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A NEW APPROACH TO FILTERS

IN TRIANGLE ALGEBRAS

Saeide Zahiri, Arsham Borumand Saeid, and

Esfandiar Eslami

Abstract. We develop the filter theory in triangle algebras. We define sev-
eral interval valued residuated lattice-filters (IVRL-filters for short) in triangle
algebras. We investigate the relationships among these types of IVRL-filters.
Also, some special triangle algebras are introduced and studied in details.

1. Introduction

Formal fuzzy logics are generalizations of classical logic that allow us to reason
gradually. Indeed, in the scope of these logics, formulas can be assigned not only 0
and 1 as truth values, but also elements of [0,1], or, more generally, of a bounded
lattice L. The partial ordering of L then serves to compare the truth values of
formulas which can be true to some extent. The best-known examples of formal
fuzzy logics are probably monoidal t-norm based logic, basic logic, Gödel logic and
Łukasiewicz logic [3–5,7].

The filter theory for logical algebras plays an important role in studying these
algebras and the completeness of the corresponding logics. Filters are also particu-
larly interesting because they are closely related to congruence relations, which are
used to construct quotient algebras. The filter theory of residuated lattices, BL-
algebras and MTL-algebras has been widely studied, and some important results
have been published [5, 6, 8, 9]. Among these logical algebras, residuated lattices
are very basic and important algebraic structures because the other logical algebras
are all particular cases of the residuated lattices.

Van Gass et al. introduced triangle algebras, a variety of residuated lattices
equipped with approximation operators, and a third angular point u, different from
0,1. They proved that there is a one-to-one correspondence between the class of
IVRLs and the class of triangle algebras. Every extended IVRL is a triangle algebra
and conversely, every triangle algebra is isomorphic to an extended IVRL [11].
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Triangle algebras are used to cast the essence of using closed intervals of L as
truth values into a set of appropriate logical axioms. Based on the definition and
properties of triangle algebras, they also defined triangle logic (T L) and showed that
this logic is sound and complete with respect to the variety of triangle algebras [11].
The same authors defined filters in triangle algebras. They suggested two different
ways to define specific kinds of filters (as Boolean filters and prime filters) in triangle
algebras and examine their mutual dependencies and connections. Finally, they
obtained some interesting results [10].

In this paper, to obtain more properties of triangle algebras, we generalize
the concept of filters and introduce some types of filters. We state and prove
some theorems that determine relationships among these filters. By studying these
special filters, we can define specific triangle algebras such as BL-triangle algebra,
G-triangle algebra, MV -triangle algebra and semi G-triangle algebra. Definition of
a filter in triangle algebras is different from that of filter in other algebraic structures
such as residuated lattices and BL-algebras. Since ν and µ in this structure are
important and are used in the definition of a filter, these types of filters play a basic
role and thus the extended filters behave differently. Based on these facts, we give
a classification for triangle algebras. Finally, we give a diagram in Figure 1, that
determines the relations among all IVRL-filters in triangle algebras.

2. Preliminaries

Definition 2.1. [5] A residuated lattice is an algebra L = (L, ∨, ∧, ∗, →, 0, 1)
with four binary operations and two constant 0,1 such that:

• (L, ∨, ∧, 0, 1) is a bounded lattice,
• ∗ is commutative and associative, with 1 as neutral element, and
• x ∗ y 6 z if and only if x 6 (y → z), for all x, y and z in L (residuation

principle).

The ordering 6 and negation ¬ in a residuated lattice L = (L, ∨, ∧, ∗, →, 0, 1)
are defined as follows, for all x and y in L: x 6 y if and only if x ∧ y = x (or
equivalently, if and only if x ∨ y = y; or, also equivalently, if and only if x → y = 1)
and ¬x = x → 0.

Lemma 2.1. [8, 10] Let L = (L, ∨, ∧, ∗, →, 0, 1) be a residuated lattice. Then
the following properties are valid, for all x, y and z in L:

(1) x ∨ y 6 (x → y) → y(in particular x 6 ¬¬x),
(2) x → y = ((x → y) → y) → y,
(3) ¬¬¬x = ¬x,
(4) (x → y) ∗ (y → z) 6 (x → z),
(5) If x 6 y, then x ∗ z 6 y ∗ z, z → x 6 z → y and y → z 6 x → z,
(6) (y → z) 6 (x → y) → (x → z),
(7) x → (y → z) = y → (x → z),
(8) ((x → y) → y) → y = x → y,
(9) x → y 6 (y → z) → (x → z),

(10) ¬¬x ∗ ¬¬y 6 ¬¬(x ∗ y).
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Definition 2.2. [8, 9] A nonempty subset D of a residuated lattice L =
(L, ∨, ∧, ∗, →, 0, 1) is called a deductive system if:

(i) 1 ∈ D,
(ii) If x, x → y ∈ D, then y ∈ D.

An equivalent definition for deductive system is:

(i) If x ∈ D, y ∈ L and x 6 y, then y ∈ D,
(ii) If x, y ∈ D, then x ∗ y ∈ D.

Definition 2.3. [8] A prime filter of a residuated lattice L = (L, ∨, ∧, ∗, →,
0, 1) is a filter such that x → y ∈ F or y → x ∈ F (or both), for all x, y ∈ L.

Definition 2.4. [11] Given a lattice A = (A, ∨, ∧), its triangularization T(A)
is the structure T(A) = (Int(A), ∨, ∧) defined by

• Int(A) = {[x1, x2] : (x1, x2) ∈ A2 and x1 6 x2},
• [x1, x2] ∧ [y1, y2] = [x1 ∧ y1, x2 ∧ y2],
• [x1, x2] ∨ [y1, y2] = [x1 ∨ y1, x2 ∨ y2].

The set DA = {[x, x] : x ∈ L} is called the diagonal of T(A).

Definition 2.5. [11] An interval-valued residuated lattice (IVRL) is a resi-
duated lattice (Int(A), ∨, ∧, ⊙, →⊙, [0, 0], [1, 1]) on the triangularization T(A) of a
bounded lattice A, in which the diagonal DA is closed under ⊙ and →⊙, i.e.,
[x, x] ⊙ [y, y] ∈ DA and [x, x] →⊙ [y, y] ∈ DA, for all x, y in A.

In triangle algebra A = (A, ∨, ∧, ∗, →, ν, µ, 0, u, 1), operator ν (necessity) and
µ (possibility) are modal operators, and u (uncertainty, u 6= 0, u 6= 1) is a new
constant. It turns out that triangle algebras are the equational representations of
interval-valued residuated lattices (IVRLs).

