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ON THE IDEMPOTENT RANKS OF CERTAIN SEMIGROUPS
OF ORDER-PRESERVING TRANSFORMATIONS

G.U. GARBA

Abstract: The ranks of the semigroups O,, PO, and SPO, (the semigroups
of order-preserving singular selfmaps, partial and strictly partial transformations on
X, ={1,...,n} respectively), and the idempotent ranks of O,, and PO,, were studied by
Gomes and Howie [2]. In this paper we generalize their results in line with Howie and
McFadden [7], by considering the semigroups L(n,r), M(n,r) and N(n,r), where, for
2<r<n-=2,Ln,r)={a € 0,: |Ima| <r}, M(n,r) ={a € PO,: |Ima| <r} and
N(n,r) ={a € SPO,: |Ima| <r}.

1 — Introduction

By the rank of a semigroup S we shall mean the cardinality of any subset A
of minimal order in S such that (A) = S. The cardinality of the smallest subset
A consisting of idempotents for which (A) = S is called the idempotent rank of
S.

Let X,, = {1,...,n}, let T,, be the full transformation semigroup on X,, and
let Sing,, = {a € T),: [Ima| < n—1} be the semigroup of all singular selfmaps on
Xp. In [4], Sing,, was shown to be idempotent-generated; its rank and idempotent
rank were shown by Gomes and Howie [1] to be equal to n(n — 1)/2. This was
generalized by Howie and McFadden [7], who considered the semigroup

K(n,r)={ae€T,: Ima| <r},

where 2 < r < n — 1, and showed that both the rank and the idempotent rank
are equal to S(n,r), the Stirling number of the second kind, defined by

S(n,1)=Smn,n)=1, Snh,r)=Snh—-Lr—-1)+rSn—-1),r (n>r>1).
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The semigroup O, = {a € Sing,,: (Va,y € X,,) 2 <y = za < ya} of all
order-preserving singular selfmaps of X,,, was shown to be idempotent-generated
by Howie [5]; its rank and idempotent rank were shown to be n and 2n — 2
respectively, by Gomes and Howie [1]. In section 2 of this paper, we show that
both the rank and the idempotent rank of

L(n,r) = {a €Oy |Imal < r} 7

where 2 <7 <n — 2, are equal to ().

Gomes and Howie [2] also considered the semigroup PO,, =0, U{a:dom a C
X, (Vz,y € doma) z < y = xza < ya} of all partial order-preserving trans-
formations of X, (excluding the identity map). They showed that PO, is idem-
potent-generated, its rank is equal to 2n — 1, and its idempotent rank is 3n — 2.
In section 3 we show that the rank and the idempotent rank of

M(n,r) = {a € PO,: |Ima| < 7«} ,

where 2 < r < n — 2, are both equal to ZZ:T(Z)(fj)

In the final section we turn our attention to the semigroup SPO,, = PO,\O,
of strictly partial order-preserving maps of X,,. This semigroup is not idempotent-
generated, and as pointed out by Gomes and Howie [2], the question of its idem-
potent rank does not arise. However, they showed that its rank is 2n — 2. In this
paper we show that the semigroup

N(n,r) ={a € SPO,: [Ima| <7},

where 2 < r < n — 2, is idempotent-generated, and that its rank and idempotent
rank are both equal to ZZ;TI(Z)(MI)

r—1

2 — Order-preserving singular selfmaps

By [6, Proposition 2.4.5 and Exercise 2.10] we have that in O,
alpB ifandonlyif Ima=Img,
aR B if and only if kera = ker
aJ B ifand only if |Ima|=|Im/j| .

Thus O,, is the union of J-classes J1, Jo, ..., J,_1, where

Jr = {ae Op: |Ima| :r} .
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The (ker a)-classes are convex subsets C' of X,,, in the sense that
r,yeC and z<z<y = ze€C(C.

We shall refer to an equivalence p on the set X,, as convex if its classes are convex
subsets of X,,, and we shall say that p is of weight r if |X,,/p| = r. Thus J, has
(77}:11) R-classes corresponding to the (?:%) convex equivalences of weight r on
Xy, and (') L-classes corresponding to the (") subsets of X, of cardinality 7.

Lemma 2.1. Every element « in J, (r < n — 2) is expressible as a product
of elements in Jy1.

Proof: Let
o A Ay ... A,
S \by by ... b )
Then at least one block, say A;, contains more than one element. Let ¢ = min{a;:

a; € A;}. Suppose that {b,bg,...,b,} has a gap in position j, and let y be such
that b;_1 <y < bj. We distinguish four cases.

