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CONTROLLABILITY INDICES OF
PARTIALLY PRESCRIBED PAIRS OF MATRICES (*)

Isabel Cabral(**) and Fernando C. Silva

Abstract: We give necessary and sufficient conditions for the existence of a com-

pletely controllable pair (A1, A2) with prescribed controllability indices and with a pre-

scribed submatrix of [A1 A2] that does not contain principal entries of A1.

1 – Introduction

Let F be a field. In control theory, a pair of matrices (A1, A2), where A1 ∈
Fm×m, A2 ∈ F

m×(n−m), is said to be completely controllable (c.c.) if:

rank
[

A2 A1A2 A2
1A2 · · · Am−1

1 A2

]

= m .

Alternative characterizations of complete controllability are known. For example,
(A1, A2) is c.c. if and only if:

(1.1) min
λ∈F

rank
[

λIm −A1 | −A2

]

= m ,

where F is an algebraically closed extension of F , if and only if all the invariant
factors of the polynomial matrix

[

xIm −A1 | −A2

]

are equal to 1.
Two matrices A = [A1 A2], B = [B1 B2] ∈ F

m×n, where A1, B1 ∈ F
m×m, are

said to be block-similar if there exists a nonsingular matrix:

P =

[

P11 0
P21 P22

]

∈ Fn×n, with P11 ∈ F
m×m ,
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such that:

B = P−1
11 AP .

It is easy to see that A and B are block-similar if and only if the matrix
pencils [xIm − A1 | − A2] and [xIm − B1 | − B2] are strictly equivalent. Using
the language of control theory, we call controllability indices of (A1, A2) to the
column minimal indices of the pencil [xIm−A1 | −A2]. For a definition of strict
equivalence and minimal indices, see [5].

Complete controllability is invariant under block-similarity. More precisely, if
[A1 A2] and [B1 B2] are block-similar then (A1, A2) is c.c. if and only if (B1, B2)
is c.c., and the pairs (A1, A2), (B1, B2) have the same controllability indices.

Several papers study the existence of a c.c. pair (A1, A2) with several pre-
scribed entries. For example, [11], [13] and [14] concerned this question when
the prescribed entries are equal to zero. The papers [9], [10] and [17] study this
question when the prescribed entries are all the entries of the main diagonal and
above the main diagonal. In [2] this problem was studied when an arbitrary
submatrix of [A1 A2] is prescribed.

Now let us consider the problem of the existence of a c.c. pair (A1, A2) with
prescribed controllability indices and with a prescribed submatrix of [A1 A2].
As we are not able to solve this problem for an arbitrary submatrix of [A1 A2],
we turned our attention to the case where the prescribed submatrix does not
contain principal entries of A1. Theorems 1 and 2 solve this case. Note that, as
controllability indices are invariant under permutation block-similarity, we may
assume, without loss of generality, that the prescribed submatrix corresponds to
rows 1, ..., p and columns m − q1 + 1, ...,m, ...,m + q2, where p, q1 and q2 are
nonnegative integers such that p+ q1 ≤ m, q2 ≤ n−m.

A more general problem would be to study the existence of a matrix [A1 A2]
with prescribed block similarity class and a prescribed submatrix. Particular
cases of this problem are already solved. For example, when the prescribed
submatrix is: A1 [20]; A1 and some columns of A2 [1]; A2 [15]; the submatrix of A1

corresponding to columns 1, ..., p and rows 1, ..., p, ..., p+q, where p, q ∈ {1, ...,m},
p+ q ≤ m [3]. Other known results concern the case where A2 has zero columns
and, therefore, block similarity coincides with similarity [4, 7, 8, 12, 16, 19, 21].

2 – Main results

Let v1, ..., vn−m be nonnegative integers, where n > m ≥ 1, such that:

v1 ≥ ... ≥ vβ > vβ+1 = ... = vn−m (= 0)

v1 + ...+ vβ = m .
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Let C1 ∈ F
p×q1 , C2 ∈ F

p×q2 , where p+ q1 ≤ m and q2 ≤ n−m, and

ρ1 = rank[C1 C2]− rankC2 ,

ρ2 = rankC2 .

