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JACOBI ACTIONS OF SO(2) x R? AND SU(2, €)
ON TWO JACOBI MANIFOLDS

J.M. NUNES DA COSTA

Abstract: We take a sphere S of the dual space G* of G = so(2) x R? with the
Jacobi manifold structure obtained by quotient by the homothety group of the Lie—
Poisson structure in G*\{0} and we study the actions of two subgroups of SO(2) x R?
on S.

We show that the natural action of SU(2, ©) on the unitary 3-sphere of ©* with
the Jacobi structure determined by its canonical contact structure is a Jacobi action that
admits an unique Ad*-equivariant momentum mapping.

1 — Introduction

The notions of Jacobi manifold and Jacobi conformal manifold were intro-
duced by A. Lichnerowicz ([5]) in 1978. A. Kirillov ([3]) also studied these struc-
tures under the name of local Lie algebras, when defined on the space of the
differentiable sections of a vector bundle with 1-dimensional fibres.

Let G* be the dual of the Lie algebra of a finite dimensional Lie group, with
its Lie—Poisson structure ([6]), and take the quotient of G*\{0} by the homothety
group. A. Lichnerowicz ([6]) showed that the Lie-Poisson structure defines on
the quotient space (which can be identified with an unitary sphere of G*) a Jacobi
structure.

Finally, let us recall that the notion of momentum mapping, introduced by
J.-M. Souriau ([11]) and B. Kostant ([4]) in the symplectic manifold context, can
be extended to the Jacobi manifolds (cf. [8]), when a Jacobi action or a conformal
Jacobi action (]9]) of a Lie group on a Jacobi manifold takes place.

In Appendix we summarize some of the basic concepts useful for a better
understanding of the paper.
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2 — A Jacobi action of the Lie group SO(2) x R? on the unitary sphere
of the dual of its Lie algebra

Let G be the Lie group of the euclidean displacements, that is, the semidirect
product of SO(2) with IR?. The product of two elements (g,z) and (h,y) in
G = S0(2) x IR? is given by

(1) (9,2) - (h,y) = (gh, gy + ) .
We can write the elements (g, z) of G as 3 x 3 matrices of the form
cosae —sina xq
sina cosa  x2 | = (ga, ) ,
0 0 1

where o € R, (1, x2) € IR?, the composition law (1) in G corresponding to the
product of the two respective matrices.
The Lie group G acts on the plane IR? by an action ¢ given by

¢: ((gar2),y) € G x R? = (goy + x) € R?
which can be expressed in matricial form by the following product of matrices:
cosa —sina X Y1 Y1 cosa — Yo Sina + 1
sinae  cosa  x9 Y2 | = | y1sina+yscosa+x2 | .
0 0 1 1 1

This action corresponds to an a-rotation of the point (y1,y2) about the origin
followed by a translation by the vector of components (x1,x2).
Let G = s0(2) x IR? be the Lie algebra of G. An element (a,v) of G can be

written as
0 a v
—a 0 vy | =(a,v),
0O 0 O

where a € R and (v, v2) € R2.
The set B of elements

0 1 0 0 01 0 0 0
Bi=1-1 0 0|, By=10 0 0 and B3= (0 0 1
0 0 0 0 0 0 0 0 0

is a basis of G = s0(2) x IR?. Let

{ o o0 0 }
0By’ OBy’ OBs
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be the basis of G*, dual of B. Once we have

[B1,Bs] = —B3, [B1,B3]=DBy and [Bs,B3]=0,

if we put

0 0 0 0

A=—B A B A
308, 0B, T "2 0B, " 9B,
and
3 )
Z = Bz )
2% 55,

the couple (A, Z) defines an homogeneous Lie—Poisson structure on G*. (Homo-
geneous means that [A, Z] = —A, [, ] being the Schouten bracket ([10]); Z is
called the Liouville vector field.)

From now on, we will identify G* = (so(2) x IR?)* with the product (so(2))* x
(IR?)*. Thus, an arbitrary element of G* will be expressed by a couple (&, p) with
£ € (s0(2))* and p € (R?)*.

