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CONTROLLABILITY INDICES OF
PARTIALLY PRESCRIBED PAIRS OF MATRICES (*)

ISABEL CABRAL(**) and FERNANDO C. SILVA

Abstract: We give necessary and sufficient conditions for the existence of a com-
pletely controllable pair (A, As) with prescribed controllability indices and with a pre-
scribed submatrix of [4; As] that does not contain principal entries of Aj.

1 — Introduction

Let F be a field. In control theory, a pair of matrices (A1, A2), where 4; €
Fmxm o Ay ¢ Fmx(n=m) g said to be completely controllable (c.c.) if:

Iank[AQ ArAy A2A, ---<AT_1A4 —m.

Alternative characterizations of complete controllability are known. For example,
(A1, A2) is c.c. if and only if:

(1.1) min rank [)\Im —A | - Ag} =m,

AEF
where F is an algebraically closed extension of F, if and only if all the invariant
factors of the polynomial matrix

[2ln — A1 | — As]

are equal to 1.
Two matrices A = [4; Ag], B = [By By] € F™*", where A1, B; € F™*™  are
said to be block-similar if there exists a nonsingular matrix:

P 0
Py1 Py
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such that:
B=P;'AP.

It is easy to see that A and B are block-similar if and only if the matrix
pencils [¢l,, — A1 | — As] and [z],,, — By | — Ba] are strictly equivalent. Using
the language of control theory, we call controllability indices of (A1, A2) to the
column minimal indices of the pencil [z],,, — A1 | — As]. For a definition of strict
equivalence and minimal indices, see [5].

Complete controllability is invariant under block-similarity. More precisely, if
[A1 Ag] and [By Bs] are block-similar then (Aq, Ag) is c.c. if and only if (B, Bs)
is c.c., and the pairs (A1, A2), (B1, B2) have the same controllability indices.

Several papers study the existence of a c.c. pair (41, A2) with several pre-
scribed entries. For example, [11], [13] and [14] concerned this question when
the prescribed entries are equal to zero. The papers [9], [10] and [17] study this
question when the prescribed entries are all the entries of the main diagonal and
above the main diagonal. In [2] this problem was studied when an arbitrary
submatrix of [A; Aj] is prescribed.

Now let us consider the problem of the existence of a c.c. pair (A;, A) with
prescribed controllability indices and with a prescribed submatrix of [A; Ajg].
As we are not able to solve this problem for an arbitrary submatrix of [A; As],
we turned our attention to the case where the prescribed submatrix does not
contain principal entries of A;. Theorems 1 and 2 solve this case. Note that, as
controllability indices are invariant under permutation block-similarity, we may
assume, without loss of generality, that the prescribed submatrix corresponds to
rows 1,...,p and columns m — q; + 1,...,m,....,m + qo, where p, ¢1 and ¢ are
nonnegative integers such that p+ ¢ <m, gs < n —m.

A more general problem would be to study the existence of a matrix [A; As]
with prescribed block similarity class and a prescribed submatrix. Particular
cases of this problem are already solved. For example, when the prescribed
submatrix is: A [20]; A; and some columns of As [1]; Ag [15]; the submatrix of A;
corresponding to columns 1, ..., p and rows 1, ..., p, ..., p+q, where p, g € {1,...,m},
p+q <m [3]. Other known results concern the case where Ay has zero columns
and, therefore, block similarity coincides with similarity [4, 7, 8, 12, 16, 19, 21].

2 — Main results

Let vy, ..., vp—m,m be nonnegative integers, where n > m > 1, such that:

U1 > .. > U8 > V4] = ... = Up—pm (= 0)

v+ ... tuvg=m.
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Let C € FP*0 (9 € FP*%2_ where p+ q1 < m and ¢ < n —m, and
p1 = rank[C] C3] —rank Cs ,
po =rank Cs .

