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THE LINEAR CAUCHY PROBLEM FOR A CLASS
OF DIFFERENTIAL EQUATIONS WITH
DISTRIBUTIONAL COEFFICIENTS

C.O.R. Sarrico

Abstract: We consider the problem X(n) =
∑n

i=1 UiX
(n−i) + V , X(n−i)(t0) = ai in

dimension 1 (X ∈ D′ is unknown, n is a positive integer, V ∈ D′, U1, ..., Un ∈ C∞⊕D′pm,
D′pm = D′p ∩ D′m, D′p is the space of distributions of order ≤ p in the sense of Schwartz,

D′m is the space of distributions with nowhere-dense support, a1, ..., an ∈ C and t0 ∈ IR).
Necessary and sufficient conditions for existence and uniqueness of this problem in

Cq ⊕D′m where q = max(n, n− 1 + p) are given and also the way of getting an explicit

solution when it exists.

The solutions are considered in a generalized sense defined with the help of the dis-

tributional product we introduced in [2] and they are consistent with the usual solutions.

As an example we takeX ′(t) = i g δ′(t)X(t), X(t0) = 1 for a certain t0 < 0 (i =
√
−1,

g ∈ IR and δ is the Dirac measure) and we prove that in our sense, its unique solution in

C1 ⊕D′m is X(t) = 1 + i g δ(t) (Colombeau [1] also considers this problem with another

approach). More examples are presented.

0 – Introduction

Let D be the space of indefinitely differentiable complex functions on IRN with
compact support, D′ the space of distributions, L(D) the continuous linear maps
D → D. The basic idea of [2] is to define products of distributions by employing
the algebraic structure of L(D), given by the composition product. First we
define a product Tφ ∈ D′ for T ∈ D′, φ ∈ L(D), by 〈Tφ, x〉 = 〈T, φ(x)〉 for x ∈ D.
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Second, we define an epimorphism ζ̃ : L(D) → D′ given by 〈ζ̃(φ), x〉 =
∫
φ(x).

Finally given α ∈ D with
∫
α = 1, a projection sα : L(D) → L(D) is defined in

such a way that for T, S ∈ D′, T ·
α
S :=T (sα φ) does not depend on the choice of

φ ∈ L(D) with ζ̃(φ) = S. The operator sα is given by

[
(sαφ)(x)

]
(y) =

∫
φt

[
α(y − t)x(t)

]
dt, for y ∈ IRN .

Here, φt denotes the operator φ when it acts on functions of t ∈ IRN .

In order to maintain consistency with the classical product, we single out a
subspace Hα ⊂ L(D) such that ζα = ζ̃ | Hα : Hα → C∞⊕D′m is an isomorphism,
where D′m denotes the space of distributions with nowhere dense support (in [2]
we denote D′m by D′n). Then, given α ∈ D with

∫
α = 1, the product T ∈ D′

with S = β + f ∈ C∞ ⊕D′m turns out to be

T ·
α
S = Tβ + (T ∗ α̌) f ,

where α̌ ∈ D is defined by α̌(t) = α(−t), and the products on the right-hand side
are the classical ones.

The product on D′ × (C∞ ⊕ D′m) thus defined depends on α, is distributive,
satisfies the Leibnitz rule, is invariant for translations and is also invariant for a
group G of unimodular transformations (linear transformations h : IRN → IRN

with | deth| = 1), if α is so invariant. It is neither commutative nor associative.
Commutativity may be recovered after integration if both factors are in D′m, if
one of them has compact support and if the map t→ −t belongs to G. We also
give a sufficient condition for associativity.

In the following examples we take α ∈ D with
∫
α = 1, invariant for the group

of orthogonal transformations G in IRN (we always do the same in non relativistic
applications). Thus, if N = 1, α is an even function. In the following δ denotes
the Dirac distribution concentrated on 0 ∈ IRN and H denotes the Heaviside
distribution.

Examples:

1) With N = 1,

δ ·
α
δ = δ · 0 + (δ ∗ α̌) δ = (δ ∗ α) δ = α δ = α(0) δ .

Sometimes the product does not depend of the α-function, as examples 2
and 3 show.
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2) With N = 1,

H ·
α
δ = H · 0 + (H ∗ α̌) δ = (H ∗ α) δ =

[∫ +∞

0
α(u− t) dt

]
δ

=
[∫ +∞

0
α(−t) dt

]
δ =

1

2
δ ,

because α is an even function. In dimension N we have H ·
α
δ = 1

2N δ.

