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ON DECOMPOSABLY REGULAR OPERATORS

Christoph Schmoeger

Abstract: Let X be a complex Banach space and L(X) the algebra of all bounded

linear operators on X. T ∈ L(X) is said to be decomposably regular provided there is

an operator S such that S is invertible in L(X) and TST = T . For each T ∈ L(X) we

introduce the following subset ρgr(T ) of the resolvent set of T : µ ∈ ρgr(T ) if and only if

there is a neighbourhood U of µ and a holomorphic function F : U → L(X) such that

F (λ) is invertible for all λ ∈ U and (T − λ)F (λ) (T − λ) = T − λ on U . In this note

we determine the interior points of the class of decomposably regular operators and we

prove a spectral mapping theorem for C\ρgr(T ).

1 – Terminology

X always denotes an infinite-dimensional complex Banach space, and the

Banach algebra of all bounded linear operators on X is denoted by L(X).

If T ∈ L(X) we denote by N(T ) the kernel of T and by α(T ) the dimension

of N(T ). T (X) denotes the range of T , and we define β(T ) = codimT (X)

( = dimX/T (X)). We write σ(T ) for the spectrum of T and ρ(T ) for the resolvent

set C\σ(T ).
The maximal group of invertible elements in L(X) is denoted by G(X). Let

R(X) denote the set of all relatively regular operators in L(X), that is, operators

T such that TST = T for some S ∈ L(X). Observe that T ∈ R(X) if and

only if T has complemented kernel and range ([1], p. 10). T ∈ L(X) is called

decomposably regular if T = TST for some S ∈ G(X). Let us write GR(X)

for the class of all decomposably regular operators. In [8] decomposably regular

operators are called unit regular. For a subset M of L(X) let clM and intM

denote, respectively, the closure and the interior of M.
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Proposition 1.1.

(1) GR(X) = R(X) ∩ clG(X).

(2) T ∈ GR(X) ⇔ T ∈ R(X), N(T ) and X/T (X) are isomorphic.

Proof: (1) [2], Theorem 1.1. (2) [3], Theorem 3.8.6.

If X is a separable Hilbert space, then part (2) of the above proposition shows

that T ∈ GR(X) if and only if T (X) is closed and α(T ) = β(T ). T ∈ L(X) is

said to be an Atkinson operator if T ∈ R(X) and at least one of α(T ), β(T ) is

finite. A(X) denotes the set of Atkinson operators. For T ∈ A(X) we define the

index of T by ind(T ) = α(T )− β(T ).

We call T ∈ L(X) Fredholm operator if α(T ) and β(T ) are both finite.

Observe that a Fredholm operator is relatively regular ([6], Satz 74.4). For n ∈ Z
let Fn(X) = {T ∈ L(X) : T is Fredholm and ind(T ) = n}. Denote by F(X) the

set of all Fredholm operators, thus F(X) =
⋃

n∈ZFn(X).

It is well known that A(X), F(X) and Fn(X) are open subsets of L(X) ([6],

Satz 82.4).

Proposition 1.2. intR(X) = A(X) = {T ∈ L(X) : T +K ∈ R(X) for all

compact operators K}.

Proof: [14], Theorem 6.

Remarks.

(1) We call T ∈ L(X) a semi-Fredholm operator if T (X) is closed and at least

one of α(T ), β(T ) is finite. We have shown in [14] that

int
{

T ∈ L(X) : T (X) is closed
}

=
{

T ∈ L(X) : T is semi-Fredholm
}

=

=
{

T ∈ L(X) : T +K has closed range for each compact K
}

.

(2) If X is a Hilbert space then A(X) = {T ∈ L(X) : T is semi-Fredholm}.

In this case M. Mbekhta ([9], Théorème 2.2) has shown that intR(X) = A(X).

(3) If X is a Hilbert space and T ∈ intR(X) then there is δ > 0 and a

meromorphic function F : {λ ∈ C : |λ| < δ} → L(X) such that

(T − λ)F (λ) (T − λ) = T − λ for |λ| < δ

(see [9], Corollaire 2.3).
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2 – Interior points of some classes of relatively regular operators

Proposition 1.1 (2) shows that we have for a Fredholm operator T : T ∈

GR(X) ⇔ T ∈ F0(X). We can be more precise:

Theorem 2.1. intGR(X) = F0(X).

Proof: Since F0(X) is open and F0(X) ⊆ GR(X), we only have to show

that intGR(X) ⊆ F0(X).

Let T ∈ intGR(X), then T ∈ intR(X), thus T ∈ A(X) by Proposition 1.2.

