PORTUGALIAE MATHEMATICA
Vol. 52 Fasc. 2 — 1995

ON SUBSPACES OF MEASURABLE REAL FUNCTIONS

LASZLO ZSILINSZKY

Abstract: Let (X,S, ) be a measure space. Let ® : R — IR be a continuous
function. Topological properties of the space of all measurable real functions f such that
® o f is Lebesgue-integrable are investigated in the space of measurable real functions
endowed with the topology of convergence in measure.

Introduction

Let (X, S, ) be a measure space. Denote by M the space of all measurable
real functions on X. As usual the symbol L, () stands for the set of all functions
f € M for which [y |f|Pdu < 400 (p>1).

It is shown in [4] that the Riemann-integrable functions on the interval [a, b]
(a,b € IR) constitute a meager set in the space of all Lebesgue-integrable func-
tions on [a, b] furnished with the topology of mean convergence. Then a natural
question arises to establish the largeness of Lebesgue-integrable functions, or more
generally of L, spaces in the space M with an appropriate topology.

Making allowance for this we could pursue the analogy further by examining
the class A(®) of all mesurable real functions f such that ® o f is Lebesgue-
integrable, where ®: IR — IR is an arbitrary but fixed continuous function.

In favour of this we need a proper topology on M. Let E(f,g;7) = {z € X;
|f(z) — g(x)| > r}, where f,g € M, r > 0. Define the pseudo-metric p on M as
follows ([1]):

o(f,9) =int{r > 0; p(E(f.gir)) < v} (fLg€ M)

Given fp,f € M (n € IN) we say that f, converges in measure to f if, for
each r > 0 JLHC}ON(E(fmf?T)) =0.
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It is known that the g-convergence is equivalent to the convergence in measure,
further (M, p) is a complete pseudo-metric space ([1], p.80).
Define the following sets:

Aa(@) = {feM: [ |@ofldncal (az0),

A@) = {1 e Ms [ @0 f]du<+oo}

where ®: IR — IR is an arbitrary but fixed continuous function.
The symbol x , stands for the characteristic function of A C X.

Main results

First we point out to which Borel class A,(®) and A(P), respectively belong
(a > 0). We have

Theorem 1. The set A, (P) is closed in (M, p) for all a« > 0.

Proof: Let f € M, f, € Ay(®) and o(fn,f) — 0 (n — o0). Then by
a well-known theorem of Riesz there exists a subsequence {fn, }72, of {fn}o2,
converging a.e. on X to f. Consequently |® o f,,, | — |® o f| a.e. on X, thus in
view of the Fatou Lemma

/X | o f| dp = /}((klingo|q>ofnk|) dp < liggf/X | o fo| du < o,
so f € Ay(P). n
Corollary 1. The set A(®) is an F,-subset of (M, p).
Proof: It follows from Theorem 1, since A(®) = Jo2; Ap(P). n

Remark 1. In the sequel we will use the fact that A(®) is meager in (M, o)
if and only if M\ Ay(®) is dense in M for all « > 0. Indeed, the sufficiency
follows from Theorem 1 (resp. Corollary 1). Conversely, (M, ) is a complete
pseudo-metric space and therefore a Baire space as well (cf. [3], p.19), i.e. every
nonempty open subset of M is nonmeager in (M, ).

Now we are prepared to determine the category of A(®) in M.

Theorem 2. Suppose that

(1) for each € > 0 there exists E € S such that 0 < u(E) < ¢ .
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Let ® be unbounded. Then A(®) is meager in (M, o).

Proof: Let f € Ay(®) (where a > 0), € > 0, further 0 < u(E) < € for some
E € S. Choose tg € IR such that

1
@(i0)| > s (o= [ 1@ sldn)

Then forg:f-XX\E +10 - xp € M we have

[ @ogldu= [ (@0 fldu+ (0t) u(E) > o, thus g€ M\Aa(@).
X X\E

On the other hand E(f,g;¢) C E, so o(f,g) < € (see Remark 1). m

Theorem 3. Let (X,S, 1) be a non-o-finite measure space. Suppose that
either ® is bounded or (1) does not hold.

Then A(®) is meager in (M, ) if and only if |®|71(0,+cc) = {t € R;
|®(t)| > 0} is dense in IR.

Proof: Suppose that |®|~1(0,+0c) is dense in IR. Let a > 0 and f €
Aq(®). Then f can be considered as a uniform limit of a sequence of elementary
measurable functions ([2], p.86). Hence we can find an elementary measurable
function g = >"02  ay, Xg, (with X = ;2 Fy) in every e-neighbourhood of f in
(M, 0) (¢ > 0) such that ®(a,) # 0 for all n € IN.

Since (X, S, u) is not o-finite we can find m € IN for which u(E,,) = +oc.
It follows that

/X @0 gldu > /E 1@ 0 g dpt = |B(am)| j1(Em) = +00 ,

hence g € M\ A, (®). Further see Remark 1.

