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ADMISSIBLE FUNCTIONS IN TWO-SCALE CONVERGENCE

Michel Valadier

Abstract: The two-scale convergence method was developed by G. Nguetseng, W. E

and G. Allaire in connection with homogenization problems. We introduce a rather

large class of “admissible” functions containing Carathéodory integrands of both kinds

(continuous on Ω or on Y ) and prove a useful continuity result (Proposition 5). Through

all the paper we use the notion, introduced by W. E, of “two-scale” Young measures.

This also provides natural proofs of some quantitative results of Huyghens type.

1 – Introduction

Recall that Young measures were introduced by L.C. Young [Y] in 1937 in

order to retain something of the behavior of the gradients of some minimizing

sequences in the Calculus of Variations when the gradients oscillate. After and

among several others, L. Tartar [T1–2] and E.J. Balder [Bd1–3] bring some more

applications and developments (see more references in my courses [V1–2]). The

“two-scale” convergence method was developed in papers by G. Nguetseng [N]

in 1989, W. E [E] and G. Allaire [A1] in 1992 (see also [A2]) in connection with

applications to homogenization problems. Some ideas go back to Bensoussan–

Lions–Papanicolaou [BLP]. We will emphasize the connection with Young mea-

sures which is shortly mentioned (in one page) by W. E [E, p.312] and develop a

new notion of “admissible” functions.

Starting from a sequence (un)n of functions on an open subset Ω of RN satis-

fying supn ‖un‖L2(Ω) < +∞, the two-scale convergence method permits to obtain
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a function û on(1) Ω × Y such that, for any sufficiently “smooth” test function

ψ,

(Ng)

∫

Ω
uε(x)ψ(x, nx) dx →

∫ ∫

Ω×Y
û(x, y)ψ(x, y) dx dy

as n → +∞ (for a subsequence). Secondarily x 7→ û(x, nx) is as close to un

as possible. When un(x) :=u(x, nx) and under some mild assumptions on u, û

coincides with u (see Theorem 6).

We use, adding some details, the notion introduced by W. E [E] of a “two-

scale” Young measure(2) (ν(x,y))(x,y)∈Ω×Y . Then û(x, y) is the mean (or barycen-

ter) of ν(x,y) (formula (12) below) and the weak limit u∞(x) of the sequence under

consideration is the mean over Y of û(x, ·). Our contributions lie in the intro-

duction of a rather large class of “admissible” functions, in a continuity result

(Proposition 5) and in the use of the two-scale Young measures to obtain with

easy proofs some quantitative results of Huyghens type which are more or less

explicit in [N], [E], [A1] (Proposition 9).

A stochastic result of Bourgeat–Mikelic–Wright [BMW] can be proved in the

same way: see [V3, Section 7], where the ideas are due to Gérard Michaille.

2 – Classical Young measures

Let Ω be a bounded open subset of RN . The Lebesgue measure on Ω is

denoted by dx. The Lebesgue measure of a measurable set A is denoted by |A|,
its characteristic function by 1A. Let T denote a separable metrizable locally

compact space. In the sequel T will be Y × R where Y is [0, 1[N with an ad hoc

compact topology (it is the N -dimensional torus).

For Young measures we will refer to some fundamemental papers of E.J. Balder

[Bd1–3] ([Bd1] appeared in 1984) and to the courses I gave in Italy [V1–2].

To any measurable function v : Ω → T is associated its Young measure, the

measure on Ω × T which is the image of dx by x 7→ (x, v(x)). A general Young

measure is a positive measure ν on Ω× T such that ∀A ∈ B(Ω), ν(A× T ) = |A|
(this means that the projection of ν on Ω is dx). The set of all Young measures

on Ω×T will be denoted by Y(Ω, dx;T ). The disintegration of ν is a measurable

family (νx)x∈Ω of probabilities on T such that, for any function ψ : Ω × T → R

(1) In the literature û is denoted by u0. We denote by Y the unit cell or N dimensional
torus.