In Theorems 1 and 2, we present conditions equivalent to:

(a) There exist matrices:

An A G Cy Ay
Ar=|Agr A Agy| € F™ . Ay = | Ay Ags | € FTXT)
Asr Az Ass Ass  Ass

where A3y € FUXP Asy € F1*% guch that (Ay, As) is completely con-
trollable and has controllability indices v1, ..., Un—m.

Theorem 1 applies to the case where the prescribed blocks have maximal sizes.
Theorem 2 applies to the general case.

Theorem 1. Suppose that p+q1 = m and g = n—m. Then (a) is equivalent

to:

(b) The following conditions are satisfied:
(22) Ul+...+'l)p1+p2 ZP+P1 y
(2.3) Vs—qitpr—p2 = 2 -

Theorem 2. (a) is equivalent to:

(c) The following conditions are satisfied:

(2.4) p2 <0,

(2.5) V1 + . + Voy4oy =P+ 01,
(2.6) p1+p2<o1+o2,

where

(27) 02 :min{ﬂ, n—m—qz+ p2, p} )
(28) Ulzmin{m_p_ql+pl7p_027 ,m—p—ﬂ—i—az—i—y},

(2.9) V= ma,x{i: v; > 2} .
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Remark. Suppose that p 4+ g1 = m and ¢o = n — m. Then it is easy to see
that (b) and (c) are equivalent. In fact, if (c) is satisfied, we can deduce that
o9 = p2 and 01 = pi, and, then, (2.3) results from (2.8). Conversely, if (b) is
satisfied, we can also deduce that o2 = p2 and o1 = p;.

In our proofs, Theorem 1 is a first step to prove Theorem 2.

Conventions. We assume that:
(i) if p =0, then vy + ... + v, = 0;
(ii) v; = 400 > 2 whenever i < 0;

(iii) matrices with zero rows or zero columns exist and have rank equal to
Zero.

From now on, we are proving Theorems 1 and 2.

3 — General considerations

Definition. Let C1, D; € FP*% Cy, Dy € FP*%2. We say that [Cy Cs] and
[D1 Ds] are q1-equivalent if there exist nonsingular matrices P € FP*P and

Qu 0 } (a1+42) % (@1 +a2)
— € plata)x(ate)
@ {Qm Q22

with Q1 € F#*%  such that:

[D1 Do) =P [C) Co] Q.

The following two propositions are easy to prove.

Proposition 3.1. Let Cy, Dy, € FP*" Oy, Dy € FP*%2. Then [Cy Cy] and
[D1 Do) are qi-equivalent if and only if rank|[C] Co| = rank[D; Ds], rank Cy =
rank Ds.

Proposition 3.2. Let Cy,D; € FP*% (Cy, Dy € FP*%22, Suppose that
[C1 O3] and [Dy Do) are qi-equivalent. Then (a) is equivalent to the condition
that results from it replacing Cy; with Dy and Co with Ds.

Given a polynomial:

k-1

f@)=a2F—ap_12" ' — ... —a1x—ay € Flz],
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we denote by C(f) the following companion matrix of f:
k) (K k t
C(f)= [eg ) eé b e,(i,) a} ,

where
t
a = [CLQ a ... ak_l] 5

and egk) is the i-th column of the identity matrix Ik.

We denote the degree of a polynomial f(z) € Flx] by d(f). The degree of
a polynomial vector 7(z) € F[z]"™!, d(r), is the maximum of the degrees of its
coordinates.

We take:

p=p1+p2.

4 — Proof that (a) implies (b)

Let us assume that (a) is satisfied and that p+ ¢ = m, g2 = n —m. We have:

aelfy 5] a-[2]
Azt Ass]’ '
Condition (2.1) is trivial:

po =rank Cy <rank Ay = .

Lemma 4.1. The pair (A1, [C1 C2]) is completely controllable.

