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EXISTENCE THEOREMS
FOR SOME ELLIPTIC SYSTEMS

ROBERT DALMASSO

Abstract: We investigate the existence of solutions of systems of semilinear elliptic
equations. The proof makes use of the Leray—Schauder degree theory. We also study the
corresponding linear problem.

1 — Introduction

In this paper we consider the following elliptic system

—Au; = fi(x,u1, ey Uy), j=1,...,m in £,
(1.1) { i = filw,u ), J

uj =15, 7=1,....,m on 0F2 ,

where ) is a bounded domain in R™ (n > 1) of class C%® for some «a € (0, 1),
m > 1 is an integer and f;: Q@ x R™ — R, j = 1,...,m, are locally Hélder
continuous functions with exponent . When v; € C?>(0), j = 1,....,m, we
seek a solution u = (uy, ..., ) € (CH*())™

Let 0 < p1 < po < ... < g < ... be the eigenvalues of the operator —A on 2
with Dirichlet boundary conditions. We shall note ¢; the positive eigenfunction
corresponding to p1.

Theorem 1. Suppose that there are constants aj, > 0 and ¢; > 0, j,k =
1,...,m such that

m
(1.2) ’fj(x,ul,...,um)‘ < Zajk lug| +¢5 ,
k=1
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for j =1,....,m and (z,u1,...,up) € Q x R™, with

(1.3) p1 > p(A)

where p(A) denotes the spectral radius of A = (a;r)1<jk<m-
Then for any (1, ...,¢m) € (C?(08))™, problem (1.1) has a solution u =
(U1, .oy u) € (CB2(Q))™

Remark 1. It will be clear from the proof that, at least in the case n = 1,
theorem 1 remains true for zero boundary conditions if (1.2) is replaced by

m
u] f](xaulaaum) S Zajk |u] Uk| +C] |u]’ )
k=1

which in some instances may be a weaker growth condition; roughly speaking
fj may contain a term in u; that is linearly bounded from above or below only,
according to the sign of u;.

In Section 4 we shall give an example showing that our condition is sharp.
When n =1, m =2 and fi(x,u1,u2) = —ug problem (1.1) reduces to

(1.4)

{d4u/dx4 = f(z,u,u”), a<xz<b,

u(a) = uq, u(b) =up, u”’(a)=1u,, u’(b)=1u,

where b — a < +oo and f € C([a,b] x R?).
Aftabizadeh [1] and Yang [7] roved the existence of a solution of (1.4) (with
a=0,b=1) when
[f (@, u,0)] < alul + B o]+,
where a, 3,y > 0 are such that o/7* + 3/7% < 1.

When n > 1 and fj(x,ui,...,um) = —ujq1 for j =1,...,m —1 (if m > 2),
problem (1.1) reduces to

(L5) { A™u = f(z,u,Au,...,A™ 1u) in Q,

Aju:¢j, 7j=0,....,m—1 on 0f2 ,

where f: Q2 x R™ — IR is a locally Hélder continuous function with exponent a.
Chen and Nee [4] proved the existence of a solution of (1.5) under the condition

m
|f (2,01, ey um)| < Zak luk| + ¢,
k=1



EXISTENCE THEOREMS FOR SOME ELLIPTIC SYSTEMS 141

where a; > 0, ¢ > 0 are such that

m
ag
m—k+1
k=1 M1

(1.6) <1.

We wish to point out that the condition of solvability in the above examples
coincides with that given in theorem 1 (see remark 2).

Remark 2. For problem (1.5) the matrix A defined in theorem 1 is such that,
when m > 2, aj;;1 =1for1<j<m-—1,aj3=0fork#j+1,1<j<m-—1,
1 <k <mand a,; = a, for 1 < k < m. In Section 2 we shall show that
condition (1.3) is equivalent to condition (1.6).

In both cases the proof makes use of the Leray—Schauder degree theory [2].
Therefore the underlying technique is the establishment of a priori estimates.

Note that we can assume that ¢; = 0 for j = 1, ..., m. Indeed let X; € C?(Q)
be such that

Ax.=0, j=1,...m in Q,
Xj:z/;j, j=1,...,m on 00 .

Define v; = Uj =X, j =1,...,m. Then problem (1.1) is equivalent to the following
boundary value problem

_Avj :fj(x,Ul+X17---,Um+Xm), j—l,...,m in Q,
v;=0, j=1,..,m on 08 ,

and the functions

gj(‘ravla '-'7vm) = fj(‘r:vl + X1y Um + Xm): .7 = 17 ceey T

still satisfy (1.2) with different c;.

