
PORTUGALIAE MATHEMATICA

Vol. 52 Fasc. 1 – 1995

OSCILLATION PROPERTIES OF
NONLINEAR DIFFERENCE EQUATIONS

Willie E. Taylor, Jr. and Minghua Sun

0 – Introduction and preliminary results

This paper is concerned with the oscillation of solutions of the equation:

(E) ∆4Vn + bn+2 f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

= 0 ,

where ∆ is the forward difference operation, i.e. ∆Vn = Vn+1 − Vn. It will be
assumed throughout that the conditions below are satisfied:

i) bn > 0 for n > 1;

ii) f : IR4 → IR is continuous;

iii) wf(w, x, y, z) ≥ 0 and f(w, x, y, z) 6= 0 whenever wxy z 6= 0.
The results in this paper were motivated by the work of W.E. Taylor, Jr. [2]

on the equation

(e) ∆4Vn + bn+2 Vn+2 = 0 .

Many of the results herein extend results of [2]; however, some theorems are new
since the order of (E) need not be four.

By a solution of (E) we mean a real sequence V satisfying equation (E) for n =
1, 2, 3, ... . A solution V of (E) is called nonoscillatory if it is eventually positive
or eventually negative. Otherwise, a solution V of (E) is called oscillatory . A
solution V of (E) is called quickly oscillatory if VnVn+1 < 0 for all n sufficiently
large, or equivalently, Vn = (−1)n an where an is a sequence of positive numbers
or negative numbers.

In this paper, we only concern the solutions of (E) which ∆4Vn 6≡ 0 for all n
sufficiently large.
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We begin the study of this equation by considering a functional which plays
a vital role in the investigation.

Lemma 1.1. If Vn is a solution of (E), define F (Vn) = Vn+1∆
3Vn −

∆Vn∆
2Vn. Then F (Vn) is nonincreasing for n ≥ 1.

Proof: Let V be any solution of (E). Then

∆F (Vn) = Vn+2∆
4Vn +∆Vn+1∆

3Vn −∆Vn+1∆
3Vn − (∆2Vn)

2

= Vn+2∆
4Vn − (∆2Vn)

2

= −bn+2 Vn+2 f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

− (∆2Vn)
2 ≤ 0 .

Therefore F (Vn) is nonincreasing for all solutions of (E).

Because of this result, the limit of F (Vn) as n→∞ exists of F (Vn)→ −∞ as
n → ∞. If limn→∞ F (Vn) ≥ 0, we call the solution V of (E) a Type I solution.
If limn→∞ F (Vn) < 0, we call V a Type II solution. Furthermore, if −∞ <
limn→∞ F (Vn) < 0, we call V a Type II(a) solution, and if limn→∞ F (Vn) = −∞,
we call V a Type II(b) solution.

Theorem 1.2. If V is a Type I or Type II(a) solution, then

(1)
∑

∞ Vn+2 bn+2 f(Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2) <∞;
(2)

∑

∞(∆2Vn)
2 <∞;

(3)
∑

∞(∆3Vn)
2 <∞;

(4) limn→∞∆
2Vn = limn→∞∆

3Vn = 0.

Proof: For Type I and Type II(a) solutions, limn→∞ F (Vn) = k > −∞ and
F (Vn) ≥ k for all n = 0, 1, 2, 3, ... . Then,

F (Vm)=
m−1
∑

n=0

∆F (Vn) + F (V0)

=−
m−1
∑

n=0

Vn+2 bn+2 f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

−
m−1
∑

n=0

(∆2Vn)
2+F (V0)

≥ k .

Since Vn+2 bn+2 f(Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2) ≥ 0 and (∆2Vn)
2 ≥ 0, then

m−1
∑

n=0

Vn+2 bn+2 f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

≤ F (V0)− k <∞
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and
m−1
∑

n=0

(∆2Vn)
2 ≤ F (V0)− k <∞ .

