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RELATIONS BETWEEN KERNELS AND IMAGES OF
REDUCED POWERS FOR SOME RIGHT A,-MODULES

Theodore Popelensky

ABSTRACT. We investigate the right action of the mod p Steenrod algebra
Ap on the homology H.(L"%,Zp) where L = BZ, is the lens space. Following
ideas of Ault and Singer we investigate the relation between intersection of ker-
nels of the reduced powers PP" and Bockstein element /3 and the intersection of
images of PP =1 and of B. Namely one can check that ﬂf:o impr' -1
ﬂf:() ker PP" and ﬂf:() impPr -1 imfg C mf:() ker PP° N ker 8. We gen-
eralize Ault’s homotopy systems to p > 2 and examine when the reverse in-
clusions are true.

Introduction

Two natural questions arise when the action of the Steenrod algebra A, on
the cohomology H*(X,Z,) of a space X is considered. One is to describe the
annihilating ideal Ix C A, which is defined as Ix = {¢ € A, | p(H*(X,Z,)) = 0}.
The problem appeared to be difficult even for p = 2 and X = RP*, see [1].

The second question is to describe a minimal generating set of the A,-module
H*(X,Z,) and the set of elements of the form ¢z, where ¢ € Ay, deg¢ > 0,
x € H*(X,Z,) (or the space spanned by such elements, this is the so called hit
problem).

This question is far from being solved even for X = Hle RP>°, though cases
k < 4 are completely described in the papers [4, [5, [6], [7]

In this note we address the problem which is dual to the second question.
Consider the conjugate action of the Steenrod algebra A, on the Z,-homology of a
space X. We say that z € H.(X,Z,) is P-annihilated iff ztP™ = 0 for all m > 0 and
BP-annihilated iff x is P-annihilated and 8 = 0. The problem is to describe the
subspace of all P-anihilated or fP-annihilated elements. Following ideas of Ault
and Singer [2], [3], we study subspaces of partially annihilated elements (A (k)
and A?M(k), see below). It appears that there is a structure (homotopy system,
see Definitions 1] and [Z2)) which relates these spaces with the spaces of so called
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spike images (I (k) and I]@ (k), see below). The main results are Theorem 2T and
Corollary 21l Also we show that such homotopy systems exist for A (see Section
and Theorem [£.T]). Here Ais a bigraded space which is given by (2], see below.
Throughout the paper all the (co)homologies are considered with Z, coeffi-
cients.
The author is grateful to the referees for careful reading of the manuscript and
for finding inconsistencies in the preliminary version of it.

1. Lens space and the A,-module A.

Denote by L the classifying space BZ,. The cohomology ring structure is
described by the isomorphism H*(L) = Z,[z] ® Az,(y), where degz = 2 and
degy = 1. The action of the Steenrod algebra A, on H*(L) is given by the
following relations:

Prgm = (C:)zk(p_mm, Ba™ =0,
Prz™y = (Z)xk(p_l)mya Ba™y =™t

There is the conjugate right action of the algebra A, on the reduced homology
of L. Denote by [a], a > 1, the generator of Ha,(L) and by [a], a > 0, the generator
of Haq+1(L). The action of A, on these elements is described by the formulas:

pk _ (af(pk; 1)k)[a7(p—1)k], ] = [a 1),
-y a—(p—1)k —
0] P" = ( k )[a— (p— 1Dk, [a]B=0.

Here we write a homomorphism to the right from its argument.
Consider the bigraded algebra A = {A. .} which is defined by

Ly, ifn=k=0;
(1.2) Moy = { Hy (LM, Z,), ifn>1;
0, othervise.

This algebra is a very natural module on which the right action of A, should be
studied.

2. Homotopy system

For a right A,-module M define the following subspaces:
Anr(k) = () ker PV, In(k) = (im PP 1,
i=0 i=0
AR (k) = Apr(k) Nker 8, I5,(k) = In(k) Nim .

The subspaces Aps(k) and A@(k) are subspaces of partially annihilated ele-
ments. The subspaces I (k) and T ]@ (k) are subspaces of simultaneous spike images.
For M = A, denote these modules by A(k), AP(k), I(k), I?(k).



RELATION BETWEEN KERNELS AND IMAGES OF REDUCED POWERS 193

LEMMA 2.1. For an Ap-module M and k > 0 one has Ip (k) C Ap(k) and
17 (k) € A% (k).

