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A NOTE ON A RESULT OF BUSS CONCERNING
BOUNDED THEORIES AND THE COLLECTION SCHEME

Fernando Ferreira*

Abstract: Samuel Buss showed that, under certain circumstances, adding the col-

lection scheme for bounded formulae to a bounded theory of arithmetic yields a ∀Σ1-

conservative extensions. We present a very simple model theoretic proof of a generaliza-

tion of this result.

The general form of the collection scheme in the language of first-order Peano

Arithmetic is as follows:

∀u ≤ x ∃y A(u, y) → ∃w ∀u ≤ x ∃ y ≤ w A(u, y) ,

where A is a formula that may contain additional free variables as parameters.

This scheme is obviously true in the standard model and, indeed, it is provable in

Peano Arithmetic for any formula A of the language. An early result of Charles

Parsons (in [Ps70]) states that the theory I∆0 does not prove the collection

scheme for bounded formulae (i.e., for formulae A that contain only bounded

quantifiers: the so-called ∆0 or bounded formulae). Recall that the theory I∆0

is Robinson’s arithmetic Q together with the scheme

A(0) ∧ ∀x (A(x)→ A(x + 1))→ ∀x A(x) ,

where A ∈ ∆0 (parameters are allowed).

Nevertheless, Jeff Paris showed in [Pr80] that adding the bounded collection

scheme to the theory I∆0 does not enable the deduction of new ∀Σ1-sentences.

Paris’ proof hinges on the following result:
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Theorem. The scheme of collection for bounded formulae is true in every

model of I∆0 that has a proper end-extension which is also a model of I∆0.

Proof: Let M, N |= I∆0, with N a proper end-extension of M , and suppose

that ∀u ≤ a ∃y A(u, y) holds in M , where a ∈ M and A ∈ ∆0 (possibly with

parameters from M). Using the absoluteness of bounded formulae between M

and N (this fact is an easy consequence of N being an end-extension of M), it

is clear that N |= ∀u ≤ a ∃ y ≤ c A(u, y) for any c ∈ N\M . By induction, there

is a least such c ∈ N : call it c0. It is easy to argue that this c0 is, in fact, in M .

Hence, M |= ∀u ≤ a ∃ y ≤ c0 A(u, y) as required.

The above proof relies heavily on the least number principle for bounded

formulae (equivalently, on the scheme of induction for bounded formulae). Hence,

it does not extend readily to fragments of I∆0 or to the (now) classical theories

Sn
2 of Samuel Buss (a good reference for bounded theories is Part C of [HP93]).

In [B87] Buss presents two proofs, one proof-theoretic and one model-theoretic,

showing that adding the collection scheme for bounded formulae to a bounded

sufficient theory of arithmetic yields a ∀Σ1-conservative extension. Buss’ result

indicates that this kind of conservation result has nothing to do with bounded

induction. In fact, it has nothing to do with the language of arithmetic either.

In this paper we state a more general condition than Buss’, under which it is

possible to add to a theory the collection scheme for bounded formulae without

changing the class of provable ∀Σ1-sentences. The argument below is based on a

very simple and naive model-theoretic construction (compare with Buss’ model-

theoretic proof, involving resplendent structures). It is distilled from the proof

of a theorem in [F94], showing that adding Weak König’s lemma for boundedly

defined trees to the theory Σb
1-NIA (a theory equivalent to Buss’ S1

2) yields a

∀Σ1-conservative extension.

We shall be concerned with first-order languages that include a distinguished

binary relation symbol /. The syntax of these languages is enlarged to permit

bounded quantifiers of the forms ∀x / t and ∃x / t, where t is any term in which

x does not occur. The apparatus of deduction is suitably enlarged to convey the

obvious meaning of the new quantifiers. A formula is bounded just in case it

contains no unbounded (i.e., usual) quantifiers. A Σ1-formula is a formula of the

form ∃yA, where A is a bounded formula; their negations are the Π1-formulas.