Proof: Since (A1, A2) is c.c., condition (1.1) is satisfied. From (1.1) it results
that:

migrank{)\lp —An | -C1 | - 02} =p,
AEF

what proves Lemma 4.1. n
Let k1 > ... > kg, 44, (> 0) be the controllability indices of (A1, [C1 C2]).
Lemma 4.2. Ifg; =1 and 8 > po, then:
v; > ki, for i€ {l,...,q2} .
Proof: It is not hard to see that there exists a nonsingular matrix V' € F42*42
such that:

T 0
sz_[o J,
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where Cf € FP*(©2=1) rank C) = rank Cy = 3 — 1. Then [A; Aj] is block-similar
to:

L, 0 0 0

0 1 0 0| [Aq €1 Cb 0
R O I Iyt O/ lo0 o 0 1

—Az1 —Azz 0 1

The submatrix of the last matrix corresponding to the first p rows is block-
similar to [A;1 Cy C2]. Therefore (A1, [Ch C%]) is c.c. and has controllability
indices ki, ..., kg,. Bearing in mind the definition of column minimal indices (see
[5]), there exist nonzero polynomial vectors:

m1(2), ..., Mgy () € Flz]n~ D51
with d(m;) = k;, i € {1, ..., g2}, that are solutions of the equation in X:
(4.1) 2L, An - C1 - C3|X =0,

Ty, 18 a solution of least degree of (4.1), and 7, i € {1,...,q2 — 1}, is a solution
of least degree of (4.1) among those solutions that are linearly independent with
Tit1, .-, Tgy- OUPPOse that:

t
mi(z) = [7%,1(93) Wi,nfl(x)} ;1€ {l,..,qa} .
Without loss of generality, suppose that 7y, is chosen so that:

d(7gy pr1) < d(mg,)

if there exists a nonzero solution 7 of (4.1), with d(7) = kg,, such that the degree
of its (p + 1)-th coordinate is less than the degree of . And suppose that 7;(x),
i€{l,...,q2 — 1}, is chosen so that:

d(mipt1) < d(m;)

if there exists a solution 7 of (4.1), with d(m) = k;, such that 7, w41, ..., 74, are
linearly independent and the degree of the (p 4 1)-th coordinate of 7 is less than
the degree of m (see [5]).
Take ()
T\ T 1 .
(z) = € Flz]™", ie{l,.., .
6= [ i € (o)

The polynomial vectors x,, ..., X4, are solutions of the equation in Y:

(4.2)

l‘Ip — A11 *Cl *Cé 0
0 T 0 1

}Y:O.
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Moreover, X, is a solution of least degree among the solutions of (4.2), and x,,
i €{1,...,q2 — 1}, is a solution of least degree among the solutions of (4.2) that
are linearly independent with yx, 417 Xz Therefore, the controllability indices
of (A1, Az) are the degrees of the polynomials x_, i € {1,..., g2}, and

v; > ki, ’iE{l,...,QQ}.I

Lemma 4.3. [A; Ajy] is block-similar to a matrix of the form:

0 0 0 0 I, 0 0
Doy Dy Co3 Coy 0 0 0
D3y D3 D33 Dy 0 0 0 ’
0 0 0 0 0 0 Ig_p,

where Doy € FP=P2)%p2 Doy € F0=p2)x(0=p2) (04 € FP—p2)x(01-0+p2)

_ 14 0 (p—p2) %X (B—p2)
024 = { 0 0} cF ,
and

rank[ng 024] =pP1 -

Proof: Attending to Proposition 3.2, we may assume that:

— Iﬂ2 0
comfle O]

Let S be the submatrix that we obtain from Asz, deleting the columns 1,2, ..., ps.
Since rank A, = 3, we have rankS = (3 — po. Let U and V be nonsingular
matrices such that:

USV:{O 0 }

0 Ip—p,
Then [A; Ajs] is block-similar to:

(A} Ay = (L, @ U) [A1 AoJ (Lo U ' @1y, 0 V)