Let us suppose that G* is endowed with the usual Euclidean norm. If n = (&, p)
is an element of G* with coordinates (11, 72,73) in the basis {(%i}, we define the

norm of n, by putting
3

Il = > _(m)? -

i=1
Let S be the unitary sphere of G*,

S={neg: nl*=1},

and suppose that S is supplied with the Jacobi structure obtained by quotient of
the Lie—Poisson structure of G5 = G*\{0} by the homothety group. On the open

subsets
U ={(B1, B, Bs) € S: B >0}

and
U7 ={(B1,Bs, Bs) € S: Bi <0}, i=1,23

7

of S, we take the coordinate functions

($1:Bl, i’\iZBi, :L’3=Bg), i:1,2,3,

[Tl

where means absence.
The Jacobi structure (C, E') of S is given, in the local charts taken above, in
the following Table, where

+1, on UZ-J“,
E =
-1, onU; .
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0

E=—czx3 \/1—(.232)2—(.233)2%4-61‘2 \/1_($2)2_($3)28—{E3

(Uliv (x2a$3))
C=—c/1—(21)? — (a3)? ((952)2 + (x3)2) ai@ A 3i562

E=cx1/1— (21)? — (23)2 %
(Uziv(thf?)))

C=c¢ \/1 —(21)% — (22)? (1 — (x1)2) aixl A 8ia:g
E = —EX \/1 — (.131)2 — (.132)2 8ix2
(Ui(fcl»@))
0 0

C=e VTP @F (w0 -1) 5 A g

V. Guillemin and S. Sternberg ([2]) showed that the coadjoint action Ad* of
G on the dual G* of its Lie algebra is given by

(2) Adjy, (&p) = (§+ (9ap) @ 7, 9ap) ,

for every (ga,z) € G and (§,p) € G*, where ® is a mapping from (IR?)* x IR? to
(so(2))",
(p,z) € (R*)* xR® — p@ux € (s0(2)*,

such that
(p®@x,a) = (p,ar) ,

for all a € so(2).

The restriction to S of the coadjoint action of G on G* doesn’t preserve the
sphere S. However, we can take the quotient coadjoint action ([6]) Ad of G on S
which is given, for every (g, ) € G, by

moAdY :A7d(

(9o ) )T

9o, T
where m: G5 — S is the canonical projection of Gj on the sphere .S, this one
being identified with the quotient of G§ by the homothety group.

Let

H = {(9a,0), ga €50(2)}
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be the 1-dimensional Lie subgroup of G corresponding to the plane rotations
about the origin and whose elements can be written on the form

cosaa —sina 0
sina cosa 0| =(94,0), a€eR.
0 0 1

From (2), we may conclude that the restriction Ad*¥ to the Lie subgroup H,
of the coadjoint action of G on G* is given by

Ad)(k;i,ﬂ)(gvp) = (gagap) ;

with (&,p) € (s0(2))* x (IR?)* and (gq,0) € H.

As the Ad* action preserves the sphere S (in fact if (¢, p) € S then (€, gop) €
S, since [|(&,p)|| = (€, gap)l|), the restriction to the subgroup H of the quotient
action Ad of G on S, coincides with the restriction to S of the Ad*/ action,

A =Ady: HxS— S.
Proposition. The restriction to the subgroup H of the quotient coadjoint
action of G on S is a Jacobi action.

Proof: The Lie algebra of H being generated by the element

0 10
Bi=|-1 0 0
0 0 0

of the basis B of G, the Ad*¥ action is a Jacobi action of H on S if
(Bi)s,B| =0 and |(By)s,C| =0,

where (Bj)gs is the fundamental vector field associated with By ([9]) and in the
last equality [ , ] is the Schouten bracket ([10]). But, if X, is the hamiltonian
vector field ([7]) associated with z; € C*°(S,IR), we have

(BI)S = X$1 )

because Bj, as a function from G* to IR, is homogeneous with respect to the
Liouville vector field and projects into S, its projection being the function z;.
We have then

(B)s, B] = [Xe1 B = X_(p.ay)

and
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[(Bl)s,c} = [Xxl,c} = —(B.x1)C .

If we look at the expression of the vector field F in the local charts of S on
the preceding Table, we can see that

Fx1 =0,

in all cases. Thus, we have
{<Bl)S’E} = [(BI)S,C} =0

and the Ad*" = A_d|H action is a Jacobi action of H on S.

