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BI-LIPSCHITZITY OF QUASICONFORMAL
HARMONIC MAPPINGS IN n-DIMENSIONAL

SPACE WITH RESPECT TO k-METRIC

Shadia Shalandi

Abstract. We explore conditions which guarantee bi-Lipschitzity of har-
monic quasiconformal maps with respect to 𝑘-metric. We prove that harmonic
𝑘-quasiconformal maps with nonzero Jacobian between any two domains in R𝑛

are bi-Lipschitz with respect to 𝑘-metric, and prove the converse too.

1. Introduction

We prove results about bi-Lipschitzity of harmonic 𝑘-qc mappings 𝑓 : 𝐷1 → 𝐷2,
where 𝐷1 and 𝐷2 are arbitrary proper subdomains of R𝑛, with respect to 𝑘-metric.

Similar problems have been studied at the Belgrade Seminar for Complex Anal-
ysis. In [1], Mateljević proved such a result in 𝑛-dimensional space, but only in
the case when both 𝐷1 and 𝐷2 are the upper half space in R𝑛. Also, in the same
paper, Proposition 5 gives an estimate in dimension 2 for minimal and maximal
moduli of directional derivative at a point, in terms of distance to the boundary, for
arbitrary codomain. As a corollary, he proved that every harmonic quasiconformal
map of the unit disk is a quasi-isometry with respect to hyperbolic distances. He
posed a question if analogue of Proposition 5 holds in higher dimensions. In the
case 𝑛 = 2, Manojlović proved in [2] that, when 𝐷1 and 𝐷2 are arbitrary domains
in the plane, then harmonic quasiconformal maps are bi-Lipschitz with respect to
𝑘-metric.

Note that the Lipischitz condition for maps between domains in R𝑛 was ob-
tained by Mateljević and Vourinen [6]. Here a different proof, based on results of
Božin and Mateljević [3], is given.

Let 𝐵𝑛(𝑥, 𝑟) = {𝑧 ∈ R𝑛 : ‖𝑧 − 𝑥‖ < 𝑟}, S𝑛−1(𝑥, 𝑟) = 𝜕𝐵𝑛(𝑥, 𝑟), and let
𝐵𝑛,S𝑛−1 stand for the unit ball and the unit sphere in R𝑛, respectively. For a
domain 𝐺 ⊂ R𝑛 let 𝜌 : 𝐺 → (0, ∞) be a continuous function. We say that 𝜌 is a
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metric density if, for every locally rectifiable curve 𝛾 in 𝐺, the integral

𝑙𝜌(𝛾) =
∫︁

𝛾

𝜌(𝑥)𝑑𝑠,

exists. In this case we call 𝑙𝜌(𝛾) the 𝜌-length of 𝛾. A metric density 𝑑𝜌 : 𝐺 × 𝐺 →
[0, ∞) defines a metric as follows. For 𝑎, 𝑏 ∈ 𝐺, let 𝑑𝜌(𝑎, 𝑏) = inf𝛾 𝑙𝜌(𝛾), where the
infimum is taken over all locally rectifiable curves in 𝐺 joining 𝑎 and 𝑏. For a fixed
𝑎, 𝑏 ∈ 𝐺, suppose that there exists a 𝑑𝜌-length minimizing curve 𝛾 : [0, 1] → 𝐺 with
𝛾(0) = 𝑎, 𝛾(1) = 𝑏 such that 𝑑𝜌(𝑎, 𝑏) = 𝑙𝜌(𝛾|[0, 𝑡]) + 𝑙𝜌(𝛾|[𝑡, 1]), for all 𝑡 ∈ [0, 1].
Then 𝛾 is called a geodesic segment joining 𝑎 and 𝑏.

In dimensions 𝑛 > 3, we do not have a Riemann mapping theorem, and it
is natural to look for counterparts of the hyperbolic metric. So-called hyperbolic
type metrics have been the subject of many recent papers. One of the most im-
portant of these metrics is the quasihyperbolic metric 𝑘𝐺 of a domain 𝐺 ⊂ R. The
quasihyperbolic 𝑘-metric 𝑘 = 𝑘𝐺 of 𝐺 is a particular case of the geodesic metric 𝑑𝜌

when 𝜌(𝑥) = 1/𝑑(𝑥, 𝜕𝐺) [4, 5], where 𝑑(𝑥, 𝜕𝐺) is the distance from point 𝑥 to the
boundary of 𝐺.

