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OSCILLATION PROPERTIES OF
NONLINEAR DIFFERENCE EQUATIONS

WILLIE E. TAYLOR, JR. and MINGHUA SUN

0 — Introduction and preliminary results

This paper is concerned with the oscillation of solutions of the equation:
(E) A4Vn + bn+2 f(Vn+2, AVn+2, AQVn+2, A3Vn+2) =0 s

where A is the forward difference operation, i.e. AV, = V,11 — V,,. It will be
assumed throughout that the conditions below are satisfied:

i) b, > 0 for n > 1,
ii) f: R* — R is continuous;
iii) wf(w,z,y,2) > 0 and f(w,z,y,2) # 0 whenever wxy z # 0.

The results in this paper were motivated by the work of W.E. Taylor, Jr. [2]
on the equation

(6) A4Vn + bn+2 Vn+2 =0.

Many of the results herein extend results of [2]; however, some theorems are new
since the order of (E) need not be four.

By a solution of (E) we mean a real sequence V satisfying equation (E) for n =
1,2,3,.... A solution V of (E) is called nonoscillatory if it is eventually positive
or eventually negative. Otherwise, a solution V' of (E) is called oscillatory. A
solution V' of (F) is called quickly oscillatory if V,,V,, 11 < 0 for all n sufficiently
large, or equivalently, V,, = (—1)" a,, where a,, is a sequence of positive numbers
or negative numbers.

In this paper, we only concern the solutions of (E) which A*V,, # 0 for all n
sufficiently large.
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We begin the study of this equation by considering a functional which plays
a vital role in the investigation.

Lemma 1.1. If V, is a solution of (E), define F(V,) = V, 1A%V, —
AV,, A?V,,. Then F(V},) is nonincreasing for n > 1.

Proof: Let V be any solution of (E). Then

AF(Vy,) = Voo AWy, + AV A3V, — AV, A3V, — (A2V,)?
= Vn+2 A4‘/71 - (sz )2
*bn+2 Vn+2 f( n+2, AVnJrZa A Vn+2y A Vn+2) - (szn)2

Therefore F(V,,) is nonincreasing for all solutions of (E). u

Because of this result, the limit of F'(V},) as n — oo exists of F(V,,) — —o0 as
n — oo. If limy, oo F'(V;,) > 0, we call the solution V' of (E) a Type I solution.
If lim, oo F(V,) < 0, we call V' a Type II solution. Furthermore, if —co <
lim;,, oo F'(Vy,) <0, we call V' a Type Il(a) solution, and if lim,_,o, F'(V;,) = —o0,
we call V' a Type II(b) solution.

Theorem 1.2. IfV is a Type I or Type Il(a) solution, then
(1) X% Vata busa f(Vasa, AViio, A?Viio, A%V 10) < o0;

(2) Z(A%,)? < oo;

(3) Z=(A%V,)? < oo;

(4) lim, oo A%V, = lim,, oo A3V, = 0.

Proof: For Type I and Type II(a) solutions, lim, . F'(V,) =k > —oo and
F(V,) >k foralln=0,1,2,3,.... Then,

m—1
= > AF(V,)+ F(V)
n=0

m—1 m—1

=2 Vo bute £ (Visa, AVisa, A%Viso, A%Wigo ) =3~ (V)24 F (V)

= n=0

Zk.

Since Vii2bnio f(Vira, AViio, A%V, 10, A%V, 1) > 0 and (A2V,)? > 0, then

m—1

Y Vatrabnyo f(Vn+2, AVpga, A* Vo, AgVn+2) < F(Vo) =k < o0
n=0
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and
m—1

D AV, < F(Vp) —k < o0
n=0

Let m — oo, then

> Varabura £ (Viero, AVira, A%Viin, A%,145) < (V) — k < 00
n=0

and
oo

S (AL F(Vp) —k < oo

n=0

Since (A%V,,)? < 2(A%V,,41)? + 2(A%V},)?, then

S AWL)?<2Y (A%Vo)? +2) (A%V,)? < .
n=0 n=0 n=0

Since 3°0° (A%V,)? < oo and >0°((A3V,)? < oo, then (A%V,)? — 0 and
(A3V,)? — 0 as n — oo. Therefore lim,, oo A%V, = lim,, o0 A3V, = 0. n

Theorem 1.3. IfV is a Type II solution of (E), then V,, is unbounded.
Proof: Consider H(V,,) = V,, A%V, — (AV,)2.

