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EXISTENCE THEOREMS
FOR SOME ELLIPTIC SYSTEMS

Robert Dalmasso

Abstract: We investigate the existence of solutions of systems of semilinear elliptic

equations. The proof makes use of the Leray–Schauder degree theory. We also study the

corresponding linear problem.

1 – Introduction

In this paper we consider the following elliptic system

(1.1)

{−∆uj = fj(x, u1, ..., um), j = 1, ...,m in Ω,

uj = ψj , j = 1, ...,m on ∂Ω ,

where Ω is a bounded domain in IRn (n ≥ 1) of class C2,α for some α ∈ (0, 1),
m ≥ 1 is an integer and fj : Ω × IRm → IR, j = 1, ...,m, are locally Hölder
continuous functions with exponent α. When ψj ∈ C2,α(∂Ω), j = 1, ...,m, we
seek a solution u = (u1, ..., um) ∈ (C2,α(Ω))m.

Let 0 < µ1 < µ2 ≤ ... ≤ µk ≤ ... be the eigenvalues of the operator −∆ on Ω
with Dirichlet boundary conditions. We shall note ϕ1 the positive eigenfunction
corresponding to µ1.

Theorem 1. Suppose that there are constants ajk ≥ 0 and cj ≥ 0, j, k =
1, ...,m such that

(1.2)
∣

∣

∣fj(x, u1, ..., um)
∣

∣

∣ ≤
m
∑

k=1

ajk |uk|+ cj ,

Received : February 12, 1993; Revised : April 1, 1994.

1991 Mathematics Subject Classification: 35B45, 35J55.

Keywords: a priori bounds, elliptic systems, Leray–Schauder degree.



140 R. DALMASSO

for j = 1, ...,m and (x, u1, ..., um) ∈ Ω× IRm, with

(1.3) µ1 > ρ(A) ,

where ρ(A) denotes the spectral radius of A = (ajk)1≤j,k≤m.

Then for any (ψ1, ..., ψm) ∈ (C2,α(∂Ω))m, problem (1.1) has a solution u =
(u1, ..., um) ∈ (C2,α(Ω))m.

Remark 1. It will be clear from the proof that, at least in the case n = 1,
theorem 1 remains true for zero boundary conditions if (1.2) is replaced by

uj fj(x, u1, ..., um) ≤
m
∑

k=1

ajk |uj uk|+ cj |uj | ,

which in some instances may be a weaker growth condition; roughly speaking
fj may contain a term in uj that is linearly bounded from above or below only,
according to the sign of uj .

In Section 4 we shall give an example showing that our condition is sharp.

When n = 1, m = 2 and f1(x, u1, u2) = −u2 problem (1.1) reduces to

(1.4)

{

d4u/dx4 = f(x, u, u′′) , a < x < b,

u(a) = ua, u(b) = ub, u′′(a) = ua, u′′(b) = ub ,

where b− a < +∞ and f ∈ C([a, b]× IR2).

Aftabizadeh [1] and Yang [7] roved the existence of a solution of (1.4) (with
a = 0, b = 1) when

|f(x, u, v)| ≤ α |u|+ β |v|+ γ ,

where α, β, γ ≥ 0 are such that α/π4 + β/π2 < 1.

When n ≥ 1 and fj(x, u1, ..., um) = −uj+1 for j = 1, ...,m − 1 (if m ≥ 2),
problem (1.1) reduces to

(1.5)

{

∆mu = f(x, u,∆u, ...,∆m−1u) in Ω,

∆ju = ψj , j = 0, ...,m− 1 on ∂Ω ,

where f : Ω× IRm → IR is a locally Hölder continuous function with exponent α.
Chen and Nee [4] proved the existence of a solution of (1.5) under the condition

|f(x, u1, ..., um)| ≤
m
∑

k=1

ak |uk|+ c ,
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where ak ≥ 0, c ≥ 0 are such that

(1.6)
m
∑

k=1

ak

µm−k+11

< 1 .

We wish to point out that the condition of solvability in the above examples
coincides with that given in theorem 1 (see remark 2).

Remark 2. For problem (1.5) the matrix A defined in theorem 1 is such that,
when m ≥ 2, ajj+1 = 1 for 1 ≤ j ≤ m− 1, ajk = 0 for k 6= j + 1, 1 ≤ j ≤ m− 1,
1 ≤ k ≤ m and amk = ak for 1 ≤ k ≤ m. In Section 2 we shall show that
condition (1.3) is equivalent to condition (1.6).

