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THE NORMALIZATION THEOREM
FOR EXTENDED NATURAL DEDUCTION

Mirjana Borisavljevié

ABSTRACT. The normalization theorem for the system of extended natural
deduction will be proved as a consequence of the cut-elimination theorem, by
using the connections between the system of extended natural deduction and
a standard system of sequents.

1. Introduction

In [6] Gentzen introduced the natural deduction system, the system NJ, and
the system of sequents, the system LJ, for intuitionistic predicate logic. There
are numerous papers (see, for example, [3,[4][810,12H14,[18]) in which natural
deduction derivations and sequent derivations were compared, and connections be-
tween the normalization procedure from natural deduction systems and the cut-
elimination procedure from systems of sequents were studied. Because of the well-
known difficulties of the correspondence between reductions which constitute these
two procedures (see, for example, [18, part 1.3]) in the papers mentioned above
modifications of Gentzen’s systems NJ and LJ were considered. In [3] a standard
system of sequents, the system 6&, and a new natural deduction system, the system
NE, were studied, where the most important characteristic of the system N is
that the elimination rules for all connectives and quantifiers are of the same form as
the elimination rules of V and 3 in Gentzen’s natural deduction system NJ. (With
regard to introduction rules of the system N &, they are the introduction rules from
NJ.) That system was called the system of extended natural deduction. Namely,
natural deduction elimination rules of that kind were introduced in [16], and the
natural deduction with these rules was called a natural extension of natural deduc-
tion. Moreover, the natural deduction system from [10] (which was also considered
in [9]) has the elimination rules of that kind, which were called general elimination
rules, and that system was called natural derivation with general elimination rules.
In [3] it was showed that these elimination rules make new maximum segments in
derivations of the system A&, which do not exist in NJ, and new conversions (i.e.
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reductions) of normalization procedure in that system. However, normal deriva-
tions in N€ were defined in Gentzen’s and Prawitz’s way: derivations without
maximum segments. The map v from the set of derivations of J€ with upper in-
dices (i. e. the system SE from [5]), Der(SE), into the set of derivations of N'E,
Der(N€), was defined and it was proved the following property: each conversion
from the set of conversions of a standard cut-elimination procedure in the system
SE& has the corresponding conversion in the set of conversions of a normalization
procedure in the system NE. (That result in the different denotation and with
more details was already presented in [1].)

The main goal of this paper is to prove the normalization theorem for a system
of extended natural deduction by using the cut-elimination procedure for a standard
system of sequents. Namely, the normalization theorem for N'€ can be proved by
an induction on the length of one derivation 7 with several cases which depend on
the last rule of the derivation 7 (see Prawitz’s proof of Theorem 1 from Section IV
in [14]). We note that for natural deduction with general elimination rules from [10]
(which is similar to our system N'E) and its normal derivations (see [10} Definition
3.3. in Section 3, p.549]) two proofs of the normalization are presented in [10]
and [9]. In [10] the existence of a normal derivation, which corresponds to a non-
normal derivation, was shown in the following way (see [10, Section 5]): ”Given a
non-normal derivation, translation to sequent calculus, followed by cut elimination
and translation back to natural deduction, will produce a normal derivation”; and
in [9] the direct proof was given. Moreover, in [5], normal derivations of the system
were defined as in [3] and by using the map ¢ and the connections between the
conversions of the cut-elimination procedure in S€ and the conversions of the nor-
malization procedure in N'E from [3] mentioned above, the normalization theorem
for N€ was presented as one consequence of the cut-elimination procedure for SE.
Namely, for each derivation w from N'E it was prowed that (1) there is one derivation
D from SE& such that ¥D is 7; and if 7 is not normal, then (2) there is the sequence
of the derivations D, Dy,...,D,, n > 1, which are connected by conversions of a
cut-elimination procedure, where D,, is cut-free and (3) that sequence makes the
sequence of the derivations m, ¥ D;,, ¥ D;,, ..., Dy, 1 < i3 < ig < ... < n, which
are connected by conversions of normalization procedure, where D, is one normal
derivation. In this paper we want to define the map from derivations of extended
natural deduction to derivations of a standard sequent system, which will be used
to make the derivation D, whose existence was showed in the proof from [5] men-
tioned above. To define that map we will consider the system NE°, which is NE
with indices i.e. its formulae have indices, and some inference rules and formulae
have numbers, and the system SE°, whose some left rules are different than the left
rules of S&.

In Subsections 2.1] and the systems SE° and NE° will be defined. In Sub-
section the map ¢ from the set of derivations of SE?, Der(SE°), to the set of
derivations of NE°, Der(NE?), will be presented (¢ from [3]), and the new map
¢ from Der(NE°) to Der(SE°) will be defined. In Section Bl conversions in the
systems SE? and NE°, which are in fact the conversions of 6€ and NE from [3],
will be presented. Finally, in Section M, the proof of the cut-elimination theorem
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for the system SE° will be given, and the normalization theorem for the system
NE° will be proved by using that theorem. Namely, it will be shown that for each
derivation 7 from A'E° (1) there is one derivation ¢ in SE°, and if 7 is not normal,

then (2) there is a sequence of the sequent derivations ¢m, Dy, ..., Dy, n > 1, which
are connected by conversions of the cut-elimination procedure, where D,, is cut-free
and (3) that sequence makes the sequence of the derivations m, 71, ..., 7, m < n,

which are connected by conversions of the normalization procedure in N'E°, where
Tm 1s a normal derivation.

2. The systems SE° and NE°

Our language will be the language of the first order predicate logic, i.e. it
will have the logical connectives A, V and D (i.e. =), quantifiers V and 3, and
the propositional constant L (for absurdity). Bound variables will be denoted by
r,Y,%,..., free variables by a,b,c,... and individual terms by r,s,t,.... Letters
P Q,R,... will denote atomic formulae and A, B, C, ... will denote formulae.

The definition of symbols: (1) each natural number 7, ¢ > 0, will be a symbol;
and (2) if s; and sy are symbols, then (s1)(s2) and ()(s2) will be symbols. The
symbols will be denoted by s, t,... and length of a symbol s, 5, will be the number
of natural numbers in s. The symbols of the length 1 will be denoted by 4, j, k, . . ..
For one symbol s we have the symbol s7: if s is (1) ¢, then s~ does not exist; (2)
(2)(j), then s~ is 4; (3) (s1)(s2), where 57,53 > 1, then s~ is (s1)(s3); (4) ()(s2),
then s~ is 55 . A finite non-empty set of symbols will be called the index and it will
be denoted by a,b,.... The index of the form {s}, for a symbol s, will be denoted
by s. The index {i} will be called the initial index, and it will be denoted by 7. The
number of the members of an index a will be denoted by a. There are two operations
on indices: (i) the union a Ub of two indices a and b, which is the set-theoretical
union; (ii) the product of two indices a and bis a x b =4 {(s) * (t) : s € a,t € b},
where * denotes the concatenation of sequences (s) and (¢).

