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EVOLUTION PROBLEMS ASSOCIATED WITH NONCONVEX
CLOSED MOVING SETS WITH BOUNDED VARIATION

C. Castaing and Manuel D.P. Monteiro Marques

Abstract: We consider the following new differential inclusion

−du ∈ NC(t)(u(t)) + F (t, u(t)) ,

where u : [0, T ] → IRd is a right-continuous function with bounded variation and du

is its Stieltjes measure; C(t) = IRd\ IntK(t), where K(t) is a compact convex sub-

set of IRd with nonempty interior; NC(t) denotes Clarke’s normal cone and F (t, u) is a

nonempty compact convex subset of IRd. We give a precise formulation of the inclusion

and prove the existence of a solution, under the following assumptions: t 7→ K(t) has

right-continuous bounded variation in the sense of Hausdorff distance; u 7→ F (t, u) is

upper semicontinuous and t 7→ F (t, u) admits a Lebesgue measurable selection (Theo-

rem 3.4); F is bounded (Theorem 3.2) or has sublinear growth (Remark 3.3). In partic-

ular, these results extend the Theorem 4.1 in [6].

1 – Introduction

In this paper, we deal with perturbations of evolution equations governed by

the sweeping process, i.e., with differential inclusions of the form

(1.1) −
du

dt
(t) ∈ NC(t)(u(t)) + F (t, u(t)) , u(t) ∈ C(t) ,

where NC(t) denotes an outward normal cone to the set C(t) and F is a multi-

function (set-valued function). The unperturbed problem

(1.2) −
du

dt
(t) ∈ NC(t)(u(t)) , u(t) ∈ C(t) ,
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with C(t) a (moving) convex set, was thoroughly studied in the 70’s mainly

by Moreau (e.g. [14]) who named it the sweeping process. Its applications to

Mechanics (for instance: quasistatical evolution, plasticity) are well known. In

[16], Valadier introduced the finite-dimensional case of a complement of a convex

set K(t), i.e., C(t) = IRd\ IntK(t), the normal cone being taken in the sense

of Clarke. Such a situation may be visualized as a point u(t) moving outside

IntK(t) and being pushed by the boundary of that convex set when contact is

established.

The addition of perturbations — roughly corresponding to the consideration

of external forces, in a mechanical setting — is quite natural. Under convexity

assumptions (on both C(·) and F (·, ·)) the fixed point technique is quite efficient

(see e.g. [12]). This is true under usual assumptions on F such as separate mea-

surability with respect to t and upper semicontinuity (closed graph) with respect

to u. One of the purposes of this paper is to weaken this type of requirement on

F , even in situations that are not suited to the fixed point approach.

However, the main objective is to consider perturbations of discontinuous

problems; to be precise, t 7→ C(t) is only assumed to have bounded variation,

with respect to Hausdorff distance. For convex C(t) this was studied in [12] and

another such study is found in [1, chapter III]. Here we deal with the harder case

of a complement of a possibly discontinuous moving convex set with bounded vari-

ation, so that the study of (1.1) needs a new mathematical formulation and non-

classical techniques, which provide deeper results. The lipschitzean case, which

is treated in [6], then follows as a corollary; it should be noted, however, that [6]

contains a finer estimate on the solution.

The paper is organized as follows. In section 2, some fundamental results have

to be recalled. In section 3, we give existence results for the considered problem

of a nonconvex moving set (either with bounded variation or lipschitzean).

2 – Auxiliary results

Let us recall the following new multivalued version of Scorza–Dragoni theorem.

Theorem 2.1. ([7]) Let I = [0, T ], T > 0 and λ be the Lebesgue measure

on I, with σ-algebra L(I). Let X be a Polish space and Y be a compact metric

space. Let F : I ×X → c(Y ) (nonempty closed subsets of Y ) be a multifunction

that satisfies the following hypotheses:

i) ∀ t ∈ I, graphFt = {(x, y) ∈ X × Y | y ∈ F (t, x)} is closed in X × Y ;
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ii) ∀x ∈ X, the multifunction t 7→ F (t, x) admits a (L(I),B(Y ))-measurable

selection.