3) With N = 1 and β ∈ C∞,

δ′ ·
α
(β + δ) = δ′ β + (δ′ ∗ α̌) δ = β(0) δ′ − β′(0) δ + α′ δ =

= β(0) δ′ − β′(0) δ + α′(0) δ = β(0) δ′ − β′(0) δ ,

because α′(0) = 0.
The consistency with the classical product can be obtained if we put the
C∞-function β in the right-hand side factor;

4) With N = 1, δ ·
α
β = δ β + (δ ∗ α̌) · 0 = δ β = β(0) δ. On the other hand,

β ·
α
δ = β · 0 + (β ∗ α̌) δ = (β ∗ α) δ = (β ∗ α)(0) δ .

For details, we refer the reader to [2].

Let D′p, p ∈ {0, 1, 2, ...,∞}, be the space of distributions of order ≤ p in the
sense of Schwartz. We can naturally extend our definition of product.

0.1 Definition. Let T ∈ D′p, S = β + f ∈ Cp ⊕ D′m and let G be a group
of unimodular transformations of IRN . We define the (G,α)-product T ·

α
S by

putting
T ·
α
S = Tβ + T ·

α
f ,

where Tβ is interpreted in the classical sense.

In the following we always take as G the orthogonal group in dimension 1.
We always employ this product with N = 1 in problems like the following:

P V
a ≡

{
X ′ = UX + V,

X(t0) = a ,

where U = γ+T ∈ C∞⊕D′m, a ∈ C and t0 ∈ IR. In this problem, we know that
there are sometimes distributions X such that P V

a is satisfied with the product
considered in the classical sense: such solutions will be called “classical solutions”.
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We also define new solutions, called “wα-solutions”, as follows. First we associate
to the problem P V

a the problem QV
a defined by

QV
a ≡

{
X ′ = X γ + T ·

α
X + V,

X(t0) = a .

We will say that X ∈ D′ is a wα-solution of P V
a when there is an open set Ω ⊂ IR,

with t0 ∈ Ω, such that the restriction XΩ of X to Ω is a continuous function and
X satisfies QV

a . It is important to note that in general X γ + T ·
α
X 6= U ·

α
X

and X γ + T ·
α
X 6= X ·

α
U (the map P V

a → QV
a takes advantage of the non-

commutativity of the product). Clearly all classical solutions are wα-solutions.
We shall see that P V

a may have no classical solutions and have a wα-solution
which can be independent of α (Example 5.1). We will prove that if there is a
wα-solution of P V

a in a certain space this solution is unique, we give conditions
for the existence of a wα-solution and a way of getting an explicit solution when
it exists. We present solved problems such that

a) For any α chosen, there is a wα-solution of P V
a and this solution is inde-

pendent of α.

b) The existence of a wα-solution of P V
a depends on α, but for all α for which

the wα-solution exists, the wα-solution does not depend explicitly on α.

c) The wα-solution of P V
a exists for a certain set of α’s and depends explicitly

on α.

In the following, the n order Cauchy problem is considered.

1 – The classical solutions of the linear Cauchy problem P V
a

Let us consider the linear Cauchy problem

P V
a ≡





X(n) =
n∑

i=1

UiX
(n−i) + V ,

X(n−i)(t0) = ai, i = 1, 2, ..., n ,

where n is a positive integer, U1, ..., Un ∈ C∞ ⊕ D′pm, D′pm = D′p ∩ D′m, V ∈ D′,
a = (a1, ..., an) ∈ Cn and t0 ∈ IR.
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If we ask for a solution X ∈ D′(IR) which shall be a Cn−1 function in some
neighbourhood of t0, the problem is sometimes possible if we interpret the prod-
ucts in classical sense, that is, products of D′p-distributions by Cp-functions. We
call these solutions, classical solutions. Thus, we must ask for them in the space
Cn−1+p.

2 – The wα-solutions of the linear Cauchy problem P V
a

Now, let us associate to the problem P V
a the problem

QV
a ≡





X(n) =
n∑

i=1

(
X(n−i) γi + Ti ·

α
X(n−i)

)
+ V ,

X(n−i)(t0) = ai, i = 1, 2, ..., n ,

where γi and Ti are such that γi + Ti = Ui ∈ C∞ ⊕D′pm.

2.1 Definition. We say that X ∈ D′ is a wα-solution of P V
a when there is

an open set Ω of IR containing t0 such that the restriction XΩ of X to Ω is a
Cn−1(Ω)-function and X is solution of QV

a .