We will consider Euclidean harmonic maps, also called harmonic maps in this
paper, i.e., those with zero Laplacian of each coordinate function. Also, we will
deal with quasiconformal maps. For a domain 𝐷 in R𝑛, a map 𝑓 : 𝐷 → R𝑛 is
𝐾-quasiconformal if it is a homeomorphism of 𝐷 to 𝑓(𝐷), and if 𝑓 belongs to the
Sobolev space 𝑊 𝑛

1,loc(𝐷) and there exists 𝐾, 1 6 𝐾 < ∞, such that ‖𝐷𝑓(𝑥)‖𝑛 6
𝐾𝐽𝑓 (𝑥) a.e. on 𝐷, where ‖𝐷𝑓(𝑥)‖ denote the operator norm of the Jacobian matrix
of 𝑓 at 𝑥.

Our main result is that harmonic 𝑘-quasiconformal mappings which do not
have zero of Jacobian 𝑓 : 𝐷1 → 𝐷2 are bi-Lipschitz. This result is based on two
Theorems from [3]. We also prove that every harmonic mappings 𝑓 : 𝐷1 → 𝐷2
which is bi-Lipschitz with respect to 𝑘-metric is quasiconformal, where 𝐷1 and 𝐷2
are domains in R𝑛.

2. Background

In this section we give some background results which will be used in our main
proofs.

Theorem 2.1. [6] Let 𝐷1 and 𝐷2 be two domains in 𝑅𝑛 and let 𝜌1 and 𝜌2 be
two densities, 𝑑𝑠 = 𝜌1(𝑧)|𝑑𝑧|, and 𝑑𝑠 = 𝜌2(𝑤)|𝑑𝑤| where |𝑑𝑧|, and |𝑑𝑤| stand for
Euclidean metric, and Λ𝑓 (𝑧), 𝜆𝑓 (𝑧) are respectively the maximum and the minimum
of modulus of eigenvalues of the Jacobian matrix at 𝑧, and suppose that 𝑓 : 𝐷1 → 𝐷2
is a 𝐶1 quasiconformal mapping

(A) If there is a positive constant 𝑐1 such that at every point 𝑧, 𝜌2(𝑓(𝑧))Λ𝑓 (𝑧)6
𝑐1𝜌1(𝑧), 𝑧 ∈ 𝐷1, then 𝑑𝜌2(𝑓(𝑧1), 𝑓(𝑧2)) 6 𝑐1𝑑𝜌1(𝑧1, 𝑧2).

(B) If 𝑓(𝐷1) = 𝐷2, and there is a positive constant 𝑐2 such that at ev-
ery point 𝑧, 𝜆𝑓 (𝑧)𝜌2(𝑓(𝑧)) > 𝑐2𝜌1(𝑧), 𝑧 ∈ 𝐷1, then 𝑑𝜌2(𝑓(𝑧1), 𝑓(𝑧2)) >
𝑐2𝑑𝜌1(𝑧1, 𝑧2), 𝑧1, 𝑧2 ∈ 𝐷1.

For convenience, we give a proof of this known result.
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Proof. Part (A). Suppose that 𝛾 is geodesic with parametrization

𝛾(𝑡) = (𝛾1(𝑡), 𝛾2(𝑡), 𝛾3(𝑡), . . . , 𝛾𝑛(𝑡)),

and derivative
𝛾′(𝑡) = (𝛾′

1(𝑡), 𝛾′
2(𝑡), 𝛾′

3(𝑡), . . . , 𝛾′
𝑛(𝑡)).