Case 1.i=j — 1. Let

. A1 Ai—l C AZ\{C} Ai+1 A,«
ﬂ_<1 o i—1 0 P41 P43 .. r42 )
and
52(1 e i—=1 {ii41} i4+2 i+3 .. or41 A)
b1 bz‘—l bi y bi+1 br—l br

where A" = X,,\{1,2,...,7+ 1}. Then 3,0 € J,+1 and o = f39.
Case 2. i < j — 1. Suppose here that 3 and § are given by

A o Ay e AN A . Aj Ay LA,
1 .. i—1 4 i+1 42 ... j  j4+2 .. r+2
and
(1 e i—=1Y i4+2 .. j4+1 j+2 ... r+1 Av
bl bi—l bz bi-‘,—l bj—l y bj br—l br

respectively, where Y = {i,i+ 1}. Then 3,0 € J,4; and o = 36.
Case 3.7 =j. Let

. A1 Ai—l C AZ\{C} Ai+1 AT
ﬁ_(l o i—1 i+1 i+2 i+3 .. r+2)
and
(1 =1 i {i+1,i42) i+3 .. or+1 A
- (bl bz’—l Yi bZ bi+1 br—l br> ’
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Then 3,6 € Jy4+1 and o = 36.
Case 4.7 > j — 1. Suppose 3 and § are given by

<A1 A]’,1 Aj Ai,1 & AZ\{C} Ai+1 Ar)
1 . j—1 j4+1 .. i i+1 i+2 i+3 .. r+2
and
1 .. j—-1 35 4+41 .. &« {i+1Li+2} i+3 ... r+1 A
(b1 v by oy by .. b b; bis1i .. br_1 br>

respectively. Then 3,0 € J,4+1 and o = 3§. Hence the proof. n

It follows from this Lemma that (J,) = L(n,r). If we let E, be the set of
all idempotents in J,, then by Lemma 1 in [3], and Theorem 1.1 in [5] we have
Jr C (E,). Thus

L(n,r) = (E,) .

From Lemma 3 in [7] we deduce that the rank of L(n,r) must be at least the
number of L-classes in J,. Thus we have

rank(L(n,r)) > (n) .

,
We now show

Theorem 2.2. For 2 <r <n — 2, we have

rank(L(n,r)) = idrank(L(n,r)) = <:> .

Proof: The proof depends on a Lemma very similar to Lemma 6 in [7]. By
a transversal A of an equivalence relation m on a set X we mean a subset of X
with the property that each a in A belongs to precisely one 7-class. n

Lemma 2.3. Let 7y, 7,...,m, (where m = (Zj), r > 3) be a list of the
convex equivalences of weight r on X,,. Suppose that there exist distinct subsets
Ay, Ag, ..., Ay of cardinality r of X,, with the property that A; is a transversal
of mi_1, mj (i = 2,...,m) and A; is a transversal of 7y, m,. Then each H-class
(mi, A;) consists of an idempotent €;, and there exist idempotents €py1,...,€p
(where p = (")) such that {e1, €2, ..., €y} is a set of generators for L(n,r). w

Assuming the listing of convex equivalences and subsets as in Lemma 2.3
above, we now show that every idempotent in F, is expressible as a product of
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the p idempotents €1, €2, ..., 5. Notice first that the product €;¢;1 (i = 2,...,m)
is an element of height r, since we have a configuration

€—1 ©
* €;

in which the H-class labeled o consists of an idempotent. Moreover, the element
€i€;i—1 1s in the position * by Lemma 1 in [7]. By the same token the product
€16y is of height r, and €,, L €16, Req.

Choose the idempotents €,,41, ..., €, s0 that €1, €2, ..., €, covers all the L-classes
in J,. Then if ) is an arbitrary idempotent in .J, there exists a unique i € {1, ..., p}
such that nLe;, and a unique j € {1,...,m} such that nRe;,

€L N &

€i—1 o
€ ... 7N
Moreover, there is a unique k € {1,...,m} such that ¢;Rex. (If i € {1,...,m}

then of course k = i.) If k = j then n = ¢; and there is nothing to prove. If k < j
then

?7263'6]',1-"6,@_;,_161' .
If £ > j then

n:ej"‘Elﬁm"'fk+15i-

We have shown that every idempotent in J,. can be expressed as a product of
the p = (1) idempotents, €1, ..., e,. Hence

L(n,r) = (e1,€2,....€p) . W

It remains to prove that the listing of convex equivalences and images postu-
lated in the statement of Lemma 2.3 can actually be carried out. Let n > 4 and
2 <r <n—2, and consider the Proposition:

