position vector field of the submanifold. Let then E1 and
E2 = p × E1 = JE1 be the unit vector fields which span the almost complex
distribution, and E3 the unit vector field which spans the totally real distribution.
Straightforwardly, the normal vector fields are obtained by E4 = JE3, E5 = E1×E3

and E6 = E2 ×E3. Note, that the choice of E3 is unique up to a sign while we have
a freedom of rotation in the almost complex distibution, which further reflects to
a rotation in the Span(E5, E6).

We denote

ωk
ij = 〈DEi

Ej , Ek〉, hk
ij = 〈DEi

Ej , Ek+3〉, βk
ij = 〈DEi

Ej+3, Ek+3〉,

for 1 6 i, j, k 6 3. Since the connection is metric and the second fundamental form
symmetric, we have

ωk
ij = −ω

j
ik, hk

ij = h
j
ik, βk

ij = −β
j
ik.

By taking in Lemma 2.1 X ∈ {E1, E2, E3} and Y, Z ∈ {p, E1, . . . , E6}, we get
the following lemma, (see [1]).

Lemma 3.1. For the previously defined coefficients the following relations hold

β3
11 = −h2

13, β2
11 = 1 + h3

13, h1
11 = −ω3

12, h1
12 = ω3

11, β3
21 = 1 − h2

23,

β2
21 = h3

23, h1
22 = ω3

21, ω3
22 = −ω3

11, β2
31 = h3

33, β3
31 = −h2

33,

h1
23 = ω3

31, h1
13 = −ω3

32, h3
11 = h2

12, h2
11 = −h3

12, h2
22 = h3

12,

h3
22 = −h2

12, h2
23 = h3

13 − 1, h3
23 = −h2

13, β3
12 = ω2

11 − ω3
32,

β3
22 = ω2

21 + ω3
31, β3

32 = ω2
31 + h1

33.

Now we take that M is ruled by S2(1). Then the complementary foliation
is spanned by a unit vector field W which can have non vanishing components
both in the almost complex and the totally real distribution. Since we still have a
freedom of rotating the vector fields E1 and E2 we can assume that the orthogonal
projection of W to U is orthogonal to E2, i.e., W = cos φE1 + sin φE3, for some
differential function φ. Then the vector fields V = − sin φE1 +cos φE3 and E2 span
the totally geodesic distribution. Further the inner products of DV V, DV E2, DE2

E2

with W, E4, E5 and E6 vanish. Straightforwardly this yields the following lemma.
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Lemma 3.2. Let M be a proper, ruled, three-dimensional CR submanifold of

S6(1). Then the following relations hold

h3
11 = 0, h3

12 = 0, ω3
21 = 0, E2(φ) = 0, −ω2

21 cos φ − h1
12 sin φ = 0,

h1
23 cos φ − h1

12 sin φ = 0, (−1 + h3
13) cos φ = 0, h2

13 cos φ = 0,

− cos φE3(φ) + sin φE1(φ) = 0, h1
33 cos2 φ − ω3

12 sin2 φ + ω3
32 sin(2φ) = 0,

cos φ(h2
33 cos φ − 2h2

13 sin φ) = 0, cos φ(h3
33 cos φ − 2h3

13 sin φ) = 0.

Note, also, that the Codazzi equation 0 = R(E1, E2, E1, E5) = 2(h1
12 − ω3

12h2
13)

yields h1
12 = ω3

12h2
13. However, now we have to consider separately cases cos φ 6= 0

and cos φ = 0.

3.1. Case cos φ 6= 0. By taking cos φ 6= 0, the relations from Lemma 3.2
straightforwardly reduce to

ω2
21 = −h1

12 tan φ, h1
23 = h1

12 tan φ, h2
13 = 0, h3

13 = 1, h2
33 = 0,

h3
33 = 2 tan φ, h1

33 = tan φ(−2ω3
32 + ω3

12 tan φ), E3(φ) = tan φE1(φ).