In Section 2, in order that the paper be self-contained, we provide preliminary
results from the theory of nonnegative matrices. In Section 3 we prove our a priori
bounds. Theorem 1 is proved in Section 4. Finally in Section 5 we study the
corresponding linear problem.

2 — Preliminaries

In this section, in order that the paper be self-contained, we provide prelim-
inary results from the theory of nonnegative matrices. We refer the reader to
Berman and Plemmons [3] for proofs. We consider the proper cone

R = {x =(z1,...,xm) €ER™; 2; >0, j = 1,...,m} )
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Definition 1. An m X m matrix M is called IR"-monotone if

Mz e R} = zeRT.

The following theorems are parts of some results proved in [3] (theorem 1.3.2,
p. 6, theorem 1.3.12, p. 10, corollary 2.1.12, p. 28 and theorems 5.2.3, 5.2.6,
p. 113).

Theorem 2. Let N be an m x m nonnegative matrix (i.e. N = (nji)1<jk<m
with nj, > 0 for j,k =1,...,m). Then p(N) is an eigenvalue of N.

Theorem 3. Let M = al — N where a € IR and N is an m X m nonnegative
matrix. If Mz € R for some x € [ IR, then p(N) < a.

Theorem 4. Let N be an m x m nonnegative matrix. If x is a positive (i.e.
x = (xj)1<j<m with x; > 0 for j = 1,...,m) eigenvector of N then x corresponds
to p(N).

Theorem 5. An m x m matrix M is IR''-monotone if and only if it is
nonsingular and M~ is nonnegative.

Theorem 6. Let M = al — N where a € IR and N is an m X m nonnegative
matrix. Then the following are equivalent:

i) The matrix M is R'-monotone.

ii) p(N) < a.

We conclude this section with the proof of the assertion of remark 2. We first
note that condition (1.6) can be written det(uil — A) > 0. Then we use the
following lemma.

Lemma 1. Let N = (nj;)i<jk<m be a nonnegative matrix such that, when
m=>2,n,=0fork#j+1,1<j<m-1,1<k<m. If a >0 the following
are equivalent:

i) det(al — N) > 0 (resp. det(al — N) =0).
if) @ > p(N) (resp. « = p(N)).

Proof: i)=-ii): Since the lemma is obvious when m = 1, we assume m > 2.

Let A € IR. We have

m—1

det( A = N) = A" =y X"+ 7 i gyt -+ 1 A7)
k=1
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Suppose first that 1,1, = 0. Then det(A\] — N) = A™ Y\ — nyyy ). Clearly
p(N) = Ny and since a > 0 the result follows.

Now if n,,—1,, > 0 we claim that we can assume that njj11 > 0 for j =
1,....,m — 1. Indded if njj11 = 0 for some j € {1,...,m — 2} (thus necessarily
m > 3), we define h = max{j € {1,...,m — 2}; n;j;1 = 0}. Then

det(A\] — N) = N det(\ — Q) ,

where Q = (¢jk)1<jk<m—n is an (m — h) x (m — h) nonnegative matrix such that
gjj41 >0for1<j<m-h—-land gy =0fork#j+1,1<j<m—-h-1,
1 <k <m—h. Clearly p(N) = p(Q). Since a > 0, det(al — N) > 0 (resp.
det(al — N) = 0) if and only if det(al — Q) > 0 (resp. det(al — Q) = 0). Thus
our claim is proved. Now let z,, > 0 and define the column vector z = (z;)1<j<m
by
;= al—m Njj4+1 - Nm—1m Tm for j=1,..,m—1.

Then (ol — N)z =y = (yj)1<j<m where y; =0 for j =1,...,m —1 and y,, =
at=™ z,, det(al — N). Using theorem 3 we get p(N) < a. Then the result follows
with the help of theorem 2.

ii)=1): Since p(N) is an eigenvalue of N, the result is clear. m

3 — A priori bounds

We first introduce the following problems

{ —Auj =t fj(x,u1,...,um), j=1,....,m inQ,

(3.1) :
uj =0, j=1,...m on 0F2 ,
where ¢ € [0, 1] is the Leray—Schauder homotopy parameter.

Theorem 7. Under the assumptions of theorem 1, there exists a constant
M > 0 such that for any t € [0,1] and any solution u = (u1, ..., upm) € (C**(Q))™
of (3.1); we have
ujllpeo) <M, j=1,...,m.