/11 ,12 013 014 IP2 0 0
Dy Dy Ch Cy 0 0 0
D3y D3y Dsz D3y Dz 0 0 |7
Dfn DZLZ Dfi:s D§14 Dﬁs 0 Ip—p,

where D}, € Fr2*rz Db, ¢ F—p2)xe=p2) DL, ¢ pla=fte)x(a=F+p2)
D), € F(B=p2)x(B—p2)
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Let
-Di 0

r= {—% 0

} € pnxr

The matrix

"oam -Ip Y I

[Al AQ]_ T Iq1 [A A] T Iq1 @qu

[ DYy 12 Clis Ciy I, 0 0

_ | D5y Dy Cy3 Cy 0 00
Diy Dy Diy Diy 0 0 0

LDy, Dip Dis Diy 0 0

is block-similar to [A; As]. Moreover, the submatrix of [A] Af] lying in rows
1,2, ...,p and columns p + 1,p+ 2,...,n is gi-equivalent to [C; C3]. Therefore:

rank[Cy3 Coy] = p1 -
Let 7 = rank C%,. Let U’ and V' be nonsingular matrices such that:

I; O]

U’c§4v’:[0 0

It is not hard to see that [A] A}] is block-similar to:

0 0 0 0 I, 0 0
U'DY, U DU~ UCh UCLV' 0 0 0
Dy  DLU"' DY DLV 0 0 0

0 0 0 0 0 0 Iz,

and hence the result follows. u
Lemma 4.4. Condition (2.2) is satisfied.

Proof: By induction on ¢;.

Case 1. Suppose that G = po. Then:

vt..tvy,=v1+..tvg=m=p+q >p+p1.

Case 2. Suppose that ¢ =1 and 3 > po. In this case we have § = py + 1.
Subcase 2.1. Suppose that p; = 1. Then 8 = p and

vit..ty,=nt..toyy=m=p+tqa=p+p.
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Subcase 2.2. Suppose that p; = 0. Then 8 = p+ 1. From Lemma 4.2, it
results that:
vl—i—...—l—vpZkl—l—...-i-kp:p:p—i—pl .

Case 3. Suppose that ¢ > 1 and 3 > ps. Let A’ be a matrix block-similar to
[A1 As] of the form indicated in Lemma 4.3.

Subcase 3.1. Suppose that 7 = 0. Consider the submatrix that results from
A’ deleting the m-th row partitioned as follows:

[En Eis E13}
Ey Ey Ejz) '’

where Eyy € FP*P| Eyy € F@—Dx(@—1) {Using an argument similar to that used
in the proof of Lemma 4.1, we deduce that the pair

<[E11 E12] [E13D

Ey Exp |’ | Ea

is c.c.. Let uy > ... > wug41 be its controllability indices. According to the
induction assumption, we have:

Uy + ... +uy Zp—i—p'l ,
where p/ = rank[E12 Ei3] = p and pj = rank F19 = p;. From Lemma 4.2 it
results that vi + ... + v, > u1 + ... + u,. Hence, (2.2) is satisfied.

Subcase 3.2. Suppose that 7 > 1. Let A” be the matrix that results from
A’ by permutation of the 3-rd and 4-th rows of blocks followed by permutation
of the 3-rd and 4-th columns of blocks. Clearly A” is block-similar to [A; Ag].
Consider A” partitioned as follows

B Ei2 Eis

A// — ,
Es1 Egp  Eog

where Ey, € Fet)x@e+) gy, e pla-Dx(@-1)  According to the induction
assumption, we have
vi+..tvy > (pP+1)+ ),

where p' = rank[E1 E13] = p and p} = rank E15 = p1—1. Then (2.2) is satisfied.
Lemma 4.5. Condition (2.3) is satisfied.

Proof: Let A’ be a matrix block-similar to A = [A; Ag| that has the form
indicated in Lemma 4.3. It is easy to see that:

T>B—q+p1—p2.
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If we compute the column minimal indices of [xI,, 0] — A’, we deduce that this
matrix pencil has at least 7 column minimal indices greater than 1. Therefore
condition (2.3) is satisfied. m

5 — Proof that (b) implies (a)

Suppose that p4+¢g; = m and ¢go = n—m. The proof is split into several cases.
Bearing in mind Proposition 3.2, we assume, throughout the proof, that we have
proved (a) whenever we have proved a condition that can be obtained from (a)
replacing Cy and Cy with matrices D1 and Do such that [C C2] and [D; Do are
q1-equivalent.

