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ON DECOMPOSABLY REGULAR OPERATORS

CHRISTOPH SCHMOEGER

Abstract: Let X be a complex Banach space and £(X) the algebra of all bounded
linear operators on X. T € L(X) is said to be decomposably regular provided there is
an operator S such that S is invertible in £(X) and TST = T. For each T € L(X) we
introduce the following subset pg,(T') of the resolvent set of T': p € pg(T') if and only if
there is a neighbourhood U of u and a holomorphic function F: U — L(X) such that
F(X) is invertible for all A € U and (T'— A\) F(A\) (T'— X) = T — X on U. In this note
we determine the interior points of the class of decomposably regular operators and we

prove a spectral mapping theorem for C\pg, (T').

1 — Terminology

X always denotes an infinite-dimensional complex Banach space, and the
Banach algebra of all bounded linear operators on X is denoted by £(X).

If T'e L(X) we denote by N(T') the kernel of T and by «(7') the dimension
of N(T). T(X) denotes the range of T, and we define 5(T) = codimT(X)
(=dim X/T(X)). We write o(T") for the spectrum of T" and p(T') for the resolvent
set C\o(T).

The maximal group of invertible elements in £(X) is denoted by G(X). Let
R(X) denote the set of all relatively regular operators in £(X), that is, operators
T such that T'ST = T for some S € L(X). Observe that T € R(X) if and
only if T has complemented kernel and range ([1], p. 10). T € £(X) is called
decomposably regular if T = T'ST for some S € G(X). Let us write GR(X)
for the class of all decomposably regular operators. In [8] decomposably regular
operators are called unit regular. For a subset M of £(X) let ¢l M and int M
denote, respectively, the closure and the interior of M.
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Proposition 1.1.
(1) GR(X) = R(X) Nl G(X).
(2) T eGR(X) e T € R(X), N(T) and X/T(X) are isomorphic.

Proof: (1) [2], Theorem 1.1. (2) [3], Theorem 3.8.6. u

If X is a separable Hilbert space, then part (2) of the above proposition shows
that T € GR(X) if and only if T(X) is closed and «(T) = B(T). T € L(X) is
said to be an Atkinson operator if T' € R(X) and at least one of (1), B(T) is
finite. A(X) denotes the set of Atkinson operators. For T' € A(X) we define the
index of T' by ind(T") = a(T') — B(T).

We call T € L(X) Fredholm operator if o(T) and ((T) are both finite.
Observe that a Fredholm operator is relatively regular ([6], Satz 74.4). For n € Z
let F,(X) ={T € L(X): T is Fredholm and ind(7T") = n}. Denote by F(X) the
set of all Fredholm operators, thus F(X) = U,,cz Fn(X).

It is well known that A(X), F(X) and F,(X) are open subsets of £L(X) ([6],
Satz 82.4).

Proposition 1.2. intR(X)=A(X)={T € L(X): T+ K € R(X) for all
compact operators K}.

Proof: [14], Theorem 6. u

Remarks.

(1) We call T € L(X) a semi-Fredholm operator if T(X) is closed and at least
one of a(T"), B(T) is finite. We have shown in [14] that

int{T € L(X): T(X)is closed} = {T € L(X): Tis semi—Fredholm} =

= {T € L(X): T + K has closed range for each compact K} .

(2) If X is a Hilbert space then A(X) = {T € L(X): T is semi-Fredholm}.
In this case M. Mbekhta ([9], Théoréme 2.2) has shown that int R(X) = A(X).

(3) If X is a Hilbert space and T' € int R(X) then there is § > 0 and a
meromorphic function F': {\ € C: || < §} — L(X) such that

(T—NFN (T -\ =T-X for |\ <6

(see [9], Corollaire 2.3).
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2 — Interior points of some classes of relatively regular operators

Proposition 1.1 (2) shows that we have for a Fredholm operator T': T €
GR(X) < T € Fo(X). We can be more precise:

Theorem 2.1. int GR(X) = Fo(X).