We have T ∈ clG(X) (Proposition 1.1(1)), thus there is a sequence (Tn) in G(X)

such that ‖T − Tn‖ → 0 (n → ∞). Since T ∈ A(X) and A(X) is open, the

stability of the index ([6], Satz 82.4) shows

ind(T ) = ind(Tn) for n sufficiently large.

Thus ind(T ) = 0. This gives T ∈ F0.

Let us consider some further classes of relatively regular operators: For n ∈ Z
let

FnR(X) =
{

T ∈ L(X) : TST = T for some S ∈ Fn(X)
}

.

Define FR(X) =
⋃

n∈ZFnR(X). Thus we have

FR(X) =
{

T ∈ L(X) : TST = T for some S ∈ F(X)
}

.

It is shown in [10], Theorem 3, that

FR(X) = R(X) ∩ clF(X) .

Theorem 2.2.

(1) intFnR(X) = F−n(X).

(2) intFR(X) = F(X).

Proof: (1) Take T ∈ F−n(X), then T is relatively regular, hence T = TST

for some S∈L(X). [3], Theorem 6.5.5, gives S∈F(X) and ind(S)=− ind(T )=n,

therefore T ∈ FnR(X). Thus we have F−n(X) ⊆ FnR(X). Since F−n(X) is

open, we get F−n(X) ⊆ intFnR(X).

Let T ∈ intFnR(X), thus T ∈ intR(X) = A(X) and T ∈ FR(X) ⊆ clF(X).

There is a sequence (Tn) in F(X) such that ‖T − Tn‖ → 0 (n → ∞). Since

T ∈ A(X) and A(X) is open, the stability of the index shows that

ind(T ) = ind(Tn) for n sufficiently large.
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Thus ind(T ) is finite, hence T ∈ F(X). Since T ∈ FnR(X), T = TST for

some S ∈ Fn(X). As above, we see that indT = − ind(S) = −n. This gives

T ∈ F−n(X).

(2) Similar.

3 – A spectral mapping theorem

In [11] and [13] we introduced the following concepts for T ∈ L(X):

ρK(T ) =
{

λ ∈ C : (T − λ)(X) is closed, N(T − λ) ⊆
∞⋂

n=1

(T − λ)n(X)
}

,

ρrr(T ) =
{

λ ∈ ρK(T ) : T − λ ∈ R(X)
}

,

σK(T ) = C\ρK(T ) and σrr(T ) = C\ρrr(T ) .

Write H(T ) for the set of all complex valued functions which are analytic in

some neighbourhood of σ(T ). For f ∈ H(T ) let the operator f(T ) ∈ L(X) be

defined by the well-known analytic calculus (see [6], §99).

The following proposition lists some properties of the above defined ‘essential

spectra’ of T ∈ L(X).

Proposition 3.1.

(1) ∂σ(T ) ⊆ σK(T ) ⊆ σrr(T ) ⊆ σ(T ).

(2) µ ∈ ρrr(T ) ⇔ there is a neighbourhood U(µ) of µ and a holomorphic

function F : U(µ)→ L(X) such that

(T − λ)F (λ) (T − λ) = T − λ for all λ ∈ U(µ) .

(3) ρrr(T ) and ρK(T ) are open.

(4) f(σK(T )) = σK(f(T )), f(σrr(T )) = σrr(f(T )) for all f ∈ H(T ).

Proof: (1) The first inclusion is shown in [11], Satz 2. The other inclusions

are clear.

(2) is shown in [12], Theorem 1.4 (in a more general context).

(3) By (2), ρrr(T ) is open. ρK(T ) is open by [7], Theorem 3.

(4) See [11] and [13].
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Remark. Some of the arguments for Proposition 3.1 are also given in [4],

Theorems 9.10 and in [5].

Definition 3.2. For T ∈ L(X) we define the set ρgr(T ) ⊂ C by:

µ ∈ ρgr(T ) if and only if there is a neighbourhood U(µ) of µ

and a holomorphic function F : U(µ)→ L(X) such that

F (λ) ∈ G(X) and (T − λ)F (λ)(T − λ) = T − λ for all λ ∈ U(µ) .

σgr(T ) :=C\ρgr(T ).

An operator T ∈ L(X) for which 0 ∈ ρgr(T ) is called holomorphically decom-

posably regular. The following condition is equivalent to holomorphic decompos-

able regularity for T ∈ L(X) (cf. [4], Theorem 9):

There are R ∈ G(X) and sequences (Sn), (Tn) in G(X) for

which ‖Sn‖ + ‖Tn − R‖ → 0 (n → ∞), SnT = TSn and

(T − Sn)Tn(T − Sn) = T − Sn.