A set of indexed formulae will be denoted by I'*, but the index a usually will be
omitted. For a set of indexed formulae I" we will make the set I'** in the following
way ['X% = {C*@ : 0¢ € T'}. For a sequent A% A®, T — C representation such as
A®, A® T implies that a # b, and A* ¢ T and A® ¢ T, but possibly A¢ € I for some
c#aand c#b.

2.1. The system SE°. A sequent of the system SE° has the form I' — A,
where T is a finite set of formulae with indices and A is one unindexed formula.
Postulates for the system SE°.
Initial sequents
i-initial sequents: A7 — A.
1 -initial sequents: 17— P, where P is an atomic formula different from 1.
Inference rules

structural rules

A% AT — C r—+A A*A—=C
- (cut)

(contraction) -
A D O r** A —=C
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rules for connectives

left rules right rules
r-+A /B, A=C JA%/,T — B
(DL) g (ODR) ———
ILADB/I A—C I >ADB
JAY) T = C /BY/,T' = C r-A A-=B
(AL1)) ———— (ALg)—— (A\R) ——
ANB),T' = C AANB), T - C I'N'A—>AAB
JA¢),T —C  /B°/,A—C r—A - B
(VL) _ (VR1) ———— (VRy)————
AV B T,A—C - AvVB ' -AvVB
JAt®/, T — C I' = Aa
(VL) ———— (VR) ————
VzAz?, ' - C I —» VxAzx
JAa%/,T' = C I — At
L) ——— 3R) ——
JxAx? T — C I' » JxAx

The indices j from the initial sequents and the left rules are called initial indices,
and they have to satisfy the restrictions on indices: in any derivation, all initial
indices have to be distinct. In the rules (VR) and (3L) the variable a is called
the proper variable of these rules, and, as usual, has to satisfy the restrictions on
variables: -in VR: a does not appear in I' U {VzAz}; -in 3L: a does not appear in
T'U {3zAz,C}. The notation /C°/,0 — D for a sequent is used to indicate the
possibility that ¢ is empty (and hance not strictly an index by the definition above,
but we may still call an index for convenience). So, /C¢/,© — D is interpreted as

C¢,© — D, when ¢ # (); and as © — D, when ¢ = 0.
D,E,F,D',D; ... will denote derivations in the system SE°. A derivation with
the end sequent I' — A will be denoted by

D Dl D”
D . I’ — A " — A TV 5 A
, while — R or R
r—A r—- A r— A

will denote a derivation F with the last rule R and the end sequent I' — A. All
formulae making up sequents in a derivation D of SE° will be called d-formulae of
the derivation D. A derivation D of SE° has the proper variable property (PVP) if
every occurrence in D of a proper variable of an inference of (VR) or (3L) is above
the lower sequent of that inference.

2.2. The system NE°. The system NE° is an extended natural deduction
system. m, &, w1, 7, ... will denote derivations of the system NE°. T', A,... will
denote finite sets of a-classes (see the definition below) in derivations of the system
NE°. One derivation of the formula C from the set of a-classes I" will be denoted by

r r r A r A A
T, Whﬂe T T T2 or T T T3
c c” c " ¢ "

will denote one derivation of C' whose last inference rule is R. Some inference rules
in a derivation 7 will have numbers and the largest of them will be the number of
the derivation w, Nw. All formulae making up a derivation 7 of the system NE°
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will be called the d-formulae of the derivation w. In = the d-formulae from the
a-classes of I' are the top-formulae of that derivation and their full-forms, can be:

(T1) AY, (T2) A, £> 1, (T3) (... AHM . )N =1, n>1,

(T4) [[...[[(... (AN )N ), 21, >0, 1>0,
where ¢ and ¢ are indices of these formulae and Ny,...,N,, Li,...,L; and L are
numbers of these formulae and some inference rules.

EXAMPLE 2.1. Trivial derivations (see the definition below), for example, A,

A A B*, have the top-formulae of the form (T1). The top-formulae of 7y : %/\I&
are of the form (T1), where AIE is one inference rule (see below). The operations
on derivations, substitutions and contractions (see below) make top-formulae of
the forms (T2)—(T4). The result of the substitution of the derivation 7; for the d-
formula AAB* (which is one a-class, see below) of the trivial derivation AAB* is 7a:
1)(4 2)(4 3)(1)\a p2
A((A)/(\];;(l)g(i)))(s) @a= )5 A/\)B B NE; 4

is the result of the substitution of the derivation A2 for the a-class A! of 71 and its
top-formula (A®)M)4 is of the form (T3). In 7y:
[Al}‘l B2
AANB [A3)4
(AANB)ANA

AIE; 5 whose top-formulae are of the form (T2). ms:

NIE; 4

we have the contraction of the formulae (the a-classes) A and A2 after the second
AIE and the top-formulae [A']* and [A3]* are of the form (T4), where n = = 0
and L is 4. The result of the substitution of the derivation A® for the a-class [A13]*
of 74 (the d-formulae [A']* and [A3]4) is 7s:
[(A(S)(l))6}4 B2
NIE
AAB [(A(B)(3))8]4

(ANB)A A

where n = 1,1 =0, N; is 6 and L is 4.

NIE;4,6

The part A! of a top-formula will be called the core of that top-formula. If
from a top-formula its core and the first [and the last] with its number (when they
exist) are deleted, then the bark of that top-formula will be obtained, and it will
be denoted by (). For a top-formula of the form (T4), its core is A* and its bark is
L. .. ON o]t o )™ (it is empty, when n = [ = 0), and that top-formula
will be written [(A?)]*, but () and []¥ will usually be omitted. The top-formulae
of the forms (T1) and (T2) are equal to their cores and their barks are empty.

The d-formula C' is the end-formula of 72 and its full-form can be:

(E1) C7, (E2) C, (E3) (...(CHN . )N m>1,

where ¢ and s are indices of these formulae and Ny,...,N, are numbers of these
formulae and some inference rules. The part C* of each end-formula (where the
index s does not exist, when its form is (E2)) will be called the core of that
end-formula. If from one end-formula its core is deleted, then the bark of that
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end-formula will be obtained and it will be denoted by || || (but, || || will usually be
omitted). For an end-formula of the form (E3), its core is C* and (... ()" ...)"»
is its bark. The end-formulae of the forms (E1) and (E2) are equal to their cores
and their barks are empty.

EXAMPLE 2.2. Trivial derivations have the end-formulae of the form (E1). In
Example 2.1 the end-formulae of 71, 73, 74, and 75 are of the form (E2) and the
end-formula of 7 is of the form (E3), where s is ()(4), n =1 and N; is 5.

If a derivation 7 has one top-formula of the full-form (T4), then it has k top-
formulae (k > 1) of the full-form (T4) with the same form (i.e. one predicate
formula A) and the same number L. The union of the indices (they have one
symbol) of all these top-formulae is the index a and all top-formulae whose indices
belong to a will make the a-class (i.e. the assumption class) in that derivation
7 and it will be denoted by [A*]" or A% Specially, each top-formula of the form
(T1)-(T3) is one a-class A" (in (T1) t is 4) in that derivation 7. If we write

[Asl}h . [AS”L}[‘F
s
C
where a = {s1,...,$m}, then it means that the d-formulae [A%1]~...[A%"]" make
the a-class [A%]* and in T there is not any d-formula from that a-class.