Lemma 5.1. If po = 3, then (a) is satisfied.

Proof: By induction on m. If m = 1, we have ps = 3 =1, p1 = 0. Then (a)
is satisfied with:
A1=0, Ay=[10].

If v1 =1, we have m = 3 = pa = p and ¢; = 0. Then (a) is satisfied with:
A1:0, AQZ[IB O}
Now suppose that m > 2 and vy > 2.

Case 1. Suppose that p; = ¢1 and p < p. According to the induction assump-
tion, there exist matrices:

(5.1) M, = {%ﬁ ]\]23} e pm—1x(m-1)
(5.2) My = L\]EJ e plm—1)xas

where

(5.3) Ny = [161} c FP-Dxar

(5.4) Ny = [122 8} e F-Dxa |

such that (Mi, M>) is c.c. and has controllability indices vq — 1,v2,...,v4, (note
that it is possible that the indices v1—1, v, ..., v4, are not ordered in nonincreasing
order). Let

ut o

U e pim=Ux(m=1) {
Vor Voo

] e pimte—1)x(m+g2—1)
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be nonsingular matrices such that
UMy MoV = [My M),

where
M{ = C(z”lfl) eCx™?)d...elC(x),

) [m=1) (m—1) (m—1)
M2_ |:ev1—1 6v1+v2—1 6111+.4.+v5—1 .

Then, the pair (A}, A), where

0| M|

is c.c. and has controllability indices v1, ..., vg,.
The matrix [A} A%] is block-similar to

(AT A3 = (e U™ [A] 4] (MeVvTh,

where )
0 ‘ as ... Gy
Al = cF™™  ag,..am€F,
0 My
" __ [0
A2 —_— _MQ} .
Let
1 ‘ —p41 —Qyy, 0
Y =
0 I, 0
0 0 I,y

Then (a) is satisfied with:

A=Y AlY™' and Ay =Y Aj.

Case 2. Suppose that p; = g1 and p = p. Note that it is impossible that ¢; = 0,
as this situation implies that 3 = ps = p = m and, therefore, v1 = ... = vg = 1.
Then assume that q; > 1. Firstly, we use the arguments that we have used in
case 1 up to the definition of A} and A, except that we replace (5.3) with

_ Iplfl 0
Nl_{ 0 0

] c Flr—Dxar
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Now let us consider [A] Af] partitioned as follows

0 ‘ ag ... ap, ’ Apy41 -+ Qp | Apt1 - Q1 ’ am ‘ 0 ‘ 0
0] Lo Los Iy 1 0010
[AY A5] = | 0| La Lgs 0 0 | I, | O |,
0 Lo L3 Ly Lys | Lag | La7
0 L5 Ls3 Lsy Lss | Lse | L7

where Loy € F(Pl—l)x(m—l)7 Las € Fr2Xp2 [, € F(Pl—l)X(Pl—l)7 Lss € F.

If a,, # 0, it is already clear that (a) is satisfied.

Now suppose that a,, = 0. Since (A], A5) has 5 = pa nonzero controllability
indices, we have L47 = 0 and Ls7 = 0. Let

1| —apy1... —am1| 0 0 0
0 I 0 0 0
Z=10 0 I, 0 0
0 —Lyy =Ly Ip—1 O
0 —Lsy —Lxg 0 1
Then [A] Aj] is block-similar to a matrix of the form
A A5Y) = Z (47 A) (27 @ 1)
0|dhy..al |ayyoay| 0 0 0 0
0 5 93 In,-1 0 0 0
/ /
0 42 43 0 15 00
/ / /
0 L, L, 0 Ly 0 0

where Agg) € Fm*™_ Since (Agg), AgS)) is a c.c. pair, from (1.1) we conclude that

there exists j € {2, ..., p} such that a} # 0. In [Agg) Ag)’)] we add the j-th column
to the m-th column and we subtract the m-th row from the j-th row. We get a
block-similar matrix [4; As] that shows that (a) is satisfied.