Then, there exists a multifunction F0 from I ×X to c(Y ) ∪ {∅} whose graph

belongs to L(I)⊗ B(X)⊗ B(Y ) and which has the following properties:

(1) there is a λ-null set N , independent of (t, x), such that

F0(t, x) ⊂ F (t, x) , ∀ t /∈ N, ∀x ∈ X ;

(2) if u : I → X and v : I → Y are L(I)-measurable functions with v(t) ∈

F (t, u(t)) a.e., then v(t) ∈ F0(t, u(t)) a.e.;

(3) for every ε > 0, there is a compact subset Jε ⊂ I such that λ(I\Jε) < ε,

the graph of the restriction F0|Jε×X is closed and ∅ 6= F0(t, x) ⊂ F (t, x),

∀ (t, x) ∈ Jε ×X.

A convex version is also useful and it is immediately available. We denote by

ck(Y ) the set of nonempty compact convex subsets of a suitable set Y .

Corollary 2.2. Let I, λ and X be as in Theorem 2.1. Let Y be a compact

convex metrizable subset of a Hausdorff locally convex space. Let F : I ×X →

ck(Y ) be a multifunction such that: ∀ t ∈ I, graphFt is closed in X × Y and

∀x ∈ X, t 7→ F (t, x) admits a (L(I),B(Y ))-measurable selection. Then, there

exists a measurable multifunction F0 : I × X → ck(Y ) ∪ {∅}, which has the

properties (1)–(3) in the preceding theorem.

Proof: Applying Theorem 2.1 to F , we obtain a measurable multifunction

G0 with properties (1)–(3). Then we take F0(t, x) = coG0(t, x) (or we verify that

G0 must take convex values, by (2)).

This kind of version of Scorza–Dragoni theorem was first given in [11] and [15]

(but the essential nonemptiness in part (3) is missing). Applications to viability

theory are given e.g. in [5], [8], [10].

We close this section with a multivalued version of Dugundji’s “single-valued”

extension theorem ([9]), communicated by H. Benabdellah:

Theorem 2.3. Let E and X be two Banach spaces and K ⊂ E, D ⊂ X be

nonempty and closed. Let F be an upper semicontinuous multifunction defined

in K × D with values in cwk(X) (nonempty convex weakly compact subsets of

X), such that

∀ (t, x) ∈ K ×D , F (t, x) ⊂ c(t) (1 + ‖x‖)BX ,
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for some positive function c : K → [0,∞[ (B denotes the closed unit ball). Let

(Uλ)λ∈Λ be a locally finite open covering of E\K such that, for all λ,

0 < diamUλ ≤ d(Uλ,K) := inf{‖t
′ − s‖ : (t′, s) ∈ Uλ × K}. Let (ψλ)λ∈Λ be

a continuous partition of unity of E\K with suppψλ ⊂ Uλ. For every λ ∈ Λ,

choose tλ ∈ K such that dist(tλ, Uλ) < 2d(Uλ,K). Then the multifunction F̃

defined in E ×D by

F̃ (t, x) = F (t, x), if t ∈ K, x ∈ D ,

F̃ (t, x) =
∑

λ

ψλ(t)F (tλ, x), if t ∈ E\K, x ∈ D ,

is an upper semicontinuous extension of F to E × D, with values in cwk(X).

Moreover, we have F̃ (E × D) ⊂ coF (K × D) and, if c is constant, F̃ (t, x) ⊂

c(1+‖x‖)BX . In particular, if for all (t, x), F (t, x) ⊂ C where C is a convex set,

then the extension still satisfies F̃ (t, x) ⊂ C.