Let 𝛾*(𝑡) = 𝑓(𝛾(𝑡)); then 𝛾′
*(𝑡) = 𝐷𝑓 (𝛾(𝑡))𝛾′(𝑡), and ‖𝛾′

*(𝑡)‖ 6 Λ𝑓 ‖𝛾′(𝑡))‖. We
have

𝑑𝜌1(𝑧1, 𝑧2) = inf
𝛾

∫︁
𝛾

𝜌1(𝑧)|𝑑𝑧| 6
∫︁ 1

0
𝜌1(𝛾(𝑡))‖𝛾′(𝑡)‖𝑑𝑡.

Letting 𝑤1 = 𝑓(𝑧1) and 𝑤2 = 𝑓(𝑧2), we can write

𝑑𝜌2(𝑤1, 𝑤2) = inf
𝛾*

∫︁
𝛾*

𝜌2(𝑤)|𝑑𝑤| 6
∫︁ 1

0
𝜌2(𝛾*(𝑡))‖𝛾′

*(𝑡))‖𝑑𝑡.

Using change of variable,

𝑑𝜌2(𝑤1, 𝑤2) 6
∫︁ 1

0
𝜌2(𝑓(𝛾(𝑡)))Λ𝑓 ‖𝛾′(𝑡))‖𝑑𝑡,

and by (A), we get

𝑑𝜌2(𝑤1, 𝑤2) 6 𝑐1

∫︁ 1

0
𝜌1(𝛾(𝑡))||𝛾′(𝑡)||𝑑𝑡 6 𝑐1

∫︁
𝛾

𝜌1(𝑧)|𝑑𝑧| 6 𝑐1𝑑𝜌1(𝑧1, 𝑧2).

Then 𝑑𝜌2(𝑓(𝑧1), 𝑓(𝑧2)) 6 𝑐1𝑑𝜌1(𝑧1, 𝑧2).
Part (B). Let 𝑔 be an inverse function of 𝑓 . We have 𝑓(𝑧1) = 𝑤1 → 𝑧1 = 𝑔(𝑤1)

and 𝑓(𝑧2) = 𝑤2 → 𝑧2 = 𝑔(𝑤2).
Let 𝛾(𝑡) = 𝑔(𝛾*(𝑡)); then 𝛾′(𝑡) = 𝐷𝑔(𝛾*(𝑡))𝛾′

*(𝑡), and thus ‖𝛾′(𝑡)‖ 6 Λ𝑔‖𝛾*(𝑡)‖.
Here Λ𝑔 = 1

𝜆𝑓
, because 𝐷𝑔(𝑤) = [𝐷𝑓 (𝑧)]−1. It follows that

𝑑𝜌1(𝑔(𝑤1), 𝑔(𝑤2)) = inf
𝛾

∫︁
𝛾

𝜌1(𝑧)|𝑑𝑧| 6
∫︁ 1

0
𝜌1(𝛾(𝑡))‖𝐷𝑔(𝛾*(𝑡))𝛾*(𝑡))‖𝑑𝑡.

By assumption in (B), we get

𝑑𝜌1(𝑔(𝑤1), 𝑔(𝑤2)) 6
∫︁ 1

0
𝜌1(𝑔(𝛾*(𝑡))) 1

𝜆𝑓
‖𝛾′

*(𝑡)‖𝑑𝑡 6
1
𝑐2

∫︁ 1

0
𝜌2(𝛾*(𝑡))‖𝛾′

*(𝑡)‖𝑑𝑡(2.1)

6
1
𝑐2

∫︁
𝛾*

𝜌2(𝑤)|𝑑𝑤| 6 1
𝑐2

𝑑𝜌2(𝑤1, 𝑤2).

Then 𝑐2𝑑𝜌1(𝑧1, 𝑧2) 6 𝑑𝜌2(𝑓(𝑧1), 𝑓(𝑧2)). �

In the following two theorems from [3, Theorems 4.1 and 4.2], nonzero Jacobian
families are defined as closed families of harmonic maps with nonzero Jacobians (see
[3]).

