
PORTUGALIAE MATHEMATICA

Vol. 52 Fasc. 3 – 1995

A WAVE EQUATION WITH A DIRAC DISTRIBUTION

Yvan Martel

Abstract: The sine-Gordon equation including a Dirac distribution: utt − uxx +

sinu = δa sinu models the interaction between a soliton and a local impurity occuring

during transmission through disordered media. Here, we study the Cauchy problem for

this equation and we show the existence and uniqueness of a solution in the energy space.

1 – Introduction

In 1958, Skyrme introduced the well-known sine-Gordon equation in nonlinear

field theory

utt − uxx = m2 sinu .

Then, in 1962, Perring and Skryme discovered after numerical simulation that a

solution of this equation represents the head-on collision of two kinks (see [3]).

In order to understand soliton transmission through a disordered media, Kivshar

et al. [1] [2] study the interaction between a soliton and a local impurity. They

consider a sine-Gordon equation including a Dirac distribution

utt − uxx + sinu = δa sinu .

They study numerically the reflection of a soliton by an impurity when its ini-

tial velocity is in a certain resonance “window”. Here we do not go into such

questions, our main goal is to show that there is a unique solution of the Cauchy

problem in the energy space.

The main result is the following
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Theorem 1.1. If (u0, v0) ∈ H
1
0 (I)×L

2(I) then there exists a unique solution

u ∈ C(R+, H
1
0 (I)) ∩ C

1(R+, L
2(I)) ∩ C2(R+, H

−1(I)) of

(1.1)




utt − uxx + sinu = δa(x) sinu, for (t, x) ∈ [0,∞)× I ,

u(0, x) = u0(x), ut(0, x) = v0(x), for x ∈ I ,

where I = ]α, β[ is a bounded, open interval of R and a ∈ I. In addition

(1.2)
E(u(t), ut(t)) =

∫

I

{1
2
|ut(t, x)|

2+
1

2
|ux(t, x)|

2−cosu(t, x)
}
dx+cosu(t, a)

= E(u0, v0) .

To prove this theorem we first approximate the Dirac distribution by a family

of smooth bounded functions for which we can apply the classic results for a

wave equation (see the following section); we obtain a sequence of approximate

solutions.

Then we prove uniform estimates on these solutions thanks to the fact that I

is bounded. Next we use these estimates to pass to the limit in the approximate

equation and we show the conservation of energy.

In the last section, we present some extensions for more general Dirichlet

conditions and for unbounded intervals.

2 – Preliminaries

2.1. The Cauchy problem for a wave equation

Let J be any interval of R, bounded or not, and let T > 0. We consider a

function g ∈ C(J×R,R) and a real 0 ≤ α <∞ such that for all (x, y, z) ∈ J×R2

|g(x, y)− g(x, z)| ≤ C1(|y|
α + |z|α) |y − z| .

If J is not bounded we also assume that g(x, 0) = 0 for all x ∈ J . We note

G(x, y) =

∫ y

0
g(x, z) dz ,

and we assume G(x, y) ≤ C2 |y|
2 for all (x, y) ∈ J ×R. It is well known that for

every (ϕ,ψ) ∈ H1
0 (J)×L

2(J), there exists a unique solution u ∈ C(R+, H
1
0 (J))∩
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C1(R+, L
2(J)) ∩ C2(R+, H

−1(J)) of the following problem

(2.1)




utt − uxx = g(x, u), for (t, x) ∈ [0,∞)× J ,

u(0, x) = ϕ(x), ut(0, x) = ψ(x), for x ∈ J ,

Moreover,

(2.2)

∫

J

{
|ut(t, x)|

2 + |ux(t, x)|
2 − 2G(x, u(t, x))

}
dx =

=

∫

J

{
|ψ(x)|2 + |ϕx(x)|

2 − 2G(x, ϕ(x))
}
dx .

(See for example Cazenave and Haraux [4]).

2.2. Solution of a wave equation on R+ ×R

For a ∈ R we set

Ta =
{
(t, x) ∈ R2, t > 0, t− |x− a| > 0

}
.