In both cases the proof makes use of the Leray–Schauder degree theory [2].
Therefore the underlying technique is the establishment of a priori estimates.

Note that we can assume that ψj = 0 for j = 1, ...,m. Indeed let χ
j
∈ C2,α(Ω)

be such that
∆χ

j
= 0, j = 1, ...,m in Ω ,

χ
j
= ψj , j = 1, ...,m on ∂Ω .

Define vj = uj−χj , j = 1, ...,m. Then problem (1.1) is equivalent to the following
boundary value problem

{−∆vj = fj(x, v1 + χ
1
, ..., vm + χm), j = 1, ...,m in Ω,

vj = 0, j = 1, ...,m on ∂Ω ,

and the functions

gj(x, v1, ..., vm) = fj(x, v1 + χ
1
, ..., vm + χm) , j = 1, ...,m

still satisfy (1.2) with different cj .
In Section 2, in order that the paper be self-contained, we provide preliminary

results from the theory of nonnegative matrices. In Section 3 we prove our a priori
bounds. Theorem 1 is proved in Section 4. Finally in Section 5 we study the
corresponding linear problem.

2 – Preliminaries

In this section, in order that the paper be self-contained, we provide prelim-
inary results from the theory of nonnegative matrices. We refer the reader to
Berman and Plemmons [3] for proofs. We consider the proper cone

IRm
+ =

{

x = (x1, ..., xm) ∈ IRm; xj ≥ 0, j = 1, ...,m
}

.
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Definition 1. An m×m matrix M is called IRm
+ -monotone if

Mx ∈ IRm
+ ⇒ x ∈ IRm

+ .

The following theorems are parts of some results proved in [3] (theorem 1.3.2,
p. 6, theorem 1.3.12, p. 10, corollary 2.1.12, p. 28 and theorems 5.2.3, 5.2.6,
p. 113).

Theorem 2. Let N be an m×m nonnegative matrix (i.e. N = (njk)1≤j,k≤m
with njk ≥ 0 for j, k = 1, ...,m). Then ρ(N) is an eigenvalue of N .

Theorem 3. Let M = αI−N where α ∈ IR and N is an m×m nonnegative
matrix. If Mx ∈ IRm

+ for some x ∈
∫

IRm
+ , then ρ(N) ≤ α.

Theorem 4. Let N be an m×m nonnegative matrix. If x is a positive (i.e.
x = (xj)1≤j≤m with xj > 0 for j = 1, ...,m) eigenvector of N then x corresponds
to ρ(N).

Theorem 5. An m × m matrix M is IRm
+ -monotone if and only if it is

nonsingular and M−1 is nonnegative.

Theorem 6. Let M = αI−N where α ∈ IR and N is an m×m nonnegative
matrix. Then the following are equivalent:

i) The matrix M is IRm
+ -monotone.

ii) ρ(N) < α.

We conclude this section with the proof of the assertion of remark 2. We first
note that condition (1.6) can be written det(µ1I − A) > 0. Then we use the
following lemma.

Lemma 1. Let N = (njk)1≤j,k≤m be a nonnegative matrix such that, when
m ≥ 2, njk = 0 for k 6= j + 1, 1 ≤ j ≤ m− 1, 1 ≤ k ≤ m. If α > 0 the following
are equivalent:

i) det(αI −N) > 0 (resp. det(αI −N) = 0).

ii) α > ρ(N) (resp. α = ρ(N)).

Proof: i)⇒ii): Since the lemma is obvious when m = 1, we assume m ≥ 2.
Let λ ∈ IR. We have

det(λI −N) = λm −
{

nmm λ
m−1 +

m−1
∑

k=1

nmk nkk+1 · · ·nm−1m λk−1
}

.
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Suppose first that nm−1m = 0. Then det(λI −N) = λm−1(λ− nmm). Clearly
ρ(N) = nmm and since α > 0 the result follows.