3 – The evolution of a nonconvex set with bounded variation

We consider perturbations of possibly discontinuous problems. To be precise,

we want to find a function u such that u(t) ∈ C(t), where

(3.1) C(t) = IRd\ IntK(t) ,

K(t) being a compact convex subset of IRd with nonempty interior, which may not

depend continuously on t. We assume that there is a positive (Radon) measure

dµ such that:

(3.2) h(K(s),K(t)) ≤ dµ(]s, t]) , ∀ 0 ≤ s ≤ t ≤ T ,

where h denotes Hausdorff distance between (closed) sets. We say that the mul-

tifunction K has right-continuous bounded variation or that it is rcbv. Then the

same is true for C since, by Lemme 4 in [16], h(C(s), C(t)) ≤ h(K(s),K(t)) and

so

(3.3) h(C(s), C(t)) ≤ dµ(]s, t]) , ∀ 0 ≤ s ≤ t ≤ T .

If such is the case, it is reasonable to expect that u : I :=[0, T ]→ IRd is only a

right-continuous function with bounded variation (rcbv, for short), its differential

or Stieltjes measure being denoted by du. Since the works of Moreau (e.g. [14])

it is well known that the differential inclusion

(3.4) −du ∈ NC(t)(u(t)) ,
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(with convex C(t)) has a precise meaning “in the sense of differential measures”.

In this so-called sweeping process by a convex set, it is required that the density

of du with respect to some positive measure dν satisfies

(3.5) −
du

dν
(t) ∈ NC(t)(u(t)), dν-a.e. ;

we may simply take dν = |du|, the measure of total variation of du. The same

definition applies to the case (3.1), which was recently considered in [3], [4] and

which may be called the pushing process by a discontinuous convex set K(t).

Here we consider a more general problem, in that we accept the presence of

a perturbation, mathematically expressed by means of a multifunction (t, u) 7→

F (t, u) with compact convex values. It is assumed that this perturbation is effec-

tive Lebesgue almost everywhere. This is in analogy with a dynamical problem

treated by the second author (see [13, chapter 3]) where F is a single-valued force.

In the interpretation of the differential inclusion, which is formally written as

(3.6) −du ∈ NC(t)(u(t)) + F (t, u(t)) ,

we must then account for the presence of two possibly unrelated measures, namely

the Stieltjes measure du and Lebesgue measure λ (or dt). The following formu-

lation is adequate:

Problem 3.1: We say that a function u : I = [0, T ] → IRd is a solution to

(3.6) if it is rcbv (right-continuous with bounded variation), u(t) ∈ C(t), ∀ t ∈ I,

and there exist a positive Radon measure dν and a function z ∈ L1(I, dt, IRd)

satisfying the following conditions:

h(C(s), C(t)) ≤ dν(]s, t]) , ∀ 0 ≤ s ≤ t ≤ T ,(3.7)

du and dt have densities with respect to dν ,(3.8)

z(t) ∈ F (t, u(t)), dt-a.e. ,(3.9)

−
du

dν
(t)− z(t)

dt

dν
(t) ∈ NC(t)(u(t)), dν-almost everywhere in I ,(3.10)

where the r.h.s. is Clarke’s normal cone.

Some comments are in order. In the l.h.s. of (3.10), we consider the densities

announced in (3.8). We shall see that dν = dµ + dt is a good choice. In the

lipschitzean case, considered below, we have dµ = k1 dt so that we can take

dν = (k1 + 1) dt; then, the right-hand side of (3.10) being conical, we see that

(3.10) is equivalent to

−
du

dt
(t)− z(t) ∈ NC(t)(u(t))



78 C. CASTAING and M.D.P. MONTEIRO MARQUES

dt-almost everywhere, which together with (3.9) gives the usual inclusion

(3.11) −
du

dt
(t) ∈ NC(t)(u(t)) + F (t, u(t)), dt-a.e. .

The following existence theorem for Problem 3.1 is obtained through a dis-

cretization procedure. Notice that the use of fixed point theorems is precluded

by the nonconvexity of the sets C(t).