Theorem 2.1. [11] There is a one-to-one correspondence between the class of
IVRLs and the class of triangle algebras. Every extended IVRL is a triangle algebra
and conversely, every triangle algebra is isomorphic to an extended IVRL.

Definition 2.6. [11] A triangle algebra is a structure A = (A, ∨, ∧, ∗, →,
ν, µ, 0, u, 1) in which (A, ∨, ∧, ∗, →, 0, 1) is a residuated lattice, ν and µ are unary
operations on A, u a constant, and satisfying the following conditions:

(T.1) νx 6 x, (T.1′) x 6 µx,

(T.2) νx 6 ννx, (T.2′) µµx 6 µx,

(T.3) ν(x ∧ y) = νx ∧ νy, (T.3′) µ(x ∧ y) = µx ∧ µy,

(T.4) ν(x ∨ y) = νx ∨ νy, (T.4′) µ(x ∨ y) = µx ∨ µy,

(T.5) νu = 0, (T.5′) µu = 1,

(T.6) νµx = µx, (T.6′) µνx = νx,

(T.7) ν(x → y) 6 νx → νy,

(T.8) (νx ↔ νy) ∗ (µx ↔ µy) 6 (x ↔ y),

(T.9) νx → νy 6 ν(νx → νy).

Definition 2.7. [10] Let A = (A, ∨, ∧, ∗, →, ν, µ, 0, u, 1) be a triangle algebra.
An element x in A is called exact if νx = x. The set of exact elements of A is
denoted by E(A).
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E(A) is closed under all the defined operations on A [11]. We denote the
subalgebra (E(A), ∨, ∧, ∗, →, 0, 1) by E(A) which is a residuated lattice.

Theorem 2.2. [10] In a triangle algebra A = (A, ∨, ∧, ∗, →, ν, µ, 0, u, 1), the
implication → and the product ∗ are completely determined by their action on E(A)
and the value of µ(u ∗ u). More specifically:

• ν(x → y) = (νx → νy) ∧ (µx → µy),
• µ(x → y) = (µx → (µ(u ∗ u) → µy)) ∧ (νx → µy),
• ν(x ∗ y) = νx ∗ νy,
• µ(x ∗ y) = (νx ∗ µy) ∨ (µx ∗ νy) ∨ (µx ∗ µy ∗ µ(u ∗ u)).

Definition 2.8. [10] Let A = (A, ∨, ∧, ∗, →, ν, µ, 0, u, 1) be a triangle algebra.
An IVRL-filter (F ) of A is a non-empty subset F of A satisfying:

(F.1) If x ∈ F, y ∈ A and x 6 y, then y ∈ F ,
(F.2) If x, y ∈ F , then x ∗ y ∈ F ,
(F.3) If x ∈ F , then νx ∈ F .

For all x, y ∈ A, we write x ∼F y if and only if x → y and y → x are both in F .
The relation ∼F is always a congruence [10]. Note that (F.3) is a necessary

condition for this statement. Indeed, if ∼F is a congruence relation on a triangle
algebra A = (A, ∨, ∧, ∗, →, ν, µ, 0, u, 1) and x ∈ F , than x ∼F 1 and therefore
νx ∼F ν1 = 1, which is equivalent with νx ∈ F .

Proposition 2.1. [10] Let A be a triangle algebra, E(A) = (E(A), ∨, ∧, ∗, →,
0, 1) be its subalgebra of exact elements and F ⊆ A. Then F is a filter of the triangle
algebra A if and only if (F.3′) holds and F

⋂
E(A) is a filter of the residuated

lattice E(A).

Proposition 2.1 suggests two different ways to define specific kinds of IVRL-
filters of triangle algebras. The first is to impose a property on a filter of the
subalgebra of exact elements and extend this filter to the whole triangle algebra,
using (F.3′). We call these IVRL-extended filters. For example, an IVRL-extended
prime filter of triangle algebra A = (A, ∨, ∧, ∗, →, ν, µ, 0, u, 1) is a subset F of A
such that F ∩E(A) is an prime filter of E(A) and x ∈ F if and only if νx ∈ F ∩E(A).

The second way is to impose a property on the whole IVRL-filter. For example,
a prime IVRL-filter of a triangle algebra A = (A, ∨, ∧, ∗, →, ν, µ, 0, u, 1) is an IVRL-
filter of A such that F is a prime filter of (A, ∨, ∧, ∗, →, 0, 1) [10].

3. Implicative filters in triangle algebras

From now on A = (A, ∨, ∧, →, ∗, ν, µ, 0, u, 1) or simply A is a triangle algebra
unless otherwise specified.

Now, we can define two types of implicative filters in triangle algebras as follows:

Definition 3.1. F is an IVRL-extended implicative filter (EIF) if for x, y, z ∈A,
(νx → (νy → νz)), (νx → νy) ∈ F , implies νx → νz ∈ F .

Definition 3.2. F is an implicative IVRL-filter (IF) if for x, y, z ∈ A,
ν(x → (y → z)), ν(x → y) ∈ F , implies ν(x → z) ∈ F .
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It is clear that every implicative IVRL-filter is an IVRL-extended implicative
filter, but the converse is not true.

Example 3.1. Let A = {0, u, 1} be a chain. We define operations ν, µ, ∗, → as
follows:

x νx x µx ∗ 0 u 1 → 0 u 1
0 0 0 0 0 0 0 0 0 1 1 1
u 0 u 1 u 0 0 u u u 1 1
1 1 1 1 1 0 u 1 1 0 u 1

A = (A, ∨, ∧, ∗, →, ν, µ, 0, u, 1) is a triangle algebra. It is clear that, F = {1}
is an IVRL-extended implicative filter of A. Let x = y = u, z = 0. Then
ν(x → (y → z)) = ν(u → (u → 0)) = 1 ∈ F , ν(x → y) = ν(u → u) = 1 ∈ F , but
ν(x → z) = ν(u → 0) = 0 /∈ F . Thus F is not an implicative IVRL-filter of A.

Theorem 3.1. Let F be an IVRL-filter of A. Then the following conditions
are equivalent:

(i) F is an IVRL-extended implicative filter of A,
(ii) For any a ∈ A, Fa = {x ∈ A : νa → νx ∈ F} is an IVRL-filter of A,
(iii) νx → (νx → νy) ∈ F implies νx → νy ∈ F , for all x, y ∈ A,
(iv) νx → (νy → νz) ∈ F implies (νx → νy) → (νx → νz) ∈ F , for all

x, y, z ∈ A.