(2) From a footnote of [E, p.312], this terminology is due to F. Murat.
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which is positive measurable or ν-integrable,
∫

Ω×T
ψ dν =

∫

Ω

[∫

T
ψ(x, t) dνx(t)

]
dx .

One can write

ν =

∫

Ω
δx ⊗ νx dx .

A Carathéodory integrand is a real function on Ω × T which is separately

measurable on Ω and continuous on T . The set of all bounded Carathéodory

integrand is denoted by Cthb(Ω;T ). The narrow topology on Y(Ω, dx;T ) is the

weakest one making continuous the maps ν 7→ ∫
Ω×T ψ dν where ψ runs through

Cthb(Ω;T ). It is worthwhile to note that this narrow topology coincides with the

weak topology defined by test functions belonging to(3) Cc(Ω×T ) (see [Bd2], [V2,

Th.3]), hence also with the classical narrow topology defined by test functions

belonging to Cb(Ω × T ). The proof in [V2, p.362] shows that Cc(Ω) ⊗ Cc(T ) still
works; see below in Proposition 2 an application.

3 – Two-scale Young measures

A sequence (uε)ε in L
2
R(Ω, dx) is a family (uε)ε∈S where S is a subset of ]0,+∞[

with 0 ∈ S. In all this paper the sequence (uε)ε is assumed to be bounded in

L2
R(Ω, dx) (that is supε ‖uε‖2 < +∞). We are interested by the behavior as

ε→ 0. A subsequence, still denoted (uε)ε, is a family (uε)ε∈S′ where S
′ ⊂ S and

0 ∈ S′. In examples we will use sequences (un)n∈N∗ . This obviously corresponds

to S = {1/n : n ∈ N∗} and un in place of u1/n ( = uε).

Let Y = [0, 1[N be the N -dimensional unit cube (in homogenization Y or

the open cube ]0, 1[N is called the unit cell(4)) and TN the N -dimensional torus,

that is the compact topological space quotient of RN by its subgroup ZN . The

Lebesgue measure on Y is denoted by dy.

The compact topology of TN on Y = [0, 1[N is very useful(5). Firstly, in order

to apply general results of Young measure theory, we need the inf-compactness

over Y × RN of (y, λ) 7→ λ2. Secondly, any continuous function w on Y extends

continuously to RN in a Y -periodic function (or ZN -periodic). Then w denotes

as well a function on Y , as its Y -periodic extension to RN . And, for x ∈ RN

(3) The subscript c means “with compact supports”.
(4) For the measures we will consider, [0, 1[N\]0, 1[N will always be negligible, but see the

arguments below...
(5) For N = 1, any point has the same neighborhoods as in the usual topology induced by

R except for 0: a basis of neighborhoods of 0 is formed by the sets [0, δ[ ∪ ]1− δ, 1[ (δ > 0).
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and ε > 0, the element frac(xε ) ∈ Y (frac is the canonical map from RN onto

TN ) obtained by taking coordinates modulo 1 of x
ε ∈ RN , will be simply de-

noted by x
ε as soon as it is clear that it is an element of Y and we will write w( x

ε ).

Finally C(Y ) denotes the Banach space of real continuous functions on Y ,

Y being equipped with its compact topology.

For any sequence of functions uε : Ω → R we consider the Young measures

νε associated to the maps x 7→ (xε , uε(x)) from Ω to Y × R, that is the measures

on Ω × Y × R which are the images of dx by x 7→ (x, x
ε , uε(x)). We call νε the

two-scale Young measure associated to uε (note that it depends on the value ε of

the index). The set of all these Young measures is tight in Y(Ω, dx;Y × R) (for

this notion see [Bd1], [Bd3], [V1, Prop.8]). Indeed (y, λ) 7→ |λ|2 is inf-compact

over Y × R and
∫

Ω×Y×R
|λ|2 dνε(x, y, λ) =

∫

Ω
|uε(x)|2 dx ≤ sup

γ
(‖uγ‖2)2 < +∞ .

