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A NOTE ON OCTAHEDRAL SPHERICAL FOLDINGS

A.M. D’AZEVEDO BREDA

Abstract: We show that the set of octahedral folding classes is a differentiable
manifold of dimension six.

1 — Introduction

An isometric folding of S? isamap f: S? — S? which sends piecewise geodesic
segments on S? to piecewise geodesic segments on S? of the same length.

The points = € S? where f fails to be differentiable are the singularities of f.
We shall denote by > f the set of singularities of f.

It is known [2] that for each x € Y f the singularities of f near x form the
image of an even number of geodesic rays emanating from x making alternate
angles a1, as, ..., an, 01, B2, .-+, Bn, Where

This condition on the angles will be called the angle folding relation. Thus the
set of singularities of an isometric folding of S? can be regarded as a graph on M
satisfying the angle-folding relation.

2 — Octahedral foldings

A non-trivial isometric folding f of S? is an octahedral spherical folding or
simply an octahedral folding if the underlying graph of its singularity set is an
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octahedral graph, that is, 3 f partitions S? into 8 triangles. One of the simplest
octahedral foldings is given by the map S: S? — S? with S(z,y, 2) = (|z|,|y|, |2])
referred to as the standard folding.

Let O denote the set of all octahedral foldings and G be the quotient space
O/ ~ obtained from O by introducing the equivalence relation f ~ ¢ iff there
exist an isometry ©: S? — S2 such that (3. f) = > g.

The equivalence relation ~ may be extended in a natural way to an equivalence
relation on the set 7 of tilings of S? whose underlying graph is an octahedral
graph obeying the angle folding relation.

Proposition 2.1. The map ¥: G — 7/ ~ given by V([f]) = [T], where T
is the spherical tiling whose underlying graph is Y f, is bijective.

Proof: We first show that W is surjective.

Let [T] € T/ ~. Denote by A;, i = 1,2,...,8, ¢j, j = 1,2,...,12 and vy,
k=1,2,...,6, the faces, edges and vertices of T' respectively and label them as
indicated in fig. 1.

For each j = 1,2,...,12, let o; be the reflection in the great circle containing
ej. Consider the map f: S? — S? given by

fla, =id|a, (id denotes the identity map on S?) |

f’Az - QI|A27 f|A3 == (Ql o Q2)|Aga 4—’A4 - Q4|A47 f|A5 = Q5|A5)

flag = (050 09)l6,  fla; = (050090 010)|as, [flag = (050 012)|Ag -
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Since, every vertex of T satisfies the angle folding relation and every o;(e;) =
ej, for j =1,2,...,12 we conclude that f is a well defined map. Moreover f|a,
is an isometry for each j = 1,2,...,12, and so f is an isometric folding. Clearly
U([f]) = [T].

Assume now that W([f]) = U([g]) = [T]. It is straightforward to show the
existence of a spherical isometry © such that > f=0(>¢). n

Consider the map I': 7/ ~— R given by I'([T]) = (1, 2, ..., v24), 01 <
02 < ... < oy, where @;, i = 1,2, ...,24, are the 24 angles of the eight triangular
faces of T and topologies 7 /o with the topology induced by I'. Use now the map
U defined in Proposition 2.1 to topologies G.

Let [T] € T/o. The tiling T" has 8 triangular faces T}, j = 1,2,...,8, corre-
sponding to 24 angles. Since the angle folding relation has to be fulfilled only 12
angles need to be specified in principle. However we shall show that there is a
particular set of 6 angles whose knowledge is enough to determine the other six.

Proposition 2.2. If the vertices vy, vs,...,v5 of the spherical pattern T
indicated bellow obey the angle folding relation then 6 + 0* = 7.

-~
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Fig. 2

Proof: Let v, vs,...,v7 be the vertices of such a spherical tiling T". It is then
possible to label T' as indicated in figure 3, where ¢;, @, =7 —¢;, i =1,...,6, 6
and 6* stand for the angles and a,b, ..., h for the edges.
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Using spherical trigonometry, we may conclude, on the one hand,

cos 0 + cos @2 €os 4

sin g sin @y

cosh =

)

and on the other hand

cos h = cos bcos d + sin bsin d cos Py

COS Y1 + COS (P2 COS 3\ [ COS Y5 — COS (Y3 COS Y4 . .
= - - - - — sin bsin d cos pg
sin (g sin @3 sin 3 sin g4

and so

cosf) = (cos @1 + €os gy cOs p3) (oS 5 — €OS 3 COS P4)

sin? 3
— sin bsin dsin 9 sin 4 cos (g — COS Y3 COS Y4 .
Also cos 0% + cos 1 cos 5
cosg = . -
sin ¢ sin @5
and