Theorem 3.2. Let I = [0, T ] and let K : I → ck(IRd) take compact convex

values with nonempty interior. Assume that there exists a positive measure dµ

on I such that (3.2) holds and define C(t) by (3.1). Let F : I × IRd → ck(IRd) be

an upper semicontinuous multifunction with nonempty compact convex values,

which is bounded:

(3.12) ∃M > 0: F (t, u) ⊂MB, ∀ (t, u) ∈ I × IRd ,

where B is the closed unit ball of IRd. Let u0 ∈ C(0) be given.

Then, there is an rcbv solution of Problem 3.1 such that u(0) = u0. Moreover,

we may take dν = dµ+ dt and the following estimate holds for a constant c (e.g.

c = 2M + 1):

(3.13) ‖u(t)− u(s)‖ ≤ c dν(]s, t]) , ∀ 0 ≤ s ≤ t ≤ T .

Proof: 1) Algorithm – We discretize in “time” t, but we must proceed

very carefully, since there is an interplay between Lebesgue measure and a general

measure dµ, which for instance may have atoms. Let us define:

dν = dµ+ dt ,(3.14)

v(t) =

∫

]0,t]
dν = dν(]0, t]) , t ∈ I ,(3.15)

V = dν(]0, T ]) = v(T ) .(3.16)

Then v is a nondecreasing right-continuous function with v(0) = 0. Moreover,

inequality (3.3) implies (3.7), since dµ ≤ dν; i.e.:

(3.17) h(C(s), C(t)) ≤ dν(]s, t]) = v(t)− v(s) , ∀ s ≤ t .

For every integer n ≥ 1, we consider nodes of discretization tn,i obtained in

the following manner. The pre-images

Jn,j := v
−1

([
j

n
V,
j + 1

n
V

[)
,
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with j = 0, ..., n, are intervals, closed on their left and relatively open on the right

in I; they may be empty or reduce to a point (if j = n). The nonempty Jn,j form

a partition of I. We order their left endpoints and denote them by

(3.18) tn,0 = 0 < tn,1 < ... < tn,pn = T ,

where pn ≤ n. Since two consecutive nodes tn,i and tn,i+1 are the endpoints of

some Jn,j and in this set v grows less than
V
n , it follows that:

(3.19) ∀ t ∈ [tn,i, tn,i+1[ : dν(]tn,i, t]) = v(t)− v(tn,i) <
V

n
.

It also follows that:

(3.20) tn,i+1 − tn,i ≤ dν(]tn,i, tn,i+1[) ≤
V

n
.

Notice also that every atom t of dµ, i.e., every discontinuity point of the multifunc-

tion C is one of the nodes tn,i for every n large enough (depending on t). In fact

for such a t, there exists m such that dµ({t}) > V/m and so v(t)− v−(t) > V/n,

∀n ≥ m (v− denotes the left-limit of v); hence, by (3.19) t is not an interior point

of some Jn,i.

We proceed by induction, defining finite sequences (un,i) and (zn,i) by:

un,0 = u0 ,(3.21)

zn,i ∈ F (tn,i, un,i) , i ≥ 0 ,(3.22)

un,i+1 ∈ projC(tn,i+1)

(
un,i − (tn,i+1 − tn,i) zn,i

)
,(3.23)

where projC(u) denotes the set of proximal points y of u in the set C, i.e. of those

y ∈ C such that ‖y − u‖ = dist(u,C).

Then we define the following functions un, zn : I → IRd:

un(t) = un,i +
dν(]tn,i, t])

dν(]tn,i, tn,i+1])

(
un,i+1 − un,i + (tn,i+1 − tn,i) zn,i

)
(3.24)

− (t− tn,i) zn,i , ∀ t ∈ [tn,i, tn,i+1] ;

zn(t) = zn,i , ∀ t ∈ [tn,i, tn,i+1[ .(3.25)

2) Estimates and properties – The functions un are rcbv and their Stieltjes

measures are given by

(3.26) dun =

(n−1∑

i=0

wn,i

dν(]tn,i, tn,i+1])
χ
]tn,i,tn,i+1]

)
dν − zn dt ,
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where χ
A
denotes the characteristic function of A and we introduce a simplifying

notation

(3.27) wn,i :=un,i+1 −
(
un,i − (tn,i+1 − tn,i) zn,i

)
∈ −NC(tn,i+1)(un,i+1) ,

by definition (3.23) and a property of proximal points.