Conversely, suppose that there exist § > 0, t € R such that ®(¢') = 0, for
every t' € I = (t — §,t + 0). Define f(z) = t, which is evidently in A(®). Choose
an arbitrary g € M from the §-neighbourhood of f. Then we can find 0 < rg < ¢
such that F = E(f, g;ro) is of measure less than 6. Then t — ¢y < g(x) <t + 7o,
consequently g(x) € I, thus

(2) /"1)09|d,u=/ |<I>og\du+/I@Og\duz/l@og\duza-
X X\E E E

If (1) does not hold then a = 0 for a suitably small §, further if ® is bounded
then a < Ku(E) < Krg < +oo for some K > 0. It is now clear from (2) that
under our assumptions [y [® o g|dy < +oo, so g € A(P). Accordingly A(P)
contains a nonempty open ball. n
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Before we state the appropriate theorem for o-finite spaces define the function

¢(c,e) = max |P(t)] where ce R, €>0.
t€[c—e,cte]

Theorem 4. Let (X, S, ) be a o-finite measure space and {X,}72, be a
measurable decomposition of X with u(X,) < 4o0o0. Suppose that either ® is
bounded or (1) does not hold. Then A(®) is meager in (M, p) if and only if

(3) Ve>0 Ve, € R (neIN): Z o(cn,€) = +00 .

Proof: First suppose that (3) holds. Choose arbitrary a > 0, € > 0 and
f € Au(D).

Examine f on the finite measure space (X,,S|x,,ulx,) (n € IN). There
exists a sequence of simple measurable functions which converges a.e. to f on
X, further the convergence a.e. implies convergence in measure on finite measure
spaces ([1], p.78). It means that for every n € IN there exists a simple measurable
function g, = ng) CniXy, (where k(n) € IN, ¢,,; € R, X,,; € S|x,, ) such that

:U’(Xn N E(f, In; %)) < #
Define the function g = Y 72 ; g, € M. We have

n(E(f.0:5)) = i u(Xn NV E(f,90:5))
n=1

N ™

(o)
€ e
§§12n+1=§, so o(f,g) <
n=

For every n € IN let ¢, be that of the numbers ¢y 1, ..., ¢y g(n) for which
P(cni, 5) is the least (1 < < k(n)). Choose dy; € [cn;i — §,Cni + 5] such that
[@(dn )| = d(cns, §) and put h =302, S dyixy € M. Then o(h,g) < §

thereby o(f,h) < o(f,9) + o(g,h) < &
On the other hand from (3) we have

oo k(n)
/IfI)ohldu—Z/ o hldu=" > dlenis5) #(Xai) 2
n=1 i=1
>3 Z $en: ) 1(Xn) = 3 6. 5): (3 w(xa)
n=1 i=1 n=1 i=1

Z d(cn, 5) - 1w(Xpn) = 400 .
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It means that h € M\ A,(®) (see Remark 1).

Conversely, if contrary to (3) >.02; ¢(cn,0) < « for some a,e9 > 0 and
n € R (n € IN), then f =37, cn-xy € Aa(®). Choose g € M such that
o(f,9) <0 (0 <8 <ep). One can find an 0 < 79 < 0, for which the measure of
E = E(f,g;70) is less than 4.

We have
/X!‘I’og!du: (;/XH\EMI’og\du)Jr/E\@ogldu
< (;/Xn\Ewcn,a)du) + [ 1@ o gld
< (X demz0) - (X)) + [ @0 g]du
n=1

Sa—i—/ |®ogldu .
E
Reasoning analoguous to that of at the end of the proof of Theorem 3 works. n

Remark 2. Observe that Theorems 2-4 determine the category of A(®) in
(M, o) for every continuous ® and measure space (X, S, i1), respectively. However
some of these theorems overlap, e.g. in one direction Theorem 3 holds for o-finite
measure spaces as well (the necessity of the density of |®|~1(0,+o00) for A(®)
being meager), but in reverse it is false.

Indeed, let (X, S, 1) be an arbitrary o-finite measure space. Let {X,,}2°; be
a measurable decomposition of X such that p(X,) < 4oo for all n € IN. Define
the sequence g = 1, r,, = %min{rn,l, m} if u(X,,) >0 and r, = %rn,l if
w(X,) =0 (ne€IN). Let

1, for t <0,
O(t) =1 rp, for t =n (n € IN),
linear, elsewhere .

Then @ is a nonincreasing, positive, bounded continuous function.
On the other hand setting ¢, = 2% (n € IN) we get ¢(cn,3) = rp, thus
2 1 B(ens3) - u(Xn) < 3202, 5 = 2. Consequently by Theorem 4 A(®) is
nonmeager in (M, o).

Corollary 2. Let p > 1. Then L,(p) is nonmeager in (M, p) if and only if
1 is finite and bounded away from zero.

Proof: Suppose that p is not bounded away from zero (i.e. (1) holds). Since
the function ®(t) = [¢|” (p > 0) is continuous and unbounded Theorem 2 yields
the desired result at once.
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Assume now the converse of (1) and consider a non-o-finite measure space
(X,S,p). Then Ly,(p) is meager in (M, g) by Theorem 3.

Suppose further that (X, S, ) is o-finite. Let {X,,}>2; be a measurable de-
composition of X with p(X,) < 400 (n € IN). It is easy to check that ¢(c,e) > &P
for all e > 0 and c € R.

Consequently we get for every ¢, € R (n € IN) that

Z w(Xy) - d(en,e) > Z u(Xy,) el =ef - pu(X) =400,
n=1 n=1

provided p(X) = +o00. Then in virtue of Theorem 4 L,(x) is meager in M.

Finally if (X, S, i) is a finite measure space then putting ¢, = 0 for all n € IN
and ¢ = 1 we can see that (3) is not fulfilled, thus Theorem 4 completes the
proof. n
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