We consider two functions f and h in C(R+ ×R,R).

Then the problem

(2.3)




wtt − wxx + h(t, x) = δa(x) f(t, a), for (t, x) ∈ R+ ×R ,

w(0, x) = 0, wt(0, x) = 0, for x ∈ R ,

has one and only one solution in D′(R+ ×R) given by

(2.4)

w(t, x) =





−
1

2

∫ t

0
ds

∫ x+t−s

x−(t−s)
h(s, σ) dσ +

1

2

∫ t−|x−a|

0
f(s, a) ds if (t, x) ∈ Ta,

−
1

2

∫ t

0
ds

∫ x+t−s

x−(t−s)
h(s, σ) dσ otherwise .

(see [5], p. 204).
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3 – Proof of Theorem 1.1.

3.1. Uniqueness

In this section, we show that if u1, u2 are two solutions of (1.1) in

L∞((0, T ), H1
0 (I)) ∩W

1,∞((0, T ), L2(I)), then u1 = u2. We note W = u1 − u2.

We first show that W is zero in the open rectangular triangle Tr (for right tri-

angle) defined by the three points (0, a), (0, β), (β − a, β) in the (t,x) plane (we

recall that I = ]α, β[).

For u defined on [0, T )× I, we will denote by ũ the extension of u in [0, T )×

]α, 2β − α[ by symmetry about to the line x = β, and by T̃r the extension of Tr;

thanks to the properties of the wave equation we know that W̃ is a solution of

the problem




W̃tt − W̃xx + sin ũ1 − sin ũ2 =

=
(
δa(x) + δ2β−a(x)

)
(sin ũ1 − sin ũ2), for (t, x) ∈ [0, T )× ]α, 2β − α[ ,

W̃ (0, x) = 0, W̃t(0, x) = 0, for x ∈ ]α, 2β − α[ ,

In particular, in the triangle T̃r, the function W̃ is a solution of the wave equation

W̃tt − W̃xx + 2 sin

(
W̃

2

)
cos

(
ũ1 + ũ2

2

)
= 0

with zero initial data; so W̃ = 0 in the triangle T̃r. This proves that W is zero

on Tr. Similarly W is zero on Tl defined by (0, α), (0, a), (a− α, α).

Next, the triangle Tm (for middle triangle) defined by (0, a),

(t0, a − t0), (t0, a + t0) is contained in I × ]0, T [ for t0 < 1
2 min(a − α, β − a)

(indeed, we take t0 small enough to avoid the influence of boundary conditions

on Tm). Since Tm is a characteristic triangle for the equation satisfied by W we

may apply 2.2 to obtain an expression of W for all (t, x) ∈ Tm,

W (t, x) = −
1

2

∫ t

0
ds

∫ x+t−s

x−(t−s)

(
sinu1(s, σ)− sinu2(s, σ)

)
dσ

+
1

2

∫ t−|x−a|

0
sinu1(s, a)− sinu2(s, a) ds .

Then,

W (t, x) = −
∫ t

0
ds

∫ x+t−s

x−(t−s)
cos

(
u1(s, σ) + u2(s, σ)

2

)
sin

(
W (s, σ)

2

)
dσ

+

∫ t−|x−a|

0
cos

(
u1(s, a) + u2(s, a)

2

)
sin

(
W (s, a)

2

)
ds ,



A WAVE EQUATION WITH A DIRAC DISTRIBUTION 347

and

‖W (t)‖L∞(I) ≤ C

∫ t

0
‖W (s)‖L∞(I) ds ,

where C depends only on t0.

Since ‖W (0)‖L∞(I) = 0 we obtain ‖W (t)‖L∞(I) = 0 (a.e.) by Gronwall’s

lemma. This shows uniqueness on ]0, t0[×I. Uniqueness being a local property we

obtain uniqueness on ]0, T [×I in the space L∞((0, T ), H1
0 (I))∩W

1,∞((0, T ), L2(I))

for every 0 < T ≤ ∞.