Notice that (3.25), (3.22) and (3.12) imply that

(3.28) ‖zn(t)‖ ≤M , ∀ t, n .

From (3.26) we have an expression for the density

(3.29)
dun + zn dt

dν
(t) =

1

dν(]tn,i, tn,i+1])
wn,i , ∀ t ∈ ]tn,i, tn,i+1] .

By (3.27) and (3.23)

‖wn,i‖ = dist
(
un,i − (tn,i+1 − tn,i) zn,i, C(tn,i+1)

)

and by construction un,i ∈ C(tn,i). Hence, by (3.3), (3.12), (3.14) and (3.22):

‖wn,i‖ ≤ h
(
C(tn,i), C(tn,i+1)

)
+ (tn,i+1 − tn,i) ‖zn,i‖

≤ dµ(]tn,i, tn,i+1]) +M(tn,i+1 − tn,i)

≤ (M + 1) dν(]tn,i, tn,i+1]) .

So (3.29) leads to the following estimate

(3.30)

∥∥∥∥
dun + zn dt

dν
(t)

∥∥∥∥ ≤M + 1 , ∀ t ∈ I .

Since dt has a density with respect to dν with 0 ≤ dt
dν ≤ 1, the l.h.s. of (3.29) is

a sum of densities and we obtain:

(3.31)

∥∥∥∥
dun
dν
(t)

∥∥∥∥ ≤M + 1 + ‖zn(t)‖ ≤ 2M + 1, dν-a.e. .

Let us define step-functions θn, δn : I → I by δn(0) = tn,1 and

θn(t) = tn,i, if t ∈ [tn,i, tn,i+1[ ,(3.32)

δn(t) = tn,i+1, if t ∈ [tn,i, tn,i+1[ .(3.33)

Then it is clear by (3.20) that

(3.34) θn(t) ↑ t, δn(t) ↓ t uniformly on I .



EVOLUTION OF NONCONVEX SETS 81

By construction, the functions un and zn have the following properties (see

(3.21)–(3.25), (3.27) and (3.29))

un(0) = un,0 = u0 ,(3.35)

un(θn(t)) = un,i ∈ C(θn(t)) ,(3.36)

zn(t) ∈ F (θn(t), un(θn(t))) ,(3.37)

−
dun + zn dt

dν
(t) ∈

1

dν(]tn,i, tn,i+1])
NC(tn,i+1)(un,i+1) =(3.38)

= NC(δn(t))(un(δn(t))) ,

since dν(]tn,i, tn,i+1]) > 0 and the r.h.s. is a cone.

3) Extraction of subsequences – By (3.28) we may extract a subsequence

still denoted by (zn) such that

(3.39) zn → z in σ
(
L∞(I, dt; IRd), L1(I, dt; IRd)

)
.

By (3.31) we have

(3.40) |dun| ≤

∥∥∥∥
dun
dν

∥∥∥∥ dν ≤ (2M + 1) dν ,

in the sense of the order of real measures. Since un(0) = u0, then by a com-

pactness result (see e.g. [13, Theorem 0.3.4]) we can extract a subsequence still

denoted by (un) which converges pointwisely to an rcbv function u : I → IRd.

Moreover the measure of total variation satisfies

(3.41) |du| ≤ (2M + 1) dν ,

so that (3.8) and (3.13) hold.

4) Existence of a solution – Clearly u(0) = limun(0) = u0 and all we have

to check is (3.9), u(t) ∈ C(t) and (3.10).

First we show that

(3.42) un(θn(t))→ u(t) , ∀ t ∈ ]0, T ] .

