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A NEW THEOREM ON ABSOLUTE MATRIX
SUMMABILITY OF FOURIER SERIES

Şebnem Yildiz

Abstract. We generalize a main theorem dealing with absolute weighted
mean summability of Fourier series to the |𝐴, 𝑝𝑛|𝑘 summability factors of
Fourier series under weaker conditions. Also some new and known results
are obtained.

1. Introduction

Let
∑︀

𝑎𝑛 be a given infinite series with partial sums (𝑠𝑛). By 𝑢𝛼
𝑛 and 𝑡𝛼

𝑛 we
denote the nth Cesàro means of order 𝛼, with 𝛼 > −1, of the sequence (𝑠𝑛) and
(𝑛𝑎𝑛), respectively, that is (see [6])

𝑢𝛼
𝑛 = 1

𝐴𝛼
𝑛

𝑛∑︁
𝑣=0

𝐴𝛼−1
𝑛−𝑣𝑠𝑣 and 𝑡𝛼

𝑛 = 1
𝐴𝛼

𝑛

𝑛∑︁
𝑣=0

𝐴𝛼−1
𝑛−𝑣𝑣𝑎𝑣,

where

𝐴𝛼
𝑛 = (𝛼 + 1)(𝛼 + 2)...(𝛼 + 𝑛)

𝑛! = 𝑂(𝑛𝛼), 𝐴𝛼
−𝑛 = 0 for 𝑛 > 0.

The series
∑︀

𝑎𝑛 is said to be summable |𝐶, 𝛼|𝑘, 𝑘 > 1, if (see [8,10])
∞∑︁

𝑛=1
𝑛𝑘−1|𝑢𝛼

𝑛 − 𝑢𝛼
𝑛−1|𝑘 =

∞∑︁
𝑛=1

1
𝑛

|𝑡𝛼
𝑛|𝑘 < ∞.

If we take 𝛼 = 1, then |𝐶, 𝛼|𝑘 summability reduces to |𝐶, 1|𝑘 summability.
Let (𝑝𝑛) be a sequence of positive real numbers such that

𝑃𝑛 =
𝑛∑︁

𝑣=0
𝑝𝑣 → ∞ as 𝑛 → ∞, (𝑃−𝑖 = 𝑝−𝑖 = 0, 𝑖 > 1).
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The sequence-to-sequence transformation 𝑡𝑛 = 1
𝑃𝑛

∑︀𝑛
𝑣=0 𝑝𝑣𝑠𝑣 defines the sequence

(𝑡𝑛) of the Riesz mean or simply the (𝑁̄ , 𝑝𝑛) mean of the sequence (𝑠𝑛) generated
by the sequence of coefficients (𝑝𝑛) (see [9]).

The series
∑︀

𝑎𝑛 is said to be summable |𝑁̄ , 𝑝𝑛|𝑘, 𝑘 > 1, if (see [1])
∞∑︁

𝑛=1

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
|𝑡𝑛 − 𝑡𝑛−1|𝑘 < ∞.

In the special case when 𝑝𝑛 = 1 for all values of 𝑛 (resp. 𝑘 = 1), |𝑁̄ , 𝑝𝑛|𝑘 summa-
bility is the same as |𝐶, 1|𝑘 (resp. |𝑁̄ , 𝑝𝑛|) summability.

2. Known Results

The following theorems are dealing with |𝑁̄ , 𝑝𝑛|𝑘 summability factors of infinite
series.

Theorem 2.1. [2] Let (𝑝𝑛) be a sequence of positive numbers such that

(2.1) 𝑃𝑛 = 𝑂(𝑛𝑝𝑛) 𝑎𝑠 𝑛 → ∞.

Let (𝑋𝑛) be a positive monotonic nondecreasing sequence. If the sequences (𝑋𝑛),
(𝜆𝑛) and (𝑝𝑛) satisfy the conditions

𝜆𝑚𝑋𝑚 = 𝑂(1) as 𝑚 → ∞,(2.2)
𝑚∑︁

𝑛=1
𝑛𝑋𝑛|Δ2𝜆𝑛| = 𝑂(1) as 𝑚 → ∞,(2.3)

𝑚∑︁
𝑛=1

𝑝𝑛

𝑃𝑛
|𝑡𝑛|𝑘 = 𝑂(𝑋𝑚) as 𝑚 → ∞,(2.4)

then the series
∑︀

𝑎𝑛𝜆𝑛 is summable |𝑁̄ , 𝑝𝑛|𝑘, 𝑘 > 1.