Proof: Multiplying the differential equation in (3.1); by u;, integrating over
Q2 and using (1.2) we obtain

/ |Vu;|* do :t/ uj fi(x,ur, ..., um) dx
Q Q

m
< Zajk/ \ujuk\da:+cj/ |uj| dx
k=1 Q Q
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for j = 1,...,m. By first using the Schwarz inequality and then the Poincaré
inequality we get

/Q|Vuj|2d:c§ Zajk(/ﬂuﬁdx)l/z (/Quidx)erc]- Q|2 (/Qu§dg;>1/2 <
m 1/2 1/2 Ci 1/2
g# /’Wﬂ?dfc (/Q\vukmx) +J%m|1/2 (/Q\Vu]‘|2d$)

for j = 1,...m from which we deduce

m QL Ci 1/2 )
3.2 Vuillr2i0) < LN Vugl 200 + —= |9 , Jj=1..m.
(3.2) 1Vujll 20 ’; n | 22(0) i 12|

Let  and b denote the column vectors

= (IIVuslz2@) and b= (L

i 1)

1<j<m 1<j<m

(3.2) can be written
b— (I —ptA)z € RT .

(1.3) and theorem 6 imply that I—pu ' A is IR'"-monotone. Hence using theorem 5
we obtain

(3.3) (I—pitA)'b—2 € RY .
From (3.3) and the Poincaré inequality it follows that
(3.4) lujllwrz <C,  j=1..m.

where C' is a positive constant. Now for 1 < p < 400 we have the following
estimates

(35) ||Uj||W2,p(Q) < C HAUJ'HLP(Q) 5 j = 1, ey 1,

([6], lemma 9.17, p. 242) for some positive constant C. Moreover from the differ-
ential equations in (3.1); and condition (1.2) we deduce

(3.6) [Au;|r <CZH“I€”LP , J=1..m,

for another positive constant C.
Now if n =1, (3.4) and the Sobolev imbedding theorem imply L° bounds.
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If n = 2, (3.4) and the Sobolev imbedding theorem imply that, for 1 < p <
400, there exists C' > 0 such that

(3.7) luillr) <C,  j=1,..,m.

Then using (3.5)—(3.7) and the Sobolev imbedding theorem we obtain the L>
bounds.

Finally if n > 3, the conclusion follows from a classical bootstrapping proce-
dure (see [2]) using (3.4)—(3.6) and the Sobolev imbedding theorem. The proof
of the theorem is complete. n

4 — Proof of theorem 1

We recall from Section 1 that it is sufficient to deal with zero boundary con-
ditions.

We shall note G(z,y) the Green’s function of the operator —A on Q with
Dirichlet boundary conditions. Consider the function space X = (C(Q2))™
dowed with the norm

en-
|lul| = 1%%);1("%“&(9)) for u= (uy,...,un) € X .

Then X is a Banach space. Regularity theory implies that solving (3.1); is equiv-
alent to finding a solution u = (uq, ..., up,) € X of the following system of integral
equations

uj(z) = t/QG(a;,y) [ily,ui(y), ..um(y)dy, j=1,...,m.

Now define a map T;: X — X by Tyu = v = (v1, ..., Uy,) Where

vj(z) = t/QG(ﬂc,y) fity,ua(y), - um(y)) dy,  j=1,..,m.

It is well-known that 7} is continuous and compact for ¢t € [0,1]. Regularity
theory implies that solving (1.1) (with ¢; = 0, j = 1,...,m) is equivalent to
finding a fixed point of the map 71 in X. Let M be the constant appearing in
theorem 7. Consider the ball By in X:

BM:{UEX; Hu||<M+1}.

Theorem 7 implies that T3 has no fixed point on 0B)y;. Let I: X — X be the
identity map. By the homotopy invariance of the Leray—Schauder degree we have

deg(I—Tl,BM,O) = deg(I—Tt,BM,O) = deg(I—To,BM,O) = deg([, BM,O) =1.
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Consequently, T has a fixed point in Bjy;. The theorem is proved. m

Remark 3. If there exist constants aj;, > 0, j,k = 1,...,m, such that
m
‘fj(xaula 7um) - fj(zavla "'7vm)‘ < Z ajk |uk - Uk|
k=1

for j =1,...,mand (z,u1, ..., um), (2,01, ..., vy) € QxR with A = (ajk)1<jk<m
satisfying (1.3), then the solution of (1.1) is unique. The argument is similar to
the proof of theorem 7.