Theorem 2.2. For every nonzero Jacobian closed family of 𝑘-quasiconformal
harmonic maps, there is a constant 𝑐 > 0, such that if 𝑓 : 𝐵𝑛 → R𝑛 is from the
family, 𝑑(0, 𝜕𝑓(𝐵𝑛)) > 1, and 𝑓(0) = 0, then 𝐽𝑓 (0) > 𝑐.
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Theorem 2.3. There is a constant 𝑐 > 0, depending only on 𝑘, such that if
𝑓 : 𝐷1 → R𝑛 is 𝑘-quasiconformal harmonic map, 𝑑(0, 𝜕𝑓(𝐵𝑛)) 6 1, and 𝑓(0) = 0,
then 𝐽𝑓 (0) 6 𝑐.

We will also need the following well known theorem for qc maps, called local
quasi-symmetry (see, for instance, [4]).

Theorem 2.4. If 𝑓 : 𝐵𝑛 → R𝑛 is a 𝐾-quasiconformal map and 𝑓 : 𝐵̄𝑛 → R𝑛

its continuous extension, then for any two points 𝑎, 𝑏 ∈ S𝑛−1

𝑑(𝑓(0), 𝑓(𝑎))
𝑑(𝑓(0), 𝑓(𝑏))

6 𝑐(𝑘, 𝑛),

for some constant 𝑐(𝐾, 𝑛) independent of 𝑓 .

3. Bi-Lipschitzity with respect to k-metric

Theorem 3.1. Suppose that 𝑓 : 𝐷1 → 𝐷2, where 𝐷1, 𝐷2 ( R𝑛, is a harmonic
quasi-conformal mapping, and that 𝑓 belongs to a nonzero Jacobian family of har-
monic maps, then the following holds for some constant 𝐶

1
𝐶

𝐽
1
𝑛 (𝑧) 6 𝑑(𝑓(𝑧), 𝜕𝐷2)

𝑑(𝑧, 𝜕𝐷1) 6 𝐶𝐽
1
𝑛 (𝑧).

Proof. Let 𝑧0 be a point in 𝐷1, 𝑟1 = 𝑑(𝑧0, 𝜕𝐷1), 𝑟2 = 𝑑(𝑓(𝑧0), 𝜕𝐷2).
Let 𝐵(𝑧0, 𝑟1) be the 𝑛 dimensional ball centered at 𝑧0 of radius 𝑟1 and let

𝐷3 = 𝑓(𝐵(𝑧0, 𝑟1)). Also assume that 𝑓 is 𝐾-quasiconformal.
Define 𝑓 : 𝐵𝑛 → R𝑛 by 𝑓(𝑧) = 1

𝑟2
(𝑓(𝑧0+𝑟1𝑧)−𝑓(𝑧0)). Note that since 𝐷3 ⊆ 𝐷2,

we have 𝑟2 = 𝑑(𝑓(𝑧0), 𝜕𝐷2) > 𝑑(𝑓(𝑧0), 𝜕𝐷3), and hence 𝑑(0, 𝜕𝑓(𝐵𝑛)) 6 1. We have

𝐽𝑓 (𝑧0) = det

⎡⎢⎢⎢⎣
𝜕𝑓1/𝜕𝑥1 . . . 𝜕𝑓1/𝜕𝑥𝑛

𝜕𝑓2/𝜕𝑥1 . . . 𝜕𝑓2/𝜕𝑥𝑛

...
. . .

...
𝜕𝑓𝑛/𝜕𝑥1 . . . 𝜕𝑓𝑛/𝜕𝑥𝑛

⎤⎥⎥⎥⎦

𝐽𝑓 (0) =
(︁ 1

𝑟2

)︁𝑛

det

⎡⎢⎢⎢⎣
𝑟1𝜕𝑓1/𝜕𝑥1 . . . 𝑟1𝜕𝑓1/𝜕𝑥𝑛

𝑟1𝜕𝑓2/𝜕𝑥1 . . . 𝑟1𝜕𝑓2/𝜕𝑥𝑛

...
. . .

...
𝑟1𝜕𝑓𝑛/𝜕𝑥1 . . . 𝑟1𝜕𝑓𝑛/𝜕𝑥𝑛

⎤⎥⎥⎥⎦ =
(︁𝑟1

𝑟2

)︁𝑛

𝐽𝑓 (𝑧0).