REMARK 2.1. Generally In(k) ¢ A5 (k).

PrROOF. The statements easily follow from the relations prm T =1pr™ — 0 and
BB = 0. The last one is a particular case of the general relation PP™~1P™ = 0. To
check it, note that the Adem relation applies to PP™—1P™:

m—1 .
ppm—1pm _ Z (71)pm71+j((p - 1)(m *‘7) -1
= pm—1-—pj

)P(PJrl)m*l*jpj.

The inequality (p — 1)(m — j) — 1 < pm — 1 — pj follows easily from the restriction
7 < m — 1. Hence all the binomial coefficients in the last sum vanish. (I

In some cases one can prove the reverse inclusions Ay (k) C In(k) and A5, (k)
cl 5I(k) Now we describe an algebraic structure which is responsible for these
inclusions.

DEFINITION 2.1. For a right A,-module M define a k-th order homotopy system
to be a null space N C M and a collection of Z,-homomorphisms Q, : M — M
for 0 < m < k such that

(i) Qm(N) C N for 0 < m < k;
(ii) for 1 < m < k and | < p™ the following diagram comutes

NP

QWL l lQm
Pl

N——M
(i) (2)(PP" Qm — QmPP") = x for any z € N.

DEFINITION 2.2. For a right A,-module M define a k-th order 3-homotopy
system to be a k-th order homotopy system {Q,,} with null space N C M, which
is equipped with a Zp-homomorphism o : M — M such that

(iv) @(N) C N and for any = € N one has zaf + zfa = x.

For a nonnegative integer s, denote by 0 < d;(s) < p the coefficients of the
expansion s = Y. d;(s)p’ in the base p. Recall Lucas’s theorem which states that
for any nonnegative integers = and y one has

A d;(x)
() =TI(LE) mots
LEMMA 2.2. For1 <a<p—1 one has

(UNS 1\ a n—1,4 g a(P4pl g pn—1 n
(PP )*(PP ). .. (PP" )%(PP")® = PP +p Fp"4p")

for some nonzero c € Zy.
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PRrROOF. First of all we show that for any a such that 1 < a < p — 1 one has
(P1)® = ¢P® for some nonzero ¢ € Z,. For a = 1 the statement is trivial. Assume
the statement is true for a = b, where b < p—1. Then (P!)*+! = (P1)P P! = PP,
where ¢ # 0. Apply the Adem relation to PP?:

Pbpl — (71)b(p;2)Pb<‘rl7

hence (P1)**! = ¢(—1)°(?;%) P**L. One easily checks that the binomial coefficient
(pEQ) is nonzero in Z,.

Now we proceed by induction to prove that for any integers a and b such that
1<a<p-—1and0<b<aonehas

pa@’+pt o tp™)+op™ T pp™ T pa(p®+pt 4 4p™ )+ (04 1)p™

for some nonzero d € Z,,.
Denote a(p® + pt + -+ +p™) + bp™*! by N. Apply the Adem relation to the

m-+1

product PV PP

(N/p] m
pNprtt Z (71)N+t<(p D"t —t) - 1)PN+pm+1—tPt.
o N —pt

The coefficient for ¢ = 0, by Lucas’s theorem, is equal to (fl)N(pEQ) (”;l)mJrl and
hence is not zero.

It is left to prove that for ¢ > 0, the binomial coefficient vanishes. To apply
Lucas’s theorem, it is enough to find j such that d;((p — 1)(p™*! —¢) — 1) <
d;(N —pt). Fix 0 < ¢t < [N/p]. For simplicity let a; = d;(t). Choose the smallest
j such that a; # 0.

Case 1. If 1 < a; < a then d;(N—pt) = a while d;((p—1)(p™ Tt —t)—1) = a;—1.
But a; -1 <a.

Case 2. If aj41 > a; > a then djy1(N — pt) = p+ a — a;, while dj+1((p —
(™t —t) — 1) = aj41 — a;. Note that aj11 —a; <p+a—aj.

Case 3. Assume for some k one has agx11 > ar > a and ap < ap—1 < -+
ajro < aji1 < aj. Then dyi1 (N —pt) =p—1+a—a, and de1 ((p — 1)(pm T —
t)—1)=—-14ags1 —ag. Note that p— 1+ a —ap > =1+ ax+1 — ax.

