## DISTRIBUTIVITY AND WELLFOUNDED SEMILATTICES

Carlos Serra Alves

**Abstract:** It is shown that distributivity over two elements is enough to guarantee distributivity over an arbitrary number of elements for wellfounded semilattices.

## 1 – Basic definitions

Throughout this paper a semilattice shall mean a meet semilattice, i.e. a set S with a function  $\wedge \colon S^2 \to S$  such that  $\forall a,b,c \in S,\ a \wedge a = a,\ a \wedge b = b \wedge a$  and  $a \wedge (b \wedge c) = (a \wedge b) \wedge c$ . The semilattice S means  $(S, \wedge)$  is a semilattice. If S is a semilattice,  $\wedge$  induces a natural partial order  $\leq$  on S by  $a \leq b$  if and only if  $a \wedge b = a$ . We use a < b if  $a \leq b$  and a is not equal to b.

**Definition.** A partial order  $\leq$  on a set S is wellfounded if there is no infinite sequence  $\{s_n\}_{n=0}^{\infty}$  of elements of S such that  $\cdots < s_2 < s_1 < s_0$ .

**Definition.** A semilattice S is wellfounded if the induced partial order  $\leq$  on S is wellfounded.

If S is a semilattice,  $a, b \in S$ ,  $a \lor b$  denotes the least upper bound of a and b under  $\leq$  if it exists.

## 2 - Distributivity

**Definition.** A semilattice S satisfies the condition  $(D_n)$ :

$$x \wedge (s_1 \vee s_2 \vee \ldots \vee s_n) = (x \wedge s_1) \vee (x \wedge s_2) \vee \ldots \vee (x \wedge s_n)$$

Received: August 19, 1992.

if whenever the left-hand side is defined, then so is the right-hand side and they are equal. The class of semilattices satisfying  $(D_n)$  is denoted by  $D_n$ .

**Definition.** A prime semilattice is a semilattice S such that when x,  $s_1, s_2, ..., s_n \in S$ , if  $s_1 \vee s_2 \vee s_3 \vee ... \vee s_n$  exists, then

$$(x \wedge s_1) \vee (x \wedge s_2) \vee \ldots \vee (x \wedge s_n)$$

also exists and

$$x \wedge (s_1 \vee s_2 \vee \ldots \vee s_n) = (x \wedge s_1) \vee (x \wedge s_2) \vee \ldots \vee (x \wedge s_n)$$
.

The class of prime semilattices is denoted by D.

Prime semilattices were first introduced in [1] and  $(D_n)$  in [2]. Clearly

$$D_2 \supseteq D_3 \supseteq \ldots \supseteq D_n \supseteq D_{n+1} \supseteq \ldots \supseteq D$$

and

$$D = \bigcap_{n=2}^{\infty} D_n .$$

In [2] it is stated without example that one can construct a semilattice satisfying  $(D_m)$  but not  $(D_n)$  with m < n. In [4] it is shown that if S is a finite semilattice, then  $S \in D_2$  if and only if  $S \in D$ . This result was also known to Schein ([3]) and raises the problem of determining which type of semilattices have this property.

**Theorem.** Let S be a wellfounded semilattice. Then  $S \in D_2$  if and only if  $S \in D$ .

**Proof:** The "only if" part is straightforward from the inclusions. To show the "if" portion we shall see  $S \in D_n \ \forall n \geq 2$  whenever  $S \in D_2$ . Fix n, let  $x, s_1, s_2 \ldots s_n \in S$  and assume  $s_1 \vee s_2 \vee \ldots \vee s_n$  is defined. We only need to show that  $s_1 \vee s_2 \vee \ldots \vee s_{k-1}$  exists whenever  $s_1 \vee s_2 \vee \ldots \vee s_k$  does for  $k \leq n$ , as then

$$x \wedge (s_1 \vee s_2 \dots \vee s_{n-1} \vee s_n) = x \wedge \left( (s_1 \vee s_2 \vee \dots \vee s_{n-1}) \vee s_n \right)$$

$$= \left( x \wedge (s_1 \vee s_2 \vee \dots \vee s_{n-1}) \right) \vee (x \wedge s_n) \quad \text{by } (D_2)$$

$$= x \wedge \left( (s_1 \vee s_2 \vee \dots \vee s_{n-2}) \vee s_{n-1} \right) \vee (x \wedge s_n)$$

$$= \left( x \wedge (s_1 \vee s_2 \vee \dots \vee s_{n-2}) \vee (x \wedge s_{n-1}) \right) \vee (x \wedge s_n)$$

$$\vdots$$

$$= (x \wedge s_1) \vee (x \wedge s_2) \vee \dots \vee (x \wedge s_n) .$$

The required condition follows immediatly from the following proposition.

**Proposition.** Let S be a wellfounded semilattice  $s_1, s_2, ..., s_n \in S$  such that  $s_1 \vee s_2 \vee ... \vee s_n$  is defined, then  $s_1 \vee s_2 \vee ... \vee s_k$  exists for k < n.

**Proof:** Let  $x_0 = s_1 \vee s_2 \vee \ldots \vee s_n$  and let U be the set of upper bounds of  $s_1, s_2, \ldots, s_k$ . U is nonempty since  $x_0 \in U$ . Given  $x_i \in U$  pick  $y \in U$  such that  $y \leq x_i$  and let  $x_{i+1} = y \wedge x_i < x_i$ ,  $x_{i+1} \in U$ . If no such y exists, then  $x_i = s_1 \vee s_2 \vee \ldots \vee s_k$ . Otherwise we obtain a chain  $x_0 > x_1 > x_2 > \ldots$ . Since S is wellfounded, this chain must be finite and have a least element  $x_j \in U$ , but then  $x_j = s_1 \vee s_2 \vee \ldots \vee s_k$ .

**Corollary.** If S is a semilattice satisfying one of the following conditions, then  $S \in D_2$  if and only if  $S \in D$ :

- 1) S is finite;
- 2) every element of S has only finitely many predecessors;
- 3) every chain in S is finite.

We see that counterexamples to  $(D_2)$  implying  $(D_n)$  have not only to be infinite, but they also require infinitely many elements between  $(s_1 \vee s_2 \vee \ldots \vee s_n)$  and the elements  $s_1, s_2, \ldots, s_n$  chainwise as well.

Two interesting questions are to determine which other types of semilattices have the property that  $(D_2)$  is equivalent to  $(D_n) \, \forall \, n$  and what is the minimal set of conditions for a counterexample.

## REFERENCES

- [1] Balbes, R. A representation theory for prime and implicative semilattices, *Transactions American Mathematical Society*, 136 (1969), 261–267.
- [2] Schein, B.M. On the definition of distributive semilattices, *Algebra Universalis*, 2 (1972), 1–2.
- [3] Schein, B.M. Written communication, 1988.
- [4] Shum, K.P., Chan, M.W., Lai, C.K. and So, K.Y. Characterizations for prime semilattices, *Canadian Journal Mathematics*, XXXVII (1985), 1059–1073.

Carlos Serra Alves,
Dep. of Mathematics, Trenton State College,
Hilwood Lakes, CN4700 Trenton, NJ08650/4700 – USA