Let m→∞, then
∞
∑

n=0

Vn+2 bn+2 f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

≤ F (V0)− k <∞

and
∞
∑

n=0

(∆2Vn)
2 ≤ F (V0)− k <∞ .

Since (∆3Vn)
2 ≤ 2(∆2Vn+1)

2 + 2(∆2Vn)
2, then

∞
∑

n=0

(∆3Vn)
2 ≤ 2

∞
∑

n=0

(∆2Vn+1)
2 + 2

∞
∑

n=0

(∆2Vn)
2 <∞ .

Since
∑

∞

n=0(∆
2Vn)

2 < ∞ and
∑

∞

n=0(∆
3Vn)

2 < ∞, then (∆2Vn)
2 → 0 and

(∆3Vn)
2 → 0 as n→∞. Therefore limn→∞∆

2Vn = limn→∞∆
3Vn = 0.

Theorem 1.3. If V is a Type II solution of (E), then Vn is unbounded.

Proof: Consider H(Vn) = Vn∆
2Vn − (∆Vn)

2.

∆H(Vn) = ∆(Vn∆
2Vn)−∆(∆Vn)

2

= Vn+1∆
3Vn +∆Vn∆

2Vn − 2∆Vn∆
2Vn − (∆2Vn)

2

= F (Vn)− (∆2Vn)
2 .

Since V is a Type II solution of (E), F (Vn) is negative and bounded away
from zero for all n sufficiently large; hence ∆H(Vn) is negative and bounded away
from zero. So H(Vn) → −∞ as n → ∞. Thus at least one of Vn, ∆Vn, ∆

2Vn

must be unbounded. If ∆2Vn is unbounded, then ∆Vn is unbounded. If ∆Vn is
unbounded, then Vn is unbounded. Therefore Vn must be unbounded.

2 – Nonoscillation results

Now we discuss the behavior of nonoscillatory solutions.

Lemma 2.1. If V is a nonoscillatory solution of (E), then either

sgnVn = sgn∆Vn = sgn∆
2Vn = sgn∆

3Vn = − sgn∆4Vn
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for all n sufficiently large, or

sgnVn = sgn∆Vn = sgn∆
3Vn = − sgn∆2Vn = − sgn∆4Vn

for all n sufficiently large, and limn→∞∆
2Vn = limn→∞∆

3Vn = 0.

Proof: Assume V is a nonoscillatory solution of (E), where Vn > 0 for all n
sufficiently large. Since wf(w, x, y, z) ≥ 0 and bn > 0, then

Vn+2 bn+2 f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

≥ 0 .

For all n sufficiently large, Vn+2 > 0, so we have

∆4Vn = −bn+2 f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

≤ 0

for all n sufficiently large. Then ∆3Vn is nonincreasing. For all n sufficiently large,
since ∆4Vn 6≡ 0, the following two cases must be considered: case I, ∆3Vn > 0,
case II, ∆3Vn < 0.

In case I, ∆2Vn is increasing, then either ∆
2Vn > 0 or ∆2Vn < 0 for all n

sufficiently large.

If ∆2Vn > 0, then ∆2Vn > k > 0 for all n sufficiently large. This means
∆Vn → +∞ and Vn → +∞ as n→∞; then for n sufficiently large,

Vn > 0, ∆Vn > 0, ∆2Vn > 0, ∆3Vn > 0 ,

and

f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

6= 0 ;

then ∆4Vn < 0.