Case 4. Assume for some k one has arp+1 < a < ap < ag—1 < -+ < Gj42
aji1 < a;. Then dp1 (N —pt) =p—1+a—ay and di1((p— 1) (p™T =) — 1)
p—1+4+agy1 —ag. Notethat p—1+a—ar >p—1+ agy1 — ak.

N

oA

THEOREM 2.1. Suppose that for a right A,-module M there exists a k-th order
homotopy system {Q.,} with a null space N. Then Ap(k) "N = Ip(kE) N N.

Moreover, if v € Ap(K)NN theny = zQP QP ... QY™ satisfies yPP" 1l = o
for some nonzero c € Zy.

PROOF. Denote for simplicity PP by P,,. Using standard technique for cal-
culations with commutators involving creation-annihilation operators we prove for
7=0,...,m—1 that

—1,p—1 —15p—1 —1,p—1 -1
2R IQI QYT PP = R QN L QY
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The relation
2Qn P =

is proved in the same way. Denote fon_len__ll e Qé’;ll by W. Since all Q,,’s left
the subspace N invariant and P; commutes with Qp,, ..., Q;+1 on the subspace NV
one has WP; = 0. Note that

Q. F1= 3. FQLER.
s+t=n—1
Apply this relation, for n = p — 1, to the product W (Q;)P~'(P;)"~*:
1 yp—1 —1 ,p—1 s -1
WQiT Py =WPTQUT + Z WPrQY , Pj|P;.
s+t=p—2

On the right-hand side, all the summands vanish except W[QY - P;]P} 2. Now
use the equality

@ Pl= Y. @@ Pe;
s+t=p—2
and rewrite the product W[Q?il, PJ‘]PJP*2 as
WL PP = Y WQslQ;, PQLPI .

s+t=p—2

Since WQj3 € N, one has WQ3[Q;, Pj] = —WQj3. Finally,

WQE L PIPI? = Y —WQQIPIT? = —(p—)WQL PP,

s+t=p—2
Proceeding in the same way, we obtain the equality
WQPTPIT = (1P (p— 1)IW = —W.

Here we use simple part of the Wilson theorem which states that for a prime p one
has (p— 1)!'+1=0 mod p.

m+1_q

By Lemma [22] P? = dPP~' ... P21 for some nonzero d € Z,. Then

yPP" U = daQrtt . QY TrQETiprTiprTt ot
= —dzQP7t... QPP ppt

== (C)MaQy Py = (<) 0

COROLLARY 2.1. Suppose that for a right Ap,-module M there exists a k-th
order B-homotopy system {Qm} with a null space N and o Z,-homomorphism c.
Then A%, (k)N N = I5,(k)yN N. Moreover, if x € A%, (k)N N, then y = za belongs
to N and satisfies yp3 = x.

PrOOF. From zfa + zaf = = and = € ker § it follows that y8 = zaf = =x.
From Definition one has y € N. O
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3. Shift maps in the homology
of the smash-product power of the lens space

In this section we consider examples of homotopy systems for certain A,-
modules. The reduced homology of L% is a vector space with the basis which
consists of the elements [ug, ..., u,] of degree Y degu;, where every u; is a, a > 1,
or 4, a > 0, and dega = 2a, degad = 2a + 1. Now we describe homotopy systems
which appear naturally for H,(L"*).

Define the shift map W! : ]\s,* — /~\51*+l by formulas [u1,...,u, ..., us) ¥l =
[u1,...,u;+l, ..., us]. Here u;+I denotes a;+! if u; = a; and m ifu; = a;. Also
define [u1,...,a;, ..., us|a; =0 and [u1,..., a4, ..., us); = [ug,...,a; +1,... ug].
Clearly (09" )k = wkr™,

Hereinafter for s = 1 we denote U! = ¥} and o = o;.

LEMMA 3.1. We have

(a) [a]U*P™ P™ = [a]P"U*" fora > (p—1)n, p™ >n, 1<k<p—1;
(b) [a]¥*?™ P = [a|PPT**" fora > (p—1)n, p™ >n, 1<k<p—1;
() [a]T**" B = [a] U™ £ 0;

(d) [a]¥*r" g =0 = [a] pwkr" .

PROOF. By formulas (], one has

[a]WFP" P = (‘H w ; - 1)n) [a+kp™ = (p— 1)n],
[a]P”\IIkpm = (a B (pn_ 1)n) [a+ kp™ — (p — 1)n].