Proof. (i ⇒ ii) For all a ∈ A, we have νa → ν1 ∈ F , 1 ∈ Fa. If x, x → y ∈ Fa,
then νa → νx, νa → ν(x → y) ∈ F . By (T.7), νa → ν(x → y) 6 νa → (νx → νy).
Then νa → νy ∈ F and y ∈ Fa. Let x ∈ Fa. So νa → νx ∈ F . Since ννx = νx,
νa → ννx ∈ F , νx ∈ Fa. Hence Fa is an IVRL-filter of A.

(ii ⇒ iii) If x, y ∈ A and νx → (νx → νy) ∈ F , then ν(νx → (νx → νy)) ∈ F .
By (T.7), we have ννx → ν(νx → νy) ∈ F , so νx → νy ∈ Fx. Since νx, νx → νy ∈
Fx, νy ∈ Fx, that is, νx → νy ∈ F .

(iii ⇒ iv) Let x, y, z ∈ A be such that νx → (νy → νz) ∈ F . We have
νx → (νy → νz) 6 νx → ((νx → νy) → (νx → νz)) and so νx → (νx → ((νx →
νy) → νz) ∈ F . By hypothesis, we deduce that νx → ((νx → νy) → νz) ∈ F ,
hence (νx → νy) → (νx → νz) ∈ F .

(iv ⇒ i) Let x, y, z ∈ A be such that νx → (νy → νz), νx → νy ∈ F . We have
νx → (νy → νz) 6 (νx → νy) → (νx → (νx → νz)). Then νx → (νx → νz) ∈ F
and so νx → νz ∈ F , that is F is an IVRL-extended implicative filter. �

Similarly we have:

Theorem 3.2. Let F be an IVRL-filter of A. Then the following conditions
are equivalent:

(i) F is an implicative IVRL-filter of A,
(ii) For any a ∈ A, Fa = {νx ∈ A : a → x ∈ F} is an IVRL-filter of A,
(iii) ν(x → (x → y)) ∈ F implies ν(x → y) ∈ F , for all x, y ∈ A,
(iv) ν(x → (y → z)) ∈ F implies ν((x → y) → (x → z)) ∈ F , for all

x, y, z ∈ A.
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Lemma 3.1. Let F be an IVRL-filter of A. Then the following conditions are
equivalent:

(i) F is an IVRL-extended implicative filter of A,
(ii) νx → νx2 ∈ F , for all x ∈ A.

Proof. (i) ⇒ (ii) We have νx → (νx → νx2) = νx2 → νx2 = 1 ∈ F , hence
νx → νx2 ∈ F .

(ii) ⇒ (i) Consider x, y ∈ A such that νx → (νx → νy) ∈ F , hence νx2 →
νy ∈ F . Since νx → νx2 ∈ F , then νx → νy ∈ F . Thus F is an IVRL-extended
implicative filter of A. �

Similarly, we prove that F is an implicative IVRL-filter of A if and only if
ν(x → x2) ∈ F , for all x ∈ A.

Theorem 3.3. If F, G are IVRL-filters of A, F ⊆ G and F is an IVRL-
extended implicative filter(implicative IVRL-filter) of A, then so is G.

Proof. Let x, y, z ∈ A be such that a = νz → (νx → νy) ∈ G. Since
νz → (νx → (a → νy)) = a → (νz → (νx → νy)) = a → a = 1 ∈ F , we conclude
that (νz → νx) → (νz → (a → νy)) ∈ F so (νz → νx) → (νz → (a → νy)) ∈ G.
Also, (νz → νx) → (a → (νz → νy)) = a → ((νz → νx) → (νz → νy)) ∈ G.
Hence (νz → νx) → (νz → νy) ∈ G. Therefore, G is an IVRL-extended implicative
filter of A. �

Definition 3.3. A triangle algebra A is called a BL-triangle algebra if it
satisfies the following identities, for all x, y ∈ A :

(x → y) ∨ (y → x) = 1 (prelinearity), x ∧ y = x ∗ (x → y) (divisibility).
A BL-triangle algebra A is called an MV -triangle algebra if and only if

(x → y) → y = (y → x) → x, for all x, y ∈ A.
A triangle algebra A is called a Gödel-triangle algebra (G-triangle algebra) if

x2 = x, for all x ∈ A.
We say that A is a semi-G-triangle algebra if ¬(x2) = ¬x, for all x ∈ A; indeed,

every G-triangle algebra is a semi-G-triangle algebra.

Example 3.2. (a) In Example 3.1, clearly A is an MV -triangle algebra.
(b) Let A = {0, u, 1} be a chain. We define operations ν, µ, ⊙, ⇒ as follows:

x νx x µx ⊙ 0 u 1 ⇒ 0 u 1
0 0 0 0 0 0 0 0 0 1 1 1
u 0 u 1 u 0 u u u 0 1 1
1 1 1 1 1 0 u 1 1 0 u 1

Then A = (A, ∨, ∧, ⊙, ⇒, ν, µ, 0, u, 1) is a triangle algebra and it is clear that,
A is a G-triangle algebra.

We recall the following corollary form [12].

Corollary 3.1. Let L = (L, ∨, ∧, ∗, →, 0, 1) be a residuated lattice and
(x → y) → y = (y → x) → x, for all x, y ∈ L. Then we have (x → y) → y = x ∨ y.
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Proposition 3.1. Let A = (A, ∨, ∧, ∗, →, 0, 1) be a residuated lattice. Then
the following conditions are equivalent, for all x, y ∈ A:

(i) (x → y) → y = (y → x) → x,
(ii) ((x → y) → y) → x = y → x.

Proposition 3.2. By Corollary 3.1, it is clear that if A is an MV -triangle
algebra, then x ∨ y = (x → y) → y. Also, A is an MV -triangle algebra if and only
if ((x → y) → y) → x = y → x, for all x, y ∈ A.

Lemma 3.2. The following conditions are equivalent:

(i) A is a G-triangle algebra,
(ii) Every IVRL-filter of A is an implicative IVRL-filter of A,
(iii) {1} is an implicative IVRL-filter of A.

Proof. (i) ⇒ (ii) Let x, y ∈ A be such that ν(x → (x → y)) ∈ F . Since
A is a G-triangle algebra, ν(x → (x → y)) = ν(x2 → y) = ν(x → y). Hence
ν(x → y) ∈ F , that is, F is an implicative IVRL-filter of A.

(ii) ⇒ (iii) It is clear.
(iii) ⇒ (i) Let x ∈ A. Since ν(x → (x → x2)) ∈ {1} and {1} is an implicative

IVRL-filter of A then ν(x → x2) ∈ {1}. Hence x 6 x2 and so x = x2, A is a
G-triangle algebra. �

Corollary 3.2. If A is a G-triangle algebra, then every IVRL-filter of A is
an IVRL-extended implicative filter of A.