Postulates in the system NE°.

A derivation 7 in the system NE° is either one trivial derivation A or one
derivation which is made by the following operations on derivations and the infer-
ence rules.

(1) Operations on derivations
If the derivation 7y is

)

[ASI]K . [Asm]K[étl]M . [At"]MF

™ ’
B
where a = {s1,...,8m}, b = {t1,...,tn}, m,n > 1 (K (M) does not exist when m
(n) is 1), then the derivation 7
([AST L AT P [AR )Y (AT (AN [[ATT
m (denoted by w )
B B

is the result of the contraction of the a-classes [A?]¥ and [A°]M and it has the a-class
[A9YPIN where N is one number larger than N7, when N7 exists and an arbitrary
number, otherwise; and N is the number of all formulae of that a-class. The number
N is also one number of the last inference rule (see below) of 7 (that rule can have
several numbers) and N7 = N.

EXAMPLE 2.3. In 7 from Example 2.1 the contraction of the a-classes [Al]
and [A3] make the a-class [A}3]%, 4 is the number of the last inference rule of 7y
and N7y = 4. The result of the contraction of the a-classes [A*3]* and [4%°]7 in

[[A1]%) B2 .
5,7 6,7 3148 57181 461718
L G A 0 L AnB AT IATTPIATTE
(AAB)ANA ANA . (ANB)ANA ANA
ANE 1S N E; 8.

((AAB)AA)A(ANA) (AAB)AA)A (AN A)
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r
If the derivation m; is ”2’ | and the derivation 7y is

s

(A [(atm)]a

B

where d-formulae (inference rules) of 1 and 75 have different indices (numbers), b is
{t1,...,tn}, n > 1 (L does not exist when n is 1), then the result of the substitution
of the derivation m for the a-class [Ab]" in the derivation mo is the derivation 7

[MXt1] [[Xtn ]t [Fxb]L
7T/ . 7'('/ 7T/
(LAt ((LASE Ny A (ADO A
' (denoted by '’ )
B B

where N is one number larger than N7y and Nmge, when N7 or N7y exists and an
arbitrary number, otherwise; in each d-formula ((||A®)®)|)N), 1 < i < n, which
is one sb-formula of w, () is the bark of the top-formula [(A%)]" of w2 and |||
is the bark of the end-formula of 71, and N is its number and L is its c-number.
If m; is one d-formula and L exists, then the sb-formulae are [{(||A®)®)||)N)]",
1 <4 < n. Each a-class [C°]™ from the set of a-classes " of 71, ¢ = {r1,...,"m},
m > 1, has its corresponding a-class [C°*|" in 7, i.e. each d-formula [(C"3)]M
from [C¢]™ has n corresponding d-formulae [[(CT7*!)M]* 1 < 4 < n. If one of
w1 and mo is not one d-formula, then the number N is the number of the last
inference rule of 7 which can have several numbers. If 7y and ms are d-formulae,
(.. (A5 ) and (... (AN ...)", respectively, where n,l > 0, then 7 is the
d-formula (... (((... (AG@)N O Na )Nyl Yl T all cases N = N.

EXAMPLE 2.4. In 7 from Example 2.1 (A A BO®)5 is the sb-formula of one
substitution where 5 is its number and the number of the last inference rule of o,
AIE. The substitution of the derivation A A B? for the a-class [A A B®7]® in

[AABSB[AA B8
(AANB)AN(ANB)

is the derivation mg:
[(A/\ B(Q)(S))lO}S[(A/\B(Q)(7))10}8

NE; 8,10
(AANB)NANB)

and the substitution of 7y for the a-class [A A B8 in 74 is

s118 t118 5218 t218
[4°1]8 [B4] e [4°2]° [5*] e
AAB(O#)((9)(6)))5)11y10 AAB(O@)((9)(7)))5)11y10
((( )°)™) B (((( : )°)™) AI£:8,10,11,
AAB)NANB
where s1 = {(

){74)))((9)(6))}, tr = {((2A)(9)(6)}, s2 = {(1)A)(N(T))},
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(2) Logical inference rules

elimination rules introduction rules
/B®/ /A%
™1 T2 m™3 ™1
ADB A C B
& (DEE) 155 1)
[A¢/ /B%/
T ™2 ™1 2
AANB C ANB C A B
= (NEE1) = (NEES) g (MO
/Ae/  /B/
T T2 T3
AV B C C A B
C (VEE) AV E (VI&Er) AvVEB (VIE2)
[At/
™1 T2
Vx Az C Aa
= (VEE) T (VIE)
[Aac/
™ T2
dxAx C At
= (3E€) o (1)

J
L-rule: ?J_E , where P is any atomic formula different from L.

In the rules (VIE) and (3EE) the variable a is the proper variable of these rules,
and it has to satisfy the well known restrictions on variables, which is similar to
the restrictions on variables in the system SE¢ (see also [18, 2.3.8.(b)]). In NE°
(by using the notions above) we can define the proper variable property (PVP) of a
derivation 7 (see [18) 2.5.1.(c)] or [14] p.28]) which is very similar to PVP in S&°.
In the rule (DI€) and all elimination rules in the brackets / / there is the a-class
which is discharged by that rule if its index is not (), and if it is (), then nothing is
discharged by that rule. Moreover, the other a-classes of the same formula (like the
one discharged) may exist, and they are not discharged by that rule. We note that
in one rule and the discharged a-class by that rule one number can be written, for
example DIE1 and /A?/!, where 1 is not the number of that rule.

EXAMPLE 2.5. In the system NE° we consider the following derivation 7

Al /32/2
[BE@®W3 ()4 . AANB JC3 /1 .
(BOME @) (B A CO@T N (ANB)AC M
A AEE>1;1
(BACOM)2 (ANB) AC

ANEE12;2,3
(ANB)AC

where in AEE;1;1: 1 denotes that the discharged a-class by that rule AEE; is C3,
which is denoted by /C3/1; and 1 denotes that the operation on derivations whose
d-formulae have the number 1 is made after that rule, i.e. the substitution with the
sb-formula (B A COM)1 and 1 is the number of that inference rule AEE;1;1. In
AEE12;2,3: 2 denotes that the discharged a-class by that rule is /B?/%; 2 denotes
that the substitution with the sb-formula (B A CO()2 is made after that rule; 3
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denotes that the contraction of the a-classes BO)® and B®)( is made after the
substitution with number 2; and 2 and 3 are the numbers of that inference rule.

REMARK 2.1. If in the system N'E° we have the derivations which are of the
same form, their indexed d-formulae have different indices, but there is a bijec-
tion between the indices of the corresponding d-formulae, then we do not make
distinction between these derivations.