Proposition 3.3. Let T ∈ L(X).

(1) µ ∈ ρgr(T ) ⇔ µ ∈ ρK(T ) and T − µ ∈ GR(X).

(2) ρgr(T ) ⊆ ρrr(T ) ⊆ ρK(T ), σK(T ) ⊆ σrr(T ) ⊆ σgr(T ).

Proof: (1) “⇒”: Use Definition 3.2 and Proposition 3.1 (2).

“⇐”: Without loss of generality let us assume that µ = 0. Take S ∈ G(X)

such that TST = T and define the function F by F (λ) = (I − λS)−1S for

|λ| < ‖S‖−1. Then we have F (λ) ∈ G(X) for |λ| < ‖S‖−1. [12], Corollary 1.5,

shows that

(T − λ)F (λ)(T − λ) = T − λ for |λ| < ‖S‖−1 .

(2) Clear.

The following example shows that in general f(σgr(T )) 6⊆ σgr(f(T ))

(f ∈ H(T )).

Example 3.4: Let T ∈ L(X), k,m ∈ {1, 2, 3, ...} and ξ, η ∈ C such that

T − ξ ∈ Fk(X) and T − η ∈ F−m(X). We shall construct operators T − λ0 and

T − µ0, each Fredholm of positive and negative index, respectively, which also

satisfy λ0, µ0 ∈ ρK(T ).
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The punctured neighbourhood theorem (see [7]) shows that there exists δ > 0

such that

T − λ ∈ Fk(X) , α(T − λ) is a constant for 0 < |λ− ξ| < δ

and

T − µ ∈ F−m(X) , α(T − µ) is a constant for 0 < |µ− η| < δ .

Fix λ0 and µ0 with 0 < |λ0 − ξ| < δ and 0 < |µ0 − η| < δ. By [7], Theorem 3

and Theorem 5, we have

λ0, µ0 ∈ ρK(T ) .

Define the function f by f(λ) = (λ − λ0)
m (λ − µ0)

k. This gives f(T ) =

(T − λ0)
m (T − µ0)

k ∈ F(X), and the index theorem ([6], Satz 71.3) shows that

ind(f(T )) = m ind(T − λ0) + k ind(T − µ0) = mk + k(−m) = 0 ,

thus f(T ) ∈ GR(X). The spectral mapping theorem for σK(T ) (Proposition 3.1

(4)) gives 0 ∈ ρK(f(T )), since λ0, µ0 ∈ ρK(T ). Therefore 0 ∈ ρgr(f(T )) by

Proposition 3.3 (1). We have λ0 ∈ σgr(T ), since ind(T − λ0) 6= 0, hence 0 =

f(λ0) ∈ f(σgr(T )).

Example 3.4 also shows the failure of the analogue of part of Theorem 10 of

[4]: There are S, T ∈ L(X) for which

ST = TS is holomorphically decomposably regular but neither S nor T are.

Proposition 3.5. Suppose

(a) T ∈ L(X) and g ∈ H(T ) has only a finite number of zeros in σ(T ),

(b) µ1, ..., µm are the zeros of g in σ(T ) with respective orders n1, ..., nm

(µi 6= µj for i 6= j),

(c) (T − µj)
nj ∈ GR(X) for j = 1, ...,m.

Then g(T ) ∈ GR(X).

Proof: [6], Satz 80.1, asserts that

(1)
N
( k∏

j=1

(T − µj)
nj

)

= N
(

(T − µ1)
n1

)

⊕ ...⊕N
(

(T − µk)
nk

)

⊆ (T − µk+1)
nk+1(X)
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for k = 1, ...,m− 1. There are C1, ..., Cm ∈ G(X) such that

(T − µj)
nj Cj(T − µj)

nj = (T − µj)
nj (j = 1, ...,m) .

Put C = Cm Cm−1 · · ·C1 and R =
∏m

j=1(T − µj)
nj . Hence C ∈ G(X). By (1)

and [14], Lemma 5, we get

RC R = R .

There is a function h ∈ H(T ) with h(λ) 6= 0 for all λ ∈ σ(T ) and g(λ) =

(
∏m

j=1(λ − µj)
nj )h(λ). This gives g(T ) = Rh(T ) and h(T ) ∈ G(X). Put D =

C h(T )−1, then we derive D ∈ G(X) and

g(T )Dg(T ) = h(T )RC h(T )−1 h(T )R

= h(T )RC R = h(T )R = g(T ) .