P(n,r). There is a way of listing the convex equivalences of weight r as
Ly T2y eeey T (With m = (:fj) and m having {r,r + 1,...,n} as the only non-
singleton class, mo having {r — 1,7} and {r + 1, ...,n} as the only non-singleton
classes, my, having {r —1,...,n — 1} as the only non-singleton class) so that there
exist subsets Aq, ..., Ay of X, of cardinality r with the property that A; is a

transversal of m;—1, m; (i = 2,...,m) and Ay is a transversal of w1, T,



190 G.U. GARBA

We shall prove this by a double induction on n and r, the key step being a
kind of Pascal’s Triangle implication

P(n—1,r—1) and P(n—1,r) = P(n,r).
First, however, we anchor the induction with two Lemmas.

Lemma 2.4. P(n,2) holds for every n > 4.

Proof: Consider the list 71, ..., m,—1 of convex equivalences of weight 2 on
X, where

m=123--ifi+1---n.

Let
A1 = {1,77,}, AQ = {1,3} and Al = {Z - 1,TL}

fori=3,...,n—1. Then it is easy to verify that 71, ma, ..., mp—1 and A1, A, ..., Ap_1
have the required property. n

Lemma 2.5. P(n,n — 2) holds for every n > 4.

Proof: The proof is by induction. We shall show that for & > 4,
P(k,k—2) = Pk+2,k).

For n = 4 the result follows from Lemma 2.4, and for n = 5 we have the list of
the six convex equivalences and the six subsets as follows:

1/2/345 {1,2,5},
1/23/45 {1,2,4},
12/3/45 {1,3,4},
12/34/5 {1,3,5},
123/4/5 {2,4,5},
1/234/5 {1,4,5} .

Suppose inductively that P(k,k — 2) holds (k > 4). Thus we have a list
Ty T2y vy T, (With T = (ﬁ:é)) of convex equivalences of weight k — 2 on Xy,
and a list Ay, Ao, ..., Ay of subsets of X} of cardinality k£ — 2 such that A; is a

transversal of m;_1, m; (i = 2,...,m) and A; is a transversal of my, m,,. We may
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also assume that
m1 has {k — 2,k — 1,k} as the only non-singleton class ,
mo has {k — 3,k — 2} and {k — 1, k} as the only non-singleton class ,
mm has {k — 3,k — 2,k — 1} as the only non-singleton class ,
Ay = Xp\{k — 2,k} .
Let 01, ..., 0k be the list of convex equivalences of weight k on X1, where

o; has {k—i+1,k—1i+ 2} as the only non-singleton class .

(Thus in particular oq, o9 and oy have {k,k + 1}, {k — 1,k} and {1,2} as the
only non-singleton classes respectively.) Let 71,72, ..., 7x—1 be the list of convex
equivalences of weight k — 1 on X}, where

7; has {k — i,k — i+ 1} as the only non-singleton class.

(In particular each of 71, 72 and 7,1 has {k — 1,k}, {k — 2,k — 1} and {1,2} as
the only non-singleton class respectively.) Define the convex equivalences

m=mU{k+1L,k+1)}U{(k+2,k+2)}, fori=1,...,m,
o) = o; with k + 2 adjoined to the class containing k+1, i=1,....k ,

7/ = 7; with k + 1 adjoined to the class containing k,

and k + 2 as a singleton class, for i =1,....,k —1 .

Then arrange them as follows:

/ / / / / / / / 26
Oy eees Oy Tl 1y +vvs Ty Ty eeny Ty T TY - (2.6)

Notice that these convex equivalences are all distinct, and (2.6) is a complete list
of the convex equivalences of weight k on Xy o, sincem+k+k—1= (’,zﬂ)
We now define the subsets

A=A, U{k+1,k+ 2} fori=1,...m,
Bi:Xk+2\{]{7—i+2,k+2} fori=2,...,k,
Ci = Xpio\{k—i1+1,k+1} fori=1,3,....k,
D = Xip2\{k — 1k} .
It follows from the hypothesis that A/ is a transversal of 7}_, 7, for i = 3,...,m

and that A is a transversal of 7], 7]. It is also not difficult to verify that, for
i=2,..,k, B is a transversal of o}_,, o}; for i = 3,....,k — 1, C; is a transversal
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of 7/_y, 7; Cy is a transversal of o7, 7{; Cj is a transversal of o}, 7;,_; A is a
transversal of 74, 7h; and finally D is a transversal of 7], 7{. It therefore remains
to show that the subsets