In the system NE° for elimination rules of all connectives and quantifiers we
have the notions of minor and major premisses which are defined analogously to
these notions in [14]. For example, AV B is the major premiss and the d-formulae
C are minor premisses of the rule (VEE).

2.3. The maps which connect derivations of SE° and N E°. We will
present two maps which connect the set of derivations of the systems SE° and
NE?, the sets Der(SE°) and Der(NE?), respectively. Both maps will be defined by
induction on the length of the derivation, where the lengths of derivations D and
7w will be defined in the usual way, as the number of all rules in these derivations.

The map ¢: Der(SE°) — Der(NE?) is in fact the map 1 from [3] and it has
the property that the image of a derivation D with the end sequent I' — C' is the
derivation ¥D of the formula C' from the set of a-classes I':

I
D
w(FaC):wg

where I' from I' — C' is the set of indexed formulae and I" from D is the set of
a-classes and each d-formula D? from I' of I' — C has the corresponding a-class D%
of d-formulae from I' of the derivation ¢D. There are several cases which depend
on the last rule of the derivation D, rD.

D WD
[el=Ye; ok
J_i
1lispP P Le
D’ D [xa
r-A A*A-=C wD/‘
<a cut A (AY)N
I'"*A—C D"
C
where N>max(NyD’ ,NyD").
D/
A AP T C [A“]N[APNT
mcon‘craction D’
’ C
where N>NyD'.
D/
" JA®/T
/A*/,T — B SR w,D/
I'-ADB B

ADB oIE
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r /Bb/A
'D/ 'DN w.D/ wD”
AD B! A C
r-A /BY,A=C
/B/ SL c oEE
I'A>B" A —C
T A
D/ DII szl wa//
A B
r-+A A—B = =
— AR ANB NE
I''A—- AAB
[A®/T
D’ YD’
AN B? C
AY/. T — C Ab __ ©
7/ / ALq C /\Egl
AANB T —C
The cases when rD is AL, VL and dL are similar to the case when rD is AL;.
D/
r A o
— /
— VR; ¥D
I —AVB —A VIE,
AV B
The cases when rD is VRy, VR and dR are similar to the case when D is VR;.
D/ DN

/AT /B®/A

[A?/,T = C /B/,A = C L . WD WD
AV B, I,A=C Av B c c
o VEE

Now we define the map ¢: Der(NE°?) — Der(SE°), which has the property
that the image of a derivation of C' from the set of a-classes I' is the derivation with

the end sequent I' — C"
T
o
o\m] =
(C) r—-c¢

where for each a-class D from T of the derivation Ié from NE? there is the corre-

sponding d-formula D in T from its ¢-image, FTC, and there is a bijection from
d to d’, i.e. each symbol s from d has the corresponding symbol s’ in d’, where s’ is
(... ((8)(t1)) .- )(tm), m = 0 (see the definition below when 7 ends with an elimi-
nation rule). There are several cases which depend on the last rule of 7, ro, where
the last rule of 7 is its last inference rule when it does not have any number; or
the contraction or the substitution whose d-formulae have the largest the number
of the last inference rule of «, i.e. N7r.

If the last inference rule of m does not have any number, then 7 and ¢7 are

g ol

Ct o =6

J_i

P e lisp

or’
[A%/T ,
o JA* /,T' - B R
———— D

B DIE r-A>DB

ADB
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(bﬂ'” ¢7T”l
r A /BY/A ) "
o ! " o A—A /B”/,A—=C
ADB A C Z DL
DEE r-A>B AADB' A= C
¢ T AN C eut
71;, ﬁ, (157T, ¢7r"
A B
r A A B
anp ME - -
I'N'A—AAB
d)ﬂ'”
r /A" A , o
' ! ¢ JAY [, A = C .
AAB __ C ) pe IS AAB AABLA—C
© '**A—C cut
The case when rm is AEEy is similar to the case when rm is AEE.
I
x’ or’
A
—— VI r— A
AV B VI — VR;
I' wAVB
The case when rm is VIEsy is similar to the case when rm is VIE;.
(bﬂ_/l d)ﬂ'///
r JA®/A - /B/A , ,
- " g ¢7r' /Aa /,A Vs /Bb /,A ~C
AV B c c ; VL
VEE I - AVB AV B AN C
“ AN C eut
The case when rr is VIE is similar to the case when rx is VIE;.
(bﬂ'//
r [At /A /
l 7 o JALY [,A = C
Vx Az C i o VL
——— VE¢& I' > VeAzr VzAz', A —C
© r'** A = C out
The case when r7 is 1€ is similar to the case when rx is VIE;.
(bﬂ'//
r JAb® /A /
- 7 o’ JAb® /A — C ar
Az C IEE I 5> 3zFz 3JzAz’,A > C
C - cut
" A—C

If the last inference rule of m has numbers, N is the largest of its numbers, and
— N is the number of the d-formulae of one contraction, i.e. 7 is the result of a
contraction in a derivation 7/, then 7w and ¢ are

or’
L[A®N[APTY A% A TS o ,
o and Tcontractlon;
C APV T = C
— N is the number of the d-formulae of one substitution, i.e. m is the result of a

S A DAY
substitution of »/ in .~ , then m and ¢ are
A c
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A)(a (bﬂ_l d)ﬂ_//
. AsA A ToHC
r (A*)X and 7 cut.
AXY T = C

REMARK 2.2. We consider a derivation D of the system SE° and its y-image,
the derivation ¥D = 7, in the system N'E°. By the definition of the map 1, if the
major premiss of one elimination rule of 7 is the sb-formula ((||A®)®||)N), then its
full-form is [... [[(... (((... (AG® )< YRNNG - Nela] Tl (%)
where n,k,l > 0, s may not exist and N>max(Ky,...,Kg,N1,...,Np,L1,...,L;),
when one of n, k and [ is not 0.

Now, for a derivation 7 of the system N'E° we define the derivation 7—. If 7 is
a trivial derivation C*, then 7~ is 7. If 7 is

r r A r A A

Tl ™1 ™2 st up) T3
(k) ()2) 4 @& or  (*3) B C

o™ c " —c "

and the last rule of the derivation 7 is (1.1) one substitution with only one sb-
formula, the sb-formula ((]|A®)®||)N), which is the major premiss of R and R is an
elimination rule, i.e. 7 is (%2) or (*3), A is the sb-formula whose full-form is (x)
from Remark 2.2, and its number N is the largest number of R, then 7~ is

r A T A A
T Ty or T Ty T3
A~ C A~ B c ’
—— R - R

C C

where A~ is either ((||A®)® ) |)¥) without (), when n > 0 (or (||[A®) ||}, when
n = 0), and in the rule whose number is Ny (or N) that number is deleted, ¢ is
replaced by ¢~ in all d-formulae of the subderivations of 7~; (1.2) one contraction,
one substitution which not the substitution from (1.1) or the rule R, then 7~ is

r T A r A A
T T Ty or LT S

A R, A C A B c ’
= —— R — R
C C C

respectively.
THEOREM 2.1. In NE° for each derivation 7 and its 1) o p-image m1: w7 is 7.