Since, 𝑑(0, 𝜕𝑓(𝐵𝑛)) 6 1, by Theorem 2.3 𝐽𝑓 (0) 6 𝑐, so

𝑟𝑛
1

𝑟𝑛
2

𝐽𝑓 (𝑧0) 6 𝑐

1
𝑐1

𝐽𝑓 (𝑧0) 1
𝑛 6

𝑟2

𝑟1
= 𝑑(𝑓(𝑧), 𝜕𝐷2)

𝑑(𝑧, 𝜕𝐷1)

where 𝑐1 = 𝑐1/𝑛.



BI-LIPSCHITZITY OF QHC MAPS 89

Note that, by Theorem 2.4, for any point 𝑤 ∈ 𝜕𝐷3,

𝑑(𝑓(𝑧0), 𝜕𝐷3) > 1
𝑐(𝐾, 𝑛)𝑑(𝑓(𝑧0), 𝑤).

So, since by our construction there is a point 𝑤 which belongs to both 𝜕𝐷2 and
𝜕𝐷3, we have

𝑑(𝑓(𝑧0), 𝜕𝐷3) > 1
𝑐(𝐾, 𝑛)𝑑(𝑓(𝑧0), 𝜕𝐷2)

and so we have
𝑑(𝑓(𝑧0), 𝜕𝐷3) > 𝑟2

𝑐(𝐾, 𝑛) .

Now again, define 𝑓 : 𝐵𝑛 → R𝑛 by 𝑓(𝑧) = 𝑐(𝐾,𝑛)
𝑟2

(𝑓(𝑧0 + 𝑟1𝑧) − 𝑓(𝑧0)) for
𝑧 ∈ 𝐵𝑛. Note that 𝑑(0, 𝜕𝑓(𝐵𝑛)) > 1. We have

𝐽𝑓 (𝑧0) = det

⎡⎢⎢⎢⎣
𝜕𝑓1/𝜕𝑥1 . . . 𝜕𝑓1/𝜕𝑥𝑛

𝜕𝑓2/𝜕𝑥1 . . . 𝜕𝑓2/𝜕𝑥𝑛

...
. . .

...
𝜕𝑓𝑛/𝜕𝑥1 . . . 𝜕𝑓𝑛/𝜕𝑥𝑛

⎤⎥⎥⎥⎦

𝐽𝑓 (0) =
(︁𝑐(𝐾, 𝑛)

𝑟2

)︁𝑛

= det

⎡⎢⎢⎢⎣
𝑟1𝜕𝑓1/𝜕𝑥1 . . . 𝑟1𝜕𝑓1/𝜕𝑥𝑛

𝑟1𝜕𝑓2/𝜕𝑥1 . . . 𝑟1𝜕𝑓2/𝜕𝑥𝑛

...
. . .

...
𝑟1𝜕𝑓𝑛/𝜕𝑥1 . . . 𝑟1𝜕𝑓𝑛/𝜕𝑥𝑛

⎤⎥⎥⎥⎦
𝐽𝑓 (0) = 𝑐(𝐾, 𝑛)𝑛

(︁𝑟1

𝑟2

)︁𝑛

𝐽𝑓 (𝑧0).

By Theorem 2.2, since 𝑑(0, 𝜕𝑓(𝐵𝑛)) > 1, we have 𝐽𝑓 (0) > 𝑐, so

𝑟𝑛
1

𝑟𝑛
2

𝐽𝑓 (𝑧0) > 𝑐

𝑐(𝐾, 𝑛)𝑛
.

Then

𝑐2𝐽𝑓 (𝑧0) 1
𝑛 >

𝑟2

𝑟1
= 𝑑(𝑓(𝑧0), 𝜕𝐷2)

𝑑(𝑧0, 𝜕𝐷1)

where 𝑐2 = 𝑐(𝐾,𝑛)
𝑐1/𝑛 . Finally, set 𝐶 = max(𝑐1, 𝑐2). �

A consequence of Theorem 3.1 is the following:

Theorem 3.2. Suppose that 𝑓 : 𝐷1 → 𝐷2, where 𝐷1, 𝐷2 ( R𝑛, is a harmonic
𝐾-quasiconformal mapping, and that 𝑓 belongs to a nonzero Jacobian family of
harmonic maps. Then 𝑓 is bi-Lipschitz with respect to 𝑘-metric.