In Theorems 1 and 2, we present conditions equivalent to:

(a) There exist matrices:

A1 =





A11 A12 C1

A21 A22 A23

A31 A32 A33



 ∈ Fm×m , A2 =





C2 A15

A24 A25

A34 A35



 ∈ Fm×(n−m) ,

where A31 ∈ F q1×p, A34 ∈ F q1×q2 , such that (A1, A2) is completely con-
trollable and has controllability indices v1, ..., vn−m.

Theorem 1 applies to the case where the prescribed blocks have maximal sizes.
Theorem 2 applies to the general case.

Theorem 1. Suppose that p+q1 = m and q2 = n−m. Then (a) is equivalent
to:

(b) The following conditions are satisfied:

ρ2 ≤ β ,(2.1)

v1 + ...+ vρ1+ρ2
≥ p+ ρ1 ,(2.2)

vβ−q1+ρ1−ρ2
≥ 2 .(2.3)

Theorem 2. (a) is equivalent to:

(c) The following conditions are satisfied:

ρ2 ≤ β ,(2.4)

v1 + ...+ vσ1+σ2
≥ p+ σ1 ,(2.5)

ρ1 + ρ2 ≤ σ1 + σ2 ,(2.6)

where

σ2 = min
{

β, n−m− q2 + ρ2, p
}

,(2.7)

σ1 = min
{

m− p− q1 + ρ1, p− σ2, ,m− p− β + σ2 + ν
}

,(2.8)

ν = max
{

i : vi ≥ 2
}

.(2.9)
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Remark. Suppose that p+ q1 = m and q2 = n−m. Then it is easy to see
that (b) and (c) are equivalent. In fact, if (c) is satisfied, we can deduce that
σ2 = ρ2 and σ1 = ρ1, and, then, (2.3) results from (2.8). Conversely, if (b) is
satisfied, we can also deduce that σ2 = ρ2 and σ1 = ρ1.

In our proofs, Theorem 1 is a first step to prove Theorem 2.

Conventions. We assume that:

(i) if ρ = 0, then v1 + ...+ vρ = 0;

(ii) vi = +∞ ≥ 2 whenever i ≤ 0;

(iii) matrices with zero rows or zero columns exist and have rank equal to
zero.

From now on, we are proving Theorems 1 and 2.

3 – General considerations

Definition. Let C1, D1 ∈ F p×q1 , C2, D2 ∈ F p×q2 . We say that [C1 C2] and
[D1 D2] are q1-equivalent if there exist nonsingular matrices P ∈ F p×p and

Q =

[

Q11 0
Q21 Q22

]

∈ F (q1+q2)×(q1+q2) ,

with Q11 ∈ F
q1×q1 , such that:

[D1 D2] = P [C1 C2] Q .

The following two propositions are easy to prove.

Proposition 3.1. Let C1, D1 ∈ F p×q1 , C2, D2 ∈ F p×q2 . Then [C1 C2] and
[D1 D2] are q1-equivalent if and only if rank[C1 C2] = rank[D1 D2], rankC2 =
rankD2.

Proposition 3.2. Let C1, D1 ∈ F p×q1 , C2, D2 ∈ F p×q2 . Suppose that
[C1 C2] and [D1 D2] are q1-equivalent. Then (a) is equivalent to the condition
that results from it replacing C1 with D1 and C2 with D2.

Given a polynomial:

f(x) = xk − ak−1 x
k−1 − ...− a1 x− a0 ∈ F [x] ,
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we denote by C(f) the following companion matrix of f :

C(f) =
[

e
(k)
2 e

(k)
3 ... e

(k)
k a

]t
,

where
a =

[

a0 a1 ... ak−1

]t
,

and e
(k)
i is the i-th column of the identity matrix Ik.

We denote the degree of a polynomial f(x) ∈ F [x] by d(f). The degree of
a polynomial vector π(x) ∈ F [x]n+1, d(π), is the maximum of the degrees of its
coordinates.

We take:
ρ = ρ1 + ρ2 .

4 – Proof that (a) implies (b)

Let us assume that (a) is satisfied and that p+ q1 = m, q2 = n−m. We have:

A1 =

[

A11 C1

A31 A33

]

, A2 =

[

C2

A34

]

.