It is an immediate consequence of the definitions 0.1 and 2.1 that

2.2 Proposition. For all even functions α ∈ D with
∫
α = 1, if X ∈ Cn−1+p

is a classical solution of P V
a then X is a wα-solution of P V

a .

We shall see that P V
a may have no classical solutions in Cn−1+p and have a

wα-solution in Cn−1+p ⊕ D′m, which obviously is, in a generalized sense, a new
solution of the problem P V

a . In some cases, this solution does not even depend
on the α-function.

3 – The uniqueness of the wα-solution of P V
a in Cq ⊕ D′m with q =

max(n, n− 1 + p)

3.1 Proposition. If there exists a wα-solution of P V
a in Cq ⊕ D′m, with

q = max(n, n− 1 + p), then this solution is unique.

Proof: We shall give the proof only in the case n = 1. The general case is
similar. Note also that it is sufficient to prove that if X is a wα-solution of P V

a ,
with a = 0 and V = 0, then X = 0.
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By assumption there is an open set Ω of IR containing t0 such thatXΩ ∈ C0(Ω)
and X = β + f ∈ Cq ⊕D′m is a solution of

Q00 ≡
{
X ′ = X γ1 + T1 ·

α
X,

X(t0) = 0 ,

with γ1 ∈ C∞ and T1 ∈ D′pm. Then, β′ + f ′ = β γ1 + f γ1 + T1 β + f(α ∗ T1) and
β(t0) = 0, which is equivalent to

{
β′ − β γ = −f ′ + f γ1 + T1 β + f(α ∗ T1),
β(t0) = 0 .

Noting that β′ − βγ ∈ Cq−1 and −f ′ + f γ1 + T1 β + f(α ∗ T1) ∈ D′m, we have

a) β′ − β γ = 0;

b) −f ′ + f γ1 + T1 β + f(α ∗ T1) = 0;

c) β(t0) = 0.

From a) and c) it follows that β = 0. Thus, b) is equivalent to

f ′ − f
[
γ1 + (α ∗ T1)

]
= 0 ,

which is a differential equation with C∞ coefficients. We know that the solutions
of this equation in D′ are distributions corresponding to C∞-functions and so
f = 0 because f ∈ D′m. Finally X = β + f = 0.

4 – The existence of a wα-solution of P V
a in Cq ⊕D′m

Let us consider the problem P 0a .

4.1 Proposition. X = β1 + f ∈ Cq ⊕ D′m is a wα-solution of P 0a with

q = max{n, n − 1 + p} if and only if the following conditions are satisfied with

Ui = γi + Ti

a) β1 ∈ Cq is the solution of the Cauchy problem

(4.1.1)




β
(n)
1 =

∑n
i=1 β

(n−i)
1 γi,

β
(n−i)
1 (t0) = ai, i = 1, ..., n .

b) f ∈ D′m is a solution of the differential equation

(4.1.2) f (n) −
n∑

i=1

f (n−i)
[
γi + (α ∗ Ti)

]
=

n∑

i=1

Ti β
(n−i)
1 .
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c) There is an open set Ω containing t0 and such that fΩ = 0.

Proof: We only consider the case n = 1. The general case is similar. First, let
us assume that X = β1+f is a wα-solution of P 0a1 in C

q⊕D′m with q = max(1, p).
By 2.1 there is an open set Ω containing t0 such that XΩ ∈ C0(Ω) and X is a
solution of

Q0a

{
X ′ = X γ1 + T1 ·

α
X,

X(t0) = a1 ,

in Cq ⊕D′m, with q = max{1, p}. Thus, as in the proof of 3.1, we have

a′) β′1 − β1 γ1 = 0;

b′) f ′ − f [γ1 + (α ∗ T1)] = T1 β1;

c′) β1(t0) = a1.

Hence, conditions a) and b) are satisfied. Condition c) follows immediately from
XΩ = (β1 + f)Ω = β1Ω + fΩ ∈ C0(Ω) and f ∈ D′m.

Now suppose that a), b) and c) are satisfied. Then, X = β1+f is a wα-solution
of P 0a because

X ′ = β′1 + f ′ = β1 γ1 + f
[
γ1 + (α ∗ T1)

]
+ T1 β1 = β1 γ1 + f γ1 + T1 ·

α
f + T1 β1

= (β1 + f) γ1 + T1 ·
α
(f + β1) = X γ1 + T1 ·

α
X

and also because XΩ = (β1 + f)Ω = β1Ω + fΩ = β1Ω ∈ C0(Ω) and t0 ∈ Ω.