Thus there exists a subsequence, still denoted (νε)ε, convergent to a Young mea-

sure ν on Ω×(Y ×R). An integrand Ψ: Ω×Y ×R → R has linear growth if there

exists C ∈ [0,+∞[ such that ∀ (x, y, λ) ∈ Ω × Y × R, |Ψ(x, y, λ)| ≤ C(1 + |λ|).
We will denote the set of all Carathéodory integrand on Ω × (Y × R) with lin-

ear growth by Cth1(Ω;Y × R). When the functions x 7→ Ψ(x, x
ε , uε(x)) are

uniformly integrable (thanks to the hypothesis sup ‖uε‖2 < +∞, this holds if

Ψ ∈ Cth1(Ω;Y × R)), one has (cf. [Bd1], [Bd3], [V, Th.17], [V2, Th.6]):

(1)

∫

Ω
Ψ
(
x,
x

ε
, uε(x)

)
dx =

∫

Ω×Y×R
Ψ dνε →

∫

Ω×Y×R
Ψ dν .

It is important to extend (1) to some integrands Ψ which loose some continuity

on Y . This will be achieved in Proposition 5.

With classical Young measure, without the factor Y , we would introduce the

disintegration on R with respect to Ω as first factor. Here we disintegrate taking

as first factor Ω × Y . This is possible because the projection of ν on Ω × Y is

known. It is the limit of the projection θε of νε, that is of the image of dx by

x 7→ (x, x
ε ). But these measures converge to dx ⊗ dy (see Proposition 2 below).

The disintegration is denoted by (ν(x,y))(x,y)∈Ω×Y . Thus, for any ad hoc integrand

Ψ,

(2)

∫

Ω
Ψ
(
x,
x

ε
, uε(x)

)
dx →

∫

Ω×Y

[∫

R
Ψ(x, y, λ) dν(x,y)(λ)

]
dx dy .

Another property of convergence in Young measure Theory is: if a measurable

integrand Ψ: Ω× Y × R → [0,+∞] is l.s.c. in (y, λ), then

(3)

∫

Ω×Y×R
Ψ dν ≤ lim inf

ε→0

∫

Ω×Y×R
Ψ dνε .
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4 – Generation of weakly convergent sequences. Admissible functions

The following result is basic in homogenization and has several consequences.

Proposition 1. Let ψ ∈ Lp(Y ) (p ∈ [1,+∞]), ε ∈ ]0, ε0] where 0 <

ε0 < +∞. Then the sequence (ψ( ·ε))ε is bounded in Lp(Ω) and ψ( ·ε) converges

weakly in Lp (that is for σ(Lp(Ω), Lq(Ω)) — weakly* if p = ∞), as ε → 0, to

(
∫
Y ψ(y) dy) 1Ω.

Remark. For the boundedness property the condition ε ≤ ε0 cannot, for

p < +∞, be removed: for N = 1 and ψ(y) = y−1/2 on ]0, 1[, if Ω = ]0, 1[ and

ε ≥ 1, ‖(ψ( ·ε))‖1 = 2
√
ε→ +∞ as ε→ +∞.

References. This is clearly stated (and proved) in P. Suquet’s thesis

[Su, Lemme 3, p.308]. See also Ball–Murat [BM, Lemma A.1, p.249], Dacorogna

[Da, Th. 1.5, p.21].

Comments.

1) This gives a process to generate weakly convergent (usually not strongly

convergent) sequences. First let w ∈ L2(Y ). If w is not constant, un(x) :=w(nx)

weakly converges to the mean of w without converging strongly.

2) Then we turn to less elementary operations. We begin by the simplest

procedures, in accordance to the idea that among functions of two variables the

simplest ones are those where the variables are independent. An amplitude modu-

lation in x is possible: let v ∈ L2(Ω) and un(x) := v(x)w(nx). Now, if p ∈ L∞(Ω),
∫

Ω
p(x)un(x) dx =

∫

Ω

[
p(x) v(x)

]
w(nx) dx

→
∫

Ω

[
p(x) v(x)

](∫

Y
w(y) dy

)
dx

=

〈
p,
(∫

Y
w(y) dy

)
v

〉
.