PROOF. By an induction on the length of a derivation 7 from the system NE°.
There are several cases according to the last rule of 7. We only consider the case
when the last rule of 7 is D EE without numbers, and the other cases are similar.
In that case 7 is

F A /Bb/lA ¢7r// ¢WIII
o o o o’ A=A /BY/ A C ;
, )
R A— Copel, .. . I'sA>B  AASB,A5C
C its ¢-image is . cut,
" AA— C

where for each a-class D? from I', A, A in the derivation 7 and the corresponding
d-formula D% from I'**, A, A in the last sequent of ¢m the following holds: there
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is a bijection between symbols from d and d’, i.e. each symbol s from d has the
corresponding symbol s" in d’, where " is (... ((s)(t1))...)(tm), m > 0.
Next, the 1-image of the derivation ¢ is
rxi A /Bb//lA
,lp(bﬂ./. ,lp(bﬂ.// w¢7r///
(A> B A
C
where N > max(Nyorn', Nporn”  Ngrn”"). By the induction hypothesis, (von')~
is ', (Yor")” is " and (Yor"’)” is ©”'. The derivation (¢¥¢m)~ is obtained
from ¢m when, Yon’, Yor”’ | e’ are replaced by (Yor') ™, (Yor”) ™, (Yor'")~,
respectively, (ADB?)N is replaced by ADB, i is deleted in the d-formulae from I'*?
and N is deleted in E£1;N. Finally, by the Remark 2.1, (¢p¢m)~ is 7. d

DEEL;N,

3. Conversions in the systems SE° and N E°

3.1. Conversions in the system SE°. The conversions of derivations in
the system SE°, the pm®-conversions, are in fact conversions of derivations of the
system 0& from [3]. Almost all of them are the transformations from Gentzen’s
proof of Hauptsatz in [6]. The characteristic of the pm¢-conversions is that they
can be applied on a derivation D of the following form

Dl D”
r— A A A — B
cut
I'xa A - B

where subderivations D’ and D” do not contain any cut rule. The degree d, the
left rank [lr, the right rank rr and the rank r of the derivation D above are the
well-known Gentzen’s notions (see, for example, [3]).

There are three kinds of pm®-conversions: pf-conversions, mf€-conversions and
ms®-conversions. In each conversion below its redex will be the derivation D and
its contractum will be the derivation C. If we have, for example, that the conversion
(1 <lr S rr—cg > 1)¢ is applied on the derivation D above, then 1 < Ir means that
the left rank of D is greater than 1, thus the last rule of D’ is either a contraction
or a left rule; rr — cg > 1 means that D" ends with several contractions of the
cut formula A and the principal formula of the first rule above these contractions,
i.e. the rule R, is not any of the contracted formulae (rr — ¢ = 1, otherwise);
means that by that conversion the cut and the contractions are permuted with
that rule R. If a contractum C has two (or three) subderivations of the same form
we will suppose that the indices of their formulae are different. More precisely,
the end sequents of two of these subderivations of C will be denoted, for example,
by I'® — C and I'“ — C which will mean that there is a bijection between I'¢
and ¢ (ie. ¢ ~ ). (See [3 Section 5.1] for details.) A%" will denote the
sequence A% ... A% m>1. Therule c... with A% in its upper sequent and A®
in its lower sequent will mean m — 1 contractions of formulae from A%, where a is
a1 U...Uay, (m > 1); otherwise it will mean several contractions of formulae which
are not emphasized. Finally, I'** and I'“*® will denote the same set of indexed
formulae.

£
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p&-conversions. The pf-conversions consist of the following four kinds of
conversions:

(Is)e, A <lr e >1)E, (L <Ur S rr—cg > 1) and (1 < Ir S rr—cg = 1)%,
where the rule R cannot be a cut rule.

>Ia (Is)€ Conversions (Is)¢ will be conversions (Is) from [3], when at list one
of the subderivation D’ or D" of D is an initial sequent (i.e. Zucker’s trivial cut,
see [18] p.40]).

pIT< (1 < Ir 2 rr > 1)€ In the redex the last rule of the subderivation D" is
either a right rule; or a left rule or a contraction whose principal formula is not the
cut formula A®. We present, as one example, the case when rD” is VL.

1<lr SMrryr > 1)5 The derivations D and C are

DY DY
D A%, /C¢/,A" B /DY A" - B I
r— A CVDi,Aa, A" A" - B v
CVDi,T*a, A/, A" — B cut
D Dy
r—-A A+ /C¢/,A'— B DY
I'xa /Ce/ A — B cut /Dd/7A”—>BvL

CVDi,T%e Al A" 5 B
>ITI< (1 < Ir /' rr—c > 1)¢ In the redex the subderivation D” ends with n— 1
contractions of the formulae A (n > 2) and the principal formula of the first rule
above these contractions is not any of the contracted formulae. We only present

the case when the rule above the contractions is DL.
A<lr rr—cesg > 1) The derivation D is

DY DY
AT A ¢ /DY) A%+ A" 5 B
D’ C > D', AT A" A" - B ok
- A C > D', A* N A - B “

- cut
CHO>DL,T** A',A" - B

where a is a1 U ... U a,, and the end sequents of D} and DJ contain the formulae
from A% ie. 1 <k <n-—1inD. The derivation C is

DY DY
D AT A S D' /D%, A%+ A" 5 B
/7(:' ct " C
= A4 A" A 5 C r’ -4  /piA"" A" B
7 cut —7 cut
FCXG,A/HC /Dd/,FC Xa ,AN%B

: ’ 1" ’ :)L
C D DZ7I“C Xa 7I"C><(l ’A/7A// — B

C>D T A A" B

where @’ is a1U...Uay, a” is ap41U...Ua, and I'® is [exa’ue’xa” o pex(a’Ua”) o pexa
(see [18| Note on p.40]). If the end sequent of D or Dj does not contain any for-
mula from A®, then the contractum is the derivation C above, where its subderiva-
tion which ends with the sequent ¥, A’ is replaced by D/ or its subderivation
which ends with /D9/, re'xa” A’ — B is replaced by DY, respectively.
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In the conversions below the indexed formulae of the end sequent of the con-
tractum C will not be explained in details as in the case above. We will assume
that these formulae are obtained by using (0I): operations on indices.

pIVa (1 <lr /rr—c = 1)¢ In the redex D” ends with n — 1 contractions
of A (n > 2) and the principal formula of the first rule above these contractions is

one of the contracted formulae. We present the case when that rule is ALj.
(1<Ir 2 rr —cap, = 1)¢ The derivation D is

DY

/C?/,C AD* A — B ;

- o A Ly

D’ CAD" CAD*2,A— B
C.
r-CAD CAD*A— B
cut

' A~ B

where the principal formula of AL; has, for example, the index a1, i.e. i is a1 (but,
we note that each a;,1 < I < n, can be the index i), and a is a3 U ... U a,. The
derivation C (when b # 0) is