C1,Ba, ..., Bg, Ci, C—1, .., Cs, A AL . AL AL D (2.7)

are all distinct. It is clear that the A”’s, B’s and C’s are all distinct. (The A”’s
contain k+ 1 and k+ 2, the B’s contain k+ 1 but not £+ 2, while the C’s contain
k 4+ 2 but not k + 1.) Also D is distinct from the B’s and the C’s (since the
latter must not contain k + 1 or k + 2). Note that for ¢ = 1,2, ...,m the L-class
characterized by A; contains at least two idempotents (since A; is a transversal
of mi—1 and m; for i = 2,...,m and A; is a transversal of 7; and 7,,). But the
L-class characterized by D\{k + 1,k + 2} contains only one idempotent, namely

1 2 .. k-3 {k—2k—1k}
1 2 .. k-3 k2 '

Hence D\{k+ 1,k + 2} is not one of the A’s, and consequently D is distinct from
the A”’s. So all the subsets in (2.7) are distinct. =

Lemma 2.8. Letn > 6 and 3 < r < n—3. Then P(n — 1,r — 1) and
P(n —1,r) together imply P(n,r).

Proof: From the assumption P(n — 1,r) we have a list 01, 09, ..., 0y, (Where

m = (’;:f)) of convex equivalences of weight r on X,,_1 and a list Ay, ..., Ay, of

distinct subsets of X,,_1 of cardinality r such that A; is a transversal of o;_1, o;
(i=2,..,m) and A; is a transversal of o,,,, 1. We may also assume that

o1 has {r,...,n — 1} as the only non-singleton class ,

o9 has {r — 1,7} and {r +1,...,n — 1} as the only non-singleton classes ,

om has {r —1,...,n — 2} as the only non-singleton class ,

Ay ={1,2,...,r—1,r+1} .

From the assumption P(n— 1,7 —1) we have a list 71, ..., 74 (where t = (ﬁ:g))
of convex equivalences of weight r — 1 on X,,_1 and a list By, ..., By of distinct

subsets of cardinality » — 1 on X,_1 such that B; is a transversal of 7;_1, 7
(i =2,...,t) and Bj is a transversal of 74, 71. We may also assume that

71 has {r —1,...,n — 1} as the only non-singleton class ,
7o has {r —2,r — 1} and {r,...,n — 1} as the only non-singleton classes ,
7¢ has {r —2,...,n — 2} as the only non-singleton class ,

By ={1,2,....,7 —2,r} .
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Now, for s =1,...,m let
o} = o; with n adjoined to the class containing n — 1 ,

for j=1,...,t let
T; =7;U{(n,n)} .
Then arrange the convex equivalences as follows:

/ / / / /
Oy ooy Oy Ty eves Toy T - (2.9)

Note that m +t = (’;j) Hence above is a complete list of all the convex

equivalences of weight r on X,,. Next we define
A={1,2,...,7—1,n},
Bi=B;U{n} for i=1,..,t,
and arrange the subsets as follows:

A, Ay, As, ..., Am, B, ..., B), B, . (2.10)

I(i=2,..,m); Bl is a transversal of 7/_;, 7/

Then A; is a transversal of o]_,, o} ;
(i =3,...,t); Bj is a transversal of 7/, 7{; A is a transversal of o{, 7/ and Bj is a
transversal of o}, 74.

It is clear that Ao, ..., A, By, ..., B} are all distinct subsets of X, of cardinality

r, and A is distinct from A,, ..., A,,. If A = B] for some i = 1, ..., ¢, then
A\{n} =B; ={1,2,....,r—1} .

But the £L-class characterized by {1, 2, ..., — 1} has only one idempotent, namely
1 23 ... r—2 A
12 3 ... r—=2 r—1)"7
where A’ = X,,\{1,2,...,r — 2}. This is contrary to the hypothesis that the
L-class characterized by B; must contain at least two idempotents. Hence all the
subsets are distinct. Thus the induction step is complete, and we may deduce

that P(n,r) is true for all n > 4 and all r such that 2 <r <n —2.
The pattern of deduction is

P(4,2)
P(5,2) P(5,3)
P(6,2) P(6,3) P(6,4)
P(7,2) P(7,3) P(7,4) P(7,5)
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3 — Order-preserving partial transformation semigroups

As usual, we shall refer to an element « in PO,,, and indeed in the larger
semigroup P, of all partial transformations of X,,, as being of type (k,r), or
belonging to the set [k, 7] if |[dom «| = k and [Im | = r.