In the following example, we show that the converse of above corollary is
not true.

Example 3.3. In Example 3.1, it is clear that F = {1} is an IVRL-extended
implicative filters of A. But u ∗ u = 0 6= u, so it is not a G-triangle algebra.

Lemma 3.3. Let F be an IVRL-filter of A. A/F is a G-triangle algebra if and
only if F is an implicative IVRL-filter of A.

Proof. Consider x, y ∈ A such that ν(x → (x → y)) ∈ F ; then x → (x → y) ∈
F so x/F → (x/F → y/F ) = 1/F and we obtain successively (x/F )2 → y/F =
1/F , x/F → y/F = 1/F . Hence x → y ∈ F so ν(x → y) ∈ F . Thus F is an
implicative IVRL-filter of A.

The converse is clear by Lemma 3.2 and Theorem 3.1 (iii). �

Remark 3.1. By the above lemma it is clear that if A/F is a G-triangle algebra,
then F is an IVRL-extended implicative filter of A.

Example 3.4. In Example 3.1, it is clear that F = {1} is an IVRL-extended
implicative filter of A, but A/F is not a G-triangle algebra.

4. Positive implicative filters in triangle algebras

Definition 4.1. F is an IVRL-extended positive implicative filter (EPIF) if
for x, y ∈ A, (νx → νy) → νx ∈ F , implies νx ∈ F .
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Definition 4.2. F is a positive implicative IVRL-filter (PIF) if for x, y ∈ A,
ν((x → y) → x) ∈ F , implies νx ∈ F .

It is clear that every positive implicative IVRL-filter of A is an IVRL-extended
positive implicative filter of A, but the converse is not true.

Example 4.1. In Example 3.2(b), it is clear that F = {1} is an IVRL-extended
positive implicative filter of A. Let x = u, y = 0. Then ν((u ⇒ 0) ⇒ u) = 1 ∈ F ,
but νu = 0 /∈ F . Thus F is not a positive implicative IVRL-filter of A.

Theorem 4.1. Every IVRL-extended positive implicative filter (positive im-
plicative IVRL-filter) of A is an IVRL-extended implicative filter (implicative IVRL-
filter) of A.

Proof. Let x, y ∈ A be such that νx → (νx → νy) ∈ F . We must prove that
νx → νy ∈ F . We have νx → (νx → νy) 6 ((νx → νy) → νy) → (νx → νy). Thus
F is an IVRL-extended implicative filter of A. �

In the next two examples we show that the converse of the above theorem is
not true.

Example 4.2. [11] Let LI = (LI , ∨, ∧, ∗, →, 0, 1), that we define ∗, → as
follows:

x ∗ y = min(x, y) and x → y =
{ 1 x6y

y y<x , is a residuated lattice and define

[x1, x2] ⊙ [y1, y2] = [x1 ∗ y1, x2 ∗ y2],
[x1, x2] ⇒ [y1, y2] = [(x1 → y1) ∧ (x2 → y2), x2 → y2]
The structure LI = (LI , ∨, ∧, ⊙, ⇒, [0, 0], [1, 1]) is a residuated lattice too. If

we define

ν[x1, x2] = [x1, x1], µ[x1, x2] = [x2, x2], u = [0, 1]

then (Int(L), ∨, ∧, ⊙, ⇒, ν, µ, [0, 0], u, [1, 1]) is a triangle algebra. Consider F =
{[1, 1]}. It is clear that F is an IVRL-extended implicative filter. Let x = [0.7, 0.8],
y = [0.6, 0.9]. Then νx = [0.7, 0.7], νy = [0.6, 0.6]. We have (νx ⇒ νy) ⇒ νx ∈ F .
But νx /∈ F , so F is not an IVRL-extended positive implicative filter.

Example 4.3. In Example 3.1, it is clear that F = {1} is an IVRL-extended
implicative filter. Let x = u, y = 0. So ν((x → y) → x) ∈ F , but νx = νu = 0 /∈ F .
Thus F is not a positive implicative IVRL-filter.

Theorem 4.2. Let F be an IVRL-filter of A. Consider the following assertions:

(i) F is an IVRL-extended positive implicative filter of A.
(ii) If x ∈ A and ¬νx → νx ∈ F , then νx ∈ F .
(iii) If x, y ∈ A and (νx → νy) → νy ∈ F , then (νy → νx) → νx ∈ F .

Then:

a) (i) ⇔ (ii).
b) (i) ⇒ (iii).
c) If F is an IVRL-extended implicative filter of A, then (i) ⇔ (ii) ⇔ (iii).
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Proof. a) It is clear that (i) ⇒ (ii). Conversely, let y, z ∈ A be such that
(νy → νz) → νy ∈ F . We have (νy → νz) → νy 6 ¬νy → νy, so ¬νy → νy ∈ F
and νy ∈ F , that is, F is an IVRL-extended positive implicative filter of A.

b) Let x, y ∈ A and denote a = (νx → νy) → νy, b = (νy → νx) → νx. Then
we must show that

(*) a 6 (b → νy) → b

Since νx 6 b we deduce that (νx → νy) → b 6 (b → νy) → b, wherefrom we have

a = (νx → νy) → νy 6 (νy → νx) → ((νx → νy) → νx)

= (νx → νy) → b 6 (b → νy) → b,

that is, (*) is true. If a ∈ F , by (*) we deduce that (b → νy) → b ∈ F , so b ∈ F .
c) Let x ∈ A be such that ¬νx → νx ∈ F . We deduce that ¬νx → νx 6

¬νx → ¬¬νx. Since ¬νx → ¬¬νx = ¬νx → (¬νx → 0), F is an IVRL-extended
implicative filter of A and by Theorem 3.1 (iii), ¬νx → 0 ∈ F , that is ¬¬νx ∈ F .
But ¬¬νx = (νx → 0) → 0 and by hypothesis νx = (0 → νx) → νx ∈ F . So
(iii) ⇒ (ii) ⇔ (i), hence, (i) ⇔ (iii). �

Theorem 4.3. If F, G are two IVRL-filters of A, F ⊆ G and F is an IVRL-
extended positive implicative filter(positive implicative IVRL-filter) of A, then G is
an IVRL-extended positive implicative filter(positive implicative IVRL-filter) of A.

