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TRANSFORMS FOR MINIMAL SURFACES
IN 5-DIMENSIONAL SPACE FORMS

Makoto Sakaki

ABSTRACT. For a minimal surface in a 5-dimensional space form, we give
transforms to get another minimal surface in another 5-or 4-dimensional space
form.

1. Introduction

For a minimal surface in the 3-sphere S3, the unit normal vector field, that is,
the Gauss map gives another minimal surface in S® possibly with singularities (cf.
[5]). Tt is generalized by Bolton, Pedit and Woodward [2] for superconformal mini-
mal surfaces in odd-dimensional spheres. On the other hand, Bolton and Vrancken
[3] discovered new transforms from a minimal surface with non-circular ellipse of
curvature in the 5-sphere S°, to another minimal surface in S°, which are called
(£)transforms (see also [1l, 4]).

In this paper, generalizing them, we give transforms from a minimal surface in a
5-dimensional space form, to another minimal surface in another 5-or 4-dimensional
space form.

Let N™(c) be the n-dimensional Riemannian space form of constant curvature
¢, where ¢ is either 1, 0 or —1. In particular, let N*(1) = S™, N*(0) = R"
and N*(—1) = H™. Let R} be the (n + 1)-dimensional Minkowski space with

standard coordinate system (z1,- -+ ,Zpn,Zn41) of signature (+,--- ,+, —). Then
H" = {(z1,  &p, @) € RYTH [ 4o b af —af g = —1),
and
S{L = {(xlv"' 7xmzn+1) € R;L—H ‘x%+"’+xifxi+l - 1}7

where ST is the n-dimensional de Sitter space.

Let f: M — N®(c) be an immersion of a 2-dimensional manifold M into N°(c).
We denote by h the second fundamental form of f. The first normal space Ti-(z)
at © € M is defined by

T (z) = {h(X,Y) | X,Y € T, M}.
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The ellipse of curvature F(x) at € M is defined by
E(z) = {h(X,X) | X € T,M, |X| = 1}.

We assume that f: M — N°(c) is a minimal immersion. Suppose that the
ellipse of curvature is non-degenerate at any point. Then the dimension of the first
normal space is 2 at any point. Let e5 be the unit normal vector to f(M) which
is orthogonal to the first normal space. Then we can regard G = e5 as a map to
either S°, S* or S?, according to when ¢ = 1,0 or —1. It is the Gauss-like map.

THEOREM 1.1. Let f: M — N®(c) be a minimal surface. Suppose that the
ellipse of curvature is a non-degenerate circle at any point. If the Gauss-like map
G is non-degenerate, then it gives a minimal surface in either S°, S* or S}.

REMARK 1.1. The case ¢ =1 can be seen in [2].

Next we consider the case where the ellipse of curvature is not a circle. For
a minimal surface f: M — N5(c), suppose that the ellipse of curvature is non-
degenerate and non-circular at any point. Let a and b be the semi-minor and semi-
major axes of the ellipse of curvature, respectively. We choose the local normal
orthonormal frame field {e, }3<a<s5 so that es is in the direction of the semi-minor
axis and e4 is in the direction of the semi-major axis. Now, for e = +1 or —1, let

ff=ey/1— <%)2e4 + %65.

Then f€ is a map to either S°, S* or S?, according to when ¢ = 1,0 or —1.

THEOREM 1.2. Let f: M — N®(c) be a minimal surface. Suppose that the
ellipse of curvature is non-degenerate and non-circular at any point. Then f€ gives
a minimal surface in either S°, S* or S}.

REMARK 1.2. It is a generalization of [3] for S°.

2. Preliminaries

In this section, we recall the method of moving frames for surfaces in 5-
dimensional space forms. We shall use the following convention on the ranges
of indices:

1<AB,...<5 1<ij,...<2 3<apB...<5.
Let {e4} be a local orthonormal frame field in N°(c), and {w”} be the dual

coframe field. Let ws denote the connection forms which satisfy wi = —wf. The
structure equations are given by
(2.1) dw? = —Zwé/\w‘g7
B
1
dwg = — Zwé Aw§ + 3 ZR%CDwC AP, R, =c(0805D — 09dBc).
c C,D

Let f: M — N5(c) be a surface in N°(¢). When ¢ =1, f is an R%-valued map
with (f, f) = 1. When ¢ = —1, f is an Rf-valued map with (f, f) = —1.
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We choose the frame {e4} so that {e;} are tangent to f(M). In the following,
the argument will be restricted to f(M). Then w® = 0 along f(M), and by (2.1)),

we have
0=- Z w Aw.
i
So there exists a symmetric tensor {hg;} so that
w = Z hf‘jwj ,
J

where hf; are the components of the second fundamental form % of f.
In the ambient R%(D S%), R® or R$(D H®), according to when ¢ = 1,0 or —1,

we have
de; = g ew; + g eaw; — cfuw’,
[ «

deg = Z eiwé + Z CaWy-
[ «

The mean curvature vector H of f is given by

1 [e3 «@
H = B Z( 11+ h3s)ea.

[e3

and

We say that f is minimal if H = 0 identically.

3. Proof of Theorem 1.1

PRrROOF. Since the ellipse of curvature is a non-degenerate circle at any point,
we can choose the local orthonormal frame field {e4} so that

o= (5 %) w=(00) en=() o)

where a > 0. Then

Wi =aw!, wi=-—aw?, wi=aw?, wy=aw', Wwi=w)=0.