AH(V,) = A(V,, A%V,) — A(AV,)?
= Vi1 A3V, + AV, A%V, — 2AV, A%V, — (A%V,)?
= F(V,) — (A%V,)%.

Since V' is a Type II solution of (E), F(V,) is negative and bounded away
from zero for all n sufficiently large; hence AH (V,,) is negative and bounded away
from zero. So H(V,) — —oo as n — oo. Thus at least one of V,, AV,, A2V,
must be unbounded. If A%V, is unbounded, then AV, is unbounded. If AV, is
unbounded, then V,, is unbounded. Therefore V,, must be unbounded. n

2 — Nonoscillation results

Now we discuss the behavior of nonoscillatory solutions.
Lemma 2.1. IfV is a nonoscillatory solution of (E), then either

sgnV,, = sgn AV,, = sgn A%V, = sgn A3V, = — sgn A,
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for all n sufficiently large, or
sgn 'V, = sgn AV, = sgn A3V, = —sgn A2V, = —sgn AV,
for all n sufficiently large, and lim,,_.., A?V,, = lim,_.. A%V}, = 0.

Proof: Assume V is a nonoscillatory solution of (E), where V;, > 0 for all n
sufficiently large. Since wf(w,z,y,z) > 0 and b,, > 0, then

Vn+2 bn+2 f (Vn+2a AVn+27 A2Vn+Za A3‘/71+2> >0.
For all n sufficiently large, V42 > 0, so we have

A4Vn = _bn+2 f(vn+27 AVn+2a AQVn—l—Q, ASVTH—Z) < 0

for all n sufficiently large. Then A3V, is nonincreasing. For all n sufficiently large,
since A%V, # 0, the following two cases must be considered: case I, A%V, > 0,
case 11, A3V, < 0.

In case I, A%V, is increasing, then either A?V,, > 0 or A%V, < 0 for all n
sufficiently large.

If A%V, > 0, then A%V,, > k > 0 for all n sufficiently large. This means
AV, — 400 and V,, — 400 as n — o0o; then for n sufficiently large,

V,>0, AV,>0, A?V,>0, A%V, >0,

and
F (Virz, AVisa, AVig, A%Woia) # 04

then A%V, < 0.

If A%V, < 0, lim,_—o0 A%V, = r < 0 because A%V, > 0. If r < 0, then
AV, — —occ and V,, — —o0 as n — oo. This contradicts V,, > 0. Therefore
r = 0. Hence AV, is decreasing. Since V,, > 0, then AV,, > 0. Therefore for all
n sufficiently large,

V,>0, AV,>0, A%V, <0, A%V,>0,

and
F (Virz, AVisa, A%Vig, A%Woi2) # 04

then A%V, < 0. Since A3V, > 0, A2V, < 0, and lim,_.. A2V,, = 0, then

lim A%V, = lim A%V, =0.

n—oo n—oo



OSCILLATION PROPERTIES OF NONLINEAR DIFFERENCE EQUATIONS 19

In case II, for n sufficiently large, there exists 7 < 0 such that A3V, <r <0
because A3V}, is decreasing. This means A%V,, — —o0, AV,, — —o0, and V,, —
—00 as n — oo, which is impossible.

Similarly, when V,, < 0 for all n sufficiently large, then either

V, <0, AV, <0, A%, <0, A%, <0 and A'V, >0
or
Vo <0, AV, <0, A*,>0, A’W,<0, A'W,>0

and lim, 00 A%V, = limp, 0o A3V, = 0. u

Theorem 2.2. IfV is a nonoscillatory solution of (E), then the following
statements are equivalent:

(1) V,, is a Type I solution;

(2) (A% V,)? < oo;

(3) sgnV,, = sgn AV,, = sgn A3V,, = —sgn A%V,, = —sgn A*V,.

Proof: First we prove (2) from (1). If V is a nonoscillatory Type I solution,
by Theorem 1.2, S>°(A2%V,,)? < co.

Now we prove (3) from (2). Suppose V is nonoscillatory and Y>.°(A2V,,)? <
00. There are only two cases:

(a) sgnV,, = sgn AV,, = sgn A%V, = sgn A3V,, = —sgn A*V,;
(b) sgnV,, = sgn AV, = sgn A3V, = —sgn A%V, = —sgn AV,.