DY
D’ /C?/,C AD* A — B
Ir°-CAD /C'/,CADY A— B
D' rexe’ /c*/,A - B
r“ 5 CAD rexa’ G ADU A B
Fexa’7re/><i7A B
I''A—B

C...

cut

A L1

cut

where a’ is as U... Ua, and ', A — B is obtained by using (01). If b is (J, then the
contractum is only the subderivation of C above, which ends with the upper cut.
m¢-conversions consists of mf®-conversions and ms€-conversions.
mff-conversions. The mf¢-conversions consist of two kinds of conversions:
(1=1Ir < rr=1)°¢and (1 =Ir < rr —c=1)¢. In all mf-conversions of the first
kind the left and the right rank of the redex are 1.
>V< (1 = Ir ¢ rr = 1) In the redex the subderivations D’ and D” end with
rules whose principal formulae are the cut formulae. We present the case when the

cut formula is C' D D.
(1 =lr5 ¢ rr5 = 1)¢ The derivations D and C (when ¢ and d are not {)) are

D] DY DY
/C¢/,T = D A —scC /DY,A" 5B
DR , OL
Ir—-C>D C>D",A',A" =B
FXi A/ A”*)B

cut

DY D}
AT o jct) T =D DY
cut
Af*er oD /D% A" - B

A'fXCXd,FXd,A" B

cut
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Dy Dy
If c= () and d # 0, then C is FHDFX({Z?,/H’A;%B cut, and similarly when ¢ # 0
and d = (. If c=d = (), then C is DY.
>VI< (1 = Ir <3 rr — ¢ = 1) In the redex the subderivation D’ ends with a
right rule i.e. its principal formula is the cut formula and the derivation D" ends
with n — 1 contractions of the formulae A (n > 2) where the principal formula of
the first rule above these contractions is one of the contracted formulae. We present

the case when the cut formula is C D D.
(1 =1Ir5 <> r7 — c5 = 1)¢ The derivation D is

DY DY
! coD A s /DY,CODYM A B
, = — SL
/C°/ DD CH>DI,C> DY ,Co DM, AL A 5 B
— D C...
r-Cco>D C>DY A A" B

cut

r*e A" A - B

where the principal formula of the rule DL has, for example, the index ag, i.e. i is
ak, (but, we note that each a;, 1 <1 < n, can be the index i) and the end sequents
of D} and DY contain formulae from A% ie. 2<k<n—1,and ais a1 U...Ua,.
The derivation C (when ¢ # () and d # 0) is

"
D Dy
k—1
/c7,rLp cop®1 ,A%Cc D} DYy
’ e " 1" n
rLoop o5pel AL . D} /¢ /v %D /DY, CcoD**+1ALB
7 cu ’ ’ 77 77 C...
rfxal aAlyc /c¢/, ¥ 5D r/’eop /Y, cop* A'sB
T 7 7 7 cut A cut
pfxa’xearxe pfp /DY, v X AL B

cut

AV 1 AT gl 7
l—‘f><a X e Xcgl—‘f Xa,l"f X,dA,XC X,dA//—»B

réa’, A’

where @’ is a;U...Uag_1, a” is ax41U...Ua, and I'*, A’, A” — B is obtained by using
(o1). If the end sequent of DY or DJ does not contain any formula from C>D®, then
the contractum is C above, where its subderivation which ends with I'/*¢" A’—C
is replaced by DY, or its subderivation which ends with /D?/, T'F"*a" A" — B is
replaced by DY, respectively. If c is (), then the contractum is the derivation C above,
where its subderivation which ends with ['/*a' ¢ A7x¢" T/ 5 D is replaced by
Dj. If d is 0, then the contractum is the subderivation of the derivation C above,
which ends with /Dd/,l"fux"”, A" — B without /D?/.

ms®-conversions. The ms®-conversions are (1 < Ir X\ rr = 1) conversions.
In all ms®-conversions the right rank of the redex is 1 and its left rank is greater
than 1.

>VII< (1 < Ir X rr = 1)€ In the redex the last rule of derivation D’ is a left
rule or a contraction, and the last rule of D" is a left rule whose principal formula
is the cut formula. We only present the case when the rule rD’ is 9L and the cut
formula A is C A D.
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(1 < lrs \_rrp = 1)¢ The derivation D is

D} DY
JFa®/,T" = CAD /C’/,A = B
EN R cnp t CAD',A— B N
JeFad Xt T8 A 5 B out
and the derivation C is
DY
D} /C/,A = B
JFa) T 5 CAD  CADASE
JFai/ """ A 5 B eut
El

JeF2d, T A > B

An arbitrary derivation F, whose one subderivation is the redex of one conversion
above, will be converted into a derivation F’ by replacing D (in JF) with the contrac-
tum of that conversion, the derivation C, by using the operation pruning® defined
in [3], which is completely analogous to the definition of the operation pruning
in [18, 3.1.5 and 7.8.3 ]. Then we define

F pf-conv F', F mfé-conv F' or F msf-conv F' iff F' is obtained from F
by replacing one its subderivation D, which is the redex of a p®-conversion, mf®-
conversion or ms®-conversion respectively, with the contractum of that conversion,
and the corresponding pruning® is applied on the part of F below D. Moreover,
the right cut formula of the last cut in D will be the d-formula of that conversion.

F mf-conv F' iff either F mf€-conv F’ or F ms-conv F'.

A derivation F pm®-converts into a derivation F' iff there is a sequence of
derivations, Fy,...,Fn, n = 0, such that Fy is F, F,, is F’, and for all i < n (when
n > 0) either F; pf-conv Fi 1 or F; m€-conv Fi,1.

If a derivation F does not have any cut rule, then F will be called a cut-free
derivation in the system SE°.

3.2. Conversions in the system NE°. We will define the conversions in
the system NE°, which are the conversions in the system NE presented in [3]
with indices of formulae, and numbers of some formulae and inference rules. In
the system N E° all elimination rules make maximum segments of several formulae
i.e. there are special conversions of derivations from AE° which do not exist for
derivations from Gentzen’s system NJ. Each conversion will have the redex, the
derivation 7, and the contractum, the derivation 7. In fact, we will consider the
derivations with subderavations 7 and 7, respectively (see (CN) below).

v (Emaxf-conversions) These conversions are used to eliminate a maximum
formula in a derivation of the system AN E°.