If instead of H we take the 2-dimensional subgroup H' of G that corresponds
to the plane translations and whose elements are of the form

1 0 =
0 1 ) y
0 0 1

where (1, 72) € IR?, the restriction to H' of the quotient coadjoint action of G
on the sphere S is a conformal Jacobi action. In fact, the Lie algebra of H' being
generated by the elements

0 0 1 0 00
Bo=110 0 0 and B3=0 0 1
0 0 0 0 0 0

of the basis B of G, we have

(B2)s, B] = [Xuw B = X_(p.0y)

(B2)s,C| = [Xa,,C| = ~(B.2)
and also

[(B?))SvE} = [Xl"mE} = X—(Ea:3)

{(33)5,0} = |:Xx37ci| =—(E.x3) .

Thus, the action M| 1 is a conformal Jacobi action of H' on the Jacobi manifold

S.
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3 — A Jacobi action of SU(2, €) on the unitary 3-sphere of C?

Let (21, 22) be the canonical coordinates on €©2. We take €2 with the following
hermitian product

((21,22) | (z’l,zé)) =217Z] + 227, .
By means of this hermitian product, we can define a norm in €2 by putting

Iz 22)I? = ((21,22) | (21,20)) = 21 %1 + 2222 .

Let
93 = {(21,22) e C?: 2121+ 220722 = 1}

be the unitary sphere of €2 and let « be the 1-form in ©? given by
1
o = Re[, (Zl dz1 + z2 dZ2>:| .
i

The restriction of o to S3 defines a contact structure on the sphere ([11]).

If we identify the space ©? with IR*, making the correspondence between
the couple of complexes (z; = x1 + ix3, 29 = x2 + ix4) and the real quadruple
(r1, 29,23, 24), the 1-form « express as

a=—x3dr] —x4dre + x1dxs + x2dTy .

Since every contact manifold is a Jacobi manifold ([5]), we can take the sphere
S3 as a Jacobi manifold whose structure is given by

E:—mgi—ui—kmi"’l‘?i :
071 Oy Ox3 Oxy
C = %(w1x4 — T273) <3il A {96352 88953 324)
) gm0 (50 5 5 )
— 5@+ @ -1) (5 o)

1 0 0
- 5((562)2 + (z4)” — 1) <8x2 A 8:1:4> :
Let’s take the Lie group SU(2, ©) — which is a Lie subgroup of GL(2, €) of
dimension (real) 3 — and its Lie algebra su(2, €). According to its definition,
SU(2, €©) preserves the norm in €2 and acts on S® by the natural action

(A, (21,22)) € SU(2,C) x 83 — A(Z) €S53,
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The elements
0 0 1 -1 0
Xl_(l 0), XQ—(_l 0) and X3—< 0 Z) ;
that verify
[Xl,XQ] = —2X3, [Xl,Xg] = —2X2 and [XQ,Xg] = —2X1 N

set up a basis of su(2, ©). Taking in account the preceding identification of €2
with R*, we can write these elements on the following form:

1= 4 (91'1 3 81’2 2 8333 ! 8%47
0 0 0 0
4 = To — — | —— S
(4) Xo = 9 0z x1 92y + x4 Os x3 02y’
3T 8%1 4 81‘2 L 8953 2 8x4 ’

Proposition. The natural action of SU(2,€) on the sphere (S®,C, E) is a
Jacobi action.

Proof: The set {X;, X2, X3} being a basis of su(2,C), we only must show
that
[(Xi)sg,E} = {(Xi)sg,C} =0, for i=1,23,

where (X;)gs is the fundamental vector field associated with X;, with respect to
the action of SU(2, €) on S®. But, this action being the natural action, we have,
fori=1,2,3,

(Xi)gs = —Xi .

