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AN EXTENSION OF AMIR–LINDENSTRAUSS THEOREM

Qiu Jing Hui

Abstract: In this paper we give an extension of Amir-Lindenstrauss Theorem on

weak* sequential compactness as follows: if a locally convex space X has a sequence K1 ⊂

K2 ⊂ K3 ⊂ . . . of relatively weakly countably compact sets such that span(
⋃∞

n=1 Kn) is

dense in X, then each weak* compact absolutely convex subset of X ′ is weak* sequen-

tially compact. Using the extension we obtain an improvement of Kalton’s closed graph

theorem.

1 – Introduction

Let (X, T ) be a locally convex, Hausdorff, topological vector space (abbrevi-
ated l.c.s.) and X ′ the topological dual of (X, T ). Alaoglu–Bourbaki Theorem
says that if U is a neighborhood of 0 in (X, T ) then U 0 is σ(X ′, X)-compact
[1, p. 264 or 2, Th. 9-1-10]. An important and interesting problem is: when
is U0σ(X ′, X)-sequentially compact? Moreover, when is each σ(X ′, X)-compact
subset of X ′σ(X ′, X)-sequentially compact? If the above problems are solved,
we shall be allowed to use sequences, instead of filters, to study the weak* topol-
ogy on U0. As well known, if (X, T ) is a separable l.c.s. or a reflexive Banach
space, then U0 is σ(X ′, X)-sequentially compact [2, Th. 9-5-3 and Ex. 14-1-11].
Furthermore, the theorem of Amir and Lindenstrauss points out that any WCG
(weakly compactly generated) Banach space has a weak* sequentially compact
dual ball [3, p. 228]. In this paper we shall find some more general conditions
for U0 to be σ(X ′, X)-sequentially compact. Our main result includes the above
known facts as particular cases. Besides, our proof is simple and direct. As an
application of the main result, we obtain an extension of Kalton’s closed graph
theorem.
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2 – Main results

The following Lemma 1 is substantially a variant of the theorem of Dieudonn
and Schwartz [1, p. 311].

Lemma 1. Let (X, T ) be a l.c.s. and X ′ its topological dual. If there exists
a metrizable locally convex topology η on X ′ such that (X ′, η)′ ⊂ X, then each
σ(X ′, X)-compact subset M of X ′ is σ(X ′, X)-sequentially compact.

Proof: Suppose that (X ′, η)′ = H, then H ⊂ X. Since (M,σ(X ′, X) |M)
is compact and (M,σ(X ′, H) |M) is Hausdorff and the topology σ(X ′, X) is
stronger than σ(X ′, H), we have (M,σ(X ′, X) |M) = (M,σ(X ′, H) |M) [4, p. 32].
Thus M is σ(X ′, H)-compact. Now M is a weakly compact set in the metriz-
able l.c.s. (X ′, η), so M is weakly sequentially compact in (X ′, η); see [1, p. 311].
This means that M is σ(X ′, H)-sequentially compact. Since σ(X ′, H) |M =
σ(X ′, X) |M , M is also σ(X ′, X)-sequentially compact.

Theorem 1. If there exists a sequence K1 ⊂ K2 ⊂ . . . of (weakly) com-
pact absolutely convex sets in (X, T ) such that span(

⋃∞
n=1 Kn) = X, then each

σ(X ′, X)-compact subsetM ofX ′ is σ(X ′, X)-sequentially compact. Particularly,
for any neighborhood U of 0 in (X, T ), U 0 is σ(X ′, X)-sequentially compact.

Proof: Without loss of generality, we may assume that 2Kn ⊂ Kn+1 for
each n ∈ IN, where IN denotes the set of all natural numbers. Then the polars
K0

n, n ∈ IN, form a base of neighborhoods of 0 for some locally convex topology
η on X ′. Since span(

⋃∞
n=1 Kn) = X, (X ′, η) is Hausdorff. And since (X ′, η) has a

countable base of neighborhoods of 0, (X ′, η) is a metrizable l.c.s. Recalling the
definition of the Mackey topology [1, p. 260], we know that η is weaker than the
Mackey topology τ(X ′, X) and so (X ′, η)′ ⊂ X. By Lemma 1, the result follows.
This completes the proof.

By using Theorem 1, we obtain immediately the following Corollary 1, which
is well-known.