Then one can takes k couples (vi, wi) and set un(x) :=
∑k

i=1 vi(x)wi(nx).

3) Now the problem is: what are the measurable functions u on Ω × Y such

that, if one sets un(x) :=u(x, nx), the following weak convergence

un = u(·, n)⇀ u∞ :=
[
x 7→

∫

Y
u(x, y) dy

]

still holds? Surely there is a difficulty with taking u in L2(Ω× Y ): the values of

the un depends only on the values of u on ∆ :=
⋃

n∈N∗ gr(x 7→ frac(nx)) which is
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negligible in Ω × Y . So appear the need for a good subclass of L2(Ω × Y ): see

Proposition 3 below.

Proposition 2. The measure θε on Ω × Y , which is the image of dx by

x 7→ (x, x
ε ), converges narrowly to dx⊗ dy.

Proof: By standard facts on narrow convergence (see for example [V2, proof

of Theorem 3, p.362]) it is sufficient to show that, for any ψ, ψ(x, y) = ψ1(x)ψ2(y)

where ψ1 ∈ Cc(Ω) and ψ2 ∈ C(Y ), one has

∫

Ω×Y
ψ dθε →

∫

Ω×Y
ψ dx dy .

This holds thanks to Proposition 1:

∫

Ω×Y
ψ dθε =

∫

Ω
ψ1(x)ψ2

(x
ε

)
dx →

[∫

Ω
ψ1(x) dx

] [∫

Y
ψ2(y) dy

]
.

Now we introduce a class of functions which have nice properties. The prop-

erty below is inspired by Boccardo–Buttazzo [BB, (2.3), p.23].

Definition. A Borel function u : Ω × Y → R is admissible or belongs to

Adm if: ∀ δ > 0, there exists a compact set Qδ ⊂ Ω and a compact set Kδ ⊂ Y

satisfying |Ω\Qδ| ≤ δ, |Y \Kδ| ≤ δ and u|Qδ×Kδ
is continuous.

Remark. By the Scorza Dragoni theorem [SD], [ET, VIII.1.3, p.218], this

definition is equivalent to: ∀ δ > 0, there exists a Borel set Ωδ ⊂ Ω and a compact

set Kδ ⊂ Y satisfying |Ω\Ωδ| ≤ δ, |Y \Kδ| ≤ δ and ∀x ∈ Ωδ, u(x, ·) is continuous
on Kδ. Note that any measurable function u : Ω × Y → R satisfies the weaker

Lusin property: ∀ δ > 0, there exists a compact subset H of Ω × Y such that

|(Ω× Y )\H| < δ and u|H is continuous.

Examples. The function u is admissible in the following cases:

1) u is Carathéodory continuous on Y . Indeed by the Scorza Dragoni theorem,

there exists a compact Qδ satisfying |Ω\Qδ| ≤ δ and u|Qδ×Y is continuous.

2) u is Carathéodory continuous on Ω (still Scorza Dragoni).

3) u has the form u(x, y) = v(x)w(y) where v and w are Borel functions

respectively defined on Ω and Y (this follows from the Lusin property applied

to w. One can choose Ωδ = Ω). This still holds for a finite sum: u(x, y) =∑k
i=1 vi(x)wi(y).
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Remark. Some properties of Carathéodory integrands go back to 1972

or earlier (see Warga’s book, specially [W, Th. I.5.25, p.135]): there is a one-

to-one correspondence between the set of all Carathéodory integrands u such

that [x 7→ ‖u(x, ·)‖∞ is integrable] and L1(Ω, dx; C(Y )). If U ∈ L1(Ω, dx; C(Y )),

u(x, y) :=[U(x)](y) defines a Carathéodory integrand.