€OS g = COs ccos e + sin ¢sin e cos g

_ (cospa + cos 1 cos p3) (€OS g — COS P3 COS Ps5)
N sin 1 sin 3

- - + sin csin e cos g
sin (3 sin 5
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hence

o* (cos g + cos 1 cos @3) (COS g — COS Y3 COS Ys5)
cos 0" =
(2) sin® 3

+ sin ¢sin e sin 7 Sin 5 COs g — COS Y1 COS Y5 .

taking into account that

sinb  siny sind  sin s
— == and —— = —
sinc  sin o sine  siny

we can rewrite (1) as follows

0 (cos 1 + €os pa cos @3) (COS Y5 — COS Y3 COS Y4 )
cosf =
(3) sin® 3

— sin ¢sin e sin 1 sin @5 COS g — COS (P2 COS Yy .

From (2) and (3) we have cos§* = —cos#6, that is, 6* =7 — 0. n

Corollary 2.1. If five of the six vertices of an octahedral tiling T' obey the
angle folding relation then T € T .

Observe that in Proposition 2.2 the spherical tiling does not need to be an
octahedral tiling.

Proposition 2.3. The space T/ ~ is a differentiable manifold of dimension
6.

Proof: Given the angles ¢;, j = 1,2,...,6, we may construct an octahedral
tiling T' obeying the angle folding relation as follows. Denote by vy, ve, ..., v
the vertices of 7. Up to an isometry, we may assume that v = (0,0,1), vy is
in the great circle determined by the plane y = 0 and vy is in the hemisphere
corresponding to y > 0.

The vertices v1 and vy are uniquely determined if we require that, with vs,
they are the vertices of a spherical triangle T} with angles ¢ = /(v1v2,0103),
w9 = (U102, v903) and @3 = /(v103,v203), where / means angle and vw means
the geodesic segment joining v to w.

The angles ¢;, j = 4,5, 6, determine, in a unique way, points v4 and v5 on S?
such that

i) v, v3, vg are the vertices of a triangle Ty adjacent to T7 at vyvs, with
Vg = — pj = L(0203, U304);
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ii) v, v4, v5 are the vertices of a triangle T3 adjacent to Th at v3vs, with angles
D3 =T — 3 = £(v3v4,0305), p4 = £ (U304, 0305) and @5 = /(U304, U3V5).

Let a, b, ¢ be the edges of T} opposite the angles @3, 1 and @9 respectively
and d, e, f be the edges of T3 opposite the angles @5, ¢4 and P5 respectively.
Then the edges of T are b, d and h, where h is opposite pg, and the edges of T},
the triangle adjacent to T1 and T3, are e, ¢ and g where g is the edge opposite to
$6-

In this construction the vertex vz obeys automatically the angle folding re-
lation. Since the vertices vo and wv4, also obey that relation we are led to
the construction of a unique triangle T5 adjacent to T at vav4, with angles
Py, P4 and O, where 6 = arccos(cos hsin g sin ¢4 — cos w2 cos p4), and vertices
vo, vg and vg. Similarly, working with v; and vs we obtain a unique trian-
gle Ty adjacent to T, at vivs. The angles of Ty are B, @5 and 6* where
0* = arccos(cos g sin @1 sin g5 — cos 1 cos ¢5) and its vertices are vy, vs and vy.
By Proposition 2.2 one has 6* =7 — 6.

We shall have an octahedral spherical f-tiling if (and only if) vg = v7. We
show this next.

Observe that T5 has h, ¢ and j as edges where ¢ and j are the edges opposite
to i, and P, respectively and T has g, [ and m as edges where [ and m are
respectively the edges opposite to p; and P5.

