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SOME STABILITY QUESTIONS CONCERNING
CAUSTICS FOR DIFFERENT PROPAGATION LAWS*

Maria del Carmen Romero Fuster and Maria Aparecida Soares Ruas

Introduction

Caustics, that originally appeared in Geometrical Optics attached to the prop-
agation phenomena governed by the wave equation, can be viewed in a general
setting as the image of the singular set of lagrangian maps. These, being defined
as the restrictions of lagrangian fibrations to lagrangian submanifolds of a sym-
plectic manifold, can also be obtained from the so-called generating functions.
Stable caustics correspond to stable lagrangian maps, and it is well known that
appropriate transversality conditions on the generating functions produce stable
lagrangian maps. (See [2] for details.)

We consider here different generating functions associated to different propa-
gation laws (like a Riemannian structure or a Hamiltonian) on a manifold, and
analyze the problems of genericity and stability of the caustic generated by a
fixed initial wave front with respect to perturbations in the propagation rules
themselves. One of the geometrical consequences that can be deduced from our
analysis is that given any submanifold of a complete Riemannian manifold, its
focal set can be made locally stable by a small perturbation in the metric. More-
over if the manifold does not have conjugate points then both the focal set and
the cut-locus (in the sense of Thom [10]) of any submanifold can be made globally
stable through such a perturbation.

M.A. Buchner treated in [4] the problem of stability of the cut-locus of a
point in a manifold with respect to perturbations of the Riemannian matric. The
approach we use here is quite different from his.
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1 – Preliminaries and statement of results

Suppose that Y is a complete Riemannian manifold and let d : Y ×Y → IR be
the induced distance squared map (i.e. d(y1, y2) is the square of the length of the
shortest geodesic joining y1 to y2 ). Let h be an embedding of the manifold X into
Y . Then V = h(X) is a submanifold that we shall call initial wave front. This is
justified by the following: if we start at the points of V and walk along the normal
geodesics to V during a fixed small enough time t, we obtain a hypersurface Vt

called the wave front at time t. Then we shall reach a moment at which these Vt

begin to have singularities, i.e. they are not smooth hypersurfaces anymore. If we
join all these singularities we get the focal set that we shall also call the caustic C
of V (this is the set where all the geodesic rays emanating from V concentrate).

We can also characterize the caustic, in terms of singularities, as follows: Let
S(Φ) be the singular set of the map

Φ: X × Y
h×1Y−→ Y × Y

d×1Y−→ IR× Y

(x, y) 7−→ (h(x), y) 7−→ (d(h(x), y), y) .

When d comes from the usual euclidean metric on Y = IRn it is easy to see
that S(Φ) is precisely the normal bundle NV of V in IRn (see [9]). Now we
consider the restriction to S(Φ) of the projection π2 : X × IRn → IRn. Then the
image by π2 of its singular set S(π2 | S(Φ)) is the focal set or caustic of V in IRn.

A caustic is said to be (locally) versal if the map Φ (generating function) is
a (locally) versal unfolding of functions on X with parameters on Y (see [2]).
Clearly any (locally) versal caustic, being the bifurcation set of the unfolding Φ,
is (locally) stable with respect to perturbations of Φ (as a family of functions)
and thus, under perturbations of both the embedding h and the distance squared
function d (and hence of the Riemannian metric on Y ). Where (locally) stable
means that the caustic of a small perturbation Φ̂ of Φ is (locally) diffeomorphic
(or homeomorphic in the case of topological versality) to the original one.

It follows from the Looijenga topological stability theorem that, for a residual
set of embeddings of X in Y = IRn, the focal set of the embedded submani-
fold is topologically stable (or C∞-stable if we restrict ourselves to low enough
dimensions, i.e. n ≤ 5). So, small perturbations of the embeddings give rise to
homeomorphic (or diffeomorphic, for n ≤ 5) focal sets and also cut-locus (which
are the centres of the hyperspheres of minimal radii having contact of order at
least 2 with the submanifold at two or more points, or at least 3 at a single point
[10]).
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The corresponding result for submanifolds of complete simply connected Rie-
mannian manifolds without conjugate points was obtained by J.W. Bruce and
D.J. Hurley [3].

An alternative approach for submanifolds of Euclidean spaces is due to J.A.
Montaldi [7], who studied the generic contacts between submanifolds and spheres
of IRn with some geometrical consequences. Some general results related to this
can be found in [8]. We state here the following one that will be used later:

Theorem 1.