3.2. Solution of the regularised equation

For every (u0, v0) in H
1
0 (I) × L2(I), and for every n > 0, T > 0, there exists

a unique solution un ∈ C([0, T ], H1
0 (I)) ∩ C

1([0, T ], L2(I)) of the problem

(3.1)

{
untt − u

n
xx + sinun = ρna(x) sinu

n, for (t, x) ∈ [0, T [× I ,

un(0, x) = u0(x), unt (0, x) = v0(x), for x ∈ I ,

moreover

∫

I

{
1

2
|unt (t, x)|

2 +
1

2
|unx(t, x)|

2 − (1− ρna(x)) cosu
n(t, x)

}
dx =

=

∫

I

{
1

2
|v0(x)|

2 +
1

2
|u0x(x)|

2 − (1− ρna(x)) cosu0(x)

}
dx ,

where ρna ∈ D(R), defined by




ρna(x) = n exp

(
1

n(x− a)2 − 1

)
, for x ∈ ]− 1/n+ a, a+ 1/n[,

ρna(x) = 0 otherwise ,

is an approximation of δa.

This result follows immediately from 2.1 with g(x, y) = − sin(y) (1 − ρna(x))

which verifies the right condition.

3.3. Existence

We are going to build a solution of the problem (1.1) as the limit of the

sequence of functions (un).
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A priori estimates. For every n > 0 the solution un of the problem (3.1) verifies

the following estimates:

‖un‖L∞((0,T ),H1

0
(I)) ≤ C ,

‖unt ‖L∞((0,T ),L2(I)) ≤ C ′ ,

where C and C ′ do not depend on n.

As a matter of fact,

1

2

∫

I

{
|unt (t, x)|

2 + |unx(t, x)|
2
}
dx =

=

∫

I
(1− ρna(x)) cosu

n(t, x) dx

+

∫

I

{
1

2
|v0(x)|

2 +
1

2
|u0x(x)|

2 − (1− ρna(x)) cosu0(x)

}
dx ,

Hence ∫

I
|unt (t, x)|

2 + |unx(t, x)|
2 dx ≤ C1 + 4|I|+ 4 ,

where C1 depends only on |I| and initial data.

We derive

‖un(t)‖H1

0
(I) ≤ C2‖u

n
x(t)‖L2(I) ≤ C ,

and

‖unt (t)‖L2(I) ≤ C ′ ,

for every t ∈ [0, T ).

Convergence of the sequence. There exists u ∈ L∞((0, T ), H1
0 (I)) such that:

i) ut ∈ L
∞((0, T ), L2(I)),

ii) u weakly continuous on H1
0 (I) and ut weakly continuous on L2(I),

iii) u is solution of (1.1).

Indeed, according to the above a priori estimates, there exists a subsequence

which we will denote by (uµ)µ∈N and a function u ∈ L∞((0, T ), H1
0 (I)), weakly

continuous on H1
0 (I), such that ut belongs to L

∞((0, T ), L2(I)) and

• uµ ⇀ u on L∞((0, T ), H1
0 (I)) weak *,

• uµt ⇀ ut on L
∞((0, T ), L2(I)) weak *,
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• uµ → u on L2((0, T )× I) and a.e. on (0, T )× I.

Now we prove that u is a solution of the problem (1.1) by passing to the limit

in the approximate equation

untt − u
n
xx + sinun = ρna(x) sinu

n, for (t, x) ∈ [0, T )× I ,

According to the above remarks we have

uµtt − u
µ
xx + sinuµ −→

µ→∞
utt − uxx + sinu, in D′((0, T )× I) .

Next we show that ρaµ sinu
µ → δa sinu in D′((0, T ) × I) by using the following

lemma.

Lemma 3.1. Let (xn)n∈N be a bounded sequence of functions of

L∞((0, T ), H1
0 (I)) ∩ W

1,∞((0, T ), L2(I)). Then there exists a subsequence of

(xn)n∈N which converges in L∞((0, T ), L∞(I)).