Example 1: Let

m
fj($7u17 ,Um) — Z ajk Uk
k=1

for j = 1,..,m and (z,u1,...,um) € Q x R™ where aj;, > 0 are constants,
j,k=1,...,m. Let b denote the column vector

0
b= (_ o V7 % d8>1§j§m

and A = (a;i)1<jk<m- Suppose that u; = p(A). By theorem 2 det(p/ —A) = 0.
The Hopf boundary lemma ([6], lemma 3.4, p. 33) implies that % < 0 on 09.
Therefore we can choose 1; € C*%(99), j = 1,...,m, such that b ¢ R(u1I — A).
Then problem (1.1) has no solution. Indeed, suppose that problem (1.1) has a
solution u = (u1, ..., up) € (C**(Q))™. Multiplying the differential equation in
(1.1) by o1 and using Green’s formula we obtain

dp1
— Au;dr = — Ao d T —d
/Qcpl uj dx /Qu] V1 x—i—/mw] ey s

dp1
= Us; dx—i—/ i ——ds
MI/Q 391 agw] ov

m
:Zajk/ukgpld:n, j=1...m,
k=1 Q
where v is the unit outward normal to 0€2. This yields
(,ull — A) xr = b ;
where x denotes the column vector

T = (/Q uj P1 dx)lgjgm

and we reach a contradiction.
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The above example shows that our condition is sharp.

5 — The linear problem
In this section we consider the following boundary value problem:
m
(5.1) —0uj = Zajk ug, j=1,...,m inQ,
k=1

(5.2) uj=0, j=1,...,m ondQ,

where m > 1 and aj;, € R for 1 < j,k < m. We define A, = (a;i)1<jk<m- Below
= (u,...,um) > 0 (resp. > 0) means u; > 0 (resp. u; > 0) for j =1,...,m.

Lemma 2. Let u = (u1,...,uy) € (C**(Q))™ be a nonnegative nontrivial
solution of problem (5.1), (5.2). Then det(uI — Ay,,) = 0.

Proof: Arguing as in example 1 we get
(I —An)x=0

where z is the column vector z = ([ uj¢1dx)i<j<m. Since there exists j €
{1,...,m} such that [, u;¢1dx # 0, we have necessarily

det(ur I — Ap) =0
and the lemma is proved. n

Lemma 3. Assume that aj, > 0 for j,k =1,...,m. Let u = (u1,...,um) €
(C*%(Q))™ be a positive solution of problem (5.1), (5.2). Then uj = p(Ay,).

Proof: Indeed, using the above notations we still get (111 — A;,) x = 0 and
the result follows from theorem 4. u

Remark 4. Assume that m = 2 and that problem (5.1), (5.2) has a positive
solution u = (u1,ug) € (C%*(Q))?. Then we have

(5.3) w1 =an (resp. pp = aze) <= a2 =0 (resp.az =0),
(5.4) 1 > aip (resp. py > age) <= a2 >0 (resp. az >0).
Indeed, arguing as in example 1 we get

(1 —an)/ u1 1 de:aw/ ug p1 dr
Q Q

and
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(Ml—a22)/ U2<P1d$€=a21/ uy prde
Q Q

from which we deduce (5.3) and (5.4).
Now we give two examples.

Example 2: Assume m = 2 and det Ay ¢ {uipr; k > 2}. Then problem
(5.1), (5.2) has a positive solution u = (u,uz) € (C**(Q))? if and only if

(55) det(,u1] - AQ) =0

and one of the following conditions holds:

i) w1 =ai1, ajg =0 and (/Ll — a22) as1 > 0.

Then the solution is given by u; = C'p1 and ug = %C@l for some constant
C>0.

11) H1 = a2, a21 = 0 and (/Ll — a11) aiz > 0.

Then the solution is given by u; = Cp1 and ug = ‘“a_—l;l“Cgo for some constant

C>0.

iii) p1 = a1 = ag, a12 = az = 0.
Then the solution is given by u; = Cp; and us = C’ 1 for some constants
C,C" > 0.

iV) (/Ll — a11) aio >0 and (Ml — a22) as; > 0.

Then the solution is given by u; = Cy1 and uy = #1‘1_2(1122 Cyp1 = ‘“a_—l‘;“Cgpl
for some constant C' > 0.

Proof: Assume that problem (5.1), (5.2) has a positive solution u = (uy,uz2) €
(C?%(Q2))%. By lemma 2 condition (5.5) is satisfied.

Define D(\) = det(A — A2). D is a polynomial of degree 2. Since D(u1) =0,
the roots of D are real. We denote by p the other root. Since ppu; = det Ag, our
assumption implies u # p for all k > 2.