Proof: Since Fy(X) is open and Fp(X) € GR(X), we only have to show
that int GR(X) C Fo(X).

Let T € int GR(X), then T' € int R(X), thus T" € A(X) by Proposition 1.2.
We have T' € clG(X) (Proposition 1.1(1)), thus there is a sequence (7,) in G(X)
such that |7 — T,,|| — 0 (n — o0). Since T' € A(X) and A(X) is open, the
stability of the index ([6], Satz 82.4) shows

ind(7T") = ind(7},) for n sufficiently large.
Thus ind(7") = 0. This gives T' € Fp. u
Let us consider some further classes of relatively regular operators: For n € Z

let
FoR(X) = {T € L(X): TST =T for some S € fn(X)} )

Define FR(X) = U,z FaR(X). Thus we have
FR(X) = {T € L(X): TST =T for some S € .’F(X)} )
It is shown in [10], Theorem 3, that
FR(X) = R(X) Nl F(X) .

Theorem 2.2.
(1) int F,R(X) = F_pn(X).
(2) int FR(X) = F(X).

Proof: (1) Take T' € F_,(X), then T is relatively regular, hence "= T'ST
for some S'€ L(X). [3], Theorem 6.5.5, gives S € F(X) and ind(S) =—ind(T) =n,
therefore T' € F,,R(X). Thus we have F_,(X) C F,R(X). Since F_,(X) is
open, we get F_,(X) C int F, R(X).

Let T € int F,,R(X), thus T' € int R(X) = A(X) and T' € FR(X) C cl F(X).
There is a sequence (7,) in F(X) such that |T — T,|| — 0 (n — o0). Since
T € A(X) and A(X) is open, the stability of the index shows that

ind(7T) = ind(7},) for n sufficiently large.



44 C. SCHMOEGER

Thus ind(7') is finite, hence T' € F(X). Since T € F,R(X), T = TST for
some S € F,(X). As above, we see that ind7T = —ind(S) = —n. This gives
T e F_(X).

(2) Similar.

3 — A spectral mapping theorem

In [11] and [13] we introduced the following concepts for T' € L£(X):

pic(T) = {A € C: (T = N)(X) is closed, N(T'—X) C ﬁ (T - N"(X)}

n=1

pro(T) = {X € pi(T): T= X eR(X)},

og(T) =C\px(T) and o (T) =C\pp(T) .

Write H(T') for the set of all complex valued functions which are analytic in
some neighbourhood of ¢(T'). For f € H(T') let the operator f(T') € L(X) be
defined by the well-known analytic calculus (see [6], §99).

The following proposition lists some properties of the above defined ‘essential
spectra’ of T € L(X).

Proposition 3.1.

(1) 90(T) Cox(T) C 0pr(T) Co(T).

(2) u € ppr(T) & there is a neighbourhood U(u) of p and a holomorphic
function F': U(u) — L(X) such that

(T—=NFAN(T—-XN=T-X forall NeU(p) .

(3) prr(T') and pg (T') are open.

(4) flox(T)) = ok (f(T)), f(or(T)) = o0 (f(T)) for all f € H(T).

Proof: (1) The first inclusion is shown in [11], Satz 2. The other inclusions
are clear.

(2) is shown in [12], Theorem 1.4 (in a more general context).

(3) By (2), prr(T') is open. pg(T') is open by [7], Theorem 3.

(4) See [11] and [13]. u
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Remark. Some of the arguments for Proposition 3.1 are also given in [4],
Theorems 9.10 and in [5].

Definition 3.2. For T' € £L(X) we define the set p,,-(T") C C by:

p € pgr(T) if and only if there is a neighbourhood U(u) of p
and a holomorphic function F': U(p) — L£(X) such that

FAN)eg(X) and (T—XNFNT—-XN)=T—-X foral XeU(p).
ogr(T) :=C\pgr (T).