The J-class J, = {a € PO,,: |Ima| = r} is the union of the sets [k, r], where
r < k < n. The number of L-classes in .J,. is the number of image sets in X,
of cardinality r, namely (7'). The number of R-classes in J, is the number of
convex equivalences of weight 7 on all the subsets of X, of cardinality k, where

r < k < n. This number is ZZZT(Z)(’;j)

Lemma 3.1. J. C (J,41)2 for1 <r <n—3.

Proof: Let ain J, bein [k,r], 2 <r < k < n. If kK = r, the result follows
from Lemma 3.4 in [2], that [r,7] C ([r + 1,7 + 1])%. If k > r, then the proof of

Lemma 2.1 above applies equally to this case by adjusting A’ to {r + 2}. »

From Lemma 3 in [7] we also deduce that the rank of M (n,r) must be at least
as large as the number of R-classes in J,.. Thus we have

rank(M (n,r)) > z”: (Z) (fj:i)

k=r

Theorem 3.2. Forl1<r<n-2,

rank(M (n,r)) = idrank(M (n,r)) = Zn: <Z> <'Iﬁ: i) .

The proof follows the same basic strategy as that of Theorem 2.2. It depends
on the following Lemma.

Lemma 3.3. Let Ay,..., Ay, (where m = (') and r > 2) be a list of subsets
of X,, with cardinality r. Suppose that there exist distinct convex equivalences
T, ..., Tm Of weight r on X,, with the property that A; 1, A; are both transversals
of m; (i =2,...,m) and A,,, A1 are both transversals of w;. Then each H-class
(m;, A;) consists of an idempotent €;, and there exist idempotents €pyy1,...,€p
(where p = ZZ:T(Z)(’::} )) such that {e1, ..., €, } is a set of generators for M (n,r).

Assuming the listing of convex equivalences and images as in Lemma 3.3
above, we now show that every idempotent in J,. is expressible as a product of
the p idempotents €1, €2, ..., €.
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Notice first that €;_1¢; (i = 2,...,m) is an element of height r, since we have
a configuration
€—1 *
(@] Ei

in which the H-class labeled o contains an idempotent. Moreover, by Lemma 1
in [7], the element €;_1¢; is in position *. By the same token, the product €,,¢€; is
also of height r, and €,,Ree1Leq.

Choose the idempotents €,,41, ..., €, s0 that €1, ..., €, cover all the R-classes in
Jy. Then if n is an arbitrary idempotent in .J, there exists a unique 7 in {1, ..., p}
and a unique j in {1,...,m} such that nRe; and nLe;.

€k
O €k+1

€j
€ n

Moreover, there is a unique K in {1,...,m} such that ¢;Lex. (If i € {1,...,m}
then of course k = i.) If k = j then n = ¢; and there is nothing to prove. If k < j
then

TN = € €1 €42 €5 .

If £ > j then

77:616’64’1..677161.6] . n

Note that in O,,, the number of L-classes in any J-class exceeds the number of
R-classes, in PO,, the number of L-classes in a J-class is smaller than the number
of R-classes. This accounts for the difference of the strategies in Lemmas 2.3 and
3.3.

It remains to prove that the listing of images and convex equivalences postu-
lated in the statement of Lemma 3.3 can actually be carried out. Let n > 4 and
2 <r <n—2, and consider the Proposition:

P(n,r).  There is a way of listing the subsets of X, of cardinality r as
Al Ay (withm = (7)), Ay = {1,2,...,7}, Ao = {1,2,...,r = L,r + 1}, A, =
{1,2,...,7 — 1,n}) so that there exist distinct convex equivalences 7y, ..., Ty of
weight r with the property that A;_1, A; are both transversals of m; (i = 2,...,m)

and A,,, Ay are both transversals of 7.
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The proof is by double induction on n and r, the key step being again a
Pascal’s triangular implication
Pn—1,r—1) and P(n—1,r) = P(n,r).
First, however, we anchor the induction with two Lemmas.

Lemma 3.4. P(n,2) holds for every n > 4.

Proof: The proof is by induction. For n = 4 we have the list of 6 subsets
and 6 equivalences as follows:

{1,2} 1/24,
(1,3} 1/23,
(2,3} 12/3,
(2,4} 2/34,
{3,4} 23/4,
{1,4}y 13/4.