Proof. From the quasiconformality condition and using that our map is 𝐶1,
we have a constant 𝑘 such that at every point 𝑧

Λ𝑓 (𝑧) 6 𝑘𝐽
1
𝑛 (𝑧), 𝜆𝑓 (𝑧) > 1

𝑘
𝐽

1
𝑛 (𝑧)
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where Λ𝑓 and 𝜆𝑓 are the greatest and smallest moduli of eigenvalues of the Jacobian
matrix. By Theorem 3.1, there is a constant 𝐶 such that

1
𝐶

𝐽
1
𝑛 (𝑧) 6 𝑑(𝑓(𝑧), 𝜕𝐷2)

𝑑(𝑧, 𝜕𝐷1) 6 𝐶𝐽
1
𝑛 (𝑧).

The metric densities for 𝑘 metrics are

𝜌1(𝑧) = 1
𝑑(𝑧, 𝜕𝐷1) , 𝜌2(𝑧) = 1

𝑑(𝑤, 𝜕𝐷2) ,

and so we have

𝜌2(𝑓(𝑧))Λ𝑓 (𝑧) = 1
𝑑(𝑓(𝑧), 𝜕𝐷2)Λ𝑓 (𝑧) 6 1

𝑑(𝑓(𝑧), 𝜕𝐷2)𝑘𝐽
1
𝑛 (𝑧)

6
1

𝑑(𝑓(𝑧), 𝜕𝐷2)𝑘𝐶
𝑑(𝑓(𝑧), 𝜕𝐷2)

𝑑(𝑧, 𝜕𝐷1) = 𝑘𝐶
1

𝑑(𝑧, 𝜕𝐷1) = 𝑘𝐶𝜌1(𝑧),

𝜌2(𝑓(𝑧))𝜆𝑓 (𝑧) = 1
𝑑(𝑓(𝑧), 𝜕𝐷2)𝜆𝑓 (𝑧) > 1

𝑑(𝑓(𝑧), 𝜕𝐷2)
1
𝑘

𝐽
1
𝑛 (𝑧)

>
1

𝑑(𝑓(𝑧), 𝜕𝐷2)
1

𝑘𝐶

𝑑(𝑓(𝑧), 𝜕𝐷2)
𝑑(𝑧, 𝜕𝐷1) = 1

𝑘𝐶

1
𝑑(𝑧, 𝜕𝐷1) = 1

𝑘𝐶
𝜌1(𝑧).

Then by Theorem 2.1 the map 𝑓 is bi-Lipschitz with respect to 𝑘-metric. �

Theorem 3.3. If a bijective harmonic map 𝑓 : 𝐷1 → 𝐷2, where 𝐷1, 𝐷2 ⊂ R𝑛,
is bi-Lipschitz with respect to 𝑘-metric, then it is a quasiconformal mapping.

Proof. Note that, by elliptic regularity, 𝑓 is a 𝐶1 map. Let 𝑥, 𝑥 + Δ𝑥 be
two points in 𝐷1 where ‖Δ𝑥‖ → 0, and suppose that the Jacobian matrix 𝐷𝑓 (𝑥)
maps unit sphere to ellipsoid with minimal and maximal axes equal to 𝜆𝑓 and
Λ𝑓 respectively, and let 𝜌1, and 𝜌2 be metric density functions in 𝐷1 and 𝐷2
respectively. Assume that

1
𝑐

𝑑𝜌2(𝑓(𝑥), 𝑓(𝑦)) 6 𝑑𝜌1(𝑥, 𝑦) 6 𝑐𝑑𝜌2(𝑓(𝑥), 𝑓(𝑦)).