Theorem 2.2. [4] Let (𝑋𝑛) be a positive monotonic nondecreasing sequence.
If the sequences (𝑋𝑛), (𝜆𝑛), and (𝑝𝑛) satisfy the conditions (2.1)–(2.3) and

(2.5)
𝑚∑︁

𝑛=1

𝑝𝑛

𝑃𝑛

|𝑡𝑛|𝑘

𝑋𝑘−1
𝑛

= 𝑂(𝑋𝑚) as 𝑚 → ∞,

then the series
∑︀

𝑎𝑛𝜆𝑛 is summable |𝑁̄ , 𝑝𝑛|𝑘, 𝑘 > 1.

Remark 2.1. It should be noted that condition (2.5) is reduced to the condition
(2.4), when 𝑘 = 1. When 𝑘 > 1, condition (2.5) is weaker than condition (2.4) but
the converse is not true (see [4] for details).

3. An application of absolute matrix summability to Fourier series

Let 𝐴 = (𝑎𝑛𝑣) be a normal matrix, i.e., a lower triangular matrix of nonzero
diagonal entries. Then 𝐴 defines the sequence-to-sequence transformation, mapping
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the sequence 𝑠 = (𝑠𝑛) to 𝐴𝑠 = (𝐴𝑛(𝑠)), where 𝐴𝑛(𝑠) =
∑︀𝑛

𝑣=0 𝑎𝑛𝑣𝑠𝑣, 𝑛 = 0, 1, . . .
The series

∑︀
𝑎𝑛 is said to be summable |𝐴|𝑘, 𝑘 > 1, if (see [13])

∞∑︁
𝑛=1

𝑛𝑘−1|Δ̄𝐴𝑛(𝑠)|𝑘 < ∞,

and it is said to be summable |𝐴, 𝑝𝑛|𝑘, 𝑘 > 1, if (see [12])
∞∑︁

𝑛=1

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
|Δ̄𝐴𝑛(𝑠)|𝑘 < ∞.

where Δ̄𝐴𝑛(𝑠) = 𝐴𝑛(𝑠) − 𝐴𝑛−1(𝑠).
If we take 𝑝𝑛 = 1 for all 𝑛, then |𝐴, 𝑝𝑛|𝑘 summability is the same as |𝐴|𝑘

summability. Also, if we take 𝑎𝑛𝑣 = 𝑝𝑣

𝑃𝑛
, then |𝐴, 𝑝𝑛|𝑘 summability is the same as

|𝑁̄ , 𝑝𝑛|𝑘 summability. For any sequence (𝜆𝑛) we write Δ2𝜆𝑛 = Δ𝜆𝑛 − Δ𝜆𝑛+1 and
Δ𝜆𝑛 = 𝜆𝑛 − 𝜆𝑛+1. A sequence (𝜆𝑛) is said to be of bounded variation, denoted by
(𝜆𝑛) ∈ ℬ𝒱, if

∑︀∞
𝑛=1 |Δ𝜆𝑛| < ∞. Let 𝑓(𝑡) be a periodic function with period 2𝜋,

and Lebesgue integrable over (−𝜋, 𝜋). Write

𝑓(𝑥) ∼ 1
2𝑎0 +

∞∑︁
𝑛=1

(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥) =
∞∑︁

𝑛=0
𝐶𝑛(𝑥),

𝜑(𝑡) = 1
2 [𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)], and 𝜑𝛼(𝑡) = 𝛼

𝑡𝛼

∫︀ 𝑡

0 (𝑡 − 𝑢)𝛼−1𝜑(𝑢) 𝑑𝑢 (𝛼 > 0).
It is well known that if 𝜑(𝑡) ∈ ℬ𝒱(0, 𝜋), then 𝑡𝑛(𝑥) = 𝑂(1), where 𝑡𝑛(𝑥) is the

(𝐶, 1) mean of the sequence (𝑛𝐶𝑛(𝑥)) (see [7]).
Many works have been done dealing with absolute summability factors of

Fourier series (see [3–5, 11]). Among them, in [4], Bor has proved the following
theorem dealing with the Fourier series.