(See [6] Corollary 4, p. 85.)

Using this lemma we can assume that the subsequence (uµ)µ∈N also converges

in L∞((0, T ), L∞(I)).

Let ϕ ∈ H1
0 (I),

∫

I
ρµa(x) sinu

µ(t, x)ϕ(x) dx =

= sinu(t, a)ϕ(a) +

∫

I
ρµa(x)

(
sinuµ(t, x)ϕ(x)− sinu(t, x)ϕ(x)

)
dx

+

∫

I
ρµa(x)

(
sinu(t, x)ϕ(x)− sinu(t, a)ϕ(a)

)
dx .

Besides,

∣∣∣
∫

I
ρµa(x)

(
sinuµ(t, x)ϕ(x)− sinu(t, x)ϕ(x)

)
dx
∣∣∣ ≤

≤ ‖ϕ‖L∞(I) ‖u
µ − u‖L∞((0,T ),L∞(I)) ,

and

∣∣∣
∫

I
ρµa(x)

(
sinu(t, x)ϕ(x)− sinu(t, a)ϕ(a)

)
dx
∣∣∣ ≤

≤
∥∥∥u(t, x)ϕ(x)− u(t, a)ϕ(a)

∥∥∥
L∞((0,T ),L∞(]−1/µ+a, a+1/µ[))

,
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By uniform convergence of (uµ) and by continuity of u on [0, T ]× I, we obtain

ρµa sinu
µ −→

µ→∞
δa sinu in L∞((0, T ), H−1(I)) ,

and u verifies the equation (1.1) in the sense of distributions.

We conclude this section, remarking that utt = uxx − (1 − δa(x)) sinu, so

utt ∈ L∞((0, T ), H−1(I)) and there exists a subsequence (uµk)µk∈N such that

uµk

tt → utt in L
∞((0, T ), H−1(I)). It follows that ut(0) = v0. We conclude that u

is the unique solution of (1.1).

3.4. Regularity

We show that E(u(t), ut(t)) = E(u0, v0) for every t ∈ ]0, T [, then we derive

the announced regularity result from this conservation law.

As a matter of fact we have conservation of energy for every function uµ, id

est:∫

I

{
|uµt (t, x)|

2 + |uµx(t, x)|
2 − 2(1− ρµa(x)) cosu

µ(t, x)
}
dx =

=

∫

I

{
|v0(x)|

2 + |u0x(x)|
2 − 2(1− ρµa(x)) cosu0(x)

}
dx .

The right term tends to E(u0, v0) when µ ↑∞. Moreover from what precedes it

is clear that∫

I
(1− ρµa(x)) cosu

µ(t, x) dx −→
µ→∞

∫

I
cosu(t, x) dx− cosu(t, a) .

Besides, it follows from Fatou’s lemma that
∫

I

{
|ut(t, x)|

2 + |ux(t, x)|
2
}
dx ≤ lim inf

µ→∞

∫

I

{
|uµt (t, x)|

2 + |uµx(t, x)|
2
}
dx .

So that E(u(t), ut(t)) ≤ E(u0, v0) for every t ∈ [0, T ).

If we solve the backward problem with (u(t), ut(t)) as initial data and taking

into account the uniqueness of the solution on [0, t] we conclude E(u0, v0) ≤

E(u(t), ut(t)). This gives the conservation of energy.

The regularity of u is a consequence of the following lemma.

Lemma 3.2. If (fk)1≤k≤n are lower semicontinuous functions on [0, T ] and

if
∑

1≤k≤n fk is continuous, then each fk is continuous.

We know that:∫

I

{
|ut(t, x)|

2 + |ux(t, x)|
2 − 2 cosu(t, x)

}
dx+ 2 cosu(t, a) = 2E(u0, v0) .
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Each term of the left member is lower semicontinuous in time, according to

the above lemma each term is continuous. So the functions
∫
I |ux(t, x)|

2 dx and∫
|ut(t, x)|

2 dx are continuous in time; taking into account the weak continuity of

the functions u and ut we have shown that for an arbitrary T > 0, u belongs to

C((0, T ), H1
0 (I)) ∩ C

1((0, T ), L2(I)). This completes the proof of Theorem 1.1.