1) Suppose that F : Y × U → Z is a locally G-versal family of maps with
parameters in U . Let W ⊂ J r(X,Z) be a G-invariant submanifold, and
let RW = {h ∈ Imm∞(X,Z)/jr1Φg ∩ W}, where Φg(x, y) = F (g(x), u)
and jr1Φ means the r-jet with respect to the first argument. Then RW is
residual in the space Imm∞(X,Y ) of smooth immersions of X in Y .

2) Suppose that F as above is G-versal, and s ≥ 1. Let W ⊂s J
r(X,Z) be a

G-invariant submanifold, and let RW = {g ∈ Emb∞(X,Z)/s j
r
1Φg ∩ W}.

Then RW is residual in Emb∞(X,Y ).

In this theorem G means any of the standard groups arising in Singularity
Theory: R, R+, L, C, A or K.

We can also adopt a slightly wider viewpoint and consider the distance func-
tion d as being locally defined from a P.D.E. or a Hamiltonian function on T ∗Y
instead of a Riemannian metric on Y . So, suppose that H : T ∗Y − {0} → IR
is an everywhere positive and positively homogeneous of degree 1 Hamiltonian.
Then, there is a locally defined ray length function associated to H (see [5]). We
shall also denote this function as d : Y × Y → IR. Observe that we may also in-
clude in this category the metric manifolds (called metric spaces in [6]) provided
with a lagrangian function L : TY → IR that satisfies L(x, ξ) > 0, ∀ ξ 6= 0 and
L(x, λξ) = |λ|L(x, ξ). A special case of these are the Finsler manifolds defined
as manifolds with a non-negative scalar funtion F (x, y) : TM → IR satisfying the
following conditions:

i) F (x, ky) = k F (x, y), ∀ k > 0,

ii) F (x, y) > 0, for y 6= 0,

iii) The quadratic form

D2F 2(x, y)(ξ) =
∂2F 2(x, y)

∂ξi ∂ξk
ξi ξj

is positive definite.
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In the particular case that F (xi, dxi) = [gij(x) dx
i dxj ]

1
2 , F induces a Rieman-

nian metric gij = D2F 2(x, y).

Now, the caustic obtained from an initial wave front V = h(X) is (locally)
defined as the natural generalization of the focal set in the Riemannian case, with
the ray length function as distance function ([5)]. Then the caustic associated,
to the pair (h,H) is said to be (locally) versal provided the composition

Φ: X × Y
h×1Y−→ Y × Y

d
−→ IR

is a (locally) stable family of (germs of) functions at the considered points.
G. Wassermann [12] proved that the local versality of the caustic associated to
the pair (h,H) is equivalent to its local stability under perturbations of the initial
wave front (i.e. of h) alone. Moreover, he showed that for a given Hamiltonian
H, there is a residual subset of embeddings E, such that ∀h ∈ E, the pair (h,H)
produces a versal family Φ and hence a locally versal caustic.

The above mentioned results (Wassermann [12]), Bruce and Hurley [3] or
Montaldi [8]) can all be, for our purposes, put in the following form:

Theorem 2. Given any A-invariant submanifold W ⊂ Jk(X, IR) let
RW = {h ∈ Emb∞(X,Y )/ jr1 Φg ∩ W}, where

Φh : X × Y
h×1Y−→ Y × Y

d
−→ IR

and d is the distance map associated to either a Riemannian metric, a Finsler met-
ric or a Hamiltonian, as above. Then RW is residual in the space Emb∞(X,Y ).

Our aim here is to analyze the opposite case, in which the initial embedding
h is fixed and the distance function is allowed to vary. Since this distance may be
induced from different structures, we shall consider instead perturbations of these
structures. In this sense we shall distinguish among the following possibilities:

a) The distance function is induced from a Riemannian metric on Y .

b) The distance function is induced from a Finsler metric on Y .

c) The distance function is induced from an everywhere positive and positively
homogeneous of degree 1 Hamiltonian function on T ∗Y − {0}.

d) The distance function d is the square of a topological distance function
ρ with smooth square, such that the functions db : Y → IR, defined as
db(y) = d(y, b) are smooth submersions in Y − {b}, ∀ b ∈ Y .
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Notice that for this case we also have the concepts of d-normal bundle,
d-caustic and d-cut-locus naturally defined, all of them being related to the con-
tacts of a submanifold with the d-spheres d−1b (r), b ∈ Y , r ∈ IR+. We shall call
d-manifold to a manifold Y with such a function.