Theorem 3.1. If 𝜑1(𝑡) ∈ ℬ𝒱(0, 𝜋), (𝑋𝑛) is a positive monotonic nondecreasing
sequence, the sequences (𝑝𝑛), (𝜆𝑛) satisfy conditions (2.1)–(2.3) and

𝑚∑︁
𝑛=1

𝑝𝑛

𝑃𝑛

|𝑡𝑛(𝑥)|𝑘

𝑋𝑘−1
𝑛

= 𝑂(𝑋𝑚) as 𝑚 → ∞,

then the series
∑︀

𝐶𝑛(𝑥)𝜆𝑛 is summable |𝑁̄ , 𝑝𝑛|𝑘, 𝑘 > 1.

If we take 𝑝𝑛 = 1 for all values of 𝑛, then we obtain a new result dealing with
|𝐶, 1|𝑘 summability factors of Fourier series.

4. Main Results

We generalize Theorem 3.1 for |𝐴, 𝑝𝑛|𝑘 summability factors of Fourier series.
Before stating the main theorem, we must first introduce some further notations.

With a normal matrix 𝐴 = (𝑎𝑛𝑣), we associate two lower semimatrices 𝐴 =
(𝑎̄𝑛𝑣) and 𝐴 = (𝑎̂𝑛𝑣) where 𝑎̄𝑛𝑣 =

∑︀𝑛
𝑖=𝑣 𝑎𝑛𝑖, 𝑛, 𝑣 = 0, 1, . . . and 𝑎̂00 = 𝑎̄00 = 𝑎00,
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𝑎̂𝑛𝑣 = 𝑎̄𝑛𝑣 − 𝑎̄𝑛−1,𝑣, 𝑛 = 1, 2, . . . We note that 𝐴 and 𝐴 are the well-known matrices
of series-to-sequence and series-to-series transformations, respectively. So, we have

(4.1) 𝐴𝑛(𝑠) =
𝑛∑︁

𝑣=0
𝑎𝑛𝑣𝑠𝑣 =

𝑛∑︁
𝑣=0

𝑎̄𝑛𝑣𝑎𝑣 and Δ̄𝐴𝑛(𝑠) =
𝑛∑︁

𝑣=0
𝑎̂𝑛𝑣𝑎𝑣.

Theorem 4.1. Let 𝑘 > 1 and 𝐴 = (𝑎𝑛𝑣) be a positive normal matrix such that

𝑎̄𝑛0 = 1, 𝑛 = 0, 1, . . . , 𝑎𝑛−1,𝑣 > 𝑎𝑛𝑣, for 𝑛 > 𝑣 + 1,

𝑎𝑛𝑛 = 𝑂
(︀
𝑝𝑛/𝑃𝑛

)︀
, 𝑎̂𝑛,𝑣+1 = 𝑂(𝑣|Δ𝑣(𝑎̂𝑛𝑣|).

If all the conditions of Theorem 3.1 are satisfied, then the series
∑︀

𝐶𝑛(𝑥)𝜆𝑛 is
summable |𝐴, 𝑝𝑛|𝑘, 𝑘 > 1.

If we take 𝑎𝑛𝑣 = 𝑝𝑣

𝑃𝑛
, then we get Theorem 3.1. We need the following lemma

for the proof of our theorem.

Lemma 4.1. [2] Under the conditions of Theorem 2.2 we have

𝑛𝑋𝑛|Δ𝜆𝑛| = 𝑂(1) as 𝑛 → ∞, and
∞∑︁

𝑛=1
𝑋𝑛|Δ𝜆𝑛| < ∞.