Case 3. Suppose that p; < q1. We use the arguments that we have used in
case 1 up to the definition of A} and A}, except that we replace N1 and Ny with:

_[dp O px(q1—1)
N, = [ 0 O:l eF ,
0 O
Ny = FpPxa
2 [Im o} ©

Let
0 I, 0
W=1|1 0 0

0 0 Iy
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Then (a) is satisfied with:

Ay =WA{W™L,  Ay=WAY . »

Lemma 5.2. If (2.1) and (2.3) are satisfied and p1 + p2 > (3, then (a) is
satisfied.

Proof: Define v as in (2.9). Let ¢ = min{v, § — p2}. Condition (2.3) implies
that v > f—q1+p1—p2. Clearly, t > 8—q1+p1—p2. Therefore g1 —fB+p2 > p1—t.
We also have t < §— ps < p; and t + po < 8 < go. According to Lemma 5.1,
there exist matrices:

My Nl] (m—F+p2) % (m—G-+p2)
M, = cF P2 m P2 ,
! [M31 M3s

_ | N2 (m—p4p2) X q2
My = [M34] eF s
where
N, = [Ip(l)—t 8} c Frx(a—PF+p2) ,

0 0 0
Ny=|0 0 I, |eFrae,
L 0 0

such that the pair (Mj, My) is c.c. and its nonzero controllability indices are
vi — 1, v — Lvg_pyt1, ..., vg. Let

U e F(m=F+p2)x(m—F+p2) V= {U_l 0 ] e F(m=B+p2+q2)x(m—B+p2+q2)
’ Vor  Vao ’

be nonsingular matrices such that
(5.5) UMy Mp]V = [My My M)

where

M =Cz"" He..eCm H)acC(z—rt)d..oC(x%),

M}, = |:€’S)T—_lﬂ+p2) egTJ:Uﬂth?) efﬂ:ﬂiﬁzt 0} ¢ Fm=B+p2)x(B=p2)

M} = [elmPte) e
3 V1t VU py 1 U1+ 0t +V8_py+1+V8—py 42—t

. €v1+...+vt+v5_p2+1+...+v5—t 0] € F(mfﬁ+p2)x(q27ﬁ+p2) .
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Let

M M, M, 0
0 0 0 Is,

The pair (K7, K») is c.c. and has controllability indices vy, ..., vg,. From (5.5), we

get:

[Kl KQ] = ] , with Kj € Fmxme

_ U 0
My AVag] = U v 0 ) | ]

Vo' Var U I,
Let W be the submatrix of

R
V' VarU I,
lying in rows and columns 1, ...,m. Then
w00 ]
* Iﬂ—m
and [K; K] is block-similar to
A T T | U 0
[Kl KQ] =W [Kl KQ] ([_‘/251 Vo, U qu @Iﬁ—ﬂz
[ My My Vs 0
Lo * Iﬁ—m ’

K| € F™*™m_ Moreover, My Vag = U~ [M} M}]. Consider the matrix Ms Voo
partitioned as follows:

L1 Lo

M Var = [Lm Lo

:| , where Lq1 € Frx(B=p2)

We have:
rank(Ms Vag) = rank|[ M4 M) = ps +t

rank[L11 ng] = rank(N2 Vgg) =p2+t.

Hence the last g1 — 8 + p2 rows of My Vag are linear combinations of the first p
rows. Therefore, from

rank [le] =rank(U~ ' M}) = po ,
Lo
we conclude that rank Lo = ps. Moreover:

rank {Nl L1 ng} = rank {Nl Ny V22:| =p1+p2.