Sometimes, the following note can be useful when we are looking for a solution
of 4.1.2.

4.2 Note. If β1 ∈ Cq is a solution of the Cauchy problem 4.1.1 and there

exists S ∈ D′m such that S(n) =
∑n

i=1 Ti β
(n−i)
1 and

∑n
i=1 S

(n−i)[γi+(α ∗ Ti)] = 0
then S is a solution of 4.1.2 in D′m.

Finally we can verify the proposition which allows us to determine the wα-
solution of the P V

a problem.

4.3 Proposition. If

I) g ∈ D′ is a particular wα-solution of X(n) =
∑n

i=1 UiX
(n−i) + V , that is,

g is a solution of

X(n) =
n∑

i=1

(
X(n−i) γi + Ti ·

α
X(n−i)

)
+ V

and

II) There exists c = (c1, ..., cn) such that
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a) Yc is a wα-solution of

P 0c ≡




X(n) =

n∑

i=1

UiX
(n−i),

X(n−i)(t0) = ci, i = 1, ..., n ;

b) (Yc + g)(n−i)(t0) = ai in the sense that there exists an open set Ω of

IR such that t0 ∈ Ω, (Yc + g)Ω ∈ Cn−1(Ω) and (Yc + g)
(n−i)
Ω (t0) = ai,

i = 1, 2, ..., n,

then

X = Yc + g is the wα-solution of P V
a problem .

5 – Examples

5.1. Let us consider the problem

P 0a = Q0a ≡
{
X ′ = i g δ′X, (5.1.1)

X(t0) = a , (5.1.2)

where i =
√
−1, δ′ is the derivative of Dirac measure, g, t0, a ∈ IR, t0 < 0 and

g 6= 0.

C1 is the space of classical solutions X because δ′ ∈ D′1. P 0a has no classical
solutions unless a = 0. In fact, X ′ ∈ C0 and i g δ′X ∈ D′m which implies X ′ =
i g δ′X = 0. This is possible only in the case X = 0 which is not compatible with
5.1.2 unless a = 0. Hence, if a = 0, P 0a has only the solution X = 0 in C1. If
a 6= 0, P 0a has no classical solutions. We will prove that for all a ∈ IR, P 0a always
has the wα-solution X = a(1 + igδ) in C1 ⊕ D′m, which does not depend of the
choice of α and coincides with the classical solution X = 0 if a = 0. In fact, by
applying 4.1 we have the following:

a) The Cauchy problem {
β′1 = 0,

β1(t0) = a ,

has the unique solution β1(t) = a.

b) By 4.2 the equation S ′ = i g δ′a has the solution S = i g a δ ∈ D′m, and
i g a δ[0 + (α ∗ i g δ′)] = 0 for all α. Thus, f = i g a δ is a solution of 4.1.2
in D′m.

c) There is an open set Ω of IR containing t0 such that fΩ = (i g a δ)Ω = 0
because t0 < 0.
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We conclude that X = a + i g a δ = a(1 + i g δ) is a wα-solution of P 0a in
C1 ⊕D′m. The uniqueness of this solution in C1 ⊕D′m follows by 3.1.

Colombeau [1], p. 69, asserts that the “scattering operator” can be heuristi-
cally defined from the Cauchy problem

{
S′(t) = −i g H(t)S(t),

S(t0) = I ,

where g ∈ IR, H(t) is the Hamiltonean interaction (distribution operator valued)
and I the identity operator on the Fock space. Thus, if we denote by St0(t)
the formal solution of this problem, the scattering operator will be defined by
S−∞(+∞).

A drastic simplification which consists in taking C as a Fock space and H(t) =
−δ′(t) leads Colombeau to consider the problem P 0a with a = 1. Thus, the
scattering operator, a complex number in this case, can be computed.

S−∞(+∞) = 1 .

This result is in agreement with example 2 page 75 of Colombeau [1].

Remark. Problem P 01 has the solution eigδ(t) in the sense of Colombeau, but
this solution is not a distribution and it is not true that

eigδ(t) =
∞∑

n=0

[i g δ(t)]n

n!

as it is usually supposed in heuristic computations, on account of the divergence
of this series in G (see [1]). If we consider the distributional product [2] this series
is always convergent in D′ and its α-sum can be computed:

(5.1.3) eigδ(t) =
∞∑

n=0

[i g δ(t)]n

n!
=




1 +

eigα(0) − 1

α(0)
δ(t), if α(0) 6= 0,

1 + i g δ(t), if α(0) = 0 .