Condition (2.1) is trivial:

ρ2 = rankC2 ≤ rankA2 = β .

Lemma 4.1. The pair (A11, [C1 C2]) is completely controllable.

Proof: Since (A1, A2) is c.c., condition (1.1) is satisfied. From (1.1) it results
that:

min
λ∈F

rank
[

λIp −A11 | − C1 | − C2

]

= p ,

what proves Lemma 4.1.

Let k1 ≥ ... ≥ kq1+q2 (≥ 0) be the controllability indices of (A11, [C1 C2]).

Lemma 4.2. If q1 = 1 and β > ρ2, then:

vi ≥ ki, for i ∈ {1, ..., q2} .

Proof: It is not hard to see that there exists a nonsingular matrix V ∈ F q2×q2

such that:

A2V =

[

C ′2 0
0 1

]

,
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where C ′2 ∈ F
p×(q2−1), rankC ′2 = rankC2 = β − 1. Then [A1 A2] is block-similar

to:

[

A1 A2

]

(Ip+1 ⊕ V )









Ip 0 0 0
0 1 0 0
0 0 Iq2−1 0

−A31 −A33 0 1









=

[

A11 C1 C ′2 0
0 0 0 1

]

.

The submatrix of the last matrix corresponding to the first p rows is block-
similar to [A11 C1 C2]. Therefore (A11, [C1 C ′2]) is c.c. and has controllability
indices k1, ..., kq2 . Bearing in mind the definition of column minimal indices (see
[5]), there exist nonzero polynomial vectors:

π1(x), ..., πq2(x) ∈ F [x]
(n−1)×1 ,

with d(πi) = ki, i ∈ {1, ..., q2}, that are solutions of the equation in X:

(4.1)
[

xIp −A11 − C1 − C ′2

]

X = 0 ,

πq2 is a solution of least degree of (4.1), and πi, i ∈ {1, ..., q2 − 1}, is a solution
of least degree of (4.1) among those solutions that are linearly independent with
πi+1, ..., πq2 . Suppose that:

πi(x) =
[

πi,1(x) ... πi,n−1(x)
]t
, i ∈ {1, ..., q2} .

Without loss of generality, suppose that πq2 is chosen so that:

d(πq2,p+1) < d(πq2)

if there exists a nonzero solution π of (4.1), with d(π) = kq2 , such that the degree
of its (p+ 1)-th coordinate is less than the degree of π. And suppose that πi(x),
i ∈ {1, ..., q2 − 1}, is chosen so that:

d(πi,p+1) < d(πi)

if there exists a solution π of (4.1), with d(π) = ki, such that π, πi+1, ..., πq2 are
linearly independent and the degree of the (p+1)-th coordinate of π is less than
the degree of π (see [5]).

Take

χ
i
(x) =

[

πi(x)
−xπi,p+1(x)

]

∈ F [x]n×1 , i ∈ {1, ..., q2} .

The polynomial vectors χ
1
, ..., χq2

are solutions of the equation in Y :

(4.2)

[

xIp −A11 −C1 −C ′2 0
0 x 0 1

]

Y = 0 .
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Moreover, χq2
is a solution of least degree among the solutions of (4.2), and χ

i
,

i ∈ {1, ..., q2 − 1}, is a solution of least degree among the solutions of (4.2) that
are linearly independent with χ

i+1
, ..., χq2

. Therefore, the controllability indices
of (A1, A2) are the degrees of the polynomials χ

i
, i ∈ {1, ..., q2}, and

vi ≥ ki , i ∈ {1, ..., q2} .

Lemma 4.3. [A1 A2] is block-similar to a matrix of the form:









0 0 0 0 Iρ2
0 0

D21 D22 C23 C24 0 0 0
D31 D32 D33 D34 0 0 0
0 0 0 0 0 0 Iβ−ρ2









,

where D21 ∈ F
(p−ρ2)×ρ2 , D22 ∈ F

(p−ρ2)×(p−ρ2), C23 ∈ F
(p−ρ2)×(q1−β+ρ2),

C24 =

[

Iτ 0
0 0

]

∈ F (p−ρ2)×(β−ρ2) ,

and

rank[C23 C24] = ρ1 .

Proof: Attending to Proposition 3.2, we may assume that:

C2 =

[

Iρ2
0

0 0

]

.