Two binomial coefficients coincide under the assumptions of Lemma. Other state-
ments are proved in the same way. Il

LEMMA 3.2. We have

(a) [a) PP" @P=DP™ _ [q]wP=1P" pP™ = (4] for m >0 and a > (p — 1)p™;
(b) [a]PP" wE=1r™ _ () P=1pr" pr™ — (4] for m =0 and a > (p — 1)p™;
(c) [a]aB + [a]fa = [a] for a > 1;

(d) [a]ap + [a]pa = [a] for a > 0.

PRrROOF. By straightforward computation, one can get

[a] PP @ P= 1P — (a — (- 1)pm) [a], [a]®®P~DP" pP" — (
pm

Assume a = > bpp*, where 0 < by < p. If b, = p — 1 then (pa = p—1 and

(7O = 0.1 by < p— 1 then () = by and (7EDP") = by, 4 1. The

proof of (b) is similar, and the statements (b) and (c) are clear. O

LEMMA 3.3. Assume x = [uq,...,us|, where each u; is a; or a;. If p™ > n
a; 2 (p—1n, 1 <k <p—1, then one has z\Ilfp P = xP"\Ilfp .
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Proor. Without loss of generality one can assume ¢ = 1. The case s = 1 was
considered in Lemma BT} so assume s > 1. Let y = [ua,...,us]. Then 2 = [u1] x ¥,
and by Lemma 1] one has

(] x y) POy = Z([uﬂpl x yP ) uy
1
_ Z kdegy ZL'PI\I/ ~ ypnfl) _ Z(*l)kdEgy([ul]\Iﬂfmel x ypnfl)
1
= (=DM ([ U x )P = 2y P
Here we have used the standard sign convention. O

LEMMA 3.4. Assume x = [u1,...,us], where each u; is a; or a;. If a; >
(p— 1)p™, then aPP" G P~HP" _ pg PP pp™ — 4

PROOF. Again one can consider only ¢ = 1. For s = 1 the statement coincides
with Lemma 32 so assume s > 1. Let y = [ug,...,us]; then 2 = [uq] x y. By
Lemma BT} one has

(31)  (lw] x y)PPwyr"
pm—1
= D (] P xy P T () P w
=0
pm—1
= 3" (] PP sy PP (g | PP WP sy,
=0

(32)  (fua] x y)wP— P pr”

m

p—1
= D (WP sy PP (WP ).
1=0
Take the difference of (3] and (BZ) and note that the sums on the right-hand
sides cancel by Lemma Bl The difference of the last summands in (3.I) and (3.2)

is equal to z by Lemma O

LEMMA 3.5. Let x = [u1,...,us|. Then xBa; + xa; 8 = x.

PROOF. Again one can consider only ¢ = 1. For s = 1 the statement coincides
with Lemma B2(b,c), so assume s > 1. Let y = [ug,...,us]. Then x = [u1] x y,
and by Lemma BT one has
(3.3) ([ur] x y)Bar = ((=1)*B¥[ur]B x y + [ua] x yBen

= [u1]Boq x y 4 (—1)9°8¥P[u1]ayg x ypB.
(34) ([wa] x y)arf = (=1)%¥ ([wi]ar x y)B

= [ur]oa B x y + (—1)%°8¥[us]on x yB.



198 POPELENSKY

Summing 3] and 4], we obtain

(#)Ben + (z)arf = [wr]far Xy + [ur]en f x y = ([m]fon + [ur]aa f) x y
which by Lemma B2(b,c) is equal to [u1] x y = . O

4. Examples

For some ¢ = 1,...,s denote by N(i,k) the subspace in ]\s,* = H,(L"%)
spanned by [u1, ..., u,], where u; = a; or u; = a; and a; > (p — 1)p".

LEMMA 4.1. Fors > 1 and k > 0 the collection of maps {Q, = \Ilgp_l)pm | m <
k} forms a k-th homotopy system for As . with the null space Ns(i, k).

PROOF. The subspace N; (i, k) is stable under the action of @,,. The properties
(ii) and (iii) from Definition 2] are checked in Lemmas B3] and The property
(iv) from Definition is checked in Lemma O

THEOREM 4.1. Fix s > 1 and k > 0. Assume x € Ny(i,k) for all 1 < i < s.
Then x € A(k) iff v € 1(k) and x € AP(k) iff x € I°(k).

PrROOF. The statement follows immediately from Lemma 1] Theorem 211
and Corollary 211 O
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