However, only in the case α(0) = 0 does the series 5.1.3 converge to the solution
of the problem P 01 . Thus, in this case, it is possible in D′ to make consistent the
heuristic solution eigδ(t) with the solution 1 + i g δ(t) and write

eigδ(t) =
∞∑

n=0

[i g δ(t)]n

n!
= 1 + i g δ(t) .

5.2. Let us consider the problem

P V
a ≡

{
X ′ + (1 + δ′)X = sin t,

X(−π) = a ,
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with V = sin t. We can prove that if a = 1
2(e

π + 1) this problem has only the
classical solution X(t) = 1

2e
−t+ 1

2(sin t−cos t) in C1 and has no classical solutions
if a 6= 1

2(e
π + 1).

Now we will prove that for all a ∈ IR the problem P V
a has always one and

only one wα-solution in C1⊕D′m, and this solution does not depend of the choice
of the α-function. This solution is

X(t) =

(
a− 1

2

)
e−(t+π) +

1

2
(sin t− cos t) + e−π

[
1

2
(eπ + 1)− a

]
δ(t)

and it coincides with the classical solution when a = 1
2(e

π + 1). In fact, if we
consider the problem P 0c and the associated

Q0c ≡
{
X ′ = −X − δ′ ·

α
X,

X(−π) = c ,

we have, by applying 4.1:

a) β1(t) = c e−(t+π) ∈ C1 is the unique solution of the problem

{
β′1 = −β1,
β1(−π) = c .

b) f = −c e−π δ ∈ D′m is a solution of f ′− f [(−1)+α ∗ (−δ′)] = −δ′ c e−(t+π)
for any α chosen (now we cannot apply 4.2 because there does not exist
S′ ∈ D′m such that S′ = −δ′ c e−(t+π) = −c e−π δ′ − c e−π δ);

c) There is an open set Ω of IR such that −π ∈ Ω and fΩ = (−c e−π δ)Ω = 0.
Hence, for any α chosen, X(t) = c e−(t+π) − c e−π δ(t) is a wα-solution of
P 0c . Also, by applying 4.3, it is easy to see that

I) g(t) = 1
2(sin t−cos t)+ 1

2 δ(t) ∈ D′ is a solution of X ′ = −X−δ′ ·
α
X+sin t

and

II) There exists c such that Yc(t) = c e−(t+π) − c e−π δ(t) is a wα-solution of
P 0c and (Yc + g)(−π) = a. In fact, Yc(−π) + g(−π) = c+ 1

2 and c+ 1
2 = a

implies c = a− 1
2 .

Hence,

X(t) =

(
a− 1

2

)
e−(t+π) −

(
a− 1

2

)
e−π δ(t) +

1

2
(sin t− cos t) +

1

2
δ(t)

=

(
a− 1

2

)
e−(t+π) +

1

2
(sin t− cos t) + e−π

[
1

2
(eπ + 1)− a

]
δ(t) ,

is the unique solution of P V
a in C1 ⊕D′m.
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5.3. In the examples presented the wα-solution does not depend on the α
function chosen. This does not happen in general although in this example the
α function does not appear explicitly in the solution.

Let us consider the problem

P V
1 ≡

{
X ′ − δ′X = δ′′,

X(−1) = 1 .

The associated problem

P 0c ≡ Q0c ≡
{
X ′ − δ′X = 0,

X(−1) = c ,

can be seen as a particular case of 5.1 with g = −i, a = c and t0 = −1 although
g was real in that case. Thus, there is one and only one wα-solution Yc = c(1+ δ)
of P 0c in C1 ⊕D′m for any α chosen. Also X = δ′ is a solution of X ′ = δ ·

α
X + δ′′

for all α such that α′′(0) = 0 and we can compute c because (Yc+g)(−1) = 1 and
c = 1 follows. Hence, X = 1+ δ+ δ′ is the unique wα-solution of P V

1 in C1⊕D′m
if we choose α such that α′′(0) = 0.

5.4. A little modification of the last example allows us to understand that
the solution can depend explicitly on the α-function. It is what happens in the
following problem

P 11 ≡
{
X ′ − δ′X = 1,

X(−1) = 1 .

It is easy to see that for each α the wα-solution of P 11 in C1 ⊕D′m is

X(t) =
1

1 + eα(−1)

(
1 + eα(t) + δ(t)

)
.
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