Case (a) is impossible because lim,, o, A%V, # 0 and >.*°(A?V},)? < co. Thus
(b) must be true.
We prove (1) from (3). Suppose V' is nonoscillatory and satisfies sgnV,, =

sgn AV, = sgn A3V, = —sgn A%V,; then
F(Va) = Vg1 A%V, — AV, APV,
= sgn V11 sgn A3V, |Vit1 ASVn] — sgn AV, sgn A2V, |AV, AQVn]
= Vo1 A3V, | + |AV, A%V, >0 .

Therefore V' is a Type I solution. n

Lemma 2.3. IfV is a Type II(a) solution of (E), then V' cannot be nonoscil-
latory.

Proof: Assume a Type II(a) solution V' is nonoscillatory and V,, > 0 for all
n > N. The proof is similar if V,, < 0 for all n > N. According to Lemma 2.1,
there are only two possibilities:
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(a) sgnV,, = sgn AV,, = sgn A%V, = sgn A3V,, = —sgn A*V,,
(b) sgnV,, = sgn AV, = sgn A3V, = —sgn A%V, = —sgn A*V/,.
According to Theorem 1.2, lim,, .o, A%V, = lim, .o, A%V,, = 0, so only (b)

can occur. By Theorem 2.2, V' is a Type I solution; this contradicts V is a Type
II(a) solution. Therefore V is oscillatory. m

Therefore, if V' is a nonoscillatory solution of (E), V is either a Type I solution
or a Type II(b) solution.

Theorem 2.4. IfV is a nonoscillatory solution of (E), then the following
are equivalent:
(1) V is a Type II(b) solution;
(2) sgnV,, = sgn AV,, = sgn A%V,, = sgn A%V,, = —sgn A*V,, for all n suffi-
ciently large;

(3) There exists k > 0 such that |A%V,| > k for all n sufficiently large.

Proof: First we prove (2) from (1). Since V is nonoscillatory, then for n
sufficiently large, either

(a) sgnV,, = sgn AV,, = sgn A%V, = sgn A3V,, = —sgn A*V,,
or

(b) sgnV,, = sgn AV,, = sgn A3V, = —sgn A%V, = —sgn A*V,.

By Theorem 2.3, (b) implies that V' is a Type I solution. Therefore, (a) must
be true.

Now we prove (3) from (2). Assume V,, > 0 for n > N. Since sgnV,, =
sgn AV, = sgn A%V, = sgn A3V,, = —sgn A*V,, for n > N, then A2V, > 0 and
A3V, > 0 for n > N. So A%V, is increasing when n > N. Let k = A%2Vy > 0,
then A%V, > k > 0 for all n > N. Similarly, when V,, < 0 for n > N, A%V, <
A?Vy <0 for n > N. (3) is proved.

We prove (1) from (3). Since V is nonoscillatory, then for n sufficiently large,
either

(a) sgnV,, = sgn AV,, = sgn A%V, = sgn A3V,, = —sgn A*V,,
or
(b) sgnV,, = sgn AV,, = sgn A3V, = —sgn A%V,, = —sgn A%V,

and lim,, o, A%V, = lim,, oo A3V, = 0. But |A2V,| > k > 0 as n — oo, so (b) is
impossible. Therefore, V' cannot be a Type I solution. Also, V' cannot be a Type
II(a) solution because Type II(a) solutions are oscillatory. Thus V can only be a
Type II(b) solution. m
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By Theorems 2.2 and 2.4, if a solution V of (E) is nonoscillatory, then AV,
is eventually increasing or decreasing; if AV}, is bounded, then V is Type I, and
if AV}, is unbounded, then V' is Type II(b).

3 — Oscillation results

Combining Theorem 1.3 and Lemma 2.3, we get the following theorem.

Theorem 3.1. IfV is a Type II(a) solution of (E), then V is oscillatory and
unbounded.

Whether Type II(a) solutions actually exist remains an open question.

Theorem 3.2. If f(w,x,y,z)/w >r >0 and Y.>°b, = oo, then (E) cannot
have nonoscillatory solutions.

