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A NOTE ON OCTAHEDRAL SPHERICAL FOLDINGS

A.M. d’Azevedo Breda

Abstract: We show that the set of octahedral folding classes is a differentiable

manifold of dimension six.

1 – Introduction

An isometric folding of S2 is a map f : S2 → S2 which sends piecewise geodesic

segments on S2 to piecewise geodesic segments on S2 of the same length.

The points x ∈ S2 where f fails to be differentiable are the singularities of f .

We shall denote by
∑
f the set of singularities of f .

It is known [2] that for each x ∈
∑
f the singularities of f near x form the

image of an even number of geodesic rays emanating from x making alternate

angles α1, α2, ..., αn, β1, β2, ..., βn, where

n∑

i=1

αi =
n∑

i=1

βi = π .

This condition on the angles will be called the angle folding relation. Thus the

set of singularities of an isometric folding of S2 can be regarded as a graph on M

satisfying the angle-folding relation.

2 – Octahedral foldings

A non-trivial isometric folding f of S2 is an octahedral spherical folding or

simply an octahedral folding if the underlying graph of its singularity set is an
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octahedral graph, that is,
∑
f partitions S2 into 8 triangles. One of the simplest

octahedral foldings is given by the map S : S2 → S2 with S(x, y, z) = (|x|, |y|, |z|)

referred to as the standard folding .

Let O denote the set of all octahedral foldings and G be the quotient space

O/ ∼ obtained from O by introducing the equivalence relation f ∼ g iff there

exist an isometry Θ: S2 → S2 such that Θ(
∑
f) =

∑
g.

The equivalence relation∼may be extended in a natural way to an equivalence

relation on the set T of tilings of S2 whose underlying graph is an octahedral

graph obeying the angle folding relation.

Proposition 2.1. The map Ψ: G → T / ∼ given by Ψ([f ]) = [T ], where T

is the spherical tiling whose underlying graph is
∑
f , is bijective.

Proof: We first show that Ψ is surjective.

Let [T ] ∈ T / ∼. Denote by ∆i, i = 1, 2, ..., 8, ej , j = 1, 2, ..., 12 and vk,

k = 1, 2, ..., 6, the faces, edges and vertices of T respectively and label them as

indicated in fig. 1.

For each j = 1, 2, ..., 12, let %j be the reflection in the great circle containing

ej . Consider the map f : S2 → S2 given by

f |∆1
= id|∆1

(id denotes the identity map on S2) ,

f |∆2
= %1|∆2

, f |∆3
= (%1 ◦ %2)|∆3

, 4|∆4
= %4|∆4

, f |∆5
= %5|∆5

,

f |∆6
= (%5 ◦ %9)|6, f |∆7

= (%5 ◦ %9 ◦ %10)|∆7
, f |∆8

= (%5 ◦ %12)|∆8
.

Fig. 1
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Since, every vertex of T satisfies the angle folding relation and every %j(ej) =

ej , for j = 1, 2, ..., 12 we conclude that f is a well defined map. Moreover f |∆j

is an isometry for each j = 1, 2, ..., 12, and so f is an isometric folding. Clearly

Ψ([f ]) = [T ].

Assume now that Ψ([f ]) = Ψ([g]) = [T ]. It is straightforward to show the

existence of a spherical isometry Θ such that
∑
f = Θ(

∑
g).

Consider the map Γ : T / ∼→ IR24 given by Γ([T ]) = (ϕ1, ϕ2, ..., ϕ24), ϕ1 ≤

ϕ2 ≤ ... ≤ ϕ24, where ϕi, i = 1, 2, ..., 24, are the 24 angles of the eight triangular

faces of T and topologies T /σ with the topology induced by Γ. Use now the map

Ψ defined in Proposition 2.1 to topologies G.