By (3.31) and (3.19) we have

‖un(θn(t))− un(t)‖ ≤
∫

]θn(t),t]

∥∥∥∥
dun
dν

∥∥∥∥dν ≤ (2M + 1) dν(]θn(t), t]) ≤ (2M + 1)
V

n
,

so that limun(θn(t)) = limun(t) = u(t).
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Then (3.34), (3.37), (3.39), (3.42) and the assumption that the closed convex

valued multifunction F is globally upper semicontinuous classically imply that

(3.9) holds dt-almost everywhere.

By (3.36), (3.17) and (3.19):

dist(un(θn(t)), C(t)) ≤ h(C(θn(t)), C(t)) ≤ dν(]θn(t), t]) <
V

n
.

Hence by using (3.42) and the fact that C(t) is a closed set, we obtain:

(3.43) u(t) ∈ C(t) , ∀ t ∈ I .

Concerning (3.10), we already know that

(3.44) ξn(t) :=−
dun
dν
(t)− zn(t)

dt

dν
(t)

satisfies (3.38); to be precise, if we recall (3.30)

(3.45) ξn(t) ∈ NC(δn(t))(un(δn(t))) ∩ (M + 1)B

dν-almost everywhere (densities being so defined). By construction, we have

(3.46) ξn → ξ :=−
du

dν
− z

dt

dν
in σ

(
L∞(I, dν; IRd), L1(I, dν; IRd)

)
.

In fact, the pointwise convergence of (un) to u implies the weak-∗ convergence of
dun

dν to
du
dν in L

∞(I, dν; IRd) (use the test functions χ
]s,t]
); while, if g∈L1(I, dν; IRd)

— hence g is also Lebesgue-integrable — then by (3.39)

∫
zn

dt

dν
g dν =

∫
zn g dt →

∫
z g dt =

∫
z
dt

dν
g dν ,

that is, zn
dt
dν → z dt

dν in σ(L
∞(I, dν; IRd), L1(I, dν; IRd)).

Moreover,

(3.47) un(δn(t))→ u(t) ,

since un(t)→ u(t) and

‖un(δn(t))− un(t)‖ ≤ (2M + 1) dν(]t, δn(t)])→ 0 ,

because ]t, δn(t)] ↓ ∅.

It is known ([3], [4]) that the compact convex valued multifunction

(3.48) φ(t, u) :=NC(t)(u) ∩ (M + 1)B (t ∈ I, u ∈ IRd)
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has a closed graph in Ir × IR
d × IRd (Ir denoting I endowed with the right-

topology). Since (3.45) is rewritten as (δn(t), un(δn(t)), ξn(t)) ∈ graphφ, then

(3.34), (3.46) and (3.47) imply that ξ(t) ∈ φ(t, u(t)), dν-a.e.; that is, (3.10)

holds.

Remark 3.3. From the existence of extensions of Gronwall inequality to

discontinuous cases (see [12, Lemme 4] and [2, §3]) one might expect that the

conclusion of Theorem 3.2 still holds true under sublinear growth assumptions

on F . If for instance

F (t, u) ⊂ c(1 + ‖u‖)B ,

where c > 0 is fixed, then a simple argument applies. Notice that it suffices to

show that zn, un remain bounded (inequality (3.28) was essential in the above

proof). By (3.23) and (3.17):

‖un,i+1 − un,i‖ ≤ dist
(
un,i − (tn,i+1 − tn,i) zn,i, C(tn,i+1)

)
+ (tn,i+1 − tn,i) ‖zn,i‖

≤ h
(
C(tn,i), C(tn,i+1)

)
+ 2(tn,i+1 − tn,i) ‖zn,i‖

≤
(
1 + 2 ‖zn,i‖

)
dν(]tn,i, tn,i+1]) .