If ∆2Vn < 0, limn→∞∆
2Vn = r ≤ 0 because ∆3Vn > 0. If r < 0, then

∆Vn → −∞ and Vn → −∞ as n → ∞. This contradicts Vn > 0. Therefore
r = 0. Hence ∆Vn is decreasing. Since Vn > 0, then ∆Vn > 0. Therefore for all
n sufficiently large,

Vn > 0, ∆Vn > 0, ∆2Vn < 0, ∆3Vn > 0 ,

and

f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

6= 0 ;

then ∆4Vn < 0. Since ∆3Vn > 0, ∆2Vn < 0, and limn→∞∆
2Vn = 0, then

lim
n→∞

∆2Vn = lim
n→∞

∆3Vn = 0 .
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In case II, for n sufficiently large, there exists r < 0 such that ∆3Vn < r < 0
because ∆3Vn is decreasing. This means ∆

2Vn → −∞, ∆Vn → −∞, and Vn →
−∞ as n→∞, which is impossible.
Similarly, when Vn < 0 for all n sufficiently large, then either

Vn < 0, ∆Vn < 0, ∆2Vn < 0, ∆3Vn < 0 and ∆4Vn > 0

or
Vn < 0, ∆Vn < 0, ∆2Vn > 0, ∆3Vn < 0, ∆4Vn > 0

and limn→∞∆
2Vn = limn→∞∆

3Vn = 0.

Theorem 2.2. If V is a nonoscillatory solution of (E), then the following
statements are equivalent:

(1) Vn is a Type I solution;

(2)
∑

∞(∆2Vn)
2 <∞;

(3) sgnVn = sgn∆Vn = sgn∆
3Vn = − sgn∆2Vn = − sgn∆4Vn.

Proof: First we prove (2) from (1). If V is a nonoscillatory Type I solution,
by Theorem 1.2,

∑

∞(∆2Vn)
2 <∞.

Now we prove (3) from (2). Suppose V is nonoscillatory and
∑

∞(∆2Vn)
2 <

∞. There are only two cases:
(a) sgnVn = sgn∆Vn = sgn∆

2Vn = sgn∆
3Vn = − sgn∆4Vn;

(b) sgnVn = sgn∆Vn = sgn∆
3Vn = − sgn∆2Vn = − sgn∆4Vn.

Case (a) is impossible because limn→∞∆
2Vn 6= 0 and

∑

∞(∆2Vn)
2 <∞. Thus

(b) must be true.
We prove (1) from (3). Suppose V is nonoscillatory and satisfies sgnVn =

sgn∆Vn = sgn∆
3Vn = − sgn∆2Vn; then

F (Vn) = Vn+1∆
3Vn −∆Vn∆

2Vn

= sgnVn+1 sgn∆
3Vn |Vn+1∆

3Vn| − sgn∆Vn sgn∆
2Vn |∆Vn∆

2Vn|
= |Vn+1∆

3Vn|+ |∆Vn∆
2Vn| ≥ 0 .

Therefore V is a Type I solution.

Lemma 2.3. If V is a Type II(a) solution of (E), then V cannot be nonoscil-
latory.

Proof: Assume a Type II(a) solution V is nonoscillatory and Vn > 0 for all
n > N . The proof is similar if Vn < 0 for all n > N . According to Lemma 2.1,
there are only two possibilities:
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(a) sgnVn = sgn∆Vn = sgn∆
2Vn = sgn∆

3Vn = − sgn∆4Vn,

(b) sgnVn = sgn∆Vn = sgn∆
3Vn = − sgn∆2Vn = − sgn∆4Vn.

According to Theorem 1.2, limn→∞∆
2Vn = limn→∞∆

3Vn = 0, so only (b)
can occur. By Theorem 2.2, V is a Type I solution; this contradicts V is a Type
II(a) solution. Therefore V is oscillatory.

Therefore, if V is a nonoscillatory solution of (E), V is either a Type I solution
or a Type II(b) solution.

Theorem 2.4. If V is a nonoscillatory solution of (E), then the following
are equivalent:

(1) V is a Type II(b) solution;

(2) sgnVn = sgn∆Vn = sgn∆
2Vn = sgn∆

3Vn = − sgn∆4Vn for all n suffi-
ciently large;

(3) There exists k > 0 such that |∆2Vn| ≥ k for all n sufficiently large.