Proof. By Theorem 4.1, F is an IVRL-extended implicative filter of A. Since
F ⊆ G, G is an IVRL-extended implicative filter of A. By Theorem 4.2 it is
suffice to prove that if x, y ∈ A and a = (νx → νy) → νy ∈ G, then (νy →
νx) → νx ∈ G. We have a → ((νx → νy) → νy) ∈ F . By Theorem 3.1(iv),
(a → (νx → νy)) → (a → νy) ∈ F . Hence (νx → (a → νy)) → (a → νy) ∈ F .
Then ((a → νy) → νx) → νx ∈ F . So ((a → νy) → νx) → νx ∈ G. Since

a = (νx → νy) → νy

6 (((νx → νy) → νy) → νy) → νy = (a → νy) → νy

6 (νy → νx) → ((a → νy) → νx)

6 [((a → νy) → νx) → νx] → [(νy → νx) → νx]

and a ∈ G, [((a → νy) → νx) → νx] → [(νy → νx) → νx] ∈ G. Since ((a →
νy) → νx) → νx ∈ G, (νy → νx) → νx ∈ G. So G is an IVRL-extended positive
implicative filter of A. �

Definition 4.3. A triangle algebra A is called Boolean triangle algebra if
x ∨ ¬x = 1, for all x ∈ A.

Clearly we have:

Proposition 4.1. The following assertions are equivalent, for all x, y ∈ A:

(i) (x → y) → x = x,
(ii) ¬x → x = x,
(iii) A is a Boolean triangle algebra.
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Definition 4.4. For a nonempty subset S ⊆ A, the smallest IVRL-filter of A
which contains S, i.e.,

⋂
{F : S ⊆ F}, is said to be the IVRL-filter of A generated

by S and will be denoted by [S). If S = {a}, with a ∈ A, we denote by [a) the
IVRL-filter generated by {a} ([a) is called principal).

Proposition 4.2. Let S ⊆ A, a nonempty subset of A, a ∈ A. Then [S) =
{x ∈ A : s1 ∗ · · · ∗ sn 6 νx, for some n > 1 and s1, . . . , sn ∈ S}. In particular,
[a) = {x ∈ A : an 6 νx, for some n > 1}.

Proof. Let M={x ∈ A : s1 ∗· · ·∗sn 6 νx, for some n > 1 and s1, . . . , sn ∈ S}.
Then M is an IVRL-filter which contains the set S, hence [S) ⊆ M . Let F be an
IVRL-filter such that S ⊆ F and x ∈ M . Then there exist s1, s2, . . . , sn ∈ S such
that s1 ∗ · · · ∗ sn 6 νx. Since s1, s2, . . . , sn ∈ F , s1 ∗ · · · ∗ sn ∈ F , νx ∈ F , x ∈ F .
Hence M ⊆ F , therefore M ⊆ F = [S), that is, [S) = M . �

Lemma 4.1. The following conditions are equivalent:

(i) {1} is an IVRL-extended positive implicative filter of A,
(ii) For every a ∈ A, [a) is an IVRL-extended positive implicative filter of A,
(iii) (νx → νy) → νx = νx, for all x, y ∈ A,

Proof. (i ⇒ ii) [a) is an IVRL-filter so by Theorem 4.3 and (i), [a) is an
IVRL-extended positive implicative filter of A.

(ii ⇒ iii) Let a = (νx → νy) → νx. Then (νx → νy) → νx ∈ [a) and [a) is an
IVRL-extended positive implicative filter of A, νx ∈ [a), that is an 6 νx. Hence
(νx → νy) → νx = νx.

(iii ⇒ i) It is clear by Theorem 4.2. �

Lemma 4.2. The following conditions are equivalent:

(i) {1} is a positive implicative IVRL-filter of A,
(ii) For every a ∈ A, [a) is a positive implicative IVRL-filter of A,
(iii) ν((x → y) → x) = νx, for all x, y ∈ A,
(iv) A is a Boolean-triangle algebra.

Proposition 4.3. Let F be an IVRL-filter of A. A/F is a Boolean triangle
algebra if and only if F is a positive implicative IVRL-filter of A.

Proof. Let x, y ∈ A be such that, ν((x → y) → x) ∈ F . So (x → y) → x ∈ F .
Then (x/F → y/F ) → x/F = 1/F ∈ {[1]}. Since A/F is a Boolean triangle
algebra, thus {1} is a positive implicative IVRL-filter of A. Then x/F ∈ {[1]},
hence x/F = 1/F , that is, x ∈ F so νx ∈ F . So F is a positive implicative
IVRL-filter of A. �

Corollary 4.1. Let A/F be a Boolean triangle algebra. Then F is an IVRL-
extended positive implicative filter of A.

In the following example we show that the converse of the above corollary is
not true.
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Example 4.4. In Example 3.1, it is clear that F = {1} is an IVRL-extended
positive implicative filter of A. But since ¬u ∨ u = u, A/{1} is not a Boolean
triangle algebra.

Definition 4.5. An IVRL-filter F of A will be called IVRL-extended MV -
filter if ((νx → νy) → νy) → ((νy → νx) → νx) ∈ F , and will be called an
MV -IVRL-filter if ν(((x → y) → y) → ((y → x) → x)) ∈ F , for all x, y ∈ A.

Corollary 4.2. Let F be an IVRL-extended MV -filter (MV-IVRL-filter) of A.
Then ¬¬νx → νx ∈ F (ν(¬¬x → x) ∈ F ), for all x ∈ A.

Proof. Indeed, [(νx → ν0) → ν0] → [(ν0 → νx) → νx] = ¬¬νx → νx, hence
¬¬νx → νx ∈ F , for all x ∈ A. �

Theorem 4.4. F is an MV -IVRL-filter of A if and only if A/F is an MV -
triangle algebra.

Proof. By Proposition 3.2, A/F is an MV -triangle algebra if and only if
(x/F → y/F ) → y/F = (y/F → x/F ) → x/F if and only if ((x → y) → y) →
((y → x) → x) ∈ F if and only if ν(((x → y) → y) → ((y → x) → x)) ∈ F if and
only if F is an MV -IVRL-filter of A. �

5. Fantastic filters in triangle algebras

Definition 5.1. F is an IVRL-extended fantastic filter (EFF) if for all x, y ∈
A, (νx → νy) ∈ F , implies ((νy → νx) → νx) → νy ∈ F .

Definition 5.2. F is a fantastic IVRL-filter (FF) if for all x, y ∈ A, ν(x → y)
∈ F , implies ν((y → x) → x) → y ∈ F .

It is clear that every fantastic IVRL-filter of A is an IVRL-extended fantastic
filter of A, but the converse is not true.

Example 5.1. In Example 3.2 (b), it is clear that F = {1} is an IVRL-
extended fantastic filter of A. Let x = 0, y = u. Then ν(0 ⇒ u) ∈ F , but
ν(((u ⇒ 0) ⇒ 0) ⇒ u) = νu = 0 /∈ F . Thus F is not an fantastic IVRL-filter of A.