4 – Extensions

4.1. More general nonlinearities

We consider h, f ∈ C(I ×R,R). We note H(x, y) =
∫ y
0 h(x, z) dz, F (x, y) =∫ y

0 f(x, z) dz and we suppose

• |h(x, y) − h(x, z)| ≤ C1|y − z|, |f(x, y) − f(x, z)| ≤ C2|y − z| for all

(x, y, z) ∈ I ×R2,

• f(x, 0) = h(x, 0) = 0 for all x ∈ J .

Then, we have the following result

Theorem 4.1. If (u0, v0) ∈ H
1
0 (I)×L

2(I) then there exists a unique solution

u ∈ C(R+, H
1
0 (I)) ∩ C

1(R+, L
2(I)) ∩ C2(R+, H

−1(I)) of

(4.1)




utt − uxx + h(x, u) = δa(x) f(x, u), for (t, x) ∈ [0,∞)× I ,

u(0, x) = u0(x), ut(0, x) = v0(x), for x ∈ I ,

where I = ]α, β[ is a bounded, open interval of R and a ∈ I. In addition

(4.2)

E(u(t), ut(t)) =

∫

I

{
1

2
|ut(t, x)|

2 +
1

2
|ux(t, x)|

2 +H(x, u(t, x))

}
dx− F (a, u(t, a))

= E(u0, v0) .

Proof: The proof is an adaptation of the proof of Theorem 1.1. Note that

the conditions on h and f are not optimum but it is all what we need for the two

next sections.

4.2. More general boundary conditions

We consider I = ]α, β[ a bounded, open interval of R and a ∈ I. We show

the following result
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Theorem 4.2. If (u0, v0) ∈ H1(I) × L2(I) and u0(α) = K, u0(β) = L

then there exists a unique solution u ∈ C(R+, H
1(I)) ∩ C1(R+, L

2(I)) ∩

C2(R+, H
−1(I)) of

(4.3)





utt − uxx + sinu = δa(x) sinu, for (t, x) ∈ [0,∞)× I ,

u(0, x) = u0(x), ut(0, x) = v0(x), for x ∈ I ,

u(t, α) = K, u(t, β) = L, for t ≥ 0 .

In addition

E(u(t), ut(t)) =

∫

I

{
1

2
|ut(t, x)|

2 +
1

2
|ux(t, x)|

2 − cosu(t, x)

}
dx+ cosu(t, a)

= E(u0, v0) .

Proof: Let A and B be such that Aα + B = K and Aβ + B = L. From

Theorem 4.1 we know that there exists a unique solution v ∈ C(R+, H
1
0 (I)) ∩

C1(R+, L
2(I)) of




vtt − vxx + sin(v+Ax+B) = δa(x) sin(v+Ax+B), for (t, x) ∈ [0,∞)×I ,

v(0, x) = u0(x)−Ax−B, vt(0, x) = v0(x), for x ∈ I .

Set u = v+Ax+B, then u is a solution of (4.3) and u belongs to C(R+, H
1(I))∩

C1(R+, L
2(I)) ∩ C2(R+, H

−1(I)).

4.3. Unbounded domain

For I = R we have the following theorem

Theorem 4.3. If (u0, v0) ∈ H1(R) × L2(R) then there exists a unique

solution u ∈ C(R+, H
1(R)) ∩ C1(R+, L

2(R)) ∩ C2(R+, H
−1(R)) of

(4.4)




utt − uxx + sinu = δa(x) sinu, for (t, x) ∈ [0,∞)×R ,

u(0, x) = u0(x), ut(0, x) = v0(x), for x ∈ R ,

where a ∈ R. In addition

E(u(t), ut(t)) =

∫

R

{
1

2
|ut(t, x)|

2+
1

2
|ux(t, x)|

2+1−cos(u(t, x))

}
dx+cos(u(t, a))

= E(u0, v0) .
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Proof: We proceed in three steps.