(EVi-convn) The redex, the derivation 7, is

I

™1 /CC/A/ /Dd/A”
C K VIE: 7l—QL 7T3M
(CvD) (B) (B)

B VEE
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and C'V D is a mazximum formula of m, where K, L. and M may not exist. We
present (£Vi-convn) in the full form. The derivation 7 is the subderivation of 7/

[Eer]: JFP /% Ty
1

o [CeJE®=] JFP2 ) Ay /DY/[ES]: [JFs [ A

vy V8 By By e
(B VES (gaal JFba st o
7}'("}1

D is [E]0 /F% /* Dy A s [E@2)t /FP/* Af; A" is [E9]b /F% /* AY, where in
iy 1 <10 < 4: [E*]" denotes the part of one a-class which is made by the contrac-
tion whose number is L and ... denotes the parts of a-classes which are made by
all contractions of that kind; /F% /* denotes the part of one a-class which is the
discharged a-class by one rule from 74 and ... denotes the parts of all a-classes of
that kind. The rule VI&; can have several numbers, which appear: 1-1 only in 7y;
the rule VEE can have several numbers which appear: 2-1 only in 7y, 2-2 only in
g, 2-3 only in 73, 2-12 in m; and me, 2-13 in m; and mg, 2-23 in my and ms, 3-123
in 7y, my and ms; the numbers K, L and M, when they exist, can be the numbers
either of VEE or of one rule from 74; and I can be the number of one rule from 7y.

The contractum 7 has different forms in the cases when ¢ # () and ¢ = (). If the
number K (L) exists and the number of the sb-formulae with that number is greater
than 1, then 7} (7}) below is mp (m2) without the contraction whose number is the
c-number of the sb-formula whose number is K (L) and without each contraction

whose number is greater than that number.
If ¢ # 0, then 7 is the subderivation

1"><c
/
7r1 17
(CoyBe .. [Fha e
5
B
in7”:
[Ealxc}L” .../Fblxc/*...ric
/
7:;11\‘ as (L’ bo /% /
(ceye [Be) L JFb LA
’
T2
(B)M [Baa” /PPy D
T4
H

1"

where: (1) [E@*]X" | [Eo2]Y" and [E®]"" denote the parts of one a-class which is
made by the contraction whose number is the number of one rule in 74 and ...
denotes the a-classes which are made by all contractions of that kind; (2) /Fb1*¢/*
/F® /* and /F% /* denote the parts of one a-class which is the discharged a-class
by one rule from the derivation 74, and ... denotes all a-classes of that kind; (3) Ny
is 7+ 1 and Ng is 7+ 2, where J is the number of a rule R from 74 in 7’ which is the
smallest of all numbers of the rules from 74 in 7/, and N and now N are the numbers
of R fom 74 in 7, (3.1) in 7 there are j, j > 0, contractions of top-formulae from
!y, 5 and w4 whose corresponding top-formulae from the subderivations my, 7o
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and 74 of 7’ have the c-number of the sub-formulae whose numbers are K and L,
and their numbers are the numbers of R, so if J” is the corresponding number of a
number J' from 7y in 7’ and (3.1.1) 3’ > 7, then 3/ =7 + j +2; (3.1.2) J/ < 7J, then

J=17. , )
(B°2]".../F*2 /*..A,

If ¢ = (), then 7 is the subderivation - in the derivation 7”:
B
[Ba2]t” . JFb2 /% A
n;
(B)M [Baa) | JFba/* D
T4
H

where N; and numbers in 74 from 7" are obtained as in the case when c # 0.

(oN): If in the derivation 7 there are some a-classes which are
contracted (they may be discharged a-classes of some rules),
and they appear in 7, then these a-classes are contracted in
the derivation 7, too.

(EVa-convn) Similarly to (€Vi-convn).

The other Emaxf-conversions and all Emaxs-conversions below will not be pre-
sented in the full form, but we will assume that in each of them (CN) holds and the
derivation which contains its contractum will be obtained similarly as in the case
(EVy-convn).

(EA1-convn) The redex, the derivation 7, is

T A
¢ _D NE 3
CAD B

ANEE,

B

where CAD is a maximum formula of m. The contractum 7 has two forms in the
cases when ¢ # () and ¢ = {):

Ixe A
7rl 7rl
1 3 .
(CemNt A and B, respectively.
/
3
B

(EAg-convn) Similarly to (EA;-convn).
(€D>-convn) The redex, the derivation r, is

/ce/r
™1 A/ /Dd/A”
D DIE 2 3
CD>D C B
B DEE

where CDD is a mazimum formula of m. The contractum 7 has three forms in the
cases when c £ 0, d#P;c=0,d# 0; and d = c = 0:

A/ xexd
h rxd AV
(CC)N2 Txd 71_/1 7ré
m (DN, A and B, respectively.
(D A 4
B
3
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(EV-convn) Similarly to (EA;-convn).

(€3-convn) Similarly to (EA;-convn).

v (Emazxs-conversions). The Emaxs-conversions are used to eliminate maxi-
mum segments (for details see [3] Section 5.3]).

(Emaxsp!). The redex 7 and the contractum 7 are

a
7;1 /AWQ/A /Cc/A /A:/A /C;:/A
AN B)N C AN D)" 2 " 3 "
UNB (CADY e, w3 M (CAD) (@)
(C N D)M (G)K AEE (A A B)NH G AEE,
G " and = ANEE&

where (C'A D)™ is the last d-formula of one mazimum segment, which is defined
in the usual way: it is one a sequence of d-formulae Fi, ..., F,, which are of the
same form, F;1q is immediately below F;, 1 < i < n — 1, F} is the consequence of
one introduction rule and F), is the major premiss of one elimination rule. In 7: N,
K, L and M may not exist; the upper rule AEE; can have several numbers, which
appear: 1-1 only in 71, 1-2 only in 73 or 1-12 in m; and w9, and the numbers N and
L when they exist; the lower rule AEE; can have several numbers which appear:
2-1 only in 71, 2-2 only in 7y, 2-3 only in w3, 2-12 in m; and me, 2-13 in 7 and
s, 2-23 in my and 73, 3-123 in 71, w2 and 73, and the numbers N and L. when they
exist and they are not numbers of the upper rule AEE;, and K and M when they
exist. In 7: the upper rule AEE; can have several numbers from 1-2, 2-2, 2-3 and
2-23 above, the number K” and L”; the lower rule AEE; have all numbers of two
last rules AEE; from 7 which are not numbers of the upper rule AEE; and N, and
it can have the numbers K” and L” when they are not number of the upper rule
AEE.

In all conversions below the connections between numbers of 7 and 7 are as in
this conversion.

(Emaxsp!) Similarly to (Emaxspl).

(Emaxsi') The redex 7 and the contractum 7 are

L . /A%/A /D)6
AANB COD A /DE/O r ™M T
AEE T3 T4 L coD ¢ G
C>D C G SEE AAB —a DEE
G and o ANEE&;

(Emaxs(') Similarly to (Emaxsi!).
(Emaxs()') and (€maxsi!) are defined similarly to (€maxs)!).
The conversions (€maxsy?) are completely analogous to the conversions (Emaxsy),

where R is an arbitrary elimination rule.
(Emaxs? ) The redex 7 and the contractum 7 are

T A /Bb/A /Bb/A /C/©
m B 3 /C¢/© 3 T4
ADB A CAND 4 r A CAD G
CAD DEE a A7T1 7:’42 e AEE;
OB
G ABEL and SEE

G
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(Emaxsy,) Similarly to (€maxsy) ).
(émaxs=3) The redex 7 and the contractum 7 are

b
LAY o bie /BN ey /D6y
2 s iy s
ADBA COD_ .. | ak LA cs5p C e
05D C G pe —ASB A o  °F
G and 7 DEE

(Emaxsy) Similarly to (Emaxs3)

(Emaxsy) and (£maxs3) are defined similarly to (€maxsy ).
The conversions (Emaxs)) are completely analogous to the conversions (Emaxs?),
where R is an arbitrary elimination rule.
The conversions (€maxs)) and (Emaxs]) are completely analogous to the conver-
sions (€maxsy'), where R is an arbitrary elimination rule.