Theorem 5.1. If F, G are two filters of A, F ⊆ G and F is an IVRL-extended
fantastic filter (fantastic IVRL-filter) of A, then G is an IVRL-extended fantastic
filter (fantastic IVRL-filter) of A.

Proof. Consider x, y ∈ A such that νx → νy ∈ G. Clearly νx → ((νx →
νy) → νy) = 1 ∈ F . Since F is an IVRL-extended fantastic filter of A,
((((νx → νy) → νy) → νx) → νx) → ((νx → νy) → νy) ∈ F . Then (νx →
νy) → (((((νx → νy) → νy) → νx) → νx) → νy) ∈ F ⊆ G. Since νx → νy ∈ G
and G is an IVRL-filter of A, ((((νx → νy) → νy) → νx) → νx) → νy ∈ G. Since
νy 6 (νx → νy) → νy, ((((νx → νy) → νy) → νx) → νx) → νy 6 ((νy → νx) →
νx) → νy, ((νy → νx) → νx) → νy ∈ G. Thus G is an IVRL-extended fantastic
filter of A. �
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Theorem 5.2. Every IVRL-extended positive implicative filter (positive im-
plicative IVRL-filter) of A is an IVRL-extended fantastic filter (fantastic IVRL-
filter) of A.

Proof. Let x, y ∈ A be such that νx → νy ∈ F . Since νy 6 ((νy → νx) →
νx) → νy, then

(**) ((νy → νx) → νx) → νy) → νx 6 νy → νx

We have

νx → νy 6 [(νy → νx) → νx] → [(νy → νx) → νy],

νx → νy 6 (νy → νx) → [((νy → νx) → νx) → νy].

By (**) we have

νx → νy 6 ((((νy → νx) → νx) → νy) → νx) → (((νy → νx) → νx) → νy).

Then ((((νy → νx) → νx) → νy) → νx) → (((νy → νx) → νx) → νy) ∈ F . Since
F is an IVRL-extended positive implicative filter of A, ((νy → νx) → νx) → νy ∈
F . Hence F is an IVRL-extended fantastic filter of A. �

The following example shows that the converse of the above theorem is not true.

Example 5.2. LI = (LI , ∨, ∧, TT,α, ITT,α
, ν, µ, [0, 0], [0, 1], [1, 1]) is a triangle

algebra if:
for x = [x1, x2] and y = [y1, y2] in LI ,

TT,α(x, y) = [T (x1, y1), max(T (α, T (x2, y2)), T (x1, y2), T (x2, y1))],

induces a residuated lattice on LI , with the residual implicator

ITT,α
(x, y) = [min(IT (x1, y1), IT (x2, y2)), min(IT (T (x2, α), y2), IT (x1, y2))].

Also νx = [x1, x1] and µx = [x2, x2], for all α ∈ I and x = [x1, x2] ∈ LI [11].

Let T (x, y) = min(x, y) and IT (x, y) =
{1 x6y

y y<x , α = 1, F = {[1, 1]}. Clearly F is
an IVRL-extended fantastic filter.

For x = [0.8, 0.9] ∈ LI , we have ¬νx = ITT,α
(νx, 0) = [0, 0], so ITT,α

(¬νx, νx) =
[1, 1] ∈ F , but νx = [0.8, 0.8] /∈ F . Thus F is not an IVRL-extended positive im-
plicative filter and so it is not a positive implicative IVRL-filter.

Example 5.3, shows that there is an implicative IVRL-filter which is not an
IVRL-extended fantastic filter.

Example 5.3. In Example 4.2, F = {[1, 1]} is an implicative IVRL-filter.
Let x = [0.4, 0.5], y = [0.7, 0.8]. Then νx = [0.4, 0.4], νy = [0.7, 0.7], we have
νx ⇒ νy ∈ F , but ((νy ⇒ νx) ⇒ νx) ⇒ νy = [0.7, 0.7] /∈ F . Thus F is not an
IVRL-extended fantastic filter.

Corollary 5.1. {1} is an IVRL-extended fantastic filter of A if and only if
every IVRL-filter of A is an IVRL-extended fantastic filter.

Proposition 5.1. The following conditions are equivalent:

(i) {1} is a fantastic IVRL-filter of A,
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(ii) ν(((x → y) → y) → x) = ν(y → x), for all x, y ∈ A.

Proof. Let x, y ∈ A. We have x → ((x → y) → y) ∈ {1}. Since F is an
IVRL-extended fantastic filter of A, ν(((((x → y) → y) → x) → x) → ((x →
y) → y)) = 1. Thus (((x → y) → y) → x) → x = (x → y) → y. We have
(y → x) → x 6 (((x → y) → y) → x) → x = (x → y) → y. So (y → x) → x 6

(x → y) → y and similarly (x → y) → y 6 (y → x) → x. By Proposition 3.2,
ν(((x → y) → y) → x) = ν(y → x). �

It is clear that if A is an MV -triangle algebra, then ν((x → y) → y) → x) =
ν(y → x), for all x, y ∈ A. Thus every IVRL-filter of MV -triangle algebra A, is a
fantastic IVRL-filter and so, is an IVRL-extended fantastic filter of A.

Theorem 5.3. Let F be an IVRL-filter of A. Then the following conditions
are equivalent:

(i) F is a fantastic IVRL-filter of A,
(ii) A/F is an MV -triangle algebra.

Proof. (i ⇒ ii) It is suffice to prove that {1} is a fantastic IVRL-filter of A.
Consider x, y ∈ A such that, x/F → y/F = 1/F . Then x → y ∈ F , so ν(x → y) ∈
F . Since F is a fantastic IVRL-filter of A, then ν(((y → x) → x) → y) ∈ F . So
((y → x) → x) → y ∈ F , hence ((y/F → x/F ) → x/F ) → y/F ) = 1/F . Therefore
A/F is an MV -triangle algebra.

(ii ⇒ i) It is clear by Proposition 3.2. �

Corollary 5.2. Let A/F be an MV -triangle algebra. Then F is an IVRL-
extended fantastic filter of A.

In the following example we show that the converse of the above corollary is
not true.

Example 5.4. In Example 3.1, it is clear that F = {1} is an IVRL-extended
fantastic filter of A. Since ¬¬u = 1 6= u, A/F is not an MV -triangle algebra.

6. Easy filters in triangle algebras

Definition 6.1. F is an IVRL-extended easy filter (EEF) if for x, y, z ∈ A,
¬¬νx → (νy → νz), ¬¬νx → νy ∈ F , implies ¬¬νx → νz ∈ F .