5. Proof of Theorem 4.1

Let (𝐼𝑛(𝑥)) denote the A-transform of the series
∑︀∞

𝑛=1 𝐶𝑛(𝑥)𝜆𝑛. Then, by
(4.1), we have Δ̄𝐼𝑛(𝑥) =

∑︀𝑛
𝑣=1 𝑎̂𝑛𝑣𝐶𝑣(𝑥)𝜆𝑣. Applying Abel’s transformation to

this sum, we get

Δ̄𝐼𝑛(𝑥) =
𝑛∑︁

𝑣=1
𝑎̂𝑛𝑣𝐶𝑣(𝑥)𝜆𝑣

𝑣

𝑣
=

𝑛−1∑︁
𝑣=1

Δ𝑣

(︁ 𝑎̂𝑛𝑣𝜆𝑣

𝑣

)︁ 𝑣∑︁
𝑟=1

𝑟𝐶𝑟(𝑥) + 𝑎̂𝑛𝑛𝜆𝑛

𝑛

𝑛∑︁
𝑟=1

𝑟𝐶𝑟(𝑥)

=
𝑛−1∑︁
𝑣=1

Δ𝑣

(︁ 𝑎̂𝑛𝑣𝜆𝑣

𝑣

)︁
(𝑣 + 1)𝑡𝑣(𝑥) + 𝑎̂𝑛𝑛𝜆𝑛

𝑛 + 1
𝑛

𝑡𝑛(𝑥)

=
𝑛−1∑︁
𝑣=1

Δ𝑣(𝑎̂𝑛𝑣)𝜆𝑣𝑡𝑣(𝑥)𝑣 + 1
𝑣

+
𝑛−1∑︁
𝑣=1

𝑎̂𝑛,𝑣+1Δ𝜆𝑣𝑡𝑣(𝑥)𝑣 + 1
𝑣

+
𝑛−1∑︁
𝑣=1

𝑎̂𝑛,𝑣+1𝜆𝑣+1
𝑡𝑣(𝑥)

𝑣
+ 𝑎𝑛𝑛𝜆𝑛𝑡𝑛(𝑥)𝑛 + 1

𝑛

= 𝐼𝑛,1(𝑥) + 𝐼𝑛,2(𝑥) + 𝐼𝑛,3(𝑥) + 𝐼𝑛,4(𝑥).

To complete the proof of Theorem 4.1, by Minkowski’s inequality, it is sufficient to
show that

∞∑︁
𝑛=1

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
|𝐼𝑛,𝑟(𝑥)|𝑘 < ∞, for 𝑟 = 1, 2, 3, 4.
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First, by applying Hölder’s inequality with indices 𝑘 and 𝑘′, where 𝑘 > 1 and
1
𝑘 + 1