Let S be the submatrix that we obtain from A34 deleting the columns 1, 2, ..., ρ2.
Since rankA2 = β, we have rankS = β − ρ2. Let U and V be nonsingular
matrices such that:

USV =

[

0 0
0 Iβ−ρ2

]

.

Then [A1 A2] is block-similar to:

[A′1 A
′
2] = (Ip ⊕ U) [A1 A2] (Ip ⊕ U−1 ⊕ Iρ2

⊕ V )

=









D′11 D′12 C ′13 C ′14 Iρ2
0 0

D′21 D′22 C ′23 C ′24 0 0 0
D′31 D′32 D′33 D′34 D′35 0 0
D′41 D′42 D′43 D′44 D′45 0 Iβ−ρ2









,

where D′11 ∈ F ρ2×ρ2 , D′22 ∈ F (p−ρ2)×(p−ρ2), D′33 ∈ F (q1−β+ρ2)×(q1−β+ρ2),
D′44 ∈ F

(β−ρ2)×(β−ρ2).
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Let

T =

[

−D′35 0
−D′45 0

]

∈ F q1×p .

The matrix

[A′′1 A
′′
2] =

[

Ip 0
T Iq1

]

[A′1 A
′
2]

([

Ip 0
−T Iq1

]

⊕ Iq2

)

=









D′′11 D′12 C ′13 C ′14 Iρ2
0 0

D′′21 D′22 C ′23 C ′24 0 0 0
D′′31 D′′32 D′′33 D′′34 0 0 0
D′′41 D′′42 D′′43 D′′44 0 0 Iβ−ρ2









is block-similar to [A1 A2]. Moreover, the submatrix of [A′′1 A′′2] lying in rows
1, 2, ..., p and columns p+ 1, p+ 2, ..., n is q1-equivalent to [C1 C2]. Therefore:

rank[C ′23 C
′
24] = ρ1 .

Let τ = rankC ′24. Let U
′ and V ′ be nonsingular matrices such that:

U ′ C ′24 V
′ =

[

Iτ 0
0 0

]

.

It is not hard to see that [A′′1 A
′′
2] is block-similar to:









0 0 0 0 Iρ2
0 0

U ′D′′21 U ′D′22 U
′−1 U ′C ′23 U ′C ′24 V

′ 0 0 0
D′31 D′′32 U

′−1 D′′33 D′′34 V
′ 0 0 0

0 0 0 0 0 0 Iβ−ρ2









and hence the result follows.

Lemma 4.4. Condition (2.2) is satisfied.

Proof: By induction on q1.

Case 1. Suppose that β = ρ2. Then:

v1 + ...+ vρ = v1 + ...+ vβ = m = p+ q1 ≥ p+ ρ1 .

Case 2. Suppose that q1 = 1 and β > ρ2. In this case we have β = ρ2 + 1.

Subcase 2.1. Suppose that ρ1 = 1. Then β = ρ and

v1 + ...+ vρ = v1 + ...+ vβ = m = p+ q1 = p+ ρ1 .
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Subcase 2.2. Suppose that ρ1 = 0. Then β = ρ + 1. From Lemma 4.2, it
results that:

v1 + ...+ vρ ≥ k1 + ...+ kρ = p = p+ ρ1 .

Case 3. Suppose that q1 > 1 and β > ρ2. Let A
′ be a matrix block-similar to

[A1 A2] of the form indicated in Lemma 4.3.

Subcase 3.1. Suppose that τ = 0. Consider the submatrix that results from
A′ deleting the m-th row partitioned as follows:

[

E11 E12 E13

E21 E22 E23

]

,

where E11 ∈ F
p×p, E22 ∈ F

(q1−1)×(q1−1). Using an argument similar to that used
in the proof of Lemma 4.1, we deduce that the pair

([

E11 E12

E21 E22

]

,

[

E13

E23

])

is c.c.. Let u1 ≥ ... ≥ uq2+1 be its controllability indices. According to the
induction assumption, we have:

u1 + ...+ uρ′ ≥ p+ ρ′1 ,

where ρ′ = rank[E12 E13] = ρ and ρ′1 = rankE12 = ρ1. From Lemma 4.2 it
results that v1 + ...+ vρ ≥ u1 + ...+ uρ. Hence, (2.2) is satisfied.