Proof: First we prove (2) from (1). Since V is nonoscillatory, then for n
sufficiently large, either

(a) sgnVn = sgn∆Vn = sgn∆
2Vn = sgn∆

3Vn = − sgn∆4Vn,

or

(b) sgnVn = sgn∆Vn = sgn∆
3Vn = − sgn∆2Vn = − sgn∆4Vn.

By Theorem 2.3, (b) implies that V is a Type I solution. Therefore, (a) must
be true.

Now we prove (3) from (2). Assume Vn > 0 for n ≥ N . Since sgnVn =
sgn∆Vn = sgn∆

2Vn = sgn∆
3Vn = − sgn∆4Vn for n ≥ N , then ∆2Vn > 0 and

∆3Vn > 0 for n ≥ N . So ∆2Vn is increasing when n ≥ N . Let k = ∆2VN > 0,
then ∆2Vn > k > 0 for all n ≥ N . Similarly, when Vn < 0 for n ≥ N , ∆2Vn <
∆2VN < 0 for n > N . (3) is proved.

We prove (1) from (3). Since V is nonoscillatory, then for n sufficiently large,
either

(a) sgnVn = sgn∆Vn = sgn∆
2Vn = sgn∆

3Vn = − sgn∆4Vn,

or

(b) sgnVn = sgn∆Vn = sgn∆
3Vn = − sgn∆2Vn = − sgn∆4Vn

and limn→∞∆
2Vn = limn→∞∆

3Vn = 0. But |∆2Vn| > k > 0 as n→∞, so (b) is
impossible. Therefore, V cannot be a Type I solution. Also, V cannot be a Type
II(a) solution because Type II(a) solutions are oscillatory. Thus V can only be a
Type II(b) solution.
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By Theorems 2.2 and 2.4, if a solution V of (E) is nonoscillatory, then ∆Vn

is eventually increasing or decreasing; if ∆Vn is bounded, then V is Type I, and
if ∆Vn is unbounded, then V is Type II(b).

3 – Oscillation results

Combining Theorem 1.3 and Lemma 2.3, we get the following theorem.

Theorem 3.1. If V is a Type II(a) solution of (E), then V is oscillatory and
unbounded.

Whether Type II(a) solutions actually exist remains an open question.

Theorem 3.2. If f(w, x, y, z)/w ≥ r > 0 and
∑

∞ bn =∞, then (E) cannot
have nonoscillatory solutions.

Proof: Suppose V is a nonoscillatory solution of (E) and Vn is eventually
positive. The proof is similar if Vn is eventually negative. From (E), we have

∆4Vn = −bn+2 f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

≤ −r bn+2 Vn+2 < 0 .

According to Lemma 2.1, there exists N such that when n > N , Vn > 0, ∆Vn > 0
and ∆3Vn > 0. So Vn is eventually increasing. Therefore, there exist M and α
such that when n > M , Vn > α > 0. Let m = max(N,M). Then for n > m,

0 < ∆3Vn =
n−1
∑

i=m

∆4Vi +∆
3Vm ≤ −

n−1
∑

i=m

r bi+2 Vi+2 +∆
3Vm .

Hence,
n−1
∑

i=m

r bi+2 Vi+2 < ∆
3Vm .

Thus,

0 < r α
n−1
∑

i=m

bi+2 < ∆
3Vm .

Let n → ∞, then 0 < ∑

∞

i=m+2 bi ≤ ∆3Vm/rα. This contradicts
∑

∞ bn = ∞.
Therefore, Vn cannot be nonoscillatory.

Theorem 3.3. Equation (E) cannot have a quickly oscillatory solution.
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Proof: Suppose Vn = (−1)n an is a solution of (E) where an > 0. Then

∆4Vn = (−1)n
(

an+4 + 4an+3 + 6an+2 + 4an+1 + an

)

.

(E) can be written

(−1)n
(

an+4 + 4an+3 + 6an+2 + 4an+1 + an

)

+

+ bn+2 f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

= 0 .