The class of ∀Σ1-sentences is the set of sentences which are universal closures of

Σ1-formulae. A nice ∀Σ1-sentence is a sentence of the form

∀x ∃w ∀u / x ∃ z /wA(u, z) ,

where A is a bounded formula in which the variables x and w do not occur. (We
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are using some obvious abbreviations; for instance, ∀u / x abbreviates ∀u1 / x1

... ∀uk / xk, for certain k).

Definition. Consider Γ a theory in a first-order language as above. We shall

say that Γ is a nice ∀Σ1-theory if it is axiomatized by a set of nice ∀Σ1-sentence

and

(a1) Γ ` ∀x (x / x);

(a2) Γ ` ∀x ∀ y ∃w (x / w ∧ y / w);

(a3) Γ ` ∀x ∃w ∀ y / x ∀ z / y (z / w);

(b) For any function symbol f(x) of the language, Γ ` ∀x ∃w ∀y/x (f(y)/w).

All the usual theories of arithmetic that have Π1-axiomatizations are nice

∀Σ1-theories with respect to ≤ (less than or equal to). This includes the usual

subsystems Iopen and IEn of I∆0, as well as Buss’ theories Sn
2 and Tn

2 . It also

includes their binary reformulations Σb
n-NIA and Σb

n-IA, with respect to the re-

lation “... has length less than or equal to...” (see [F90]). As a last example we

mention that the theory Th-FO, introduced in [F91], is a nice ∀Σ1-theory, both

with respect to the relation “... has length less than or equal to...” and to the

relation “... is a subword of...”.

The collection scheme for bounded formulae consists of the following instances

∀u / x ∃ y A(u, y) → ∃w ∀u / x ∃ y / w A(u, y) ,

where A is a bounded formula that may contain additional free variables as

parameters. This is also called bounded collection.

Theorem. Let Γ be a nice ∀Σ1-theory. Then the theory Γ′ obtained from

Γ by adding the collection scheme for bounded formulae is ∀Σ1-conservative over

Γ (in other words, every ∀Σ1-sentence provable in Γ′ is a theorem of Γ).

In order to argue for this theorem we need the following:

Lemma. Let Γ be a nice ∀Σ1-theory and M , N models of Γ with N an

elementary extension ofM . ThenN |M = {a ∈ N : ∃ b ∈ M a/b} is a substructure

of N that models Γ. Additionally, M is a Π1-elementary substructure of N |M .

Proof: Firstly, we check that N |M is a substructure of N . It is clear that

N |M includes M and, hence, includes the interpretations of all the constants of

the language. Let f(x) be any function symbol of the language and take a in
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N |M . By definition, there are b in M with a/b. Using condition (b), pick c ∈ M

such that “∀y /b f(y) / c” holds in M . By elementarity, this also holds in N . In

particular, f(a) / c. Hence, f(a) ∈ N |M .

Secondly, we show that N models Γ. The axiom (a1) is clearly inherited by

N |M . The truths of (a2), (a3) and (b) in N |M can be shown through judicious

uses of their truth in M , together with the elementarity between M and N . Now,

consider

(∗) ∀x ∃w ∀u / x ∃ z /wA(u, z)

an arbitrary axiom of Γ (A is a bounded formula in which x and w do not

occur). To see that this axiom is true in N |M we will rely on the fact that

bounded formulae are absolute between N |M and N (this can be shown by a

straightforward induction on the complexity of those formulae, since it is quite

obvious that if a / b and b ∈ N |M then a ∈ N |M ). Let a be in N |M ; take b in

M with a / b. According to (a3), there are elements c in M such that “∀y / b

∀ z / y (z / c)” holds in M and, by elementarity, in N . Now, instantiate (*) with

c to pick d in M such that “∀u / c ∃ z / dA(u, z)” holds in M and, again by

elementarity, in N . It is now easy to conclude that N |M ` ∀u / a ∃ z /dA(u, z).