Subcase 3.2. Suppose that τ ≥ 1. Let A′′ be the matrix that results from
A′ by permutation of the 3-rd and 4-th rows of blocks followed by permutation
of the 3-rd and 4-th columns of blocks. Clearly A′′ is block-similar to [A1 A2].
Consider A′′ partitioned as follows

A′′ =

[

E11 E12 E13

E21 E22 E23

]

,

where E11 ∈ F (p+1)×(p+1), E22 ∈ F (q1−1)×(q1−1). According to the induction
assumption, we have

v1 + ...+ vρ′ ≥ (p+ 1) + ρ′1 ,

where ρ′ = rank[E12 E13] = ρ and ρ′1 = rankE12 = ρ1−1. Then (2.2) is satisfied.

Lemma 4.5. Condition (2.3) is satisfied.

Proof: Let A′ be a matrix block-similar to A = [A1 A2] that has the form
indicated in Lemma 4.3. It is easy to see that:

τ ≥ β − q1 + ρ1 − ρ2 .
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If we compute the column minimal indices of [xIm 0] − A′, we deduce that this
matrix pencil has at least τ column minimal indices greater than 1. Therefore
condition (2.3) is satisfied.

5 – Proof that (b) implies (a)

Suppose that p+q1 = m and q2 = n−m. The proof is split into several cases.
Bearing in mind Proposition 3.2, we assume, throughout the proof, that we have
proved (a) whenever we have proved a condition that can be obtained from (a)
replacing C1 and C2 with matrices D1 and D2 such that [C1 C2] and [D1 D2] are
q1-equivalent.

Lemma 5.1. If ρ2 = β, then (a) is satisfied.

Proof: By induction on m. If m = 1, we have ρ2 = β = 1, ρ1 = 0. Then (a)
is satisfied with:

A1 = 0 , A2 = [1 0] .

If v1 = 1, we have m = β = ρ2 = p and q1 = 0. Then (a) is satisfied with:

A1 = 0 , A2 = [Iβ 0] .

Now suppose that m ≥ 2 and v1 ≥ 2.

Case 1. Suppose that ρ1 = q1 and ρ < p. According to the induction assump-
tion, there exist matrices:

M1 =

[

M11 N1

M31 M33

]

∈ F (m−1)×(m−1) ,(5.1)

M2 =

[

N2

M34

]

∈ F (m−1)×q2 ,(5.2)

where

N1 =

[

Iρ1

0

]

∈ F (p−1)×q1 ,(5.3)

N2 =

[

0 0
Iρ2

0

]

∈ F (p−1)×q2 ,(5.4)

such that (M1,M2) is c.c. and has controllability indices v1 − 1, v2, ..., vq2 (note
that it is possible that the indices v1−1, v2, ..., vq2 are not ordered in nonincreasing
order). Let

U ∈ F (m−1)×(m−1) , V =

[

U−1 0
V21 V22

]

∈ F (m+q2−1)×(m+q2−1)
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be nonsingular matrices such that

U [M1 M2]V = [M ′
1 M

′
2] ,

where
M ′

1 = C(x
v1−1)⊕ C(xv2)⊕ ...⊕ C(xvβ ) ,

M ′
2 =

[

e
(m−1)
v1−1 e

(m−1)
v1+v2−1 ... e

(m−1)
v1+...+vβ−1 0

]

.

Then, the pair (A′1, A
′
2), where

A′1 =







0 1 0

0 M ′
1






, A′2 =

[

0
M ′

2

]

is c.c. and has controllability indices v1, ..., vq2 .

The matrix [A′1 A
′
2] is block-similar to

[A′′1 A
′′
2] = ([1]⊕ U−1) [A′1 A

′
2] ([1]⊕ V −1) ,

where

A′′1 =







0 a2 ... am

0 M1






∈ Fm×m , a2, ..., am ∈ F ,

A′′2 =

[

0
M2

]

.

Let

Y =











1 −ap+1 ... −am 0

0 Iq1 0
0 0 Ip−1











.

Then (a) is satisfied with:

A1 = Y A′′1 Y
−1 and A2 = Y A′′2 .