Definition 6.2. F is an easy IVRL-filter (EF) if for x, y, z ∈ A, ν(¬¬x →
(y → z)), ν(¬¬x → y) ∈ F , implies ν(¬¬x → z) ∈ F .

It is clear that every easy IVRL-filter is an IVRL-extended easy filter, but the
converse is not true.

Example 6.1. In Example 3.1, it is clear that F = {1} is an IVRL-extended
easy filter of A. Let x = y = u, z = 0. Then ν(¬¬u → (u → 0)) ∈ F , ν(¬¬u →
u) ∈ F , but ν(¬¬u → 0) /∈ F . So F is not an easy IVRL-filter of A.

Proposition 6.1. Every IVRL-extended implicative filter (implicative IVRL-
filter) of A is an IVRL-extended easy filter (easy IVRL-filter) of A.
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Proof. Let x, y, z ∈ A be such that ¬¬νx → (νy → νz), ¬¬νx → νy ∈ F .
By Theorem 3.1 (iv), we conclude that (¬¬νx → νy) → (¬¬νx → νz) ∈ F .
Since ¬¬νx → νy ∈ F , ¬¬νx → νz ∈ F . Thus F is an IVRL-extended easy
filter of A. �

The following example shows that every easy IVRL-filter is not an IVRL-
extended implicative filter

Example 6.2. In Example 4.2, define x ∗ y = x · y, x → y =
{ 1 x6y

y/x y<x . Then

F = {[1, 1]} is an IVRL-filter on LI . It is clear that F is an easy IVRL-filter and
so is an IVRL-extended easy filter. Let x = [0.5, 0.7], so νx = [0.5, 0.5]. We have
(νx)2 = [0.5, 0.5] ⊙ [0.5, 0.5], νx ⇒ (νx)2 = [0.25/0.5, 0.25/0.5] /∈ F . Thus F is not
an IVRL-extended implicative filter.

Example 6.3, shows that there is an implicative IVRL-filter which is not an
IVRL-extended fantastic filter.

Example 6.3. In Example 4.2, define

x ∗ y = max(0, x + y − 1), x → y = min(1, 1 − x + y)

Then F = {[1, 1]} is an IVRL-filter. Let x = [0.6, 0.8], so νx = [0.6, 0.6] and
¬νx = [0.6, 0.6] ⇒ [0, 0] = [0.4, 0.4]. So ¬¬νx = [0.6, 0.6] and (¬¬νx)2 = [0.2, 0.2].
¬¬νx ⇒ (¬¬νx)2 = [0.6, 0.6] /∈ F , thus F is not an IVRL-extended easy filter.
Clearly F is an fantastic IVRL-filter.

Proposition 6.2. Let F be an IVRL-filter of A. Then the following conditions
are equivalent:

(i) F is an IVRL-extended easy filter of A,
(ii) If ¬¬νx → (νy → νz) ∈ F , then (¬¬νx → νy) → (¬¬νx → νz) ∈ F , for

all x, y, z ∈ A,
(iii) If ¬¬νx → (¬¬νx → νy) ∈ F , then ¬¬νx → νy ∈ F , for all x, y ∈ A.

Proof. (i) ⇒ (ii) Let x, y, z ∈ A be such that ¬¬νx → (νy → νz) ∈ F . Then

¬¬νx→ [¬¬νx→((¬¬νx→νy)→νz)] = ¬¬νx→ [(¬¬νx→νy)→(¬¬νx → νz)]

> ¬¬νx → (¬¬νx → (νy → νz))

> ¬¬νx → (νy → νz)

Since ¬¬νx → ¬¬νx ∈ F , we have ¬¬νx → [(¬¬νx → νy) → νz] ∈ F . We also
have ¬¬νx → [(¬¬νx → νy) → νz] = (¬¬νx → νy) → (¬¬νx → νz), and then
(¬¬νx → νy) → (¬¬νx → νz) ∈ F .

(ii) ⇒ (iii) This is obvious.
(iii) ⇒ (i) Let ¬¬νx → (νy → νz), (¬¬νx → νy) ∈ F . Since

¬¬νx → (νy → νz) = νy → (¬¬νx → νz)

6 (¬¬νx → νy) → [¬¬νx → (¬¬νx → νz)],

we have ¬¬νx → (¬¬νx → νz) ∈ F . By hypothesis, ¬¬νx → νz ∈ F . Thus F is
an IVRL-extended easy filter of A. �
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Proposition 6.3. Let F be an IVRL-filter of A. Then the following conditions
are equivalent:

(i) F is an easy IVRL-filter of A,
(ii) If ν(¬¬x → (y → z)) ∈ F , then ν((¬¬x → y) → (¬¬x → z)) ∈ F , for all

x, y, z ∈ A,
(iii) If ν(¬¬x → (¬¬x → y)) ∈ F , then ν(¬¬x → y) ∈ F , for all x, y ∈ A.

Theorem 6.1. If F, G are IVRL-filters of A, F ⊆ G and F is an IVRL-
extended easy filter (easy IVRL-filter) of A, then G is an IVRL-extended easy filter
(easy IVRL-filter) of A.

Proof. Let a = ¬¬νx → (¬¬νx → νy) ∈ G. Since

¬¬νx → (¬¬νx → (a → νy)) = ¬¬νx → (a → (¬¬νx → νy))

= a → (¬¬νx → (¬¬νx → νy) ∈ F,

we have ¬¬νx → (¬¬νx → (a → νy)) ∈ F . By Proposition 6.2(iii), we have
¬¬νx → (a → νy) ∈ F ⊆ G. Then ¬¬νx → νy ∈ G. Thus G is an IVRL-extended
easy filter of A. �

Remark 6.1. By Theorem 6.1, {1} is an IVRL-extended easy filter(easy IVRL-
filter) of A if and only if every IVRL-filter of A is an IVRL-extended easy filter
(easy IVRL-filter).

Theorem 6.2. Let F be an IVRL-filter of A. Then F is an IVRL-extended
easy filter if and only if ¬¬νx → (¬¬νx)2 ∈ F , for all x ∈ A.

Proof. Let F be an IVRL-extended easy filter of A. Then for x ∈ A,

¬¬νx → (¬¬νx → (¬¬νx)2) = (¬¬νx)2 → (¬¬νx)2 = 1 ∈ F.