Let [T ] ∈ T /σ. The tiling T has 8 triangular faces Tj , j = 1, 2, ..., 8, corre-

sponding to 24 angles. Since the angle folding relation has to be fulfilled only 12

angles need to be specified in principle. However we shall show that there is a

particular set of 6 angles whose knowledge is enough to determine the other six.

Proposition 2.2. If the vertices v1, v2, ..., v5 of the spherical pattern T

indicated bellow obey the angle folding relation then θ + θ∗ = π.

Fig. 2

Proof: Let v1, v2, ..., v7 be the vertices of such a spherical tiling T . It is then

possible to label T as indicated in figure 3, where ϕi, ϕi = π − ϕi, i = 1, ..., 6, θ

and θ∗ stand for the angles and a, b, ..., h for the edges.
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Fig. 3

Using spherical trigonometry, we may conclude, on the one hand,

cosh =
cos θ + cosϕ2 cosϕ4

sinϕ2 sinϕ4
,

and on the other hand

cosh = cos b cos d+ sin b sin d cosϕ6

=

(
cosϕ1 + cosϕ2 cosϕ3

sinϕ2 sinϕ3

)(
cosϕ5 − cosϕ3 cosϕ4

sinϕ3 sinϕ4

)
− sin b sin d cosϕ6

and so

(1)
cos θ =

(cosϕ1 + cosϕ2 cosϕ3) (cosϕ5 − cosϕ3 cosϕ4)

sin2 ϕ3

− sin b sin d sinϕ2 sinϕ4 cosϕ6 − cosϕ2 cosϕ4 .

Also

cos g =
cos θ∗ + cosϕ1 cosϕ5

sinϕ1 sinϕ5

and

cos g = cos c cos e+ sin c sin e cosϕ6

=
(cosϕ2 + cosϕ1 cosϕ3)

sinϕ1 sinϕ3

(cosϕ4 − cosϕ3 cosϕ5)

sinϕ3 sinϕ5
+ sin c sin e cosϕ6
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hence

(2)
cos θ∗ =

(cosϕ2 + cosϕ1 cosϕ3) (cosϕ4 − cosϕ3 cosϕ5)

sin2 ϕ3

+ sin c sin e sinϕ1 sinϕ5 cosϕ6 − cosϕ1 cosϕ5 .

taking into account that

sin b

sin c
=

sinϕ1
sinϕ2

and
sin d

sin e
=

sinϕ5
sinϕ4

we can rewrite (1) as follows

(3)
cos θ =

(cosϕ1 + cosϕ2 cosϕ3) (cosϕ5 − cosϕ3 cosϕ4)

sin2 ϕ3

− sin c sin e sinϕ1 sinϕ5 cosϕ6 − cosϕ2 cosϕ4 .

From (2) and (3) we have cos θ∗ = − cos θ, that is, θ∗ = π − θ.

Corollary 2.1. If five of the six vertices of an octahedral tiling T obey the

angle folding relation then T ∈ T .

Observe that in Proposition 2.2 the spherical tiling does not need to be an

octahedral tiling.

Proposition 2.3. The space T / ∼ is a differentiable manifold of dimension

6.

Proof: Given the angles ϕj , j = 1, 2, ..., 6, we may construct an octahedral

tiling T obeying the angle folding relation as follows. Denote by v1, v2, ..., v6
the vertices of T . Up to an isometry, we may assume that v3 = (0, 0, 1), v1 is

in the great circle determined by the plane y = 0 and v2 is in the hemisphere

corresponding to y > 0.

The vertices v1 and v2 are uniquely determined if we require that, with v3,

they are the vertices of a spherical triangle T1 with angles ϕ1 = 6 (v̂1v2, v̂1v3),

ϕ2 = 6 (v̂1v2, v̂2v3) and ϕ3 = 6 (v̂1v3, v̂2v3), where 6 means angle and v̂w means

the geodesic segment joining v to w.