Case 2. Suppose that ρ1 = q1 and ρ = p. Note that it is impossible that q1 = 0,
as this situation implies that β = ρ2 = p = m and, therefore, v1 = ... = vβ = 1.
Then assume that q1 ≥ 1. Firstly, we use the arguments that we have used in
case 1 up to the definition of A′′1 and A′′2, except that we replace (5.3) with

N1 =

[

Iρ1−1 0
0 0

]

∈ F (p−1)×q1 .
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Now let us consider [A′′1 A
′′
2] partitioned as follows

[A′′1 A
′′
2] =















0 a2 ... aρ1
aρ1+1 ... ap ap+1 ... am−1 am 0 0

0 L22 L23 Iρ1−1 0 0 0
0 L32 L33 0 0 Iρ2

0
0 L42 L43 L44 L45 L46 L47

0 L52 L53 L54 L55 L56 L57















,

where L22 ∈ F
(ρ1−1)×(ρ1−1), L33 ∈ F

ρ2×ρ2 , L44 ∈ F
(ρ1−1)×(ρ1−1), L55 ∈ F .

If am 6= 0, it is already clear that (a) is satisfied.
Now suppose that am = 0. Since (A′′1, A

′′
2) has β = ρ2 nonzero controllability

indices, we have L47 = 0 and L57 = 0. Let

Z =















1 −ap+1 ... − am−1 0 0 0

0 Iρ1−1 0 0 0
0 0 Iρ2

0 0
0 −L44 −L46 Iρ1−1 0
0 −L54 −L56 0 1















.

Then [A′′1 A
′′
2] is block-similar to a matrix of the form

[A
(3)
1 A

(3)
2 ] = Z [A′′1 A

′′
2] (Z

−1 ⊕ Iq2)

=















0 a′2 ... a
′
ρ1

a′ρ1+1 ... a
′
p 0 0 0 0

0 L′22 L′23 Iρ1−1 0 0 0
0 L′32 L′33 0 0 Iρ2

0
0 L′42 L′43 0 L′45 0 0
0 L′52 L′53 0 L′55 0 0















,

where A
(3)
1 ∈ Fm×m. Since (A

(3)
1 , A

(3)
2 ) is a c.c. pair, from (1.1) we conclude that

there exists j ∈ {2, ..., p} such that a′j 6= 0. In [A
(3)
1 A

(3)
2 ] we add the j-th column

to the m-th column and we subtract the m-th row from the j-th row. We get a
block-similar matrix [A1 A2] that shows that (a) is satisfied.

Case 3. Suppose that ρ1 < q1. We use the arguments that we have used in
case 1 up to the definition of A′′1 and A′′2, except that we replace N1 and N2 with:

N1 =

[

Iρ1
0

0 0

]

∈ F p×(q1−1) ,

N2 =

[

0 0
Iρ2

0

]

∈ F p×q2 .

Let

W =





0 Ip 0
1 0 0
0 0 Iq1−1



 .
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Then (a) is satisfied with:

A1 =W A′′1 W
−1 , A2 =W A′′2 .

Lemma 5.2. If (2.1) and (2.3) are satisfied and ρ1 + ρ2 ≥ β, then (a) is
satisfied.

Proof: Define ν as in (2.9). Let t = min{ν, β − ρ2}. Condition (2.3) implies
that ν ≥ β−q1+ρ1−ρ2. Clearly, t ≥ β−q1+ρ1−ρ2. Therefore q1−β+ρ2 ≥ ρ1−t.
We also have t ≤ β − ρ2 ≤ ρ1 and t + ρ2 ≤ β ≤ q2. According to Lemma 5.1,
there exist matrices:

M1 =

[

M11 N1

M31 M33

]

∈ F (m−β+ρ2)×(m−β+ρ2) ,

M2 =

[

N2

M34

]

∈ F (m−β+ρ2)×q2 ,

where

N1 =

[

Iρ1−t 0
0 0

]

∈ F p×(q1−β+ρ2) ,

N2 =





0 0 0
0 0 Iρ2

It 0 0



 ∈ F p×q2 ,

such that the pair (M1,M2) is c.c. and its nonzero controllability indices are
v1 − 1, ..., vt − 1, vβ−ρ2+1, ..., vβ. Let