Corollary 1. If (X, T ) is a reflexive Banach space or a separable l.c.s. or a
WCG l.c.s. (namely X contains a weakly compact absolutely convex set whose
linear span is dense in X), then each σ(X ′, X)-compact subset of X ′ is σ(X ′, X)-
sequentially compact. Particularly U 0 is σ(X ′, X)-sequentially compact for any
neighborhood U of 0 in (X, T ).

The following Corollary 2 is also obvious.
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Corollary 2. If (X, T ) has a fundamental sequence K1 ⊂ K2 ⊂ . . . of
absolutely convex (weakly) compact sets, then each σ(X ′, X)-compact subset of
X ′ is σ(X ′, X)-sequentially compact.

Inspired by [5], we deduce the following Corollary 3 and 4.

Corollary 3. Let (E, ξ) = ind lim(En, ξn) be an inductive limit of a sequence
of reflexive Banach spaces [see 6, 7, 8] and there exist a continuous linear map
t : (E, ξ) → (X, T ) such that range(t) is dense in (X, T ), then each σ(X ′, X)-
compact subset of X ′ is σ(X ′, X)-sequentially compact.

Proof: Let Kn be the closed unit ball in the reflexive Banach space (En, ξn),
then Kn is σ(En, E

′
n)-compact. Without loss of generality, we may assume that

K1 ⊂ K2 ⊂ . . . . Or else we may take K ′
2 = K1 +K2, K

′
3 = K3 +K ′

2, etc, since
each Kn is σ(Em, E′

m)-compact for any m ≥ n. We denote by tn the restriction
to En of t, then tn = t |En : (En, ξn) → (X, T ) is continuous and so is weakly
continuous. Thus t(Kn) = tn(Kn) is σ(X,X ′)-compact for each n ∈ IN. Now we
have a sequence of weakly compact absolutely convex sets t(K1) ⊂ t(K2) ⊂ . . .

in (X, T ) such that

X = t(E) = t
(
span

( ∞⋃

n=1

Kn

))
= span

( ∞⋃

n=1

t(Kn)
)

.

By Theorem 1, the result follows.

Corollary 4. Let (E, ξ) = ind lim(En, ξn) be an inductive limit of a sequence
of WCG l.c.s. and there exist a continuous linear map t : (E, ξ) → (X, T ) such
that range(t) is dense in (X, T ), then each σ(X ′, X)-compact subset of X ′ is
σ(X ′, X)-sequentially compact.

Proof: Let Kn be σ(En, E
′
n)-compact absolutely convex set such that

span(Kn)
En

= En, where span(Kn)
En

denotes the closure of span(Kn) in (En, ξn).
We may as well assume that K1 ⊂ K2 ⊂ . . . . Obviously tn = t |En : (En, ξn) →
(X, T ) is continuous, so t(Kn) = tn(Kn) is σ(X,X ′)-compact for each n ∈ IN.
Remarking that the topology ξn is stronger than ξ |En, we have

span
( ∞⋃

n=1

Kn

)E
⊃ span(Kn)

E
⊃ span(Kn)

En

= En

for every n ∈ IN. This shows that

span
( ∞⋃

n=1

Kn

)E
=

∞⋃

n=1

En = E .
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Since t : (E, ξ) → (X, T ) is continuous, we know that t−1
(
t(span(

⋃∞
n=1 Kn))

)
is

closed and so it contains span(
⋃∞

n=1 Kn)
E
= E. Thus t(E) ⊂ t(span(

⋃∞
n=1 Kn)),

so

X = t(E) ⊂ t
(
span

( ∞⋃

n=1

Kn

))
= span

( ∞⋃

n=1

t(Kn)
)

.

Now t(K1) ⊂ t(K2) ⊂ . . . is a sequence of σ(X,X ′)-compact absolutely convex
sets such that

X = span
( ∞⋃

n=1

t(Kn)
)

.

Hence the result follows from Theorem 1.

Corollary 5. Let T1 ⊂ T2 ⊂ T3 ⊂ . . . be a sequence of totally bounded
subsets of (X, T ) such that span(

⋃∞
n=1 Tn) = X, then for any neighborhood U of

0 in (X, T ), U0 is σ(X ′, X)-sequentially compact.