From (3) and (4), we can easily prove that

[X;,E]=[X;,C]=0, i=1,23.n

The action of SU(2, €) on S* admits a momentum mapping that we’re going
to evaluate. Let A be an arbitrary element of SU(2, €©). Then A is a matrix of

the form
e a4+t cH+1id
" \—c+id a—ib) "’

where (a,b,¢,d) € R* and a®> + b + 2 +d* = 1.
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Let € be an element of su*(2, €) of coordinates (£1,&2,£3) on the dual basis
of {X1, X2, X3}. Then, for every X € su(2,C), we have

(Ad4 €, X) = (€,Ady-1(X)) = (£, A7 XA) = (£,(A)TXA) .
We also have, for the elements X;, Xo and X3 of the su(2, C) basis,
(AdY &, X1) = (€, (a> 1 — & + d) Xy +2(ab+ ed) X + 2(ac — bd) X3 ),
<Adj§HXg::<§2&d—ww)X1+(a2—bZ+c2—wP)XQ+2(—ad—b@;&Q7
(A} & Xs) = (€ 2(—ac — bd) X1 +2(ad — be) Xy + (a® + 12 — ¢ — d*) X3) .
So,

£1(a? = b? — 2 + d?) + 2&(ab + cd) + 2¢3(ac — bd)
AdY € = | 261(cd — ab) + &(a? — b2 + 2 — d?) + 263(—ad — be)
2¢1(—ac — bd) + 2&2(ad — be) + E3(a? + b2 — 2 — d?)

Proposition. Let J: S3 — su*(2, €©) be the mapping given by

(J, X1) (x1 +izs, 0 + ixg) = 2(—x122 — T314),
<J, X2> (x1 + ix3, T + iCU4) = 2(—3?1374 + w2x3),
(J, X3) (21 + ixs, 22 + iz4) = (21)* — (22)* + (23)* — (24)° ,
where X1, Xo and X3 are the elements of the su(2, €) basis defined above. Then

J is the unique Ad*-equivariant momentum mapping of the natural Jacobi action
of SU(2,C) on S3.

Proof: If we calculate the hamiltonian vector fields X ;x,) (i = 1,2,3)
corresponding to the functions (.J, X;), we obtain

X<J7XZ.> =-X;.
But, as we have already remarked, (X;)gs = —X;. The mapping J is then a
momentum mapping of the action of SU(2, €) on S3.

a+1 c+id

Let A= (—c—i—id a—1b

) € SU(2,@) and z; = x1+ix3, 22 = To+izy € S3,
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be arbitrary elements. Then, we have

21 (axy — bxs + cxo — dry) +i(axs + bxy + cxy + dxo)
J [ A. =J .
29 (—cx1 — dxs + axa + bxy) + i(—cxs + dry — bxy + axy)

—2(az1 — bxs + cxo — dxy) (—cxy — dwg + axg + bry) —
—2(azs + bxy + cxq + dzo) (—cxs + dxy — brg + axy)

—2(axy — brs + crg — dxyg) (—cxs + dry — bro + axy) +
+ 2(—cxy — dzg + axg + bxy) (axs + by + cxg + dxg)

(awy — bws + cwy — dwg)? — (—cxy — das + axs + bry)? +
+ (ax3 + bxy + cxg + drg)? — (—cas + dry — bro + axy)?
—2(1‘1%’2 + $3x’4)
= Adz ( —2(1’11’4 — l’g:L’g) )
(£1)? = (22)* + (23)* — (24)*

= Ad} (J(azl +ix3, X0 + i:z:4)> .
So, J is an Ad*-equivariant momentum mapping.

Finally remark that, as su(2,C) equals its derived algebra, if an Ad*-equi-
variant momentum mapping exists, it is unique. n

APPENDIX

In what follows, M is a differentiable connected finite dimensional manifold.

I) Let A (resp. B) be a p-times (resp. ¢-times) contravariant skew-symmetric
tensor field on M. The Schouten bracket ([10]) of A and B is a (p+ ¢ — 1)-times
contravariant skew-symmetric tensor field on M, denoted by [A, B], such that for
any closed (p + ¢ — 1)-form 3,

i([A, B) 8 = (~=1)P*Vi(A) di(B) § + (~1)Pi(B) di(A) 8 ,

where i is the interior product.
Some of the properties of the Schouten bracket are:
i) If p=1, [A, B] = L(A)B is the Lie derivative of B with respect to A;
ii) [Aa B] = (_1)pq[B’ AL

iii) If C' is an r-contravariant skew-symmetric tensor field,

S(-1)"[[B,C], A] =0,
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where S means sum after circular permutation;

iv) [A,BAC] = [A,B]AC + (=1)P*DIB A [A, C).