Suppose inductively that P(n — 1,2) holds (n > 5). Thus we have a list
Al ..y Ap (where t = (";1)) of subsets of X,,_; of cardinality 2, and a list
1, ..., ¢ of distinct convex equivalences of weight 2 such that for i = 2,...,¢t
the sets A;_1, A; are both transversals of m; and A, A1 are both transversals of
m1. Suppose moreover that A; = {1,2}, Ay = {1,3} and A; = {1,n — 1}. Let

Bi = {i, n}
fori=1,...,n — 1, and define
7y = m with n — 1 being replaced by n ,
o1=12/n—1n,
o;=ii+1/n fori=2,..n—2,
On—1=1n—-1/n.
Arrange the subsets and the convex equivalences as follows:
Ala A27 (XY} Ata BQ7 B37 (XY} Bn—b Bl )

/
M1y 72y ooy Mty 01,02, ...,00—2,0n—1 -

Then, it is easy to verify that the subsets and the convex equivalences as arranged
above satisfy P(n,2). Notice that these subsets are all the subsets of X, of
cardinality 2, and the convex equivalences are all distinct. n
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Lemma 3.5. P(n,n — 2) holds for every n > 4.

Proof: We shall show that for k > 4,
Pk, k—2) = Pk+2k).
But first we show that P(4,2) and P(5,3) are true.

For n = 4, the result follows from Lemma 3.4. For n = 5, we have the list of
10 subsets and 10 equivalences as follows:
{1,2,3} 1/2/35,
{1,2,4} 1/2/34,
{1,3,4} 1/23/4,
{2,3,4} 12/3/4,
{2,3,5} 2/3/45,
{2,4,5} 2/34/5,
{3,4,5} 23/4/5,
{1,4,5} 13/4/5,
{1,3,5} 1/34/5,
{1,2,5} 1/23/5.
Suppose inductively that P(k,k — 2) holds (k > 4). Thus we have a list

Ay, ..., Ay, (where m = (kﬁZ)) of subsets of X of cardinality & — 2, and a list
T, ..., Ty Of distinct convex equivalences of weight k — 2 such that for i = 2,...,m
the sets A;_1, A; are both transversals of 7; and A,,, A are both transversals of

m1. We may also assume that

A ={1,2,..,k—2}, Ay={1,2,...k—3,k—1}
and
Ap ={1,2,..,k—3,k} .

Let By, ..., Bx+1 be the list of subsets of Xj11 of cardinality k, where B; =
Xit+1\{k+2—i}. (Thus in particular B;={1,2,...,k} and Byy1={2,3,...,k+1}.)
Let C4,...,C; be the list of subsets of X of cardinality & — 1, where C; =
Xi\{k + 1 —i}. (In particular Cy = {1,2,....k — 1} and Cy = {2,3,...,k}.)
Define

Al =A,U{k+1,k+2} fori=1..m,
Cl=CiU{k+2} fori=1,...k.

Notice that the subsets Af,..., A}, B, ..., By+1,C1, ..., C}, are all distinct, and
form a complete list of subsets of Xy, of cardinality k, since m +k+ (k+1) =
"),
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Denote by |i, j| the convex equivalence of weight n—1 on a set T of n elements,
where {i, 7} is the only non-singleton class. Then define

oi=lk+2—ik+3—i] on Xy fori=2,...k+1,
i=lk+1—dik+2—d on XzU{k+2} fori=2,4,., k-1,
m=mU{(k+1LEk+1D}U{(k+2,k+2)} fori=1,3,....m,

o1 = |k, k+2] on X U{k+2},

0 = |k + 1,k + 2| on Xp2\{1},

o3 = |k, k + 1| on Xpo\{k — 2},

dq = |k, k + 1] on Xpio\{k—1}.

Now, arrange the subsets and the convex equivalences as follows:

B17 BQ: ) Bk+17 C]/gv C]/c—lv e CZ/% /27 57 ) A;na A,la Céa Ci )
517 02y ey Ok41, 527 Thy «ooy T4y 635 ﬂ-éa ceey W;nn 7'('/1, 547 T2 .
With this arrangement it is easy to verify that the subsets and the convex equiv-
alences satisfy P(k + 2, k).
Since an R-class characterized by a convex equivalence of weight n — 1 on a
set of n elements contains only two idempotents, the convex equivalences above
are unique, and therefore distinct. n

Lemma 3.6. Letn > 5 and 3 < r < n—3. Then P(n — 1,r — 1) and
P(n —1,r) together imply P(n,r).

Proof: From the assumption P(n — 1,7) we have a list Ay, ..., A, (where
m = (”;1)) of the subsets of X,,_; with cardinality r and a list o1, ..., 0y, of
distinct convex equivalences of weight r such that A;_1, A; (i = 2,...,m) are
transversals of o;, and A1, A, are transversals of ;. We may also assume that

A =A{1,2,..,r}, Ay={l,.,r—1,r+1}, A,={1,..,r—1,n-1}

and oy has {r,r + 1} as the only non-singleton class.