Step 1. We first consider w ∈ C(R+, H
1(R)) ∩ C1(R+, L

2(R)) solution of

(4.5)




wtt − wxx + sinw = 0, for (t, x) ∈ [0,∞)×R ,

w(0, x) = u0(x), wt(0, x) = v0(x), for x ∈ R .

We use 2.1 with g(x, y) = sin y, which verifies the additional property g(x, 0) = 0.

Step 2. We consider T > 0 and we define I = ]−4T+a, a+4T [. Let (w0, z0) ∈

H1
0 (I)×L

2(I) be such that w0 = u0 and z0 = v0 on ]−3T+a, a+3T [. According to

Theorem 1.1 there exits a unique solution v ∈ C([0, T ], H1
0 (I))∩C

1([0, T ], L2(I))

of 


vtt − vxx + sin v = δa(x) sin v, for (t, x) ∈ [0, T ]× I ,

v(0, x) = w0(x), vt(0, x) = z0(x), for x ∈ I .

We will note T1 the triangle defined by (0, a− T ), (0, a− 3T ), (T, a− 2T ) and T2

the triangle defined by (0, a+ T ), (0, a+ 3T ), (T, a+ 2T ). We claim that w = v

on T1 ∪ T2. Indeed, w and v are solutions of the same wave equation with the

same initial data in these two characteristic triangles.

Step 3. We noteM the trapezium defined by (0, a−T ), (0, a+T ), (T, a+2T ),

(T, a − 2T ) and N = (]0, T [ ×R)\(T1 ∪M ∪ T2). According to step 2 we may

build the solution u as follows

• u = v on M,

• u = v = w on T1 ∪ T2,

• u = w on N .

Since T is arbitrary, we obtain a solution of the problem (4.4) in R+×R. We

know that the solution u is unique by the argument of 3.1. This completes the

proof of Theorem 4.3.

We consider a function ϕ ∈ C∞(R) such that ϕ(x) = 2π for x > 1 and

ϕ(x) = 0 for x < −1. We give a last result.

Theorem 4.4. If (u0, v0) ∈ H1
loc(R)×L2(R) and u0−ϕ ∈ H1(R) then there

exists a unique solution u ∈ C(R+, H
1
loc(R))∩C1(R+, L

2(R))∩C2(R+, H
−1(R))

such that u− ϕ ∈ C(R+, H
1(R)) of

(4.6)




utt − uxx + sinu = δa(x) sinu, for (t, x) ∈ [0,∞)×R ,

u(0, x) = u0(x), ut(0, x) = v0(x), for x ∈ R ,
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where a ∈ R. In addition

E(u(t), ut(t)) =

∫

R

{
1

2
|ut(t, x)|

2 +
1

2
|ux(t, x)|

2 + 1− cosu(t, x)

}
dx+ cosu(t, a)

= E(u0, v0) .

Remark 4.5. Note that the solution obtained by the above theorem does

not depend on the choice of ϕ. Indeed the introduction of the function ϕ is only

a way to formulate the boundary conditions at +∞ and −∞.

Proof of Theorem 4.4: One can easily verify that Theorem 4.1 is also

available for I = R following the proof of Theorem 4.3. So there exists a unique

solution v ∈ C(R+, H
1(R)) ∩ C1(R+, L

2(R)) ∩ C2(R+, H
−1(R)) of




vtt−vxx+sin(v+ϕ(x)) = δa(x) sin(v+ϕ(x))+ϕ

′′(x), for (t, x)∈ [0,∞)×R ,

v(0, x) = u0(x)− ϕ(x), vt(0, x) = v0(x), for x ∈ R .

Set u = v + ϕ, then u is the unique solution of (4.6) in C(R+, H
1
loc(R)) ∩

C1(R+, L
2(R)) ∩ C2(R+, H

−1(R)) and v = u− ϕ ∈ C(R+, H
1(R)).
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