We prove that Λ𝑓

𝜆𝑓
6 𝑐2, wherefrom quasiconformality follows. As Δ𝑥 → 0, we have

𝑑𝜌1(𝑥, 𝑥 + Δ𝑥) = 𝜌1(𝑥)‖Δ𝑥‖(1 + 𝑜(1)),
𝑑𝜌2(𝑓(𝑥), 𝑓(𝑥 + Δ𝑥)) = 𝜌2(𝑥)‖𝐷𝑓Δ𝑥‖(1 + 𝑜(1)).

Note that
Λ𝑓 = sup

𝑒,‖𝑒‖=1
‖𝐷𝑓 (𝑥)𝑒‖ and 𝜆𝑓 = inf

𝑒,‖𝑒‖=1
‖𝐷𝑓 (𝑥)𝑒‖.

Suppose supremum is achieved for vector 𝑒1, and infimum is achieved for 𝑒2 (since
matrix multiplication is continuous, and unit sphere is compact, there have to be
such vectors 𝑒1 and 𝑒2).

We are going to consider Δ𝑥 = 𝑡𝑒1, 𝑡 → 0 and Δ𝑥 = 𝑡𝑒2, 𝑡 → 0. Putting
Δ𝑥 = 𝑡𝑒1, 𝑡 → 0 we have

𝑑𝜌1(𝑥, 𝑥 + 𝑡𝑒1) = 𝜌1(𝑥)𝑡(1 + 𝑜(1)) as 𝑡 → 0
𝑑𝜌2(𝑓(𝑥), 𝑓(𝑥 + 𝑡𝑒1)) = 𝜌2(𝑓(𝑥))Λ𝑓 𝑡(1 + 𝑜(1)) as 𝑡 → 0.
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Putting Δ𝑥 = 𝑡𝑒2, 𝑡 → 0, we have
𝑑𝜌1(𝑥, 𝑥 + 𝑡𝑒2) = 𝜌1(𝑥)𝑡(1 + 𝑜(1)) as 𝑡 → 0

𝑑𝜌2(𝑓(𝑥), 𝑓(𝑥 + 𝑡𝑒2)) = 𝜌2(𝑓(𝑥))𝜆𝑓 𝑡(1 + 𝑜(1)) as 𝑡 → 0.

Using the bi-Lipschitz condition, we get
1
𝑐

𝜌2(𝑓(𝑥))𝑡𝜆𝑓 (1 + 𝑜(1)) 6 𝜌1(𝑥)𝑡(1 + 𝑜(1)) 6 𝑐𝜌2(𝑓(𝑥))𝑡𝜆𝑓 (1 + 𝑜(1)),
1
𝑐

𝜌2(𝑓(𝑥))𝑡Λ𝑓 (1 + 𝑜(1)) 6 𝜌1(𝑥)𝑡(1 + 𝑜(1)) 6 𝑐𝜌2(𝑓(𝑥))𝑡Λ𝑓 (1 + 𝑜(1)).

Letting 𝑡 tend to zero and dividing by 𝑡, we get
1
𝑐

𝜌2(𝑓(𝑥))𝜆𝑓 6 𝜌1(𝑥) 6 𝑐𝜌2(𝑓(𝑥))𝜆𝑓 ,

1
𝑐

𝜌2(𝑓(𝑥))Λ𝑓 6 𝜌1(𝑥) 6 𝑐𝜌2(𝑓(𝑥))Λ𝑓 .

So 1
𝑐 𝜌2(𝑓(𝑥))Λ𝑓 6 𝑐𝜌2(𝑓(𝑥))𝜆𝑓 , wherefrom Λ𝑓

𝜆𝑓
6 𝑐2. �

Note that the proof of previous theorem assumes only that 𝜌1 and 𝜌2 are
positive continous and that 𝑓 is 𝐶1. So in fact we have proved

Theorem 3.4. Suppose that 𝜌1, 𝜌2 are positive continuous metric densities
defined in R𝑛 domains 𝐷1 and 𝐷2 respectively, and 𝑓 : 𝐷1 → 𝐷2 is 𝐶1 bijection
which is bi-Lipschitz with respect metrics 𝑑𝜌1 and 𝑑𝜌2 . Then 𝑓 is a quasiconformal
mapping.
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