𝑘′ = 1, we have

𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
|𝐼𝑛,1(𝑥)|𝑘 6

𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
{︂ 𝑛−1∑︁

𝑣=1
|𝑣 + 1

𝑣
||Δ𝑣(𝑎̂𝑛𝑣)||𝜆𝑣||𝑡𝑣(𝑥)|

}︂𝑘

= 𝑂(1)
𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1 𝑛−1∑︁
𝑣=1

|Δ𝑣(𝑎̂𝑛𝑣)||𝜆𝑣|𝑘|𝑡𝑣(𝑥)|𝑘

×
{︂ 𝑛−1∑︁

𝑣=1
|Δ𝑣(𝑎̂𝑛𝑣)|

}︂𝑘−1

= 𝑂(1)
𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
𝑎𝑘−1

𝑛𝑛

{︂ 𝑛−1∑︁
𝑣=1

|Δ𝑣(𝑎̂𝑛𝑣)||𝜆𝑣|𝑘|𝑡𝑣(𝑥)|𝑘
}︂

= 𝑂(1)
𝑚∑︁

𝑣=1
|𝜆𝑣|𝑘−1|𝜆𝑣||𝑡𝑣(𝑥)|𝑘

𝑚+1∑︁
𝑛=𝑣+1

|Δ𝑣(𝑎̂𝑛𝑣)|

= 𝑂(1)
𝑚∑︁

𝑣=1

1
𝑋𝑘−1

𝑣

|𝜆𝑣||𝑡𝑣(𝑥)|𝑘 𝑝𝑣

𝑃𝑣

= 𝑂(1)
𝑚−1∑︁
𝑣=1

Δ|𝜆𝑣|
𝑣∑︁

𝑟=1

𝑝𝑟

𝑃𝑟

|𝑡𝑟(𝑥)|𝑘

𝑋𝑘−1
𝑟

+ 𝑂(1)|𝜆𝑚|
𝑚∑︁

𝑣=1

𝑝𝑣

𝑃𝑣

|𝑡𝑣(𝑥)|𝑘

𝑋𝑘−1
𝑣

= 𝑂(1)
𝑚−1∑︁
𝑣=1

|Δ𝜆𝑣|𝑋𝑣 + 𝑂(1)|𝜆𝑚|𝑋𝑚 = 𝑂(1) as 𝑚 → ∞,

by virtue of the hypotheses of Theorem 4.1 and Lemma 4.1. Now, using Hölder’s
inequality we have

𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
|𝐼𝑛,2(𝑥)|𝑘 6

𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
{︂ 𝑛−1∑︁

𝑣=1
|𝑣 + 1

𝑣
||𝑎̂𝑛,𝑣+1||Δ𝜆𝑣||𝑡𝑣(𝑥)|

}︂𝑘

= 𝑂(1)
𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
{︂ 𝑛−1∑︁

𝑣=1
|𝑎̂𝑛,𝑣+1||Δ𝜆𝑣||𝑡𝑣(𝑥)|

}︂𝑘

= 𝑂(1)
𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1 𝑛−1∑︁
𝑣=1

(𝑣|Δ𝜆𝑣|)𝑘|Δ𝑣(𝑎̂𝑛𝑣)||𝑡𝑣(𝑥)|𝑘

×
{︂ 𝑛−1∑︁

𝑣=1
|Δ𝑣(𝑎̂𝑛𝑣)|

}︂𝑘−1

= 𝑂(1)
𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
𝑎𝑘−1

𝑛𝑛

𝑛−1∑︁
𝑣=1

(𝑣|Δ𝜆𝑣|)𝑘|Δ𝑣(𝑎̂𝑛𝑣)||𝑡𝑣(𝑥)|𝑘

= 𝑂(1)
𝑚∑︁

𝑣=1
(𝑣|Δ𝜆𝑣|)𝑘−1(𝑣|Δ𝜆𝑣|)|𝑡𝑣(𝑥)|𝑘

𝑚+1∑︁
𝑛=𝑣+1

|Δ𝑣(𝑎̂𝑛𝑣)|
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= 𝑂(1)
𝑚∑︁

𝑣=1

𝑝𝑣

𝑃𝑣

1
𝑋𝑘−1

𝑣

|𝑡𝑣(𝑥)|𝑘(𝑣|Δ𝜆𝑣|)

= 𝑂(1)
𝑚−1∑︁
𝑣=1

Δ(𝑣|Δ𝜆𝑣|)
𝑣∑︁

𝑟=1

𝑝𝑟

𝑃𝑟

1
𝑋𝑘−1

𝑟

|𝑡𝑟(𝑥)|𝑘

+ 𝑂(1)𝑚|Δ𝜆𝑚|
𝑚∑︁

𝑣=1

𝑝𝑣

𝑃𝑣

1
𝑋𝑘−1

𝑣

|𝑡𝑣(𝑥)|𝑘

= 𝑂(1)
𝑚−1∑︁
𝑣=1

|Δ(𝑣|Δ𝜆𝑣|)|𝑋𝑣 + 𝑂(1)𝑚|Δ𝜆𝑚|𝑋𝑚

= 𝑂(1)
𝑚−1∑︁
𝑣=1

𝑣𝑋𝑣|Δ2𝜆𝑣| + 𝑂(1)
𝑚−1∑︁
𝑣=1

𝑋𝑣|Δ𝜆𝑣| + 𝑂(1)𝑚|Δ𝜆𝑚|𝑋𝑚 = 𝑂(1)

as 𝑚 → ∞, by virtue of the hypotheses of Theorem 4.1 and Lemma 4.1. Again, we
have that

𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
|𝐼𝑛,3(𝑥)|𝑘 =

𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
⃒⃒⃒⃒ 𝑛−1∑︁

𝑣=1
𝑎̂𝑛,𝑣+1𝜆𝑣+1

𝑡𝑣(𝑥)
𝑣

⃒⃒⃒⃒𝑘

6
𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
{︂ 𝑛−1∑︁

𝑣=1
|𝑎̂𝑛,𝑣+1||𝜆𝑣+1| |𝑡𝑣(𝑥)|

𝑣

}︂𝑘

= 𝑂(1)
𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
{︂ 𝑛−1∑︁

𝑣=1
|Δ𝑣(𝑎̂𝑛𝑣)||𝜆𝑣+1||𝑡𝑣(𝑥)|

}︂𝑘

= 𝑂(1)
𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1 𝑛−1∑︁
𝑣=1

|Δ𝑣(𝑎̂𝑛𝑣)||𝜆𝑣+1|𝑘|𝑡𝑣(𝑥)|𝑘

×
{︂ 𝑛−1∑︁

𝑣=1
|Δ𝑣(𝑎̂𝑛𝑣)|

}︂𝑘−1

= 𝑂(1)
𝑚+1∑︁
𝑛=2

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
𝑎𝑘−1

𝑛𝑛

𝑛−1∑︁
𝑣=1

|Δ𝑣(𝑎̂𝑛𝑣)||𝜆𝑣+1|𝑘|𝑡𝑣(𝑥)|𝑘

= 𝑂(1)
𝑚∑︁

𝑣=1
|𝜆𝑣+1|𝑘|𝑡𝑣(𝑥)|𝑘

𝑚+1∑︁
𝑛=𝑣+1

|Δ𝑣(𝑎̂𝑛𝑣)|

= 𝑂(1)
𝑚∑︁

𝑣=1

𝑝𝑣

𝑃𝑣
|𝑡𝑣(𝑥)|𝑘|𝜆𝑣+1|𝑘−1|𝜆𝑣+1|

= 𝑂(1)
𝑚∑︁

𝑣=1

1
𝑋𝑘−1

𝑣

|𝜆𝑣+1||𝑡𝑣(𝑥)|𝑘 𝑝𝑣

𝑃𝑣
= 𝑂(1) as 𝑚 → ∞,
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by virtue of the hypotheses of Theorem 4.1 and Lemma 4.1. Finally, as in 𝑇𝑛,1, we
have that

𝑚∑︁
𝑛=1

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
|𝐼𝑛,4(𝑥)|𝑘 = 𝑂(1)

𝑚∑︁
𝑛=1

(︁𝑃𝑛

𝑝𝑛

)︁𝑘−1
𝑎𝑘

𝑛𝑛|𝜆𝑛|𝑘|𝑡𝑛(𝑥)|𝑘

= 𝑂(1)
𝑚∑︁

𝑛=1

𝑝𝑛

𝑃𝑛
|𝜆𝑛|𝑘−1|𝜆𝑛||𝑡𝑛(𝑥)|𝑘

= 𝑂(1)
𝑚∑︁

𝑛=1

1
𝑋𝑘−1

𝑛

|𝜆𝑛||𝑡𝑛(𝑥)|𝑘 𝑝𝑛

𝑃𝑛
= 𝑂(1) as 𝑚 → ∞,

by virtue of hypotheses of the Theorem 4.1 and Lemma 4.1. This completes the
proof of Theorem 4.1.

If we take 𝑎𝑛𝑣 = 𝑝𝑣

𝑃𝑛
in Theorem 4.1, then we get Theorem 3.1 and if we take

𝑝𝑛 = 1 for all values of 𝑛 in Theorem 4.1, then we get a new result dealing with the
|𝐴|𝑘 summability method. Also, if we take 𝑎𝑛𝑣 = 𝑝𝑣

𝑃𝑛
and 𝑝𝑛 = 1 for all values of 𝑛

in Theorem 4.1, then we get a result concerning the |𝐶, 1|𝑘 summability methods.
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