Notation. Let Adm2(Ω, dx;Y ) denote the set of admissible functions u

satisfying ∃α ∈ L2
+(Ω) such that ∀ (x, y) ∈ Ω× Y , |u(x, y)| ≤ α(x).

Thanks to the following, one difficulty when working with L2(Ω×Y, dx⊗dy),
which was noticed before Proposition 2, disappears with admissible functions.

Proposition 3. If u and ũ are admissible and u(x, y) = ũ(x, y) dx⊗ dy-a.e.,
there exist negligible sets N ⊂ Ω and Z ⊂ Y such that u and ũ coincide on

(Ω\N)× (Y \Z). Then for any ε > 0, u(x, x
ε ) = ũ(x, x

ε ) dx-a.e.

When Z = ∅, this property is called by probabilists (see Dellacherie–Meyer

[DM, ch. IV, Definition 7, p.136]) undistinguishability .

Proof: 1) Let, for δ > 0, Qδ and Kδ be compact sets satisfying the

definition of admissibility for u and for ũ. Denoting Qn =
⋂

m≥nQ2−m and

Kn =
⋂

m≥nK2−m one gets increasing sequences (Qn)n and (Kn)n such that

N−1 :=Ω\(⋃nQ
n) and Z :=Y \(⋃nK

n) are negligible. Replacing if necessary

Kn by the support of the measure 1Kn dy, one may assume that any dy-negligible

open subset of Kn is empty. For any n, {(x, y) ∈ Qn×Kn : u(x, y) 6= ũ(x, y)} has
open cuts and, thanks to Fubini’s theorem, they are negligible for dx-almost all

x hence empty. Hence there exists a negligible set Nn ⊂ Qn such that u(x, ·)|Kn

and ũ(x, ·)|Kn coincide if x /∈ Qn\Nn. It remains to set N =
⋃∞

n=−1Nn.

2) The set {x ∈ Ω : x
ε ∈ Z} is dx-negligible. The last assertion follows from

the inclusion {x ∈ Ω: u(x, x
ε ) 6= ũ(x, x

ε )} ⊂ N ∪ {x ∈ Ω: x
ε ∈ Z}.

5 – Nguetseng’s result

The following result is the basic idea of the two-scale convergence method.

We follow the proof of G. Allaire, but taking a smaller class of test functions, we

get a slightly shorter proof.
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Theorem 4 (Nguetseng, 1989). Let (uε)ε be a bounded sequence in L2(Ω).

There exist a subsequence and a function û ∈ L2(Ω × Y ) such that for any

ψ ∈ Cc(Ω× Y ),

(Ng) `ε(ψ) :=

∫

Ω
uε(x)ψ

(
x,
x

ε

)
dx →

∫ ∫

Ω×Y
û(x, y)ψ(x, y) dx dy .

Remark. It is interesting to get (maybe for a further subsequence) the

above convergence for a larger class than Cc(Ω × Y ). We will get it for ad-

missible functions in Theorem 8 formula (11). Note that in [A1, Remark 1.11,

pp.l489–l490] G. Allaire obtains (Ng) for the class he defines.

Proof: The `ε are linear forms on Cc(Ω × Y ). Set C = supε ‖uε‖2. By

Cauchy–Schwartz |`ε(ψ)| ≤ C‖ψ‖∞ |Ω|1/2. Thus `ε is a Radon–Bourbaki measure

belonging to Mb(Ω × Y ) = (Cc(Ω × Y ), ‖ · ‖∞)′ and the sequence is bounded.

There exists a weak* convergent subsequence `ε → `. But ` is continuous with

respect to the L2(Ω × Y )-norm, denoted ‖ · ‖2 (despite the fact that the `ε are

not ‖ · ‖2-continuous: they are singular measures). Indeed

|`(ψ)| ≤ C lim sup
ε→0

(∫

Ω
ψ
(
x,
x

ε

)2
dx
)1/2

.

Since ψ belongs to Cc(Ω×Y ), the right-hand member converges to C‖ψ‖L2(Ω×Y )

(invoke for example Proposition 2). So the measure ` is defined by a density

û ∈ L2(Ω× Y ).