By Proposition 6.2(iii), ¬¬νx → (¬¬νx)2 ∈ F . Conversely, let x, y ∈ A be such
that ¬¬νx → (¬¬νx → νy) ∈ F . Then (¬¬νx)2 → νy ∈ F . Since ¬¬νx →
(¬¬νx)2 ∈ F , we have ¬¬νx → νy ∈ F . Then F is an IVRL-extended easy filter
of A. �

Theorem 6.3. Let F be an IVRL-filter of A. F is an easy IVRL-filter if and
only if ν(¬¬x → (¬¬x)2) ∈ F , for all x ∈ A.

Proposition 6.4. Let A be a triangle algebra and ¬¬x = (¬¬x)2. Then
¬(x2) = ¬x, for all x ∈ A.

Proof. By Lemma 2.1 (10), we have (¬¬x)2 6 ¬¬(x2). By hypothesis we
have ¬¬x 6 ¬¬(x2), ¬(x2) 6 ¬x. Since ¬x 6 ¬(x2), we have ¬(x2) = ¬x. �

Remark 6.2. Let A be a BL-triangle algebra. Then the converse of Proposi-
tion 6.4 holds. Indeed, if ¬(x2) = ¬x, then ¬¬(x∗ x) = ¬¬x, so ¬¬x∗ ¬¬x = ¬¬x,
for all x, y ∈ A.

Corollary 6.1. Let F be an IVRL-extended easy filter (easy IVRL-filter) of A.
Then A/F is a semi-G-triangle algebra.
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Proof. If x ∈ A, then ¬¬(x/F ) 6 (¬¬(x/F ))2 6 ¬¬(x/F ). Thus ¬¬(x/F ) =
(¬¬(x/F ))2, so by Proposition 6.4, ¬[(x/F )2] = ¬(x/F ), that is, A/F is a semi-G-
triangle algebra. �

By Theorem 6.2, Remark 6.2 and Corollary 6.1, we have:

Corollary 6.2. Let F be a BL-triangle algebra. Then F is an IVRL-extended
easy filter of A if and only if A/F is a semi-G-triangle algebra.

Theorem 6.4. F is an IVRL-extended easy filter and IVRL-extended MV -
filter (easy IVRL-filter and MV -IVRL-filter) of A if and only if F is an IVRL-
extended implicative filter and IVRL-extended MV -filter (implicative IVRL-filter
and MV -IVRL-filter) of A.

Proof. If F is an IVRL-extended easy filter and IVRL-extended MV -filter,
then F is an IVRL-extended easy filter and IVRL-extended MV -filter. Now, let
x, y ∈ A be such that νx → (νx → νy) ∈ F . We have to prove that νx → νy ∈ F .
Since F is an IVRL-extended MV -filter of A, we have ¬¬νx → νx ∈ F . From
νx → (νx → νy), ¬¬νx → νx ∈ F and Lemma 2.1, we get ¬¬νx → (νx → νy) ∈
F . Since ¬¬νx → νx ∈ F and F is an IVRL-extended easy filter of A, we have
¬¬νx → νy ∈ F . Since ¬¬νx → νy 6 νx → νy, we have νx → νy ∈ F , hence F is
an IVRL-extended implicative filter of A. �

Proposition 6.5. Let F be an IVRL-extended easy filter of A and x ∈ A be
such that ¬[(¬¬νx)n ] ∈ F , for some n > 1. Then ¬νx ∈ F .

Proof. We have ¬[(¬¬νx)n ] = ¬¬νx → (¬¬νx → · · · → (¬¬νx
︸ ︷︷ ︸

n−times

→ 0) . . . )

therefore ¬¬νx → 0 = ¬¬¬νx = ¬νx ∈ F . �

7. Conclusion and future work

The notions of triangle algebra and interval valued residuated lattices are de-
fined by Van Gass et al. [11]. They showed that the definitions of the different kinds
of filters of residuated lattices can be extended to triangle algebras in two different
ways. They examined the relationships between the obtained concepts [10].

In this paper, we developed filter theory in triangle algebras. Mainly, we in-
troduced different kinds of filters in triangle algebras, such as implicative, positive
implicative, fantastic, easy IVRL-filters and IVRL-extended implicative, positive
implicative, fantastic and easy filters. We have given some characterizations and
several examples. Figure 1 gives a schematic summary of relations among all IVRL-
filters that we considered. For example the diagram below shows that every positive
implicative IVRL-filter (PIF) is an implicative IVRL-filter (IF) but the converse is
not true.

The investigation of other such generalizations can be an interesting object for
further work.
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Figure 1. The relationship between filters in triangle algebra

References

1. D. Busneag, D. Piciu, Some types of filters in residuated lattices, Soft Comput. 18 (2014),
825–837.

2. C. Cornelis, G. Deschrijver, E. E. Kerre, Advances and challenges in interval-valued fuzzy

logic, Fuzzy Sets Syst. 157 (2006), 622–627.
3. F. Esteva, L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms,

Fuzzy Sets Syst. 124 (2001), 271–288.
4. K. Gödel, Zum intuitionistischen Aussagenkalkül, Anzeiger, Wien 69 (1932), 65–66.
5. P. Hájek, Metamathematics of Fuzzy Logic, Trends Log. Stud. Log. Libr. 4, Kluwer, Dordrecht,

1998.
6. M. Haveshki, A. Borumand Saeid, E. Eslami, Some types of filters in BL-algebras, Soft Com-

put. 10 (2006), 657–664.
7. J. Lukasiewicz, A. Tarski, Untersuchungen über den Aussagenkalkül, C. R. Soc. Sci. Varsovie

23 (1930), 30–50.
8. D. Piciu, Algebra of Fuzzy Logic, Ed. Universtaria Craiova, 2007.
9. E. Turunen, Boolean deductive systems of BL algebras, Arch. Math. Logic 40 (2001), 467–473.

10. B. Van Gasse, G. Deschrijver, C. Cornelis, E. E. Kerre, Filters of residuated lattices and

triangle algebras, Inf. Sci. 180 (2010), 3006–3020.
11. , Triangle algebras: a formal logic approach to interval-valued residuated lattices,

Fuzzy Sets Syst. 159 (2008), 1042–1060.
12. Y. Zhu, Y. Xu, On filter theory of residuated lattices, Inf. Sci. 180 (2010), 3614–3632.

Department of Pure Mathematics (Received 14 06 2015)
Faculty of Mathematics and Computer (Revised 23 02 2016)
Shahid Bahonar University of Kerman
Kerman, Iran
saeede.zahiri@yahoo.com

arsham@uk.ac.ir

esfandiar.eslami@uk.ac.ir


	1. Introduction
	2. Preliminaries
	3. Implicative filters in triangle algebras
	4. Positive implicative filters in triangle algebras
	5. Fantastic filters in triangle algebras
	6. Easy filters in triangle algebras
	7. Conclusion and future work
	References