Proof: Since the absolutely convex hull of a totally bounded set is still
totally bounded [2, Th. 7-1-5], we may assume that every Tn is absolutely convex,
totally bounded. Denote the completion of (X, T ) by (X̃, T̃ ) and the closure
of Tn in (X̃, T̃ ) by T̃n, then T̃1 ⊂ T̃2 ⊂ T̃3 ⊂ . . . is a sequence of compact
absolutely convex subsets of (X̃, T̃ ) such that span(

⋃∞
n=1 T̃n) is dense in (X̃, T̃ ).

For any neighborhood U of 0 in (X, T ), we denote by Ũ the closure of U in
(X̃, T̃ ), then Ũ is a neighborhood of 0 in (X̃, T̃ ) [1, p. 148] and U0 = Ũ0 ⊂
X ′ = (X̃, T̃ )′. Applying Theorem 1 to (X̃, T̃ ), we know that Ũ0 is σ(X ′, X̃)-
sequentially compact, i.e. U 0 is σ(X ′, X)-sequentially compact.

3 – An extension of Kalton’s closed graph theorem

First let’s recall the Kalton’s closed graph theorem: let E be a Mackey
space such that (E ′, σ(E′, E)) is sequentially complete and F be a separable,
Br-complete l.s.c., then every closed graph linear map t : E → F is continuous
[2, Th. 12-5-13 or 9]. By Theorem 1, we can extend the above result as follows.

Theorem 2. Let E be a Mackey space such that (E ′, σ(E′, E)) is sequentially
complete and F be a Br-complete l.s.c. If there exists a sequence K1 ⊂ K2 ⊂ . . .

of σ(F, F ′)-compact absolutely convex sets such that span(∪∞
n=1Kn) = F , then

every closed graph linear map t : E → F is continuous.

Proof: By [10], it is sufficient to prove that for any dense vector subspace

H of (F ′, σ(F ′, F )), H σ ⊃ F ′ or H σ ∩ F ′ = F ′; see the following Appendix.
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Here H σ denotes the sequential completion of (H,σ(H,F )), i.e. the smallest
sequentially closed set which contains H in the completion of (H,σ(H,F )). Since

F is Br-complete, we only need to prove that H σ∩F ′ is a w∗-closed, i.e. for any

neighborhood U of 0 in F , H σ ∩ F ′ ∩ U0 = H σ ∩ U0 is σ(F ′, F )-closed. Let η
denote the metrizable locally convex topology on F ′ generated by {K0

n : n ∈ IN}.
For any subset A of F ′, A

σ
, A

τ
and A

η
denote respectively the closure of A in

(F ′, σ(F ′, F )), (F ′, τ(F ′, F )) and (F ′, η). Since H σ ∩ U0 is a convex subset of
F ′ and η is weaker than τ(F ′, F ),

( H σ ∩ U0)
σ

= ( H σ ∩ U0)
τ

⊂ ( H σ ∩ U0)
η

.

Thus for any y′ ∈ ( H σ ∩ U0)
σ

, y′ ∈ ( H σ ∩ U0)
η

. Since η is metrizable,

there exists a sequence {y′n} ⊂ H σ ∩ U0 such that y′n → y′ in (F ′, η). Put
S = span(

⋃∞
n=1 Kn), then y′n → y′ in (F ′, σ(F ′, S)). On the other hand, U 0 is

σ(F ′, F )-sequentially compact by Theorem 1, so H σ∩U0 is σ(F ′, F )-sequentially
compact. Hence there exists a subsequence {y′ni

} of {y′n} such that y′ni
→ z′ ∈

H σ ∩ U0 in (F ′, σ(F ′, F )). Certainly y′ni
→ z′ in (F ′, σ(F ′, S)). Since σ(F ′, S)

is Hausdorff, y′ = z′ ∈ H σ ∩ U0. This means that H σ ∩ U0 is σ(F ′, F )-closed.
This complete the proof of Theorem 2.