The angles ϕj , j = 4, 5, 6, determine, in a unique way, points v4 and v5 on S
2

such that

i) v2, v3, v4 are the vertices of a triangle T2 adjacent to T1 at v̂2v3, with

v6 = π − ϕj = 6 (v̂2v3, v̂3v4);
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ii) v3, v4, v5 are the vertices of a triangle T3 adjacent to T2 at v̂3v4, with angles

ϕ3 = π − ϕ3 = 6 (v3v4, v̂3v5), ϕ4 = 6 (v̂3v4, v̂3v5) and ϕ5 = 6 (v̂3v4, v̂3v5).

Let a, b, c be the edges of T1 opposite the angles ϕ3, ϕ1 and ϕ2 respectively

and d, e, f be the edges of T3 opposite the angles ϕ5, ϕ4 and ϕ3 respectively.

Then the edges of T2 are b, d and h, where h is opposite ϕ6, and the edges of T4,

the triangle adjacent to T1 and T3, are e, c and g where g is the edge opposite to

ϕ6.

In this construction the vertex v3 obeys automatically the angle folding re-

lation. Since the vertices v2 and v4, also obey that relation we are led to

the construction of a unique triangle T5 adjacent to T2 at v̂2v4, with angles

ϕ2, ϕ4 and θ, where θ = arccos(cosh sinϕ2 sinϕ4 − cosϕ2 cosϕ4), and vertices

v2, v4 and v6. Similarly, working with v1 and v5 we obtain a unique trian-

gle T6 adjacent to T4 at v̂1v5. The angles of T6 are ϕ4, ϕ5 and θ∗ where

θ∗ = arccos(cos g sinϕ1 sinϕ5 − cosϕ1 cosϕ5) and its vertices are v1, v3 and v7.

By Proposition 2.2 one has θ∗ = π − θ.

We shall have an octahedral spherical f -tiling if (and only if) v6 = v7. We

show this next.

Observe that T5 has h, i and j as edges where i and j are the edges opposite

to ϕ4 and ϕ2 respectively and T6 has g, l and m as edges where l and m are

respectively the edges opposite to ϕ1 and ϕ5.

Let ψ1 be the angle 6 (a, i) and ψ2 be the angle 6 (a,m). up to an isometry

there exists a unique spherical triangle A such that a and i are edges of A and

ψ1 = 6 (a, i) is one of its angles. Let m∗ be the edge of A opposite to ψ1 and δ

be the angle of A opposed to i. Using spherical trigonometry we have

cosm∗ = cos a cos i+ sin a sin i cosψ1

=

(
cosϕ3 + cosϕ1 cosϕ2

sinϕ1 sinϕ2

)(
− cosϕ4 + cosϕ1 cos θ

sinϕ2 sin θ

)
+ sin a sin i cosψ1 .

Since

cosψ1 =
cos d− cos b cosh

sin b sinh
and

sin a sin i

sin b sinh
=

sinϕ3 sinϕ4
sinϕ1 sin θ

,

we have

cosm∗ =

(
cosϕ3 + cosϕ1 cosϕ2

sinϕ1 sinϕ2

)(
− cosϕ4 + cosϕ1 cos θ

sinϕ2 sin θ

)

+
sinϕ3 sinϕ4
sinϕ1 sin θ

(− cos d+ cos b cosh) .
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Using the fact that

cos d =
cosϕ5 − cosϕ3 cosϕ4

sinϕ3 sinϕ4
, cos b =

cosϕ1 + cosϕ2 cosϕ3
sinϕ2 sinϕ3

and

cosh =
cos θ + cosϕ2 cosϕ4

sinϕ2 sinϕ4
,

one has

(1)

cosm∗ =
(cosϕ3 + cosϕ1 cosϕ2) (− cosϕ4 − cosϕ2 cos θ)

sinϕ1 sin
2 ϕ2 sin θ

+
1

sinϕ1 sin θ

(
− cosϕ5 + cosϕ3 cosϕ4

+
(cosϕ1 + cosϕ2 cosϕ3) (cos θ + cosϕ2 cosϕ4)

sin2 ϕ2

)