U ∈ F (m−β+ρ2)×(m−β+ρ2) , V =

[

U−1 0
V21 V22

]

∈ F (m−β+ρ2+q2)×(m−β+ρ2+q2) ,

be nonsingular matrices such that

(5.5) U [M1 M2]V = [M ′
1 M

′
2 M

′
3] ,

where

M ′
1 = C(x

v1−1)⊕ ...⊕ C(xvt−1)⊕ C(xvβ−ρ2+1)⊕ ...⊕ C(xvβ ) ,

M ′
2 =

[

e
(m−β+ρ2)
v1−1 e

(m−β+ρ2)
v1+v2−2 ... e

(m−β+ρ2)
v1+...+vt−t 0

]

∈ F (m−β+ρ2)×(β−ρ2) ,

M ′
3 =

[

e
(m−β+ρ2)
v1+...+vt+vβ−ρ2+1−t ev1+...+vt+vβ−ρ2+1+vβ−ρ2+2−t ...

... ev1+...+vt+vβ−ρ2+1+...+vβ−t 0
]

∈ F (m−β+ρ2)×(q2−β+ρ2) .
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Let

[K1 K2] =

[

M ′
1 M ′

2 M ′
3 0

0 0 0 Iβ−ρ2

]

, with K1 ∈ F
m×m .

The pair (K1,K2) is c.c. and has controllability indices v1, ..., vq2 . From (5.5), we
get:

[M1 M2V22] = U−1 [M ′
1 M

′
2 M

′
3]

[

U 0
−V −1

22 V21 U Iq2

]

.

Let W be the submatrix of
[

U 0
−V −1

22 V21 U Iq2

]

lying in rows and columns 1, ...,m. Then

W−1 =

[

U−1 0
∗ Iβ−ρ2

]

and [K1 K2] is block-similar to

[K ′
1 K

′
2] =W−1 [K1 K2]

([

U 0
−V −1

22 V21 U Iq2

]

⊕ Iβ−ρ2

)

=

[

M1 M2 V22 0
∗ ∗ Iβ−ρ2

]

,

K ′
1 ∈ Fm×m. Moreover, M2 V22 = U−1 [M ′

2 M ′
3]. Consider the matrix M2 V22

partitioned as follows:

M2 V22 =

[

L11 L12

L21 L22

]

, where L11 ∈ F
p×(β−ρ2) .

We have:
rank(M2 V22) = rank[M ′

2 M
′
3] = ρ2 + t ,

rank[L11 L12] = rank(N2 V22) = ρ2 + t .

Hence the last q1 − β + ρ2 rows of M2 V22 are linear combinations of the first p
rows. Therefore, from

rank

[

L12

L22

]

= rank(U−1M ′
3) = ρ2 ,

we conclude that rankL12 = ρ2. Moreover:

rank
[

N1 L11 L12

]

= rank
[

N1 N2 V22

]

= ρ1 + ρ2 .

Consequently, the submatrix of [K ′
1 K ′

2] lying in rows 1, ..., p and columns
p+ 1, ...,m+ q2 is q1-equivalent to [C1 C2], and the proof is complete.
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Proof that (b) implies (a): By induction on m. If m = 1, the result
is trivial. Suppose that m ≥ 2. Bearing in mind Lemma 5.2, we assume that
ρ1+ρ2 < β. From (2.2), we deduce that vβ ≤ q1−ρ1. According to the induction
assumption, there exist matrices

M1 =

[

M11 N1

M31 M33

]

∈ F (m−vβ)×(m−vβ) ,

M2 =

[

N2

M34

]

∈ F (m−vβ)×(q2−1) ,

where

N1 =

[

Iρ1
0

0 0

]

∈ F p×(q1−vβ) ,

N2 =

[

0 0
Iρ2

0

]

∈ F p×(q2−1) ,

such that (M1,M2) is c.c. and has controllability indices v1, ..., vβ−1, vβ+1, ..., vq2 .
Let

A1 =

[

M1 0
0 C(xvβ )

]

∈ Fm×m ,

A2 =

[

M2 0

0 e
(vβ)
vβ

]

∈ Fm×q2 .