6 – A continuity result

We recall that the sequence (uε)ε is bounded in L2
R(Ω, dx) and that (νε)ε

denotes a narrow convergent subsequence with limit ν. The following result will

be useful in cases when (β, p) = (0, 1), (β, p) = (1, 2) and (β, p) = (2,+∞)

(a(x, y) being constant when β = 2) which cover the case when Ψ is a trinomial

in λ with suitable coefficients.

Proposition 5. Let β ∈ [0, 2] and p := 2
2−β . Let Ψ denote the integrand

on Ω × Y × R, Ψ(x, y, λ) := a(x, y)λβ , where a ∈ Adm and ∃α ∈ Lp
+(Ω), such

that ∀ (x, y), |a(x, y)| ≤ α(x). Suppose that, when β = 2, the |uε|2 are uniformly

integrable. Then

(4)

∫

Ω×Y×R
Ψ dνε →

∫

Ω×Y×R
Ψ dν .
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Proof: Let δ > 0 and Qδ and Kδ be given by a ∈ Adm and such that α|Qδ
is

continuous, hence bounded byM < +∞. By Tietze–Urysohn’s theorem, a|Qδ×Kδ

has a continuous extension a to Qδ×Y with ∀ (x, y) ∈ Qδ×Y , |a(x, y)| ≤M . For

x ∈ Qδ, set Ψ(x, y, λ) = a(x, y)λβ . The functions Ψ(x, x
ε , uε(x)) are uniformly

integrable on Qδ because |Ψ(x, x
ε , uε(x))| ≤ M |uε(x)|β and, if β < 2, UI follows

from Hölder’s inequality (or from La Vallée Poussin criterion), if β = 2, UI has

been assumed in the statement. Moreover, for x ∈ Qδ, (y, λ) → Ψ(x, y, λ) is

continuous. Thus, by (1)
∫

Qδ×Y×R
Ψ dνε =

∫

Qδ

Ψ
(
x,
x

ε
, uε(x)

)
dx →

∫

Qδ×Y×R
Ψ dν .

Now
∣∣∣
∫

Ω×Y×R
Ψ dνε −

∫

Ω×Y×R
Ψ dν

∣∣∣ ≤
∣∣∣
∫

(Ω\Qδ)×Y×R
Ψ dνε

∣∣∣(5)

+
∣∣∣
∫

Qδ×Y×R
Ψ dνε −

∫

Qδ×Y×R
Ψ dνε

∣∣∣(6)

+
∣∣∣
∫

Qδ×Y×R
Ψ dνε −

∫

Qδ×Y×R
Ψ dν

∣∣∣

+
∣∣∣
∫

Qδ×Y×R
Ψ dν −

∫

Qδ×Y×R
Ψ dν

∣∣∣(7)

+
∣∣∣
∫

(Ω\Qδ)×Y×R
Ψ dν

∣∣∣ .(8)

Let us check that the first two and the last two terms are “small”. Observe that,

using (3), we get
∫

Ω
α(x)

[∫

Y

[∫

R
|λ|β dν(x,y)(λ)

]
dy

]
dx =

∫

Ω×Y×R
α(x) |λ|β dν(x, y, λ)

≤ lim inf
ε→0

∫

Ω×Y×R
α(x) |λ|β dνε(x, y, λ)

= lim inf
ε→0

∫

Ω
α(x) |uε(x)|β dx

≤ sup
γ

∥∥∥|uγ |β
∥∥∥
L

2
β (Ω)

∥∥∥α
∥∥∥
L

2
2−β (Ω)

=
(
sup
γ
‖uγ‖L2(Ω)

)β
‖α‖Lp(Ω)

< +∞ .