Lemma 3.3. We have

ω3
32 = −ω2

11 + 2ω3
12 tan φ, E2(ω2

11) = 1 + (ω2
11)2 − ω3

12ω2
31,

E2(ω3
12) = −2ω3

12(−ω2
11 + ω3

12 tan φ), E1(φ) = 0,

ω2
31 = ω3

12 tan2 φ, E3(ω2
11) = E1(ω3

12) tan2 φ,

E1(ω2
11) = 2E1(ω3

12) tan2 φ − E3(ω3
12).

Proof. Direct computation gives the following equations of Codazzi and Ga-
uss, from which we derive the proclaim.

R(E1, E2, E3, E6) = ω2
11 + ω3

32 − 2ω3
12 tan φ = 0,

R(E1, E2, E1, E2) = 1 + (ω2
11)2 − ω3

12ω2
31 − E2(ω2

11) = 0,

R(E1, E2, E1, E4) = E2(ω3
12) + 2ω3

12(−ω2
11 + ω3

12 tan φ) = 0,

R(E1, E3, E3, E5) = ω2
31 − ω3

12 tan2 φ = 0,

R(E1, E3, E3, E6) = 2E1(φ) sec2 φ = 0,

R(E1, E3, E1, E2) = −E3(ω2
11) + E1(ω3

12) tan2 φ = 0,

R(E1, E3, E1, E4) = E1(ω2
11) + E3(ω3

12) − 2E1(ω3
12) tan φ = 0.

Direct computation shows that the other Gauss, Codazzi and Ricci equations do
not yield any new relations. �

Note that we now have φ = const. Also we have

h(E1, E1) = −ω3
12E4, h(E1, E2) = 0, h(E2, E2) = 0,

h(E3, E3) = tan φ(2ω2
11 − 3ω3

12 tan φE4 + 2E6)
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so in a general case distributions U and U⊥ are not totally geodesic. We also note
that [ρV, E2] = 0, for ρ = (1 + (ω2

11 − ω3
12 tan φ)2)−1/2. Moreover, we have

ρV (ω2
11) =

sin φ(E3(ω3
12) − E1(ω3

12) tan φ)√
1 + (ω2

11 − ω3
12 tan φ)2

,

ρV (ω3
12) =

cos φE3(ω3
12) − sin φE1(ω3

12)√
1 + (ω2

11 − ω3
12 tan φ)2

,

ρV (ω2
11 − ω3

12 tan φ) = 0, E2(ω2
11 − ω3

12 tan φ) = 1 + (ω2
11 − ω3

12 tan φ)2.(3.1)

We give further a construction of the immersion. Recall that [ρV, E2] = 0.
Therefore, there exist local coordinates x1, x2, x3 in the neighborhood of a point
p ∈ M such that ρV = ∂x1

, E2 = ∂x2
. Here, the choice of the coordinate x3 is

essentially arbitrary. Moreover, (3.1) implies that

∂x1
(ω2

11 − ω3
12 tan φ) = 0, ∂x2

(ω2
11 − ω3

12 tan φ) = 1 + (ω2
11 − ω3

12 tan φ)2.

Hence, we have ω2
11 − ω3

12 tan φ = tan(x2 + h(x3)), where the differentiable function
h is independent of x1, x2. Also, we have a freedom of choosing h up to an addend
π, so we can assume that cos(x2 + h) > 0. Further we have E2(ω3

12) = ∂x2
ω3

12 =
2ω3

12 tan(x2 + h). Therefore there exists a differentiable function d depending on x1

and x3 such that

ω3
12 = d sec2(x2 + h), and further ω2

11 = d sec2(x2 + h) tan φ + tan(x2 + h).