An operator T' € L(X) for which 0 € pg,(T') is called holomorphically decom-
posably regular. The following condition is equivalent to holomorphic decompos-
able regularity for T' € £(X) (cf. [4], Theorem 9):

There are R € G(X) and sequences (S,), (1),) in G(X) for
which ||[Spl| + | Tn — R|| — 0 (n — o0), S,T = TS, and
(T =8,)Tn(T—S,)=T—5,.

Proposition 3.3. Let T € L(X).
(1) p € pgr(T) & p € pi(T) and T' — pu € GR(X).
(2) pgr(T) - prr(T) C pK(T); UK(T) - UTT(T) c Ugr(T)~

Proof: (1) “=": Use Definition 3.2 and Proposition 3.1 (2).

“<”: Without loss of generality let us assume that p = 0. Take S € G(X)
such that TST = T and define the function F by F(\) = (I — AS)~1S for
IAl < ||S]|7t. Then we have F()\) € G(X) for |\ < [|S]|~*. [12], Corollary 1.5,
shows that

(T—XNFMN(T—-XN)=T-X for |\<|S|".

(2) Clear. n

The following example shows that in general f(og (7)) < o4 (f(T))
(f € H(T)).

Example 3.4: Let T € L(X), k,m € {1,2,3,...} and £,n € C such that
T—-¢eFp(X)and T —n € F_p(X). We shall construct operators T — Ao and
T — no, each Fredholm of positive and negative index, respectively, which also
satisfy Ao, no € pr (7).
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The punctured neighbourhood theorem (see [7]) shows that there exists § > 0
such that

T—XeFi(X), oo —X) isaconstant for 0 < A —¢&| <6
and

T—peF_n(X), «oT—p) isaconstant for 0 < |u—n| <§ .

Fix Ag and pp with 0 < |[A\g —&| < d and 0 < |po — 1| < 0. By [7], Theorem 3
and Theorem 5, we have

Aos ko € pi(T) -
Define the function f by f(A\) = (A — Xo)™ (X — uo)¥. This gives f(T) =
(T — Xo)™ (T — po)* € F(X), and the index theorem ([6], Satz 71.3) shows that
ind(f(7)) = mind(T — Xo) + kind(T' — o) =mk+k(—m) =0,

thus f(T) € GR(X). The spectral mapping theorem for o (7") (Proposition 3.1
(4)) gives 0 € pr(f(T)), since Xo, o € pr(T). Therefore 0 € pg,(f(T)) by
Proposition 3.3 (1). We have \g € 04-(T'), since ind(T" — Ag) # 0, hence 0 =
f(Xo) € flog:(T))-

Example 3.4 also shows the failure of the analogue of part of Theorem 10 of
[4]: There are S,T € L(X) for which

ST =TS is holomorphically decomposably regular but neither S nor T are.

Proposition 3.5. Suppose
(a) T e L(X) and g € H(T) has only a finite number of zeros in o(T),

(b) w1, ..., i, are the zeros of g in o(T) with respective orders ni,...,nm
(i # pj for i # j),

() (T'—pj)" € GR(X) for j =1,...,m.

Then ¢(T) € GR(X).

Proof: [6], Satz 80.1, asserts that

N( (T - uj)”f) = N((T - ul)nl) & ... @N((T — Mk)nk)

k
(1) j=1

C (T = prre2)™1(X)
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for k=1,...,m — 1. There are C1, ..., Cy, € G(X) such that
(T - uj)nj Cj(T - ,uj)nj = (T - ,uj)"ﬂ' (j = 1, ,m) .

Put C = Cy, Crp—1 -+ C1 and R = [[7L(T — py)™. Hence C' € G(X). By (1)
and [14], Lemma 5, we get
RCR=R.