So firstly, for the term (8),

∣∣∣
∫

(Ω\Qδ)×Y×R
Ψ dν

∣∣∣ ≤
∫

Ω\Qδ

α(x)

[∫

Y

[∫

R
|λ|β dν(x,y)(λ)

]
dy

]
dx

as δ→0−−−−−−→ 0 .
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The same calculus with α ≡ 1 gives
∫
Ω×Y×R |λ|β dν(x, y, λ) < +∞ hence, for (7),

∣∣∣
∫

Qδ×Y×R
Ψ dν −

∫

Qδ×Y×R
Ψ dν

∣∣∣ ≤
∫

Qδ×(Y \Kδ)×R
2M |λ|β dν(x, y, λ)

≤ 2M

∫

Y \Kδ

[∫

Ω

[∫

R
|λ|β dν(x,y)(λ)

]
dx

]
dy

as δ→0−−−−−−→ 0 .

Thirdly, for (5)

∣∣∣
∫

(Ω\Qδ)×Y×R
Ψ dνε

∣∣∣ ≤
∫

Ω\Qδ

α(x) |uε(x)|β dx

≤ sup
γ

∥∥∥1Ω\Qδ
|uγ |β

∥∥∥
L

2
β (Ω)

∥∥∥1Ω\Qδ
α
∥∥∥
L

2
2−β (Ω)

=
(
sup
γ

∥∥∥1Ω\Qδ
uγ

∥∥∥
2

)β ∥∥∥1Ω\Qδ
α
∥∥∥
Lp(Ω)

.

The last line tends to 0 as δ → 0 because, if β < 2, p is < +∞ and the second

factor tends to 0 and, if β = 2, the first factor tends to 0 since the |uε|2 are

uniformly integrable.

Finally for (6) assume that, for x ∈ Qδ, a(x, ·)|Kδ
has been extended to Y

using Borsuk’s theorem(6) [Bo], [Dg, Th. 5.1, p.360], so that supy |a(x, y)| remains

≤ α(x). Then

∣∣∣
∫

Qδ×Y×R
Ψ dνε −

∫

Qδ×Y×R
Ψ dνε

∣∣∣ ≤
∫

Qδ×(Y \Kδ)×R
2α(x) |λ|β dνε(x, y, λ)

= 2

∫

Qδ

α(x) |uε(x)|β 1Y \Kδ

(x
ε

)
dx .

We distinguish β < 2 and β = 2. In the first case we continue the majoration:

(9)

≤ 2 sup
γ

∥∥∥|uγ |β
∥∥∥
L

2
β (Ω)

∥∥∥α(·) 1Y \Kδ

( ·
ε

)∥∥∥
L

2
2−β (Ω)

= 2
(
sup
γ
‖uγ‖2

)β ∥∥∥α(·) 1Y \Kδ

( ·
ε

)∥∥∥
Lp(Ω)

.

Let η > 0. Here we have to explain a bit how to choose firstly δ such that for

ε small enough the second term (6) is less than η/5. Let C = 2(supγ ‖uγ‖2)β .

(6) This gives a measurable integrand because, for x ∈ Qδ, the C(Y )-valued map x 7→ a(x, ·)
inherits the measurability of x 7→ a(x, ·)|Kδ

.
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Since p is < +∞, by Proposition 1,

(10)

∥∥∥α(·) 1Y \Kδ

( ·
ε

)∥∥∥
Lp(Ω)

=

(∫

Ω
α(x)p 1Y \Kδ

(x
ε

)
dx

)1
p

as δ→0−−−−−−→
(
|Y \Kδ|

∫

Ω
α(x)p dx

) 1
p

≤
(
δ

∫

Ω
α(x)p dx

) 1
p .

One can choose δ small enough in order that C(δ
∫
Ω α(x)

p dx)
1
p ≤ η/10. Then,

thanks to (10), for ε small enough, one gets ≤ η/5 in (9).

Now consider the second case when (β, p) = (2,+∞). We continue the majo-

ration:

≤ 2

∫

{x∈Ω: x
ε
/∈Kδ}

α(t) |uε(t)|2 dt .