IT) Let C be a two times contravariant skew-symmetric tensor field on M
and F a vector field on M. For any couple (f, h) of functions on M, we set

{f,h} = C(df,dh) + f(E.h) — h(E.f)

and define a bilinear and skew-symmetric internal law on C*°(M,IR). This law
satisfies the Jacobi identity (i.e., S{{f,h},g} = 0) if and only if

[C,C]=2EAC and [E,C]=0 ([5]),

the bracket [, | being the Schouten bracket. In this case, we say that {, } is a
Jacobi bracket and (M, C, E) is a Jacobi manifold. The space C*°(M,R) with a
Jacobi bracket is a local Lie algebra. If E = 0, the Jacobi manifold is a Poisson
manifold.

If (M,C, E) is a Jacobi manifold, there exists a vector bundle morphism

#(): (TM)* — TM
that is given, for all @ and (3 in the same fiber of (T'M)*, by
(8,7a) = Cla, ) .

If f e C*M,R), we call Xy = #df + fE the hamiltonian vector field
associated with f ([7]).

Let (M, C, E) be a Jacobi manifold and a € C*°(M,R) a differentiable func-
tion that never vanishes. For all f and h elements of C*>°(M,R), we set

() = {af,ah}

The bracket { , }* is a Jacobi bracket and defines on M a new Jacobi structure
(C* E*), with
C*=aC and E®=%"da+aFE .

We say that the structure (C?, E%) is a-conformal to (C,E). The equivalence
class of all Jacobi structures on M, conformal to a given structure is called a
conformal Jacobi structure on M.

Let (Mi,Ch, E1) and (Ma, Ca, Es) be two Jacobi manifolds. A differentiable
mapping ¢: My — Moy is called a Jacobi morphism if

{f,h}M20¢:{fO¢,hO¢}M1 ;
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for all f,h € C*°(M2,IR). We call ¢ an a-conformal Jacobi morphism if there
exists a function a € C°°(Mj,IR) that never vanishes, such that ¢ is a Jacobi
morphism of (M, C{, EY) into (Ma, Ca, Es).

A vector field X on a Jacobi manifold (M, C, E) is an infinitesimal Jacobi
automorphism (resp. infinitesimal conformal Jacobi automorphism) if and only
if [X,C] = 0 and [X, E] = 0 (resp. if and only if there exists a function a €
C>®(M,R) such that [X,C] = aC and [X, F] = #da + aE).

IIT) Let (M,C,E) be a Jacobi manifold and G a Lie group acting on the
left on M, by an action ¢. Suppose that for each g € G there exists a function
ag € C*°(M,R) that never vanishes and such that the mapping

¢g: x €M — ¢(g,x) € M

is an ag-conformal Jacobi morphism. Then the action ¢ is called a conformal
Jacobi action. When, for all g € G, the function a, € C°°(M,IR) is constant and
equals 1, the action ¢ is called a Jacobi action. In this case, for any g € G, the
mapping ¢, is a Jacobi morphism.

Given an element X of the Lie algebra G of G, the fundamental vector field
associated with X for the action ¢ ([9]), is the vector field X on M, such that,
for all x € M,

Xar(a) = 5 (ofexp(~1X), )

If G is a connected Lie group, the action ¢ of G on M is a Jacobi action
(resp. conformal Jacobi action) if and only if for all X € G, the fundamental
vector field X, associated with X is an infinitesimal Jacobi automorphism (resp.
infinitesimal Jacobi conformal automorphism).

[t=0

IV) Let G be a finite dimensional Lie group and G its Lie algebra. On the
dual G* of G we can define a Poisson structure, called the Lie—Poisson structure
([6]), by setting for all f,h € C*°(G*,R) and £ € G*,

{£,h}(€) = (& [dr(€), dn(9)] ) ,

with [, ] the Lie bracket on G, (, ) the duality product of G and G* and where
we identify the elements of G with linear mappings of G* into R.

If Z is the Liouville vector field on G* and A is the Lie-Poisson tensor field
on G*, one can show ([6]) that

[A7Z] = _A7

ie., (G", A, Z) is an homogeneous Lie-Poisson structure.
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