Now denote by ¢; the eigenfunction corresponding to p; (with ¢; > 0 in
Q). These form a complete orthonormal set in Wol 2(Q), hence total in C2. If
u = (u1,uz) € (C**(Q2))? is a solution of problem (5.1), (5.2) the corresponding
Fourier coefficients u1; and ug; satisfy the linear system

(5.6) { (15 — a11) uij — araug; =0,

—agy u1j + (pj — azz)uzj =0,
from which it immediately follows that ui; = ug; = 0 for j > 2. Using (5.3) and

(5.4) of remark 4 we easily verify that one of the conditions i)-iv) holds. The
relation between w1; and us; is easily checked in each case.
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The converse is obvious. =

Example 3: Assume m = 2. If there exists £ > 2 such that det As = uy p,
then problem (5.1), (5.2) has a positive solution u = (u1,u2) € (C**(2))? if and
only if (5.5) is satisfied and one of the following conditions holds:

i) p1 = a1, a12 = 0 and az; < 0.

Then the solution is given by u; = Cp1 and ug = m"flﬂk Cy1 + v where v is

an eigenfunction corresponding to px and C' > 0 is a constant such that ug > 0
in Q.
ii) W1 = age, a1 =0 and a0 < 0.

Then the solution is given by us = Cyp; and u; = m‘l_ﬁC@l + v where v is
an eigenfunction corresponding to ux and C' > 0 is a constant such that u; > 0
in €.

iii) (Ml — a11) a1z > 0 and (Ml — a22) as > 0.

Then the solution is given by u; = H-22Cpy + F-2220 and up = Cpr +v
where v is an eigenfunction corresponding to pur and C' > 0 is a constant such

that uq1 > 0 and us > 0 in €.

Proof: Assume that problem (5.1), (5.2) has a positive solution u = (u1,uz2) €
(C*%(Q))2. As in example 2 (5.5) is satisfied. We keep the notations of the
proof of example 2. Our assumption implies that p = pg for some k > 2. Us-
ing the same argument we obtain (5.6) from which it immediately follows that
u1j = ugj = 0 except possibly for j = 1 and the indices such that p; = py.
Using (5.3) and (5.4) of remark 4 we easily show that one of the conditions i)-iii)
holds. The relations between the coefficients of the expansions of u; and us in
the eigenfunctions are easily checked according to the various possibilities i)—iii).

The converse is obvious. n

Remark 5. Assume aj, > 0, j,k = 1,2, and p11 = p(Asz).

If problem (5.1), (5.2) has a positive solution v = (u1,u2) € (C*%(Q))? then
det Ay < p? since det Ay = 1 pi1.

If det Ay = p2, let ajj = pp for j = 1,2 and a12 = a1 = 0. Then iii) of
example 2 gives the existence of infinitely many positive solutions.

If det Ay < p3, first let

Ay = (Nl 0 ) with H1 > a2 and a1 >0
a1 a2

or

Ay = (all a12) with @y > a;; and aj;p > 0.
0 M1
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Then i) or ii) of example 2 gives the existence of infinitely many positive solutions.
Now let
Ay = (M1—€1 ai2 )
az1 H1 — €2
with 0 < g5 < py for j = 1,2, aig,ag1 > 0 and €162 = ajzag;. Then iv) of

example 2 gives the existence of infinitely many positive solutions.

Remark 6. If aj; >0, j,k =1,2, and p1 > p(Az) then the only solution of
problem (5.1), (5.2) is the trivial solution (see remark 3). If y1; = p(As2), infinitely
many positive solutions may exist by remark 5.

The next result was proved in [5].

Theorem 8. Assume that ajj, in (5.1) are such that

ajj+1 = >\j+17 j = ]-7 ey T — 1 )
m1 = A1,
and

ajr =0, otherwise .

Then problem (5.1), (5.2) has a positive solution u = (u1, ..., uy,) € (C**(2))™
if and only if

(5.7) Aj>0, j=1,..,m and Ai---Ay=p".

The solution is given by u; = c;j ¢1 where ¢; > 0 is an arbitrary constant and
cj = 01()\2 s )\j)_l ()\1 . )\m)(]—l)/m forj =2,...,m.

Remark 7. By lemma 1 condition (5.7) is equivalent to
Aj>0, j=1,..,m and p =p(4n).

Now with the notations of theorem 8,if A\; > 0, j = 1,...,m and p1 > p(Ay,), then
the only solution of problem (5.1), (5.2) is the trivial solution (see remark 3). If
Aj>0,7=1,...,mand p; = p(Ay,), theorem 8 shows that there exist infinitely
many positive solutions.
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