=
1

sinϕ1 sin θ

(
− cosϕ3 cosϕ4 − cosϕ1 cos

2 ϕ2 cos θ

sin2 ϕ2

− cosϕ5 + cosϕ3 cosϕ4 +
cosϕ1 cos θ

sin2 ϕ2

+ cosϕ2 cosϕ3 cos θ + cos2 ϕ2 cosϕ3 cosϕ4

)

=
1

sinϕ1 sin θ

(
(cos2 ϕ2 − 1) cosϕ3 cosϕ4

sin2 ϕ2
+ cosϕ3 cosϕ4

+
(1− cos2 ϕ2) cosϕ1 cos θ

sin2 ϕ2
− cosϕ5

)

=
− cosϕ5 + cosϕ1 cos θ

sin2 ϕ2
= cosm .

On the other hand

(2)

cos δ =
cos i− cos a cosm

sin a sinm

=
1

sin a sinm

(
− cosϕ4 − cosϕ2 cos θ

sinϕ2 sin θ

−

(
cosϕ3 + cosϕ1 cosϕ2

sinϕ1 sinϕ2

)(
− cosϕ5 + cosϕ1 cos θ

sinϕ1 sin θ

))

=
1

sin2 ϕ1 sin a sinm

(
− cosϕ4 sin

2 ϕ1 − cosϕ2 cos θ + cosϕ3 cos5

− cosϕ1 cosϕ3 cos θ + cosϕ1 cosϕ2 cosϕ5

)
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and

cosψ2 = −

(
cos e− cos g cos c

sin g sin c

)

= −
1

sin g sin c

(
cosϕ4 − cosϕ3 cosϕ5

sinϕ3 sinϕ5
− cos θ + cosϕ1 cosϕ5

sinϕ1 sinϕ5

cosϕ2 + cosϕ1 cosϕ3
sinϕ1 sinϕ3

)

Since,

sin g

sinm
=

sin θ

sinϕ5
and

sin c

sin a
=

sinϕ2
sinϕ3

one have

(3)

cosψ2 = −
1

sin a sinm sin2 ϕ1

(
cosϕ4 sin

2 ϕ1 + cosϕ2 cos θ − cosϕ3ϕ5

+ cosϕ1 cosϕ3 cos θ − cosϕ1 cosϕ2 cosϕ5

)
.

Taking into account (1), (2) and (3) one has m = m∗, δ = ψ2 and so v6 = v7.

We may now conclude that the map Φ : T / ∼→ ]0, π[×...× ]0, π[, defined

by Φ([T ]) = (ϕ1, ϕ2, ..., ϕ6), is a homeomorphism and consequently T / ∼ is a

differentiable manifold of dimension 6.

S. Robertson [2] has conjectured that the set of all spherical foldings is con-

nected. We do not have an answer to this question yet, but Proposition 2.3 enable

us to prove

Corollary 2.2. The set G of all octahedral foldings (up to an isometry) is

connected (in fact, path-connected).

Proof: Using Propositions 2.3 and 2.1, we can give to G a structure of a

differentiable manifold with dimension 6. In fact, with notations as above, the

map Υ = Φ◦Ψ: G → ]0, π[×...× ]0, π[ given by Υ([f ]) = (ϕ1, ϕ2, ..., ϕ6) gives rise

to a differentiable structure for G.

Let [f ] ∈ G, Υ([f ]) = (ϕ1, ϕ2, ..., ϕ6) and γ : [0, 1] → ]0, π[×...×]0, π[ the

map given by γ(t) = ((1 − t)ϕ1 + tπ
2
, (1 − t)ϕ2 + tπ

2
, ..., (1 − t)ϕ6 + tπ

2
). Then

γ = Υ−1 ◦γ : [0, 1]→ G is a path joining [f ] to the standard folding S. Therefore

G is path-connected.
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