But zn,i ∈ F (tn,i, un,i) implies ‖zn,i‖ ≤ c(1 + ‖un,i‖), so

‖un,i+1‖ ≤ (1 + 2 c)αi + 2 cαi ‖un,i‖ ,

where αi := dν(]tn,i, tn,i+1]) satisfies
∑n−1

i=0 αi = dν([0, T ]) = V . By induction,

this is easily seen to imply that

‖un,i+1‖ ≤
[
‖un,0‖+ (1 + 2 c)

i∑

j=0

αj
]
exp

(
2 c

i∑

j=0

αj
)
.

Thus,

∀ i, ‖un,i‖ ≤
[
‖u0‖+ (1 + 2 c)V

]
e2cV =: c1 ,

and ‖zn(t)‖ ≤M1 := c(1 + c1), ∀ t, ∀n.

By using the auxiliary results of §2 we are able to extend Theorem 3.2:

Theorem 3.4. The conclusion of Theorem 3.2 holds true if we replace the

assumption of global upper semicontinuity of F : I × IRd → ck(IRd) by the

following hypotheses:

∀u ∈ IRd : t 7→ F (t, u) admits a L(I)-measurable selection ;(3.49)

∀ t ∈ I : u 7→ F (t, u) is upper semicontinuous .(3.50)
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Proof: By Corollary 2.2, there is a multifunction F0 : I×X → ck(Y )∪{∅} where

Y = MB, which is measurable and has the properties (1)–(3) in Theorem 2.1.

That is,

(1) there is a setN ⊂ I, independent of (t, u), such thatN has zero (Lebesgue)

measure and F0(t, u) ⊂ F (t, u), ∀ t ∈ I\N , ∀u ∈ IRd;

(2) if u : I → IRd and v : I → IRd are L(I)-measurable functions with

v(t) ∈ F (t, u(t)) a.e., then v(t) ∈ F0(t, u(t)) a.e.;

(3) for every ε > 0, there is a compact subset Jε ⊂ I such that λ(I\Jε) < ε,

the graph of the restriction F0|Jε×IRd is closed and ∅ 6= F0(t, u) ⊂ F (t, u),

∀ (t, u) ∈ Jε × IR
d.

By property (3), there exists a sequence of compact sets Jn ⊂ I with λ(I\Jn) =

εn → 0 such that the restriction of F0 to Jn × IR
d has closed graph (i.e., it is

upper semicontinuous, since it takes compact values) and has nonempty values;

we may also assume that (Jn) is increasing. By Theorem 2.3, there is an upper

semicontinuous extension F̃n of F0|Jn×IRd to I × IRd, with F̃n(t, u) ⊂MB, for all

(t, u) ∈ I × IRd.

We now apply Theorem 3.2 with F̃n substituted for F . Thus, for every n,

there is an rcbv function un : I → IRd and a function zn ∈ L∞(I, dt; IRd) such

that un(0) = u0; un(t) ∈ C(t), ∀ t ∈ I; zn(t) ∈ F̃n(t, un(t)) dt-a.e. and

−dun − zn dt ∈ NC(t)(un(t)) ,

in the sense explained above (Definition 3.1). From Theorem 3.2, we also know

that, for every n, ‖zn(t)‖ ≤M (dt-a.e.); ‖dun+zn dt
dν (t)‖ ≤M +1, dν-a.e. and also

|dun| ≤ c dν, where c = 2M +1. The already mentioned compactness result ([13,

Theorem 0.3.4]) allows the extraction of a subsequence still denoted (un) which

pointwisely converges to an rcbv function u : I → IRd with |du| ≤ c dν. And

simultaneously we may extract a subsequence, still denoted (zn), which weakly-∗

converges to a function z ∈ L∞(I, dt; IRd).

Clearly u(0) = u0 and u(t) ∈ C(t), ∀ t.

We show that (3.9) holds. By construction, there exist Lebesgue null sets Nn

such that ∀ t ∈ Jn\Nn:

(3.51) zn(t) ∈ F0(t, un(t)) .