Lastly, we show that M is a Π1-elementary substructure of N |M . Let A(x) be

a Π1-formulae and take a ∈ M such that M |= A(a). By elementarity, N |= A(a).

Now, by downward absoluteness (due to the absoluteness of bounded formulae

between N and N |M ) , we may conclude that N |M |= A(a).

Proof of the Theorem: We claim that given any model M of Γ there is a

model N of Γ′ such that M is a Π1-elementary substructure of N .

The theorem follows easily from this claim. In fact, if Γ 6` ∀x ∃yA(x,y),

with A bounded, then there exists a model M of Γ and elements a in M so that

M |= ∀y¬A(a,y); according to the claim, “∀y¬A(a,y)” holds in N and, hence,

Γ′ 6` ∀x ∃yA(x,y).

Build a chain (Mi)i∈ω of models of Γ according to the following specifications:

M0 is M ; given Mi, take M ′
i
an elementary extension of Mi with an element ci

such that M ′
i
|= ∀x / c (x / ci), for all c ∈ Mi (this is possible by compactness,

using properties (a1), (a2) and (a3)). We let Mi+1 be M ′
i
|Mi

and take N the limit

of this chain. Clearly, the inclusions Mi ⊆ N are Π1-elementary (because the

inclusions Mi ⊆Mi+1 are). It is also clear that N |= Γ.

It remains to show that the collection scheme for bounded formulae holds in

N . Suppose that for a bounded formula A and a certain a in N ,

N |= ∀w ∃u / a ∀ y / w¬A(u, y) .
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Take i ∈ ω large enough so that a and all parameters in A occur in Mi. We

successively get:

Mi |= ∀w ∃u / a ∀ y / w¬A(u, y) ,

M ′
i |= ∀w ∃u / a ∀ y / w¬A(u, y) ,

M ′
i |= ∃u / a ∀ y / ci ¬A(u, y) ,

M ′
i |= ∀ y / ci ¬A(u0, y) ,

for a certain u0 ∈ M ′
i
, with u0 / a (hence, u0 ∈ Mi+1). Let b be an arbitrary

element of Mi+1. Clearly b / ci and so M ′
i
|= ¬A(u0, b). By absoluteness, and the

arbitrariness of b, Mi+1 |= ∀ y ¬A(u0, y), concluding that N |= ∀ y ¬A(u0, y). It

follows that N |= ∃u / a ∀ y ¬A(u, y).

Buss’ theorem in [B87] seems to apply to certain situations not covered by the

above result. This is just apparent. Define (following Buss) the class of extended

Σ1-formulae as the set of those formulae in which every unbounded quantifier is

either existential and in the scope of an even number of negations or universal

and in the scope of an odd number of negations. The theorem above still holds

if the collection scheme for bounded formulae is enlarged to permit extended

Σ1-formulas.

In order to see this, remark that in the presence of bounded collection every

extended Σ1-formula F is equivalent to a Σ1-formula F ′. Moreover, the impli-

cation “F ′ → F” is provable using logic alone. Hence, it suffices to argue that

the collection scheme for Σ1-formulae follows from bounded collection in a nice

∀Σ1-theory.

This can be shown using a well-known trick. Consider A(u, y) :=∃ v B(u, v, y),

with B a bounded formula (the restriction to a single variable v is made to

simplify the argument; alternatively, we could use induction on the number of

variables). We reason in an arbitrary model M of a nice ∀Σ1-theory in which

bounded collection holds. Suppose that ∀u / a ∃ y A(u, y); by (a2), ∀u / a ∃ y′

(∃ y / y′ ∃ v / y′ B(u, v, y)). Hence, by bounded collection, there is w such that

∀u / a ∃ y′ / w (∃ y / y′ ∃ v / y′ B(u, v, y)). Use (a3) to pick w′ satisfying ∀ y / w

∀ z / y (z / w′). The statement “∀u / a ∃ y / w′ A(u, y)” follows.
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