We prove the following results for all these cases:

A) Given any fixed embedding h : X → Y , there is an open and dense
subset of structures on Y , such that the corresponding family
ϕ = d ◦ (h × 1Y ) is topologically stable (or C∞-stable, for dimY ≤ 5)
and thus produces topologically stable (resp. C∞-stable) caustics (and
cut-locus in the appropriate classes).

B) A caustic is stable with respect to perturbations of the initial wave front
if and only if it is stable with respect to perturbations of the structure
within each one of the classes.

(Here by structure we mean any one of the above classes a, b, c, or d.)

Remark. Under certain assumptions, for instance when d is induced from a
Riemannian metric on a complete simply connected manifold without conjugate
points in case a) , or a d-manifold, we can use the multijets spaces and obtain a
global version of the above theorem.

2 – Proof of results

First of all we observe that there is an action of the group G of diffeomorphisms
(local diffeomorphisms when necessary) of the manifold Y on each one of the
following spaces (considered with the appropriate C∞-Whitney topologies on
them):

a) Riemannian metrics on Y ;

b) Finsler metrics on Y ;

c) Positive and positively homogeneous of degree one Hamiltonian functions
on T ∗Y − {0};

d) Topological distances with smooth square d on Y , such that the functions
db : Y → IR, are smooth submersions in Y − {b}, ∀ b ∈ Y .

We define these actions in the following and see how they behave with respect
to the caustic set in each case:



600 M.C.R. FUSTER and M.A.S. RUAS

a) Given a Riemannian metric, g(y) : TyY × TyY → IR, y ∈ Y , and a
diffeomorphism ϕ : Y → Y , we define ϕ∗(g) by

ϕ∗(g)(y)(v1, v2) = g(ϕ(y))(Tyϕ(v1), Tyϕ(v2)) , ∀ y ∈ Y, ∀ v1, v2 ∈ TyY .

It is easy to see that:

i) ϕ∗(g) is a Riemannian metric on Y ;

ii) ϕ is an isometry between (Y, ϕ∗(g)) and (Y, g).

And hence Tϕ carries the normal bundle of a submanifold V with respect to
the metric ϕ∗(g) diffeomorphically onto the normal bundle of the submanifold
ϕ(V ) with respect to the metric g. Moreover, ϕ takes geodesics of ϕ∗(g) to
geodesics of g and the diagram

Nϕ∗(g)V
Tϕ
−→ Ngϕ(V )

expϕ∗(g) ↓ ↓ exp g
Y −→

ϕ
Y

commutes, where Nϕ∗(g)V and Ngϕ(V ) are respectively the normal bundles of V
with respect to ϕ∗(g) and of ϕ(V ) with respect to g. Consequently ϕ takes the
focal set of V with respect to ϕ∗(g) onto the focal set of ϕ(V ) with respect of g.

b) A Finsler metric, g(x, ξ) : TxY × TxY → IR, (x, ξ) ∈ TY is characterized
by the fact that g(x, ξ)(η, η) > 0, ∀ ξ, η ∈ TxY − {0}, ∀x ∈ Y .

Given ϕ as above, we define

(ϕ∗g)(x, ξ)(η1, η2) = g(ϕ(x), Txϕ(ξ)) (Txϕ(η1), Txϕ(η2)) .

This is, clearly, another Finsler metric. Furthermore, ϕ is an isomorphism
between (Y, ϕ∗(g)) and (Y, g) in the category of Finsler manifolds. Geodesics are
defined here in a similar manner to the Riemannian case, and we have that ϕ
maps geodesic of ϕ∗(g) onto geodesics of g and, this being a particular case of
the class below, we can also see that it takes the caustic of a submanifold V with
respect to ϕ∗(g) onto the caustic of ϕ(V ) with respect to g.

c) Given a Hamiltonian function H : T∗Y −{0} → IR, there is a Hamiltonian
vector field χH : T ∗Y → T (T ∗Y ) associated to it. The flow lines of χH project
through the cotangent bundle projection, π : T ∗Y → Y , onto the Hamiltonian
rays of Y . Moreover, due to the homogeneity property of H, χH factorizes
to a vector field χ̃H : ΣT ∗Y → T (ΣT ∗Y ), where ΣT ∗Y represents the space of
oriented lines in the cotangent vector space of Y . Following Jänich [5] we consider
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the map
τH : IR× ΣT ∗Y −→ Y × Y

(t, ξ) 7−→ (π̃(ξ), expH(t, ξ))

where π̃ : ΣT ∗Y → Y is the bundle projection and expH : IR+ × ΣT ∗Y → Y
is the composition of π̃ with the flow map of χH (observe that this map will, in
general, be defined only on a neighbourhood of 0× ΣT ∗Y in IR+ × ΣT ∗Y ).