Now if nm−1m > 0 we claim that we can assume that njj+1 > 0 for j =
1, ...,m − 1. Indded if njj+1 = 0 for some j ∈ {1, ...,m − 2} (thus necessarily
m ≥ 3), we define h = max{j ∈ {1, ...,m− 2}; njj+1 = 0}. Then

det(λI −N) = λh det(λI −Q) ,

where Q = (qjk)1≤j,k≤m−h is an (m− h)× (m− h) nonnegative matrix such that
qjj+1 > 0 for 1 ≤ j ≤ m − h − 1 and qjk = 0 for k 6= j + 1, 1 ≤ j ≤ m − h − 1,
1 ≤ k ≤ m − h. Clearly ρ(N) = ρ(Q). Since α > 0, det(αI − N) > 0 (resp.
det(αI −N) = 0) if and only if det(αI −Q) > 0 (resp. det(αI −Q) = 0). Thus
our claim is proved. Now let xm > 0 and define the column vector x = (xj)1≤j≤m
by

xj = αj−m njj+1 · · ·nm−1m xm for j = 1, ...,m− 1 .

Then (αI − N)x = y = (yj)1≤j≤m where yj = 0 for j = 1, ...,m − 1 and ym =
α1−m xm det(αI−N). Using theorem 3 we get ρ(N) ≤ α. Then the result follows
with the help of theorem 2.

ii)⇒i): Since ρ(N) is an eigenvalue of N , the result is clear.

3 – A priori bounds

We first introduce the following problems

(3.1)t

{−∆uj = t fj(x, u1, ..., um), j = 1, ...,m in Ω,

uj = 0, j = 1, ...,m on ∂Ω ,

where t ∈ [0, 1] is the Leray–Schauder homotopy parameter.

Theorem 7. Under the assumptions of theorem 1, there exists a constant
M > 0 such that for any t ∈ [0, 1] and any solution u = (u1, ..., um) ∈ (C2,α(Ω))m

of (3.1)t we have
‖uj‖L∞(Ω) ≤M , j = 1, ...,m .

Proof: Multiplying the differential equation in (3.1)t by uj , integrating over
Ω and using (1.2) we obtain

∫

Ω
|∇uj |2 dx = t

∫

Ω
uj fj(x, u1, ..., um) dx

≤
m
∑

k=1

ajk

∫

Ω
|uj uk| dx+ cj

∫

Ω
|uj | dx
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for j = 1, ...,m. By first using the Schwarz inequality and then the Poincaré
inequality we get

∫

Ω
|∇uj |2 dx ≤

m
∑

k=1

ajk
(

∫

Ω
u2j dx

)1/2 (
∫

Ω
u2kdx

)1/2
+ cj |Ω|1/2

(

∫

Ω
u2j dx

)1/2
≤

≤
m
∑

k=1

ajk
µ1

(

∫

Ω
|∇uj |2 dx

)1/2 (
∫

Ω
|∇uk|2 dx

)1/2
+

cj√
µ1
|Ω|1/2

(

∫

Ω
|∇uj |2 dx

)1/2

for j = 1, ...m from which we deduce

(3.2) ‖∇uj‖L2(Ω) ≤
m
∑

k=1

ajk
µ1
‖∇uk‖L2(Ω) +

cj√
µ1
|Ω|1/2 , j = 1, ...,m .

Let x and b denote the column vectors

x =
(

‖∇uj‖L2(Ω)

)

1≤j≤m
and b =

( cj√
µ1
|Ω|1/2

)

1≤j≤m
.

(3.2) can be written

b− (I − µ−11 A)x ∈ IRm
+ .

(1.3) and theorem 6 imply that I−µ−11 A is IRm
+ -monotone. Hence using theorem 5

we obtain

(3.3) (I − µ−11 A)−1 b− x ∈ IRm
+ .

From (3.3) and the Poincaré inequality it follows that

(3.4) ‖uj‖W 1,2(Ω) ≤ C , j = 1, ...,m .

where C is a positive constant. Now for 1 < p < +∞ we have the following
estimates

(3.5) ‖uj‖W 2,p(Ω) ≤ C ‖∆uj‖Lp(Ω) , j = 1, ...,m ,

([6], lemma 9.17, p. 242) for some positive constant C. Moreover from the differ-
ential equations in (3.1)t and condition (1.2) we deduce

(3.6) ‖∆uj‖Lp(Ω) ≤ C
m
∑

k=1

‖uk‖Lp(Ω) , j = 1, ...,m ,

for another positive constant C.

Now if n = 1, (3.4) and the Sobolev imbedding theorem imply L∞ bounds.
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If n = 2, (3.4) and the Sobolev imbedding theorem imply that, for 1 < p <
+∞, there exists C > 0 such that

(3.7) ‖uj‖Lp(Ω) ≤ C , j = 1, ...,m .