Now, straightforward computation shows that

D∂x1
∂x1

= ∂2
x1x1

p = − cos2(x2 + h)p + cos(x2 + h) sin(x2 + h)∂x2
p,

D∂x1
∂x2

= ∂2
x1x2

p = − tan(x2 + h)∂x1
p,

D∂x2
∂x2

= ∂2
x2x2

p = −p.(3.2)

The last equation yields p = cos x2A + sin x2B for some vector fields A and B

depending on x1 and x3. Since p is unit, straightforwardly we get that A and B

are unit and mutually orthogonal. Then, the first equation of (3.2) reduces to

cos x2(∂2
x1x1

A + cos h(A cos h − B sin h))

+ sin x2(∂2
x1x1

B − sin h(A cos h − B sin h)) = 0,

which further implies

∂2
x1x1

A + cos h(A cos h − B sin h) = 0,

∂2
x1x1

B − sin h(A cos h − B sin h) = 0.

Further, it follows ∂2
x1x1

(A cos h − B sin h) = −(A cos h − B sin h), so we can put

(3.3) A cos h − B sin h = cos x1P + sin x1Q,

for some vector fields P and Q depending only on x3. Similarly as before P and
Q are unit and orthogonal. Finally, the second equation of (3.2) simplifies to
sec(h + x2)(cos h ∂x1

B + sin h ∂x1
A) = 0. Integration over x1 then gives sin hA +

cos hB = G, where the unit vector field G depends only on x3, and is orthogonal
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to vector field (3.3), for arbitrary x1. Therefore G is orthogonal to both P and Q.
Using the last equation along with (3.3) we get

A = cos h(cos x1P + sin x1Q) + sin hG,

B = − sin h(cos x1P + sin x1Q) + cos hG.

Now, the immersion is given by

p(x1, x2, x3) = cos(x2 + h)(cos x1P + sin x1Q) + sin(x2 + h)G,

and the coordinate vector fields by

∂x1
p = cos(x2 + h)(− sin x1P + cos x1Q) = cos(x2 + h)(− sin φE1 + cos φE3),

∂x2
p = − sin(x2 + h)(cos x1P + sin x1Q) + cos(x2 + h)G = E2,

∂x3
p = cos(x2 + h)(∂x3

hG + cos x1∂x3
P + sin x1∂x3

Q)

+ sin(x2 + h)(∂x3
G − ∂x3

h(cos x1P + sin x1Q)).

Then E1 = E2 × p = G × (cos x1P + sin x1Q), and further

− sin φ = 〈− sin x1P + cos x1Q, E1〉

= cos2 x1〈Q, G × P 〉 − sin2 x1〈P, G × Q〉 = 〈P × Q, G〉.

It follows that

〈G + sin φP × Q, P × Q〉 = 0, G + sin φP × Q ⊥ P, Q,

〈G + sin φP × Q, G + sin φP × Q〉 = cos2 φ 6= 0.

Since we can assume that cos φ > 0 (we can change the sign of W ) the following
lemma holds.

Lemma 3.4. The vector fields P , Q and T = sec φ(G + sin φP × Q) determine

a G2-frame.

Therefore, we can denote e1 = P , e2 = Q, e4 = T , and other ei accordingly
to the relations in a G2 frame. Here we have G = cos φe4 − sin φe3. Moreover, it
follows that

E3 = sec φ(cos x1Q − sin x1P + sin φE1)

= − sin x1(cos φe1 + sin φe5) + cos x1(cos φe2 − sin φe2),

E4 = p × E3 = cos(h + x2)(cos φe3 + sin φe4) + sin(h + x2)(sin x1e5 − cos x1e6),

E5 = E1 × E3 = e7,

E6 = − sin(h + x2)(cos φe3 + sin φe4) + cos(h + x2)(sin x1e5 − cos x1e6).

Denote by zij = 〈∂x3
ei, ej〉, the differentiable functions of x3. Since the con-

nection is metrical, we have zji = −zij.

Lemma 3.5. It holds

z34 = z16 − z25, z35 = z17 + z24, z36 = −z14 + z27, z37 = −z15 − z26,

z56 = z12 + z47, z57 = z13 − z46, z67 = z23 + z45.
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Proof. From Lemma 2.1 we have ∂x3
(ei ×ej) = ∂x3

ei ×ej +ei ×∂x3
ej . Taking

i, j ∈ {1, . . . , 7}, we obtain the assertion. �

The previous lemma obviously holds for an arbitrary G2-frame. Let us now
consider this particular one.