Hence g(T ) ∈ GR(X).

Proposition 3.5 can also be deduced from the analogue of the other half of

Theorem 10 of [4]: If (cf. Lemma 3 of [4])

S, T ∈ L(X), ST = TS and either S = T n for some n or

S′S + TT ′ = I for some S ′, T ′ ∈ L(X)

then

S, T holomorphically decomposably regular ⇒

ST holomorphically decomposably regular.

Theorem 3.6. If T ∈ L(X) and f ∈ H(T ) then

σgr(f(T )) ⊆ f(σgr(T )) .

Proof: We have to show that C\f(σgr(T )) ⊆ ρgr(f(T )). To this end take

λ0 /∈ f(σgr(T )) and put g(λ) = f(λ)− λ0. This gives

0 /∈ g(σgr(T ))(2)

and

0 /∈ g(σK(T )) = σK(g(T )) .(3)

Case 1: g has no zeros in σ(T ). Then g(T ) = f(T ) − λ0 ∈ G(X), thus

λ0 ∈ ρ(f(T )) ⊆ ρgr(f(T )).
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Case 2: g has zeros in σ(T ). (3) shows that g does not vanish in σK(T ). [11],

Satz 3, asserts now that g has only a finite number of zeros in σ(T ). Let µ1, ..., µm

be these zeros (µi 6= µj for i 6= j) and n1, ..., nm their respective orders. By (2),

µ1, ..., µm ∈ ρgr(T ), thus for each T − µj there is an operator Sj ∈ G(X) with

(T − µj)Sj(T − µj) = T − µj . [13], Proposition 2, gives now

(T − µj)
nj S

nj

j (T − µj)
nj = (T − µj)

nj (j = 1, ...,m) .

Since each S
nj

j is invertible, it follows that

(T − µj)
nj ∈ GR(X) for j = 1, ...,m .

Now use Proposition 3.5 to derive g(T ) ∈ GR(X). (3) gives 0 ∈ ρK(g(T )),

thus 0 ∈ ρgr(g(T )) and therefore λ0 ∈ ρgr(f(T )).

If the function f ∈ H(T ) is injective, we can say more:

Theorem 3.7. If T ∈ L(X) and if f ∈ H(T ) is injective, then

σgr(f(T )) = f(σgr(T )) .

Proof: We only have to show the inclusion “⊇”. Let λ0 ∈ f(σgr(T )), thus

λ0 = f(µ0) for some µ0 ∈ σgr(T ). Put g(λ) = f(λ)− λ0 and

h(λ) =







g(λ)

λ− µ0

, λ 6= µ0,

f ′(µ0), λ = µ0 .

Since f ′(µ0) 6= 0, we have h(λ) 6= 0 for all λ ∈ σ(T ) and g(λ) = (λ − µ0)h(λ).

This gives g(T ) = (T − µ0)h(T ) and h(T ) ∈ G(X).

Let us assume, to the contrary, that λ0 ∈ ρgr(f(T )). Therefore 0 ∈ ρgr(g(T )),

hence there is an operator S in G(X) with g(T )Sg(T ) = g(T ). Thus

(T − µ0)h(T )Sh(T ) (T − µ0) = (T − µ0)h(T ) .

It follows that

(T − µ0) (h(T )S) (T − µ0) = T − µ0 ,

since h(T ) is invertible. Hence T − µ0 ∈ GR(X). Furthermore, λ0 ∈ ρgr(f(T ))

gives λ0 ∈ ρK(f(T )). The spectral mapping theorem for σK(T ) implies that

µ0 ∈ ρK(T ). Therefore we have µ0 ∈ ρgr(T ), a contradiction.

We close this paper with a proposition concerning operators in FR(X).
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Proposition 3.8. Let T ∈ L(X) and g ∈ H(T ) satisfy the hypotheses (a)

and (b) of Proposition 3.5. If

(T − µj)
nj ∈ FR(X) for j = 1, ...,m ,

then g(T ) ∈ FR(X). To be more precise, if (T − µj)
nj ∈ Fkj

R(X) and k =

k1 + ...+ km, then g(T ) ∈ FkR(X).

Proof: With the notation in the proof of Proposition 3.5, there are operators

C1, ..., Cm with Cj ∈ Fkj
(X), thus D = Cm Cm−1 · · ·C1 h(T )

−1 ∈ F(X) and, by

the index theorem,

ind(D) = km + ...+ k1 + ind(h(T )−1)
︸ ︷︷ ︸

=0

= k .
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