From the assumption P(n—1,r—1) we have a list By, ..., By (where t = (2:11))
of subsets of X,,_1 of cardinality » — 1, and a list 7, ..., 7+ of distinct convex
equivalences of weight » — 1 such that B;_1, B; (j = 2,...,t) are transversals of

7j, and By, By are transversals of 1. We may also assume that
By ={1,2,..,r—=1}, By={l,.,r—=2,r}, B;={l,..,r—2n—1}

and that 79 has {r — 1,7} as the only non-singleton class.
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Let
Bi=B;U{n} (i=1,..1).
Then Ay, ..., Am, Bl ..., B} is a complete list of the subsets of X,, of cardinality r.
(Notice that m +t = (').) Define

oy =01 with n—1 replaced by n ,

i =7U{(n,n)} for i=1,3,..,t,

while 74 is an equivalence of weight r whose only non-singleton class is {n —1,n}.
Then o9, ..., 0, 71, ..., 74 are all distinct (since the o’s do not contain n, while the
7"’s contain n). Also of is distinct from all of them, since ¢} contains r and n
in the same equivalence class; and 74 is distinct from all the others, since it has
n — 1 and n in the same equivalence class.

Arrange the subsets and the convex equivalences as follows:

/ !/ /
‘/4]_7 AQ, ceey Am7 B2, ceey Bt7 Bl B
/ !/ !/ !/
0-1, 0-27 ceey O_m, 7—2, ceey Tt77_1 .

With this arrangement it is easy to verify that the convex equivalences and the
subsets satisfy P(n,r). n

The pattern of deduction here is

P(4,2)
P(5,2) P(5,3)
P(6,2) P(6,3) P(6,4)
P(7,2) P(7,3) P(7,4) P(7,5)

Remark 3.7. Observe that in Lemmas 3.4, 3.5 and 3.6 (proof) all the convex
equivalences used have only one non-singleton class, except for 74 in Lemma 3.6
which has two. In all cases the non-singleton class (or classes) contained only
two elements, and since n >4, r=2in34,n >4, r=n—21in 3.5 and n > 5,
r <n — 3 in 3.6 the convex equivalences are all partial. Thus in the generating
set {€1,...,€p} of Lemma 3.3, €1, ..., €n, need not be full idempotents.

We shall find this useful in the next section.
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4 — Strictly partial order-preserving transformations

It is clear that the number of L-classes in a J-class J, of SPO, is (!'), and

the number of R-classes is ZZ;I(Z’)(ﬁj)

Similar to Lemmas 2.1 and 3.1 we have:
Lemma 4.1. For1<r <n—3, we have J, C (J,41)%.

Proof: The proof of Lemma 2.1 applies to this case also by adjusting A’ to
{r+2}.u

The next result proves that N(n,r) is idempotent-generated.

Proposition 4.2. Let E,_o be the set of all idempotents in J,_o. Then
In—2 C (En—2).

Proof: Notice that J,_2 = [n—1,n—2]U[n—2,n—2]. We shall first consider
an element a € [n —2,n —2|. Let doma = X,,\{7, j} and assume that ¢ < j, and
Ima = X,,\{k,l} with £ < [. Let ¢ be the partial identity on dom«a. We now
distinguish several cases.

Case 1. i =k.

a)j <l Let A=domaU({j}. For s =1,...,1 — j define the idempotents €4
on A by
{j+s—1,j+stes=j+s—1 and =xze;==x

for all z € A\{j +s—1,7+ s}. Then
a=c€€re€_j.
b) j > 1. Let A=domaU{j}. For s =1,...,j — [ define the idempotents e

on A by
{j—s,j—s+1}es=j—s+1 and ze==x

for all z in A\{j —s,j —s+1}. Then a =€€;---€j_;.
c) j = 1. Here a is an idempotent.
Case 2. j=1.
a)i<k.Let A=domaU{i}. For s =1,...,k — i, define €5 by
{i+s—1i+sles=i+s—1 and ze=c
for all z € A\{i +s—1,i+ s}. Then

QO =€€] - €f_j -
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b) i > k. Let A=domaU {i}. For s =1,...,7i — k define €5 by
{i—s,i—s+1}es=i—s+1,
and zes =z for all x in A\{i —s,i— s+ 1}. Then a« = €€y - €;_.
Case 3.

a)i<k<j<l Let A=domaU({i}, B=X,\{k}. Fors=1,...,k —i and
t=1,...,1 — j, define €5 and 7; as follows:

{i+s—1i+sles=i+s—1 and ze==x
for all z € A\{i +s—1,i+ s};
{j+t-1j+t}m=j+t—1 and zmp==x
forall z € B\{j +t—1,j+t}. Then
Q=€€1 €N " MN—j -

b) k<i<l<j. Let A=domaU{i}, B=X,\{k}. For s=1,....,i — k and
t=1,...,7 — l define €5 and 7; as follows:

{i—si—s+1lles=i—s+1, zes=x (x€ A\{i—s,i—s+1}),

{i—tj—t+ltm=j—t+1, am=a (€B\{j-tj—t+1}).
Then oo =€e€1--- €k N1+ Nj—1-

Case 4.

a)i<k<l<j. Let A=domaU({i}, B=X,\{k}. Fors=1,..,k—i and
t=1,...,7 — [ define ¢; and 7, as follows:

{i+s—1i+sles=i+s—1 and ze ==z
for all z € A\{i+s—1,i+ s},

{I+t—-11+t}yym =1+t and zmp==x
for all z € B\{l +t— 1,1+ t}. Then

Q=€€1 €y MNj—1 "1 -

b)k<i<j<l Let A=domaU{i}, B=X,\{k}. Fors=1,...,i — k and
t=1,...,1 — j define €5 and 7; as follows:

{i—s,i—s+1lles=i—s+1, ze;=x (x€ A\{i—s,i—s+1}),

{I—-t,l—t+1}mp=1—-t, am=z (xeB\{Il—-t,1—-t+1}).
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Then o =e€ey - €_pn1---M—j.
Case 5.

a)i<j<k<l Let A=domaU {i}. Fors=1,..,j—i—1,t=1,...k—j
and u=1,...,0 — k — 1 define ¢, 1; and ¢, as follows:

{i+s—1i+sles=i+s—1 and ze=ux
for all z € A\{i +s—1,i+ s};

{i—-1Lj+1}eg1=7—1 and ze_;=2x
forallz € A\{j — 1,7 +1};

+t-1Lj+t+1}m=j+t-1 and zp==x
forallz €e Bi=X,\{j+t—1,7+¢t,j+t+1}

{k+u,k+u+1}é,=k+u and zd,==
for all z € X,,\{k,k +u,k+ u+ 1}. Then

b)k<l<i<j. Let A=domaU{j}. Fors=1,...,j—i—1,t=1,...,i—1
and u =1,...,] — k — 1 define n,, n; and §,, as follows:

{j—S,j—S+1}€s:j—S—|—1, Tes =X ("EGA\{j_Saj_S_}—l})a
{i—tyi—t+1}pp=i—t+1, am=z (v€By=X\{i—t—1,i—t,i—t+1}),
{l—u—-11l-utby=0l—u, zd,=2 (xeX\{{l-u—-1,1—ul—u+1}).

Case 6. i< j=k<Il Let A=domaU{i}. Fors=1,....57 —i— 1 and
t=2,...,1 — j define ¢,, n; and 7; as follows:

{i+s—1i+sles=i+s—1 and ze==x
forall z € A\{i +s—1,i+ s};

{j-Lj+1}m=4j—1 and am==x
forallz € A\{j — 1,7 +1};

{j+t—1,j+t}p=j+t—1 and axm==x
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forall z € A\{j+t—1,7+t}. Then

O‘:6€1“'5j—i—1771"'77[7j .

Now, if a € [n — 1,n — 2] then it can be expressed as follows:

<CL1 e Q51 {(17;, ai+1} ai+2 ... an_1>
bl bz’—l bz bi+1 bn_Q
But then
a=¢€f,
where
€ — <a1 I ¢y | {ai,aiﬂ} ai+2 ... an1>

a ... QQ;—1 a; Aj+2 ... Ap—1

and

IB_(al e Q-1 QG Q42 .. an_l)
a b1 bi,1 bi bi+1 bn,Q )

Note that € is an idempotent, and that 5 € [n — 2,n — 2]. Hence « is expressible
in terms of idempotents in F,_s. n

Theorem 4.3. For 1l <r <n—2 we have

rank(N(n,r)) = idrank(N (n,r)) = ”21 (Z) (k B 1) .

r—1
k=r

Proof: The reason for choosing €y, ..., €y, in the generating set {eq,...,€,}
for M(n,r) to be non-full idempotents (see Remark 3.7) is to make the corre-
sponding result for N(n,r) much easier to deduce; since we may choose the same
idempotents €1, ..., €y, and €41, ..., ¢g (Where ¢ = ZZ;%(Z)(’;;:%)) from the re-
maining R-classes to obtain the generating set {e1,...,e,} of N(n,r). And the
result follows from Lemma 3 in [7]. »
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