Lemma 3.6. Coefficients zij satisfy

z26 = z15 6= 0, z16 = 0, z17 = 0, z25 = 0, z27 = 0,

z46 = −z13 − 2z14 tan φ, z45 = z23 + 2z24 tan φ, z13 = −z14 tan φ,

z23 = −z24 tan φ, z47 = −2z15 tan φ.

Proof. For p to be the CR immersion of the needed type we have to impose
the following conditions. The vector field ∂x3

p has to be independent of ∂x1
p and

∂x2
p, and orthogonal to the vector fields E4, E5 and E6. We have

0 = 〈∂x3
p, E5〉 = cos(h + x2)(z17 cos x1 + z27 sin x1)

+ sin(h + x2)(z47 cos φ + (z15 + z26) sin φ)).

Since cos x1 and sin x1 are the only functions of x1 in this relation, we get that
z17 = z27 = 0 and z47 cos φ + (z15 + z26) sin φ = 0. The relation z15 = z26 and other
ones are obtained similarly, taking in the expressions for 〈∂x3

p, E4〉 and 〈∂x3
p, E6〉

the coefficients multiplying independent functions of x1. Finally, if we denote by
∂x3

ppr the projection of ∂x3
p to Span(∂x1

p, ∂x2
p) we get

∂x3
p − ∂x3

ppr = z15 cos(h + x2)(cos x1e5 + sin x1e6) 6= 0

which finishes the proof. �

Note that now it follows that e′
7 = 2z15(e3 +tan φe4) 6= 0. By possible rescaling

of the coordinate x3, we can assume that ‖e′

7‖ = 1, i.e., that the sphere curve
γ(x3) = e7(x3) is parameterized by arc length and that 2z15 = cos φ. Then

γ × γ′ = e7 × (cos φe3 + sin φe4) = − sin φe3 + cos φe4 = G,

and further

e3 = cos φγ′ − sin φγ × γ′, e4 = sin φγ′ + cos φγ × γ′.

Since

e′

1 = z12e2 + z14(− tan φe3 + e4) + z15e5 6= 0,(3.4)

e′

2 = −z12e1 + z24(− tan φe3 + e4) + z15e6(3.5)

we also have that σ = e1 is a nonconstant sphere curve, not necessarily parame-
terized by its arc length. Since e1, e3 and e4 determine a G2-frame, we have that
σ is orthogonal to γ, γ′ and γ × γ′. From (3.4) we deduce that σ′ is orthogonal
to G = γ × γ′, e7 = γ and e6 = e1 × e7 = σ × γ which is, by (2.2), equivalent to
〈σ′ × σ, γ〉 = 0. Also, (3.4) implies

〈σ′, σ × e4〉 = 〈σ′ × σ, sin φγ′ + cos φγ × γ′〉 = 〈e′

1, e5〉 = 1
2 cos φ = const .
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Similarly, (3.5) implies that (e3 × σ)′ is orthogonal to G and e5 = e1 × e4. We note
that 〈(e3 × e1)′, e1 × e4〉 = 〈e′

3 × e1, e1 × e4〉 + 〈e3 × e′

1, e1 × e4〉. By using (2.2) and
(2.1) we get

〈e3 × e′

1, e1 × e4〉 = −〈e′

1, e3 × (e1 × e4)〉 = 〈e′

1, e6〉 = 〈e′

1 × e1, γ〉 = 0.

Therefore, we have 0 = 〈e′

3 × e1, e1 × e4〉 = 〈−e′

3, e4〉 and further

0 = 〈e′

3, e4〉 = 〈cos φγ′′ − sin φ(γ × γ′)′, sin φγ′ + cos φ(γ × γ′)〉

= cos2 φ〈γ′′, γ × γ′〉 − sin2 φ〈γ × γ′′, γ′〉 = −〈γ′′, γ × γ′〉.

Here we use the fact that the sphere curves γ′ and γ × γ′ are orthogonal to their
tangent vector fields γ′′ and (γ × γ′)′, respectively.