We compute that
0 =dw} = —wi Aw? — Wi Aw! = alw! Aw§ —wi Aw?)
and
0=dw = —wi ANwd —wi Awj = a(w Aw? +w! Aw)).
Then, using the notation like

w3 = (Wh)1w" + (Wi)aw?,  wf = (wi)iw' + (Wf)aw?,

we have
(W32 — (W1 =0, (W + (wh)2 = 0.
So we can write
Wi =pw' +qu?, Wi = qw' —pw?

for some functions p and gq.
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For the Gauss-like map G = e5, we have
dG(e1) = des(e1) = (w3)1 e3 + (w5)1 ea = —pes — qea,
dG(es) = des(ea) = (wi)2 €3+ (w3)2 €4 = —qes + pea,
and
(dG(e1),dG(e1)) = (dG(ez),dG(ez)) = p* +¢*, (dG(e1),dG(es)) = 0.

Assume that G is non-degenerate in the following. Then p? + ¢? > 0, and G is
conformal to f.
Now we have

dG = —ez(pw! + qw?) — es(quw' — pw?).
Let * denote the Hodge star operator so that *w! = w? and *w? = —w'. Then
#dG = e3(qu' — pw?) — es(pw’ + qw?) = e3w — eqws.
We can compute that
d(*dG) = —2(p* + ¢*)esw' N w?.

Denoting the Laplacian by A, we get AG = —2(p? + ¢*)G. So the Gauss-like map
G is a conformal harmonic map to either S°, S* or S?, according to when ¢ = 1,0
or —1. Thus G gives a minimal surface in either S°, S* or S}. O

4. Proof of Theorem 1.2

PROOF. Since the ellipse of curvature is non-degenerate and non-circular at
any point, we can choose the local orthonormal frame field {e4} so that

=5 o) an=(0 o). en-() o).

where 0 < a < b. We note that a and b are the semi-minor and semi-major axes of
the ellipse of curvature, respectively. Then we have
Wi =aw', Wi=-aw? wi=b? wi=bw', w)=wi=0.
We compute that
dw? = da Aw' — awi Aw? = —w3 Aw? — Wi Awt = awl Aw? — bwi AW
Using the notation like
wy = (Wa)1w' + (W3)aw?, Wi = (Wiw' + (wi)aw?,

da = ayjw' + a2w2, db = byw! + bng,

we have
2a(w%)1 — b(wi’)l = —as.
Similarly, from dw3, dw} and dws,
2a(w%)2 - b(wi’)g =aq, 2b(w%)2 — a(wi)g = by, 2b(w§)1 — a(wi’)l = —by.
Thus we get

2aws — bwi = xda, 2bwj — aw; = *db,
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" (sdb) — bleda) ___sdlafb)

1 a(*db) — b(xda *d(a/b
1_ 2 _ 2 3_ —
WQ—Z(*dlog(b —a%)), wy= Epy =TT @)
Next we compute that

0=dw} = —wi ANwd —w) Aw! = aw' Aw] — bwj A w?

and
0 =dwl = —w5 Awd —w) Awj = awd A w? + bw Awj.

Then we can write
w§ = b(pw' + qw?), W = a(qw' — pw?)

for some functions p and q.
From dwj = —w? Aw] — w3 Aw? — w? Awf, we obtain

Afa/b)  2(a/b)ld(a/b)]”
4 TTo@? T (- (afbpp
Set r = a/b. Then f¢ =ey/1 — r2e4 + res. We can compute that

df¢(er) f—eb\/lfr262+(\/7r ap)

1
— (e +a)re —ey1—r2e5),
( Tz ta)lren—ev 5)

ab(2 — p* — ¢*).

and
dff(e) = —ebv/1—1r2e ( +a)e
f 2 1— m q)es
T2 )
— (e —ap)(res —ev'1—12e;5
( 2 D 4
Set

r
+ aq, B:572—ap.

A:
i i

-
V1—r2
Then we have

(df(e1),df*(er)) = (df*(e2),df* (e2)) = b* — a® + A® + B*(> 0)
|dr|? 2ea(qry — pra)
Y
and (df¢(e1),df¢(e2)) = 0. So f¢ is conformal to f.

Now we have

If¢ = — ebyv/1 — r2(eqw' + e1w?) — ces(xd(sin ' 7)) — aes(pw' + qw?)
+eeqd(V1 —12) +esdr — ares(qu' — pw?) + ca/1 — r2es(quw’ — pw?),

=¥ - @20+ ),

and
sdf® = ey/1 - r2(e1w3 — eaw?) + eesd(sin ' 7) + ezw]

+eeqg(xd(V/ 1 —72)) + e5(xdr) — r?eqw] +ery/1 — r2esws.



246 SAKAKI

We need to compute d(xdf¢) to get Afc. We note that

rAr |dr|?
A(\/ 1—’[“2) = —m - (1 —7”2)3/27

and by (4.1)),
B 2r|dr|?

1—r2"
By a little long but straight computation, we can show that

+a*(p* + qz))ff-

Ar = ab(p® +¢* - 2)(1 —1?)

|dr|? 2ea(qry — pra)
1—r2 V1—r?

Hence, the map f€ is a conformal harmonic map to either S, $* or S}, according
to when ¢ = 1,0 or —1. Thus f€ gives a minimal surface in either S, S* or S7. O

AfE = 72(b2 —a’+
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