There is a function h € H(T) with h(X) # 0 for all A € o(T) and g(\) =
(IT721 (A = p)™7) h(A). This gives g(T) = Rh(T) and h(T) € G(X). Put D =
C h(T)~*, then we derive D € G(X) and

g(T)Dg(T) = (T)RCh(T) *h(T)R
=hWT)RCR=h(T)R=g(T) .

Hence ¢(T) € GR(X). m

Proposition 3.5 can also be deduced from the analogue of the other half of
Theorem 10 of [4]: If (cf. Lemma 3 of [4])

S, T e L(X), ST=TS andeither S=T" for somen or
S'S+TT' =1 forsome S, T' € L(X)

then
S, T holomorphically decomposably regular =
ST holomorphically decomposably regular.
Theorem 3.6. IfT € £(X) and f € H(T) then

ogr(f(T)) € f(oge(T)) -

Proof: We have to show that C\f(og(T")) C pgr(f(T)). To this end take
Xo ¢ f(ogr(T)) and put g(A) = f(A) — Ag. This gives

(2) 0¢ g(og(T))
and
(3) 0¢ glor(T)) =ok(9(T)) -

Case 1: g has no zeros in o(T). Then g(T) = f(T) — Mo € G(X), thus
Ao € p(F(T)) € pgr(F(T))-
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Case 2: g has zeros in o(T). (3) shows that g does not vanish in o (7). [11],
Satz 3, asserts now that ¢ has only a finite number of zeros in (7). Let pi1, ..., tim
be these zeros (u; # p; for i # j) and ni, ..., n,, their respective orders. By (2),
Liseoes b € pgr(T), thus for each T' — p; there is an operator S; € G(X) with
(T — pj) S;(T — pj) =T — py. [13], Proposition 2, gives now

(T — )™ (T — pj)" = (T = )" (j=1,...,m) .
Since each S]m is invertible, it follows that

(T — )" €e GR(X) for j=1,...,m.

Now use Proposition 3.5 to derive ¢(T") € GR(X). (3) gives 0 € px(g(T)),
thus 0 € pg,(g(T)) and therefore Ao € pg, (f(T')). m

If the function f € H(T) is injective, we can say more:

Theorem 3.7. IfT € £(X) and if f € H(T) is injective, then

ogr(f(T)) = f(ogr(T)) -

Proof: We only have to show the inclusion “2”. Let Ag € f(o4(T)), thus
Ao = f(uo) for some pg € o4 (T). Put g(A) = f(A) — Ao and
g\
—, A
f'(wo),  A=po .
Since f'(po) # 0, we have h(X) # 0 for all A € o(T') and g(\) = (A — po) h(N).
This gives g(T) = (T — po) h(T') and h(T) € G(X).
Let us assume, to the contrary, that A\g € pg,(f(T")). Therefore 0 € pg,-(9(T)),
hence there is an operator S in G(X) with g(T') S¢(T') = ¢g(T"). Thus

(T — 10) h(T) SK(T) (T = uo) = (T — po) h(T) .

It follows that
(T — po) (MT)S) (T — o) =T — pao

since h(T) is invertible. Hence T' — pg € GR(X). Furthermore, A\g € py,(f(T))
gives Ao € pr(f(T)). The spectral mapping theorem for ox(T") implies that
to € pr(T). Therefore we have g € pgr(T'), a contradiction. u

We close this paper with a proposition concerning operators in FR(X).
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Proposition 3.8. Let T € L(X) and g € H(T) satisfy the hypotheses (a)
and (b) of Proposition 3.5. If

(T —p)" € FR(X) for j=1,..,m,

then g(T) € FR(X). To be more precise, if (T' — p;)" € Fp,R(X) and k =
ki1 + ...+ ky,, then g(T) € FrR(X).

Proof: With the notation in the proof of Proposition 3.5, there are operators
Cy, ..., Oy with Cj € Fy (X)), thus D = Cp Cpp—1 -+ - O h(T)~' € F(X) and, by
the index theorem,

ind(D) = kyy + ... + k1 +ind(h(T) ™Y =k . u
=0
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