Then using (3.5)–(3.7) and the Sobolev imbedding theorem we obtain the L∞

bounds.
Finally if n ≥ 3, the conclusion follows from a classical bootstrapping proce-

dure (see [2]) using (3.4)–(3.6) and the Sobolev imbedding theorem. The proof
of the theorem is complete.

4 – Proof of theorem 1

We recall from Section 1 that it is sufficient to deal with zero boundary con-
ditions.

We shall note G(x, y) the Green’s function of the operator −∆ on Ω with
Dirichlet boundary conditions. Consider the function space X = (C(Ω))m en-
dowed with the norm

‖u‖ = max
1≤j≤m

(

‖uj‖L∞(Ω)

)

for u = (u1, ..., um) ∈ X .

Then X is a Banach space. Regularity theory implies that solving (3.1)t is equiv-
alent to finding a solution u = (u1, ..., um) ∈ X of the following system of integral
equations

uj(x) = t

∫

Ω
G(x, y) fj(y, u1(y), ..., um(y)) dy , j = 1, ...,m .

Now define a map Tt : X → X by Ttu = v = (v1, ..., vm) where

vj(x) = t

∫

Ω
G(x, y) fj(y, u1(y), ..., um(y)) dy , j = 1, ...,m .

It is well-known that Tt is continuous and compact for t ∈ [0, 1]. Regularity
theory implies that solving (1.1) (with ψj = 0, j = 1, ...,m) is equivalent to
finding a fixed point of the map T1 in X. Let M be the constant appearing in
theorem 7. Consider the ball BM in X:

BM =
{

u ∈ X; ‖u‖ < M + 1
}

.

Theorem 7 implies that Tt has no fixed point on ∂BM . Let I : X → X be the
identity map. By the homotopy invariance of the Leray–Schauder degree we have

deg(I−T1, BM , 0) = deg(I−Tt, BM , 0) = deg(I−T0, BM , 0) = deg(I,BM , 0) = 1 .
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Consequently, T1 has a fixed point in BM . The theorem is proved.

Remark 3. If there exist constants ajk ≥ 0, j, k = 1, ...,m, such that

∣

∣

∣fj(x, u1, ..., um)− fj(x, v1, ..., vm)
∣

∣

∣ ≤
m
∑

k=1

ajk |uk − vk|

for j = 1, ...,m and (x, u1, ..., um), (x, v1, ..., vm) ∈ Ω×IRm with A = (ajk)1≤j,k≤m
satisfying (1.3), then the solution of (1.1) is unique. The argument is similar to
the proof of theorem 7.

Example 1: Let

fj(x, u1, ..., um) =
m
∑

k=1

ajk uk

for j = 1, ...,m and (x, u1, ..., um) ∈ Ω × IRm where ajk ≥ 0 are constants,
j, k = 1, ...,m. Let b denote the column vector

b =
(

−
∫

∂Ω
ψj

∂ϕ1
∂ν

ds
)

1≤j≤m

and A = (ajk)1≤j,k≤m. Suppose that µ1 = ρ(A). By theorem 2 det(µ1I−A) = 0.

The Hopf boundary lemma ([6], lemma 3.4, p. 33) implies that ∂ϕ1

∂ν < 0 on ∂Ω.
Therefore we can choose ψj ∈ C2,α(∂Ω), j = 1, ...,m, such that b /∈ R(µ1I − A).
Then problem (1.1) has no solution. Indeed, suppose that problem (1.1) has a
solution u = (u1, ..., um) ∈ (C2,α(Ω))m. Multiplying the differential equation in
(1.1) by ϕ1 and using Green’s formula we obtain

−
∫

Ω
ϕ1∆uj dx = −

∫

Ω
uj ∆ϕ1 dx+

∫

∂Ω
ψj

∂ϕ1
∂ν

ds

= µ1

∫

Ω
uj ϕ1 dx+

∫

∂Ω
ψj

∂ϕ1
∂ν

ds

=
m
∑

k=1

ajk

∫

Ω
uk ϕ1 dx , j = 1, ...,m ,

where ν is the unit outward normal to ∂Ω. This yields

(µ1I −A)x = b ,

where x denotes the column vector

x =
(

∫

Ω
uj ϕ1 dx

)

1≤j≤m

and we reach a contradiction.
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The above example shows that our condition is sharp.