Let us investigate the orthogonality condition for (e3 × σ)′ and G. We have

〈e3 × e′

1, γ × γ′〉 = −〈e′

1, e3 × (γ × γ′)〉

= −〈e′

1, cos φγ′ × (γ × γ′)〉 = − cos φ〈e′

1, γ〉 = 0,

so we are left with

0 = 〈e′

3 × e1, γ × γ′〉 = 〈e′

3, e1 × (γ × γ′)〉 = 〈e1, (γ × γ′) × e′

3〉(3.6)

= 〈e1, cos φ(γ × γ′) × γ′′ − sin φ(γ × γ′) × (γ × γ′′)〉.

Since (2.1) implies

(γ × γ′) × (γ × γ′′) = γ′ × (γ × (γ × γ′′))

= γ′ × (〈γ, γ′′〉γ − 〈γ, γ〉γ′′) = −γ′ × (γ + γ′′)

and since σ and γ × γ′ are orthogonal, relation (3.6) becomes

〈σ, cos φ(γ × γ′) × γ′′ + sin φγ′ × γ′′〉 = 0.

Straightforward computation shows that taking curves γ and σ that satisfy the
listed conditions satisfy the relations of Lemma 3.6 and, moreover that we obtain
a CR submanifold of the required form.

3.2. Case cos φ = 0. In this case we have W = E3 and the submanifold is
foliated by almost complex spheres. We will now present a construction of the sub-
manifold following the method given in [1]. If p ∈ M is a point of the submanifold,
then there exists a G2 basis e1, . . . , e7 of the space R

7 such that e1 = p, e4 = E3(p)
and the tangent space of the totally geodesic leaf at the point p is spanned by e2

and e3 = p × e2. We can parameterize that leaf by

(cos x1 cos x2, sin x1 cos x2, sin x2, 0, 0, 0, 0)

for x1, x2 in some neighborhood of (0, 0). We denote by γ the integral curve for
the vector field E3, parameterized by x3 such that γ(0) = p. If γ(x3) is a point
of the curve, then there also exists a G2 transformation A(x3) mapping, respec-
tively, p into γ(x3), and the vectors E1(p) and E3(p) into E1(γ(x3)) and E3(γ(x3)).
Note that we have a possibility of choosing the vector field E1 belonging to the al-
most complex distribution. Now, we have that locally the immersion is given by
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f(x1, x2, x3) = A(x3)(cos x1 cos x2, sin x1 cos x2, sin x2)t, for a differentiable G2 ma-
trix function A(x3). Denoting by Ai the columns of A, we obtain

f(x1, x2, x3) = cos x1 cos x2A1(x3) + sin x1 cos x2A2(x3) + sin x2A3(x3).

Since the point p, obtained for x1 = x2 = 0, is mapped into γ(x3), we have that
A1 = γ. Similarly e4 is mapped into γ′, so e2 is mapped into A2 orthogonal to γ, γ′

and γ × γ′. Moreover we have A3 = A1 × A2 = γ × A2. Therefore, γ, A2 and γ′

determine a G2 frame.
We have

∂x1
f = − sin x1 cos x2A1 + cos x1 cos x2A2,

∂x2
f = − sin x2 cos x1A1 − sin x2 sin x1A2 + cos x2A3,

and further

∂2
x1x1

f = − cos x2(cos x1A1 + sin x1A2) = − cos x2
2f + sin x2 cos x2∂x2

f,

∂2
x1x2

f = sin x2(sin x1A1 − cos x1A2) = − tan x2∂x1
f,

∂2
x2x2

f = −p.

Also, straightforwardly we have f ×
∂x1

f

cos x2

= ∂x2
f , so ∂x1

f and ∂x2
f span an

almost complex distribution, with integral manifolds being totally geodesic spheres,
parameterized by x1, x2. Moreover this makes f a CR immersion of a required
form. Also, note that by reparameterization of the curve γ we obtain the same CR
submanifold, so the condition that x3 is the arc-length parameter is not necessary.
This completes the proof.
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