Thus,

bn+2 = −(−1)n
(

an+4 + 4an+3 + 6an+2 + 4an+1 + an

)

f
(

Vn+2,∆Vn+2,∆2Vn+2,∆3Vn+2

)

= −
an+2

(

an+4 + 4an+3 + 6an+2 + 4an+1 + an

)

Vn+2 f
(

Vn+2,∆Vn+2,∆2Vn+2,∆3Vn+2

) < 0 .

This contradicts bn > 0. Thus (E) cannot have a quickly oscillatory solution.

4 – Examples

Example 1. Vn = n− (1/2)n is a solution of (E), where

bn = 2
2n+8/

(

5(n+ 2) 2n+2 − 5
)

,

f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

= Vn+2

(

(∆2Vn+2)
2 + (∆3Vn+2)

2
)

.

Then,
Vn = n− (1/2)n > 0 (when n > 0) ,

∆Vn = (1/2)
n+1 + 1 > 0 ,

∆2Vn = −(1/2)n+2 < 0 ,

∆3Vn = (1/2)
n+3 > 0 ,

∆4Vn = −(1/2)n+4 < 0 .

Hence this is a nonoscillatory Type I solution. Also
∑

∞(∆2Vn)
2 <∞. Actually,

F (Vn) = Vn+1∆
3Vn −∆Vn∆

2Vn

=
(

n+ 1− (1/2)n+1
)

(1/2)n+3 +
(

(1/2)n+1 + 1
)

(1/2)n+2 > 0 ,

and limn→∞ F (Vn) = 0. Also,
∑

∞(∆2Vn)
2 =

∑

∞(1/2)2n+4 <∞.
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Example 2. Vn = n(n− 1)− (1/2)n is a solution of (E), where

bn = 2
2n+4/

(

n(n− 1)2n − 1
)

,

f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

= Vn+2(∆
3Vn+2)

2 .

Then
Vn = n(n− 1)− (1/2)n > 0 (when n > 1) ,

∆Vn = 2n+ (1/2)
n+1 > 0 ,

∆2Vn = 2− (1/2)n+2 > 0 ,

∆3Vn = (1/2)
n+3 > 0 ,

∆4Vn = −(1/2)n+4 < 0 .

Therefore, Vn is nonoscillatory Type II(b) solution. limn→∞∆
2Vn = 2, and

limn→∞ F (Vn) = −∞.

Example 3. Vn = (
√
2 + 1)n sin(nπ/4) is an oscillatory solution of (E),

where

bn = 2
[

(
√
2 + 1)n+1 sin(nπ/4 + π/4)− (

√
2 + 1)n sin(nπ/4)

]−2
,

f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

= Vn+2(∆Vn+2)
2 .

Then,
∆2Vn = Vn+2 − 2Vn+1 + Vn

= (1 +
√
2)n

[

(3 + 2
√
2) sin(nπ/4 + π/2)

− (2 + 2
√
2) sin(nπ/4 + π/4) + sin(nπ/4)

]

.

When n = 8i (i is a positive integer),

∆2V8i = (1 +
√
2)8i (3 + 2

√
2−

√
2− 2)

= (1 +
√
2)8i+1 .

When i→∞, ∆2V8i →∞. According to Theorem 1.2 (4), Vn cannot be Type I
or Type II(a). Therefore, this Vn is a Type II(b) solution.

Example 4. Vn = (
√
2 − 1)n sin(nπ/4) is an oscillatory solution of (E),

where

bn = 2
[

(
√
2− 1)n+1 sin(nπ/4 + π/4)− (

√
2− 1)n sin(nπ/4)

]−2
,

f
(

Vn+2,∆Vn+2,∆
2Vn+2,∆

3Vn+2

)

= Vn+2(∆Vn+2)
2 .
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Since limn→∞ Vn = 0, according to Theorem 1.3, V cannot be Type II. Therefore,
this V is a Type I solution.
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