5 – The linear problem

In this section we consider the following boundary value problem:

−δuj =
m
∑

k=1

ajk uk , j = 1, ...,m in Ω ,(5.1)

uj = 0 , j = 1, ...,m on ∂Ω ,(5.2)

wherem ≥ 1 and ajk ∈ IR for 1 ≤ j, k ≤ m. We define Am = (ajk)1≤j,k≤m. Below
u = (u1, ..., um) ≥ 0 (resp. > 0) means uj ≥ 0 (resp. uj > 0) for j = 1, ...,m.

Lemma 2. Let u = (u1, ..., um) ∈ (C2,α(Ω))m be a nonnegative nontrivial
solution of problem (5.1), (5.2). Then det(µ1I −Am) = 0.

Proof: Arguing as in example 1 we get

(µ1I −Am)x = 0

where x is the column vector x = (
∫

Ω uj ϕ1 dx)1≤j≤m. Since there exists j ∈
{1, ...,m} such that

∫

Ω uj ϕ1 dx 6= 0, we have necessarily

det(µ1I −Am) = 0

and the lemma is proved.

Lemma 3. Assume that ajk ≥ 0 for j, k = 1, ...,m. Let u = (u1, ..., um) ∈
(C2,α(Ω))m be a positive solution of problem (5.1), (5.2). Then µ1 = ρ(Am).

Proof: Indeed, using the above notations we still get (µ1I −Am)x = 0 and
the result follows from theorem 4.

Remark 4. Assume that m = 2 and that problem (5.1), (5.2) has a positive
solution u = (u1, u2) ∈ (C2,α(Ω))2. Then we have

µ1 = a11 (resp. µ1 = a22) ⇐⇒ a12 = 0 (resp. a21 = 0) ,(5.3)

µ1 > a11 (resp. µ1 > a22) ⇐⇒ a12 > 0 (resp. a21 > 0) .(5.4)

Indeed, arguing as in example 1 we get

(µ1 − a11)
∫

Ω
u1 ϕ1 dx = a12

∫

Ω
u2 ϕ1 dx

and
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(µ1 − a22)
∫

Ω
u2 ϕ1 dx = a21

∫

Ω
u1 ϕ1 dx ,

from which we deduce (5.3) and (5.4).
Now we give two examples.

Example 2: Assume m = 2 and detA2 /∈ {µ1µk; k ≥ 2}. Then problem
(5.1), (5.2) has a positive solution u = (u1, u2) ∈ (C2,α(Ω))2 if and only if

(5.5) det(µ1I −A2) = 0

and one of the following conditions holds:

i) µ1 = a11, a12 = 0 and (µ1 − a22) a21 > 0.

Then the solution is given by u1 = Cϕ1 and u2 =
a21

µ1−a22
Cϕ1 for some constant

C > 0.

ii) µ1 = a22, a21 = 0 and (µ1 − a11) a12 > 0.

Then the solution is given by u1 = Cϕ1 and u2 =
µ1−a11

a12
Cϕ for some constant

C > 0.

iii) µ1 = a11 = a22, a12 = a21 = 0.

Then the solution is given by u1 = Cϕ1 and u2 = C ′ ϕ1 for some constants
C,C ′ > 0.

iv) (µ1 − a11) a12 > 0 and (µ1 − a22) a21 > 0.

Then the solution is given by u1 = Cϕ1 and u2 = a21

µ1−a22
Cϕ1 = µ1−a11

a12
Cϕ1

for some constant C > 0.

Proof: Assume that problem (5.1), (5.2) has a positive solution u = (u1, u2) ∈
(C2,α(Ω))2. By lemma 2 condition (5.5) is satisfied.

Define D(λ) = det(λI−A2). D is a polynomial of degree 2. Since D(µ1) = 0,
the roots of D are real. We denote by µ the other root. Since µµ1 = detA2, our
assumption implies µ 6= µk for all k ≥ 2.

Now denote by ϕj the eigenfunction corresponding to µj (with ϕ1 > 0 in

Ω). These form a complete orthonormal set in W 1,2
0 (Ω), hence total in C2,α. If

u = (u1, u2) ∈ (C2,α(Ω))2 is a solution of problem (5.1), (5.2) the corresponding
Fourier coefficients u1j and u2j satisfy the linear system

(5.6)

{

(µj − a11)u1j − a12 u2j = 0,

−a21 u1j + (µj − a22)u2j = 0 ,

from which it immediately follows that u1j = u2j = 0 for j ≥ 2. Using (5.3) and
(5.4) of remark 4 we easily verify that one of the conditions i)–iv) holds. The
relation between u11 and u21 is easily checked in each case.
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The converse is obvious.