Then the ray length function associated to a regular point (t0, ξ0) of the above
map is given by the composition

d : Y × Y
τ−1
H−→ IR+ × ΣT ∗Y

p1
−→ IR+

on an appropriate neighbourhood of (t0, ξ0).
Let now ϕ : Y → Y be a diffeomorphism and define

ϕ∗(H) : T ∗Y − {0} −→ IR

by the composition

ϕ∗(H) = H ◦ T ∗ϕ−1 : T ∗Y
T ∗ϕ−1

−→ T ∗Y
H
−→ IR

where
T ∗ϕ(α) : T ∗Y −→ IR

ξ 7−→ αϕ(x)(Txϕ(ξ)) .

We also have that ϕ∗(H) is positive and positively homogeneous of degree
one.

Now, T ∗ϕ−1 is a symplectomorphism of T ∗Y , consequently (see [1], pg. 194)
we have that (T ∗ϕ−1)∗(χH) = χϕ∗(χH) where (T ∗ϕ−1)∗(χH) = (T ∗ϕ)∗(χH) =
T (T ∗ϕ)(χH)(T ∗ϕ)−1 and thus the following diagram commutes:

T ∗Y
θH−→ T (T ∗Y )

T ∗ϕ ↓ ↓ T (T ∗ϕ)

T ∗Y −→
θϕ∗(H)

T (T ∗Y )

Moreover, it factors to a diagram:

ΣT ∗Y
θ̃H−→ T (ΣT ∗Y )

ΣT ∗ϕ ↓ ↓ T (ΣT ∗ϕ)
ΣT ∗Y −→

θ̃ϕ∗(H)

T (ΣT ∗Y )
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Then it is not difficult to see that the following diagram is commutative too:

IR+ × ΣT ∗Y
τH−→ Y × Y

1× ΣT ∗ϕ ↓ ↓ ϕ−1 × ϕ−1

IR+ × ΣT ∗Y −→
τϕ∗(H)

Y × Y

And from this we obtain that given any initial wave front V = h(X), the
diffeomorphism ϕ−1 takes the caustic set of the pair (h,H) to the caustic set of
(ϕ−1 ◦ h, ϕ∗(H)), (and it also takes the wavefront of V at time t for H to the
wave front of ϕ−1(V ) at time t for ϕ∗(H), or in other words, the diffeomorphism
ϕ takes the wave front of V at time t for ϕ∗(H) to the wave front at time t of
ϕ(V ) for H, and the caustic of V with respect to ϕ∗(H) to the caustic of ϕ(V )
with respect to H.

d) Finally, given a topological distance function ρ on Y with smooth square
d : Y × Y → IR, and such that db is a submersion on Y − {0} ∀ b ∈ Y , for any
diffeomorphism ϕ : Y → Y we have that ϕ∗(ρ) = ρ ◦ (ϕ × ϕ) gives a distance
on Y having the same properties as ρ. Moreover, if V = h(X) is an embedded
submanifold, we have the following commutative diagram

[*]

X × Y
h×1Y−→ Y × Y

d
−→ IR

1× ϕ−1 ↓ ↓ ϕ−1 × ϕ−1 ↓ 1
X × Y −→

ϕ−1 ◦ h× 1Y

Y × Y −→
ϕ∗(d)

IR

where ϕ∗(d) = [ϕ∗(ρ)]2 .

And hence, ϕ−1 maps the d-caustic of V into the ϕ∗(d)-caustic of ϕ−1(V ).

All this amounts to say that any diffeomorphism ϕ of Y (take germs if nec-
essary) induces a new element of each one of the classes above and a diagram of
type [*], where d is the distance function associated to the original element and
ϕ∗(d) corresponds to the one induced from ϕ. We can then say that the families
Ψ = d ◦ (h× 1Y ) and ϕ

∗(Ψ) = ϕ∗(d)(ϕ−1 ◦ h× 1Y ) are A-equivalent.

Theorem 3. Given a fixed embedding and an A-invariant submanifold
Ω ⊂ Jk(X, IR), there is a dense subset DΩ in the class C, such that ∀ c ∈ DΩ we
have that jk1 (dc ◦ (h × 1Y )) ∩ Ω, where C is one of the classes a), b), c), or d)
above, and dc is the distance function associated to the element c of the class C
as previously specified.