Let N0 :=(I\
⋃
n Jn) ∪

⋃
nNn, which has zero measure. If t /∈ N0, then there is

p = p(t) such that t /∈ Jn\Nn for all n ≥ p. Hence, zn(t) ∈ F0(t, un(t)), for all

n ≥ p. Since F0 is upper semicontinuous in Jp × IR
d and un(t)→ u(t), it follows
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that

∀x′ ∈ (IRd)′ = IRd , lim sup
n

δ∗(x′ |F0(t, un(t))) ≤ δ∗(x′ |F0(t, u(t))) ;

here δ∗(x′ |A) = sup{〈x′, x〉 : x ∈ A} is the support function of a set A and 〈·, ·〉

is the scalar and duality product of IRd. For t /∈ N0 and n ≥ p = p(t), we have

〈x′, zn(t)〉 ≤ δ∗(x′ |F0(t, un(t))), thus lim sup
n

〈x′, zn(t)〉 ≤ δ∗(x′ |F0(t, u(t))) ,

where the right-hand side is a measurable function. Since this leaves out only a

null set, it follows that, for every measurable set A ⊂ I and every x′ ∈ IRd,

∫

A
〈x′, x(t)〉 dt = lim

n

∫

A
〈x′, zn(t)〉 dt ≤

∫

A
δ∗(x′ |F0(t, u(t))) dt ,

by Fatou’s lemma. This is known to imply that z(t) ∈ F0(t, u(t)) ⊂ F (t, u(t))

a.e..

Concerning (3.10), we extract from ξn :=−
dun+zn dt

dν a subsequence — notation

unchanged — that converges weakly-∗ in L∞(I, dν; IRd) to ξ :=−du+z dt
dν . With

φ defined in (3.48), we have ξn(t) ∈ φ(t, un(t)). Hence, as in the end of the proof

of Theorem 3.2, we conclude that ξ(t) ∈ φ(t, u(t)) ⊂ NC(t)(u(t)) dν-a.e.

The variations of our techniques allow us to obtain several variants without

fundamental changes. Let us mention particularly the following one which is an

extension of Theorem 4.1 in [6].

Corollary 3.5. Let I = [0, T ], T > 0. Let K : I → ck(IRd) be a multifunc-

tion with compact convex values in IRd, having nonempty interior, and which is

lipschitzean with respect to Hausdorff distance: h(K(t),K(s)) ≤ k1 |t − s|. The

complement of the interior of K(t) is denoted C(t) = IRd\ IntK(t). Let X = IRd

and Y = k2B, where B is the closed unit ball of IRd. Let F : I × X → ck(Y )

(nonempty compact convex subsets of Y ) be a multifunction that satisfies the

following hypotheses:

(i) ∀ t ∈ I, graphFt = {(x, y) ∈ X × Y | y ∈ F (t, x)} is closed in X × Y ,

(ii) ∀x ∈ X, the multifunction t 7→ F (t, x) admits a measurable selection.

Then, for every a ∈ C(0) there is a k-lipschitzean function x : I → IRd such

that x(0) = a, x(t) ∈ C(t), ∀ t, and

(3.52) −ẋ(t) ∈ NC(t)(x(t)) + F (t, x(t)), almost everywhere in I ,
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where NC(x) denotes the Clarke normal cone at x. Moreover, we have

(3.53) ‖x(t)− x(s)‖ ≤
√
k21 + k

2
2 |t− s| = k |t− s| .

Proof: Theorem 3.4 applies with µ=k1 dt and M=k2: there is an rcbv solu-

tion u, relabeled as x, to (3.7)–(3.10). Moreover, by (3.41), |dx| ≤ (2 k2 + 1) dν,

where dν = dµ+dt = (k1+1) dt. Hence x is k
∗-lipschitzean, with k∗ = (2 k2+1) ·

·(k1+1), and (3.9)–(3.10) reduce to (3.52). By applying the existence Theorem 4.1

in [6] to the approximate problems (with perturbations F̃n) we would obtain the

precise lipschitzean constant k = (k21 + k
2
2)

1/2 in (3.53).
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