Consequently, the submatrix of [K{ KJ)| lying in rows 1,...,p and columns
p+1,....,m+ qa is gi-equivalent to [C] Cs], and the proof is complete. m
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Proof that (b) implies (a): By induction on m. If m = 1, the result
is trivial. Suppose that m > 2. Bearing in mind Lemma 5.2, we assume that
p1+p2 < B. From (2.2), we deduce that vg < g1 — p1. According to the induction
assumption, there exist matrices

My N
M3y Mss

No
M3y

My — [ } € Fm—vs)x(m—v5)

My = [ } e Flm—v)x(@-1)

where
I,, 0O
0 0

0
1

P2

N, = [ } e prx(ai—vg) ’

Ny = |: 8:| c FPX(Q2—1) ,

such that (M7, M) is c.c. and has controllability indices v1, ..., v8-1, V841, ..., Vgo -
Let

_ Ml 0 mXm
m= " ey | e
Mo 0
A — v Fqu2 .
? { 0 655‘3)} ©

The pair (A1, A2) is c.c., has controllability indices vy, ..., vy, and the submatrix
of [A; As] lying in rows 1,...,p and columns p + 1,...,m + g2 is gi-equivalent to
[Cy Cs]. n
6 — Proof of Theorem 2
Suppose that (a) is satisfied. Then (2.4) is satisfied. Let
(6.1) T9 = rank {Cg A15} ,
(6.2) 71 = rank [Au Cy Cs A15} 7.
The following inequalities are trivial:
(6.3) p2 < 1o < min{n —m—qo+ p2, p} ,

(6.4) 0<m <min{m—p—qi+p1, p-7f .
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According to Theorem 1, we have:

(6.5) <,
(6.6) V1t oo+ Urjpry > D471,
(6'7) VB—mptri—m2 = 2.

Condition (6.7) is equivalent to
B-—m+p+m—m<v,

where v is defined according to (2.9). Therefore:

(6.8) nm<m-p—0F+T1+vr.

From (6.3) and (6.5), we get:

(6.9) o < 09 .

If oy =m —p—q + p1 (respectively, 01 = m — p — 3+ o2 + v) then from (6.4)
(respectively, (6.8) and (6.9)) we conclude that:

T <o].
Otherwise, we have 01 = p — 02 and from (6.4) it results that:
TI+ T2 <p=01+02.
We have always:
(6.10) T+ T < 01+02.

As p1 + p2 < 11 + T2, we conclude that (2.6) is satisfied.
If 01 + 09 > (B we have:

Vi+.. .+ Usgog=m2p+m—p—q1+p1 >p+o1.
Now suppose that o1 4+ 02 < . Bearing in mind (6.10), we have:
U1+ o+ Voi4oy 2 V1 + oo + Upigqy + (01 +02) — (11 +72) .
Then, from (6.6) and (6.9) we conclude that:

Vit ..+ Voto, 2P+ 71+ (014 02) = (1 +72) Z2p+o01.
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Conversely, suppose that (c) is satisfied. Let 79 = 09 and 71 = 01. Then
(6.3) and (6.4) are satisfied. We only prove that 0 < 71, as the other inequalities
of (6.3) and (6.4) are trivial. Suppose that 01 = 71 < 0. Then, from (2.5),
we get v + ... + vg, > p. Therefore 8 — 02 < Vop41 + ... +v3 < m — p and
m—p—L0B+oo+v > 0. Clearly, m—p—q1+p1 > 0 and p—o2 > 0. Consequently,
o1 = T1 Z 0.

Now let Ny, ..., hy, be a basis of the subspace of F** generated by the columns
of Ca; let hy,...,hpy, ..., hp 4 p, be a basis of the subspace of FP*1 generated by
the columns of [C C5] and let hy, ..., h, be a basis of Fprx1,

Let

px1

Ays = [hp2+1 hp2+a1 hP1+p2+1 hp1+p2+a2 0}7

Agg = [hp1+p2+a2+1 hp1+p2+az+a3 0} )

where
g = miH{Tz —p2, TL+T2—p1— PQ} )

a1 =T2 — p2 — Q2 ,
Q3 =T +Tg—pP1—pP2— Q2.

Then (6.1) and (6.2) are satisfied. From (2.8), we get (6.8), what is equivalent
to (6.7). Note that (6.5) and (6.6) are also satisfied. According to Theorem 1,
condition (a) is satisfied. m
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