Proof: Suppose V is a nonoscillatory solution of (E) and V,, is eventually
positive. The proof is similar if V;, is eventually negative. From (E), we have

A4Vn = _bn+2 f (Vn+2a A‘/n—i—2, A2Vn+Za A3Vn+2)
< —rbpy2Vigo <0

According to Lemma 2.1, there exists N such that whenn > N, V,, > 0, AV, >0
and A3V,, > 0. So V,, is eventually increasing. Therefore, there exist M and «
such that when n > M, V,, > o > 0. Let m = max(N, M). Then for n > m,

n—1 n—1
0< AW, =D AW+ AW, <=3 rbisa Vigo + A%V,
Hence,
n—1
> rbiga Viga < AV, .
Thus,
n—1
0<?”OéZbi+2 < A3Vm .

Let n — oo, then 0 < 3292 .o b; < A3V, /ra. This contradicts 3.*°b, = .
Therefore, V,, cannot be nonoscillatory. m

Theorem 3.3. Equation (E) cannot have a quickly oscillatory solution.
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Proof: Suppose V,, = (—1)" a,, is a solution of (E) where a,, > 0. Then
AV, = (=" (an+4 + 4an43 + 6anp40 + 4dapt1 + an) .
(E) can be written
(=" (an+4 + 4ap43 + 6an42 + 4dan+1 + an) +
+ b2 f(Vn+2, AVpi2, A%V, o, AgVn+2> =0.

Thus,
n (an+4 +4an43 + 6ani2 +4ant1 + an)
f (Vn+2, AVH+27 AQVn—i—Q’ ABVTL+2)

an+2 (an+4 + 4apy3 + 6ap42 +4an+1 + an) 0
= - <0.

Viers f (Vi AV, A2V, A3V 0)

This contradicts b, > 0. Thus (F) cannot have a quickly oscillatory solution. m

bois = —(—1

4 — Examples
Example 1. V, =n — (1/2)" is a solution of (E), where
by = 2248/ (5(n +2) 242 — 5) |
f(Vn+2’ AVig2, AV, ASVn—i—Z) = Vn+2((A2Vn+2)2 + (ASVn+2)2) :

Then,
Vo=n—-(1/2)" >0 (whenn >0),

AV, =(1/2)"" +1>0,
AV, = —(1/2)""2 <0,
A3V, = (1/2)"2 >0,
A, = —(1/2)" <0 .
Hence this is a nonoscillatory Type I solution. Also 3-°°(A?V},)? < co. Actually,
F(V,) = Vi1 A%V, — AV, A%V,
= (n+1=(1/2)"1) (/25 + ((1/2)" +1) (1/2)"2 >0,

and lim,, oo F(V,) = 0. Also, %°(A?V,,)? = 32°(1/2)*"+ < cc.
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Example 2. V, =n(n—1)—(1/2)" is a solution of (F), where
by = 22" (n(n — 1)2" ~ 1),

f(vn+2a AVn+2a A2vn+2a A3Vn+2> — Vn+2(A3Vn+2)2 .

Then
Vo=n(n—-1)—(1/2)" >0 (whenn>1),

AV, =2n+ (1/2)" >0,
A%, =2—-(1/2)""% >0,
A3V, = (172" >0,
AW, = —(1/2)" < 0.

Therefore, V,, is nonoscillatory Type II(b) solution. lim, . A%V, = 2, and
lim,, o F(V,,) = —c0.

Example 3. V, = (V2 + 1)"sin(nn/4) is an oscillatory solution of (E),
where

by, = 2{(\/54— )" sin(nr /4 +7/4) — (V24 1)" sin(mr/él)}_2 ,

(Va2 AVga, AV, A%V, 15) = Vs (AVpp0)?
Then,
AV, = Voo — 2V + Vi
= (1+v2)" |3 +2V2) sin(nr/4 + 7/2)
— (24 2V2) sin(nr /4 + 7/4) + sin(nr/4)] .
When n = 8i (i is a positive integer),
AV = (1+V2)¥ (3+2V2-v2-2)
= (1+V2)8 T

When i — oo, A%Vg; — oo. According to Theorem 1.2 (4), V,, cannot be Type I
or Type II(a). Therefore, this V,, is a Type II(b) solution.

Example 4. V, = (v/2 — 1)"sin(nn/4) is an oscillatory solution of (E),
where
2

by, = 2{(\/5 — )" sin(nr/4 +7/4) — (V2 - 1)" sin(mr/él)] -

f(vn+27 AVn—&—Qa A2Vn+27 A3‘/’n-‘,—2) - Vn+2(AVn+2)2 .
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Since lim,, o V5, = 0, according to Theorem 1.3, V cannot be Type II. Therefore,
this V is a Type I solution.
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