Emaxf-conversions and Emaxs-conversions make the set of Emax-conversions.
In a derivation 7 its maximum formulae (i.e. maximum segments of one d-formula)
and formulae from its maximum segments will be called the max-formulae of .

7' Emazf 7" (7' Emazs 7'") iff the derivation 7 is obtained from the deriva-
tion 7’ by replacing one its subderivation w, which has the form of the redex
of an Emaxf-conversion (£maxs-conversion), with the contractum of that Emaxf-
conversion (£maxs-conversion).

7 Emaz 7" iff either ©' Emazf 7« or ' Emazs 7.

If for 7’ Emaz ©” we want to note the last formula A* of the maximum segment
of the redex 7, then we will write 7’ Emaz " by the formula A*.

7' Emax> 7" iff there is a sequence 7, ..., T, n > 0, such that mg is @', 7, is
7', and for each i, i < n, m; Emax w4 1.

7' Emax-converts into 7 iff either 7/ Emax> ©” or 7’ is ©”.

If a derivation m does not have any subderivation which is the redex of a
Emax-conversion with a max-formula, then the derivation 7 will be called a normal
derivation in N'E°.

3.3. Connections between conversions from S£° and NE°. We will
present the connections between the conversions of derivations from the systems
SE° and NE° by using the connections between the conversions of derivations from
the systems 6 and N'E from [3] Section 6].

THEOREM 3.1. Let D and C be derivations in the system SE°.
If D p®-conv C, then
(1) ¥D = ¢C in the system NE°;
(2) (WD)~ = (¥C)~ in the system NE°.
PROOF. (1) See [3 Theorem 6.1].
(2) By the definition of 7~ for a derivation 7 and the part (1). O

If a symbol is of the form: — either ¢ or ()(¢), then the symbol ¢ is its part; —
(4)(4), then ¢ and j are its parts; — (s)(t), then the symbols s and ¢ and all their
parts are its parts. The set which contains each symbol from an index a whose part
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is the index of the principal formula of one rule for connectives will be called the
m-subset of the index a.

THEOREM 3.2. If D m€-conv C, then D Emaz>1C in the system NE°. More-
over, if D mf-conv C, A% is its formula and b is the m-subset of a, then there is

a sequence of derivations YD = m1,...,m41 = YC, such that I = b and for each 1,
1<i<l, m Emax 41 by some A®, s € b.
PROOF. See [3, Theorem 6.2, Theorem 6.3] and [4] Theorem 2]. O

THEOREM 3.3. In the system NE°, if m Emazx 7', then 7~ Emaz 7'~ .
PRrROOF. By the definition of 7~ for a derivation . (I

THEOREM 3.4. If D is a cut-free derivation in the system SE°, then YD and
(¥ D)~ are normal derivations in the system NE°.

PRrROOF. See [3], Corollary 6.5] and Theorem B.3l O

4. Cut elimination and normalization

4.1. The cut-elimination theorem for the system SE°. We will prove
the cut-elimination theorem for the system SE°.

THEOREM 4.1. In the system SE° each derivation F pmf-converts into a cut-
free derivation F.y.

It is well known that to prove this theorem it is sufficient to prove the following
lemma.

’ "

LEMMA 4.1. Each derivation D of the form %cut, where D' and

D" are cut-free derivations, pm® -converts into a cut-free derivation F.

PROOF. In the usual way, by an induction in the pair (d,r) where d is the
degree of D and r is its rank. See the proof of Cut-lemma in [4]. We note that
p®-conversions and m®-conversions are p-conversions and m-conversions without
conversions (1 < lr N\ rr —c¢ = 1) from [4]. But, it is easy to see that in the proof
of Cut-lemma from [4] the conversions (1 < ir / rr — ¢ = 1) can be used instead
of conversions (1 <ir™\ rr—c=1). O

4.2. The normalization theorem for the system N E°. We will prove the
normalization theorem for the system AE° by using the cut-elimination theorem
for the system SE°.

THEOREM 4.2. In the system NE° each derivation m Emaz-converts into a
normal derivation mwy .

PRrROOF. In the system NEC we consider a derivation w. If 7 is a normal
derivation, then the derivation my is w. If 7 is not a normal derivation, then in the
system SE° we consider the ¢-image of the derivation 7, the derivation F = ¢m. In
the system N'E° there is the derivation ¥.F, i.e. ¥¢m, and by Theorem 2T ¢ F~ is
7. By Theorem Bl the derivation F pmf-converts into a cut-free derivation Fefs



THE NORMALIZATION THEOREM FOR EXTENDED NATURAL DEDUCTION 97

i.e. there is a sequence of derivations Fi,...,F,, such that n > 1 (by v F~ ==
and Theorem [B.4), F; is F, Fy, is Fef, and for all ¢ < n: either F; p-conv Fj4q or
F; m€-conv Fiy1.

So, in NE° there is the sequence ¥ .Fi,...,9F,, n > 1, such that:

(1) ¥F is or;
(2) for each i, 1 <i<n—1,
(2.1) if F; p®-conv Fiy1, then »F; = ¢pF;1 (by Theorem BI(1));
(2.2) if F; m€-conv Fiy1, then v F; Emax> ¥ F;; 1 (by Theorem B.2);
(3) F, = ¥F.s is a normal derivation (by Theorem [3.4).

Thus, in the system NE° we have a sequence of different derivations from the
sequence PF1, ..., F,, the sequence VF;, , v Fi,, ..., v F;,, 1 =11 <--- <4< n,
k < n. ¢F;, is the normal derivation F.r and for all 4; and ¢j41, 1 < j < k—1:
YFi, Emax> ¢F;, . Thus, there is a sequence of derivations ﬂ'{, ﬂ'g, e ,ﬂ%j,
mj > 1, such that JF;, = 7] Emax 75 £max. .. Emax T, = Fiy -

By (1) and Theorem 2.1} F; = o F; is m and by Theorem B4 F; is a
normal derivation. Next, in N'€° for each derivation 7/, there is the derivation ',

so for each j, 1 < j < k—1, we have the sequence of derivations 7, m ", ... ,wf;;,
m; > 1, and by TheoremB.3 7, = ™~ Emax ), £max...Emax anj =yF
Thus, there is the following sequence of conversions:
m=m Emax...Emaxwh, = ¢F, =7 Emax...Emaxwh 1T = F; i

the derivation m Emax-converts into a normal derivation, the derivation .7, . [
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