Let 91 be the angle /(a,i) and 19 be the angle /(a,m). up to an isometry
there exists a unique spherical triangle A such that a and i are edges of A and
Y1 = /(a,i) is one of its angles. Let m* be the edge of A opposite to ¥ and &
be the angle of A opposed to i. Using spherical trigonometry we have

cosm™ = cosacosi + sin asin i cos Y
(cos 3 + cos @1 cos g02> (— oS (4 + cos 1 cos

) + sinasinicos; .

sin (1 sin o sin @9 sin 0
Since
” cosd — cosbcos h
cospy = . -
! sinbsin h

and

sinasin?  sin sz sin @y

sinbsin h sin (1 sin 0
we have

N <coscp3+cosgp1cos<p2)<—cosg04+cos<plcosﬁ)
cosm” = - - : -
sin 1 sin o sin (g sin 0
sin @3 sin g

- - (—cosd+ cosbcosh) .
sin 1 sin 0
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Using the fact that

COS Y5 — COS (P3 COS P4

sin @3 sin g

COS (p1 + COS Y2 COS Y3
sin @9 sin 3

cosd = , cosb=

and
cos 0 + cos @2 €os 4

sin g sin @y

cosh =

)

one has

«  (cosps 4 cos @i cos pa) (— cos g — cos pa cosh)
cosm* =

sin 1 sin? g sin 6
1
sin 1 sin 0
(cos 1 + cos pa cos ¢3) (cos O + cos pa cos <p4))
+ . 2
sin® g

(— COS Y5 + COS 3 COS P4

1 (— COS (3 COS (4 — COS 1 COS> Yy cOS
sin?
cos 1 cos 6

sin 1 sin 0

(1) — COS 5 + COS Y3 COS Y4 + 5
Sin” @9

4 €08 g o8 3 cos B + cos? Yo COS Y3 COS @4)

1 (cos? g — 1) cos @3 cos P4
= in 0 ) + €Os 3 COS Y4
1 sin sin® ¢y

n (1 — cos? g cos 1 cos f

5 — cos @5)
sin“ @9

_ —COS 5 + cos p1 cos

—5 =cosm .
sin“ @9

On the other hand

COS ¢ — COS @ COSM

cosd = - -
sinasinm

B 1 (—coscp4 — €O0S (pg cos 6

sin a sinm sin o sin 0

<cos (3 4 €Oos 1 COS (pg) <— COS 5 + CoS Y1 cos&))
sin ¢ sin @9 sin 7 sin 0

1
.2
= - - — COS (p4 8IN” 1 — €OS Y9 €0os O + cos Y3 cos;
sin“ 1 sina sinm

— COS (1 COS 3 cos B 4 cos 1 cos Yy cos (p5>
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and

cos Yo = —(

cOS e — COS g CosC
singsinc >
1 COS (P4 — COS Y3 COS P5
singsinc ( sin @3 sin 5
— cos 0 + cos g1 CoS 5 COS P2 + COS Y1 COS Y3
sin @1 sin @5 sin @1 sin 3 )

Since,

sin g sin 0 sinc  sins
— = — an =—
sinm  sings

sina  sin s
one have

1

COS Yy = —— - —5 (cos P4 sin? ©1 + €os 9 cos B — cos Y35
sin a sin m sin” ¢y

3)

—+ COS 1 €OS 3 cos § — oS 1 COS Y2 COS <p5> .

Taking into account (1), (2) and (3) one has m = m™*, § = 1) and so vg = vy.

We may now conclude that the map ®: 7/ ~—]0,7[ x...x]0, 7], defined
by ®([T]) = (¢1,92,.--,¢6), is a homeomorphism and consequently 7/ ~ is a
differentiable manifold of dimension 6. »

S. Robertson [2] has conjectured that the set of all spherical foldings is con-
nected. We do not have an answer to this question yet, but Proposition 2.3 enable
us to prove

Corollary 2.2. The set G of all octahedral foldings (up to an isometry) is
connected (in fact, path-connected).

Proof: Using Propositions 2.3 and 2.1, we can give to G a structure of a
differentiable manifold with dimension 6. In fact, with notations as above, the
map ¥ = ®oW¥: G — 10,7 x...x |0, 7| given by Y([f]) = (1,92, ..., ps) gives rise
to a differentiable structure for G.

Let [f] € G, Y([f]) = (¢1,%2,....,06) and v : [0,1] —]0,7[ x...x]0, 7| the
map given by y(t) = ((1 —t)p1 + 15, (1 —t)p2 + 15, ..., (1 = t)pe +t5). Then
7 =7"T"loy: [0,1] — G is a path joining [f] to the standard folding S. Therefore
G is path-connected. n
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