Appendix: At the beginning of the proof of Theorem 2, we have used the
following result: let E be a Mackey space such that (E ′, σ(E′, E)) is sequentially

complete and F be a l.c.s. such that H σ ⊃ F ′ for every dense vector subspace
H of (F ′, σ(F ′, F )), then every closed graph linear map t : E → F is continuous.
Now we outline the proof as follows [for the details, see 10]. Let t′ : F ′ → E# be
the adjoint map of t and H = t′

−1(E′), then H is dense in (F ′, σ(F ′, F )) since
the graph of t is closed [2, Lemma 12-5-2]. Obviously t′ |H : (H,σ(H,F )) →
(E′, σ(E′, E)) is continuous. Since (E ′, σ(E′, E)) is sequentially complete, we

may prove that t′ |H can be extended to H σ by using the extension theorem [1,

p. 297]. Thus we have a continuous linear extension t′ |H : ( H σ, σ( H σ, F ))→

(E′, σ(E′, E)). By the hypothesis, H σ ⊃ F ′. Then we can prove that t′ |H

and t′ coincide on F ′. Hence t′(F ′) = t′ |H (F ′) ⊂ E′. By Hellinger–Toeplitz
Theorem [2, Exa. 11-2-5], we conclude that t : (E, τ(E,E ′)) → (F, τ(F, F ′)) is
continuous and so is t : E → F .
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4 – Further results

By using the theorem on weak compactness, we can obtain some weaker condi-
tion for U0 to be σ(X ′, X)-sequentially compact. First we establish the following
lemma.

Lemma 2. Let X̃ be the completion of l.c.s. (X, T ) and X ′ the topolog-
ical dual of (X, T ). If there exists a metrizable locally convex topology η on
X ′ such that (X ′, η)′ ⊂ X̃, then U0 is σ(X ′, X)-sequentially compact for any
neighborhood U of 0 in (X, T ).

Proof: On U0, the topology σ(X ′, X) and σ(X ′, X̃) coincide [1, p. 264]. Put
H = (X ′, η)′, then H ⊂ X̃ and the topology σ(X ′, X̃) is stronger than σ(X ′, H).
Hence

(U0, σ(X ′, X) |U0) = (U0, σ(X ′, X̃) |U0) = (U0, σ(X ′, H) |U0)

is compact. Thus U0 is a weakly compact set in the metrizable l.c.s. (X ′, η), so
U0 is weakly sequentially compact. Namely U 0 is σ(X ′, H)-sequentially compact
and is also σ(X ′, X)-sequentially compact.

Remark. Let X̃τ denote the completion of (X, τ(X,X ′)). If we substitute
(X, T ) by (X, τ(X,X ′)), then Lemma 2 becomes as follows: if there exists a
metrizable locally convex topology η on X ′ such that (X ′, η)′ ⊂ X̃τ , then each
σ(X ′, X)-compact absolutely convex subset of X ′ is σ(X ′, X)-sequentially com-
pact.

Theorem 3. If there exists a sequence K1 ⊂ K2 ⊂ . . . of relatively weakly
countably compact subsets of (X, T ) such that span(

⋃∞
n=1 Kn) = X, then U0 is

σ(X ′, X)-sequentially compact for any neighborhood U of 0 in (X, T ). Moreover,
each σ(X ′, X)-compact absolutely convex subset of X ′ is σ(X ′, X)-sequentially
compact.

Proof: Denote by (X̃, T̃ ) the completion of (X, T ) and denote by Cn the
absolutely convex closure of Kn in (X̃, T̃ ) for every n ∈ IN. By using the theorem
on weak compactness [4, p. 159], we conclude that each Cn is σ(X̃,X ′)-compact.
Denote by η the topology on X ′ generated by {C0

n : n ∈ IN}, then (X ′, η) is a
metrizable l.c.s. and (X ′, η)′ ⊂ X̃. By Lemma 2, U0 is σ(X ′, X)-sequentially com-
pact for any neighborhood U of 0 in (X, T ). Since weakly countable compactness
and the closure of span(

⋃∞
n=1 Kn) in (X, T ) only depend on the dual pair 〈X,X ′〉,

we can substitute (X, T ) by the Mackey space (X, τ(X,X ′)). Thus we know that
each σ(X ′, X)-compact absolutely convex subset of X ′ is σ(X ′, X)-sequentially
compact.
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Finally we point out that Theorem 2 can be rewritten as the following form,
which is more convenient for application.

Theorem 4. Let E be a Mackey space such that (E ′, σ(E′, E)) is sequentially
complete and F be aBr-complete l.c.s. If there exists a sequenceK1 ⊂ K2 ⊂ . . . of
relatively weakly countably compact subsets of F such that span(

⋃∞
n=1 Kn) = F ,

then every closed graph linear map t : E → F is continuous.
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