Proof: Let DΩ = {c ∈ C : jki (dc ◦ (h × 1Y ) ∩ Ω}. In order to prove the
density of DΩ we show that ∀ c ∈ C , ∃ a sequence {cn} ⊂ DΩ such that cn → c
in the topology of C.
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Write

Ψc : X × Y
h×1Y−→ Y × Y

dc−→ IR

then either jk1Ψ ∩ Ω in which case Ψc ∈ DΩ and there is nothing to prove, or
jk1Ψ is not transversal to Ω. In this last case, we know from Montaldi’s theorem
that there is a sequence {ht} converging to h in the Whitney C∞-topology on
Emb∞(X,Y ) such that jk1 (dc ◦ (ht × 1)) ∩ Ω, ∀ t. We can now work in small
enough neighbourhoods of the embedding h such that there are diffeomorphisms
ϕt : Y → Y with h = ϕt ◦ ht and such that {ϕt} converges to 1Y . In fact, we can
take ϕt to be the identity off some closed neighbourhood of h(X). Then we get
that the families

Ψt : X × Y
ht×1Y−→ Y × Y

dc−→ IR

satisfy jk1Ψt ∩ Ω, ∀ t.

But from the considerations above we know that these families are respectively
A-equivalent to the following

ϕ∗
t (Ψ): X × Y

h×1Y−→ Y × Y
dϕ∗

t
(c)

−→ IR .

Consequently jk1ϕ
∗
t (Ψ) ∩ Ω, ∀ t.

Moreover, since {ϕt} converges to 1Y it is not difficult to see that {ϕ∗
t (c)}

converges to c, and thus we are done.

The next is the result B) stated in Section I.

Theorem 4. Given h ∈ Emb∞(X,Y ) and c ∈ C, the caustic C(h, c) associ-
ated to them is locally stable with respect to perturbations of h in Emb∞(X,Y )
if and only if it is locally stable with respect to perturbations of c in C.

Proof: Since the result is local we may put Y = IRn without loss of generality.

Wassermann [13] proved that C(h, c) is stable with respect to perturbations of
h if and only if the family Ψh,c = {dc◦(h×1Y )) isA-stable as a family of functions.
So, it is enough to prove that the stability of C(h, c) with respect to perturbations
in c within C implies stability of C(h, c) with respect to perturbations of the
embedding h.

Consider thus the family

Ψh,c : X × Y
h×1Y−→ Y × Y

dc−→ IR ,

and a perturbation

Ψ
ĥ,c

: X × Y
ĥ×1Y−→ Y × Y

dc−→ IR ,
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such that ĥ is near enough to h in Emb(X,Y ). As before, we know that ĥ must
be in the G-orbit of h in Emb∞(X,Y ) and thus ∃ϕ ∈ G that can be taken near
enough to 1Y such that ĥ = ϕ ◦ h. Then ĉ = ϕ∗(c) ∈ C will be as near to c as
desired. Now, by stability of Ψh,c with respect to perturbations in c we have that
Ψh,c ∼A Ψh,̂c. But clearly Ψh,̂c ∼A Ψ

ĥ,c
and the proof is finished.

Finally, we would like to make some remark concerning the focal sets of generic
closed curves from a global viewpoint. It is known that the 4-vertex theorem
holds for closed curves on surfaces with constant negative curvature [11]. Now,
suppose that α : S1 → N is a generic curve (in the sense that it belongs to
the open and dense set defined by Theorem 3) on a complete simply connected
surface N provided with a Riemannian metric g which is near enough to another
metric g̃ for which N has constant negative curvature and no conjugate points.
In this case the exponential maps of the metrics involved are globally defined and
so are the distance functions on N . Moreover, we can use the multijets version
of the Theorem 1 above (or also Theorem 3 in [3, pg. 212] applies under our
assumptions) and get that, α being generic, its caustic (or focal set) in (N, g)
must be stable and hence diffeomorphic to the caustic of α in (N, g̃) (for g near
enough to g̃). But since the 4-vertex theorem applies in this later case, we obtain
as a consequence a 4-vertex theorem for the previous more general one. Therefore
we can state the following:

Given any generic closed curve on the hyperbolic plane, its focal set with
respect to any small enough perturbation of the surface (more precisely, of its
metric) has at least 4 cuspidal points.
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