Example 3: Assume m = 2. If there exists k ≥ 2 such that detA2 = µ1 µk,
then problem (5.1), (5.2) has a positive solution u = (u1, u2) ∈ (C2,α(Ω))2 if and
only if (5.5) is satisfied and one of the following conditions holds:

i) µ1 = a11, a12 = 0 and a21 < 0.

Then the solution is given by u1 = Cϕ1 and u2 = a21

µ1−µk
Cϕ1 + v where v is

an eigenfunction corresponding to µk and C > 0 is a constant such that u2 > 0
in Ω.

ii) µ1 = a22, a21 = 0 and a12 < 0.

Then the solution is given by u2 = Cϕ1 and u1 = a12

µ1−µk
Cϕ1 + v where v is

an eigenfunction corresponding to µk and C > 0 is a constant such that u1 > 0
in Ω.

iii) (µ1 − a11) a12 > 0 and (µ1 − a22) a21 > 0.

Then the solution is given by u1 = µ1−a22

a21
Cϕ1 +

µk−a22

a21
v and u2 = Cϕ1 + v

where v is an eigenfunction corresponding to µk and C > 0 is a constant such
that u1 > 0 and u2 > 0 in Ω.

Proof: Assume that problem (5.1), (5.2) has a positive solution u = (u1, u2) ∈
(C2,α(Ω))2. As in example 2 (5.5) is satisfied. We keep the notations of the
proof of example 2. Our assumption implies that µ = µk for some k ≥ 2. Us-
ing the same argument we obtain (5.6) from which it immediately follows that
u1j = u2j = 0 except possibly for j = 1 and the indices such that µj = µk.
Using (5.3) and (5.4) of remark 4 we easily show that one of the conditions i)–iii)
holds. The relations between the coefficients of the expansions of u1 and u2 in
the eigenfunctions are easily checked according to the various possibilities i)–iii).

The converse is obvious.

Remark 5. Assume ajk ≥ 0, j, k = 1, 2, and µ1 = ρ(A2).

If problem (5.1), (5.2) has a positive solution u = (u1, u2) ∈ (C2,α(Ω))2 then
detA2 ≤ µ21 since detA2 = µµ1.

If detA2 = µ21, let ajj = µ1 for j = 1, 2 and a12 = a21 = 0. Then iii) of
example 2 gives the existence of infinitely many positive solutions.

If detA2 < µ21, first let

A2 =

(

µ1 0
a21 a22

)

with µ1 > a22 and a21 > 0

or

A2 =

(

a11 a12
0 µ1

)

with µ1 > a11 and a12 > 0 .
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Then i) or ii) of example 2 gives the existence of infinitely many positive solutions.
Now let

A2 =

(

µ1 − ε1 a12
a21 µ1 − ε2

)

with 0 < εj < µ1 for j = 1, 2, a12, a21 > 0 and ε1 ε2 = a12 a21. Then iv) of
example 2 gives the existence of infinitely many positive solutions.

Remark 6. If ajk ≥ 0, j, k = 1, 2, and µ1 > ρ(A2) then the only solution of
problem (5.1), (5.2) is the trivial solution (see remark 3). If µ1 = ρ(A2), infinitely
many positive solutions may exist by remark 5.

The next result was proved in [5].

Theorem 8. Assume that ajk in (5.1) are such that

ajj+1 = λj+1 , j = 1, ...,m− 1 ,

am1 = λ1 ,

and

ajk = 0 , otherwise .

Then problem (5.1), (5.2) has a positive solution u = (u1, ..., um) ∈ (C2,α(Ω))m

if and only if

(5.7) λj > 0, j = 1, ...,m and λ1 · · ·λm = µm1 .

The solution is given by uj = cj ϕ1 where c1 > 0 is an arbitrary constant and
cj = c1(λ2 · · ·λj)−1 (λ1 · λm)(j−1)/m for j = 2, ...,m.

Remark 7. By lemma 1 condition (5.7) is equivalent to

λj > 0, j = 1, ...,m and µ1 = ρ(Am) .

Now with the notations of theorem 8, if λj ≥ 0, j = 1, ...,m and µ1 > ρ(Am), then
the only solution of problem (5.1), (5.2) is the trivial solution (see remark 3). If
λj > 0, j = 1, ...,m and µ1 = ρ(Am), theorem 8 shows that there exist infinitely
many positive solutions.
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