The pair (A1, A2) is c.c., has controllability indices v1, ..., vq2 and the submatrix
of [A1 A2] lying in rows 1, ..., p and columns p + 1, ...,m + q2 is q1-equivalent to
[C1 C2].

6 – Proof of Theorem 2

Suppose that (a) is satisfied. Then (2.4) is satisfied. Let

τ2 = rank
[

C2 A15

]

,(6.1)

τ1 = rank
[

A12 C1 C2 A15

]

− τ2 .(6.2)

The following inequalities are trivial:

ρ2 ≤ τ2 ≤ min
{

n−m− q2 + ρ2, p
}

,(6.3)

0 ≤ τ1 ≤ min
{

m− p− q1 + ρ1, p− τ2

}

.(6.4)
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According to Theorem 1, we have:

τ2 ≤ β ,(6.5)

v1 + ...+ vτ1+τ2 ≥ p+ τ1 ,(6.6)

vβ−m+p+τ1−τ2 ≥ 2 .(6.7)

Condition (6.7) is equivalent to

β −m+ p+ τ1 − τ2 ≤ ν ,

where ν is defined according to (2.9). Therefore:

(6.8) τ1 ≤ m− p− β + τ2 + ν .

From (6.3) and (6.5), we get:

(6.9) τ2 ≤ σ2 .

If σ1 = m− p− q1 + ρ1 (respectively, σ1 = m− p− β + σ2 + ν) then from (6.4)
(respectively, (6.8) and (6.9)) we conclude that:

τ1 ≤ σ1 .

Otherwise, we have σ1 = p− σ2 and from (6.4) it results that:

τ1 + τ2 ≤ p = σ1 + σ2 .

We have always:

(6.10) τ1 + τ2 ≤ σ1 + σ2 .

As ρ1 + ρ2 ≤ τ1 + τ2, we conclude that (2.6) is satisfied.

If σ1 + σ2 ≥ β we have:

v1 + ...+ vσ1+σ2
= m ≥ p+m− p− q1 + ρ1 ≥ p+ σ1 .

Now suppose that σ1 + σ2 < β. Bearing in mind (6.10), we have:

v1 + ...+ vσ1+σ2
≥ v1 + ...+ vτ1+τ2 + (σ1 + σ2)− (τ1 + τ2) .

Then, from (6.6) and (6.9) we conclude that:

v1 + ...+ vσ1+σ2
≥ p+ τ1 + (σ1 + σ2)− (τ1 + τ2) ≥ p+ σ1 .
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Conversely, suppose that (c) is satisfied. Let τ2 = σ2 and τ1 = σ1. Then
(6.3) and (6.4) are satisfied. We only prove that 0 ≤ τ1, as the other inequalities
of (6.3) and (6.4) are trivial. Suppose that σ1 = τ1 < 0. Then, from (2.5),
we get v1 + ... + vσ2

≥ p. Therefore β − σ2 ≤ vσ2+1 + ... + vβ ≤ m − p and
m−p−β+σ2+ν ≥ 0. Clearly, m−p−q1+ρ1 ≥ 0 and p−σ2 ≥ 0. Consequently,
σ1 = τ1 ≥ 0.

Now let h1, ..., hρ2
be a basis of the subspace of F p×1 generated by the columns

of C2; let h1, ..., hρ2
, ..., hρ1+ρ2

be a basis of the subspace of F p×1 generated by
the columns of [C1 C2] and let h1, ..., hp be a basis of F

p×1.
Let

A15 =
[

hρ2+1 ... hρ2+α1
hρ1+ρ2+1 ... hρ1+ρ2+α2

0
]

,

A12 =
[

hρ1+ρ2+α2+1 ... hρ1+ρ2+α2+α3
0
]

,

where
α2 = min

{

τ2 − ρ2, τ1 + τ2 − ρ1 − ρ2

}

,

α1 = τ2 − ρ2 − α2 ,

α3 = τ1 + τ2 − ρ1 − ρ2 − α2 .

Then (6.1) and (6.2) are satisfied. From (2.8), we get (6.8), what is equivalent
to (6.7). Note that (6.5) and (6.6) are also satisfied. According to Theorem 1,
condition (a) is satisfied.
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