By Proposition 1, |{x ∈ Ω : x
ε /∈ Kδ}| → |Ω| δ. So the result follows from the

uniform integrability of the |uε|2 and α ∈ L∞.

7 – Some properties of admissible functions

Theorem 6. Let u ∈ Adm2(Ω, dx;Y )(7). Let uε(x) = u(x, x
ε ) and νε be the

two-scale Young measure associated to uε. Then νε converges narrowly to the im-

age ν of dx⊗dy by (x, y) 7→ (x, y, u(x, y)) which writes ν =
∫
Ω×Y δ(x,y,u(x,y)) dx dy

(or ν(x,y) = δu(x,y)). Moreover uε converges weakly in L2(Ω) to u∞ where

u∞(x) =
∫
Y u(x, y) dy.

Remark. So, in this case, the function û defined later (formula (12)) as

the barycenter of ν(x,y) coincides with u. Specially we get the periodic case

un(x) = u1(nx) when u does not depend on x. Then the classical Young measure

theory cannot distinguish some different behaviors. For example, if N ≥ 2,

the sequences un(x) = sin(nx1) and u′n(x) = sin(nx2) give the same classical

Young measure(8). For example, if N = 1 and u1(x) = x on Y = [0, 1[ and

u′1(x) = 2|x− 1/2| on Y , the limit Young measure νx is the same: the Lebesgue

measure on [0, 1]. In these examples the classical Young measures cannot recover

the original pattern or the directions of oscillations, but û recovers exactly the

generator function of the sequence.

(7) With a less short proof, one can treat the case when u ∈ Adm and ∃β ∈ L2
+(Y ) such

that ∀ (x, y), |u(x, y)| ≤ β(y).
(8) Its disintegration νx (x ∈ Ω) is (see for N = 1, [V2, Th. 4]) the probability on R with

density λ 7→ (π
√
1− λ2)−1 on ]− 1, 1[.
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Now we must say that a different notion was introduced by L. Tartar in [T3]:

the H-measures. They also permit to distinguish different oscillation directions.

Proof: 1) Since the set H of all measures νε is tight, it is relatively compact

in Y(Ω, dx;Y × R). So it suffices to prove that (νε)ε has ν as a unique limit

point. Moreover, since the space of continuous functions with compact supports

Cc(Ω × Y × R) is separable, H is metrizable for the narrow topology of Young

measures.

Suppose that εk → 0 and that νk := νεk converges narrowly to τ . We are going

to prove that τ is carried by gr(u). Since the projection of τ on Ω× Y is dx⊗ dy
(cf. Prop. 2), this will prove τ(x,y) = δu(x,y) = ν(x,y) hence τ = ν. Set Ψ(x, y, λ) =

|λ−u(x, y)|2 = λ2− 2u(x, y)λ+ |u(x, y)|2. Each term satisfies the hypotheses of

Proposition 5 (the |uε|2 are UI since |uε(x)| ≤ α(x) with α ∈ L2(Ω)). Hence

∫

Ω×Y×R
Ψ dνε →

∫

Ω×Y×R
Ψ dν .

But ∀ ε > 0,
∫
Ω×Y×R Ψ dνε =

∫
ΩΨ(x, x

ε , u(x,
x
ε )) dx = 0. This implies∫

Ω×Y×R Ψ dν = 0, hence Ψ(x, y, λ) = 0 ν-a.e. This means that ν is carried

by {(x, y, λ) : |λ− u(x, y)|2 = 0}, that is by gr(u).

2) Note that u ∈ L2(Ω× Y ) ⊂ L1(Ω× Y ) implies that u∞ is well defined and

that u∞ ∈ L2(Ω):

∫

Ω
|u∞(x)|2 dx =

∫

Ω

∣∣∣
∫

Y
u(x, y) dy

∣∣∣
2
dx ≤

∫

Ω×Y

∣∣∣u(x, y)
∣∣∣
2
dx dy < +∞ .

Let p ∈ L2(Ω) and Ψ(x, y, λ) := p(x)λ. By Proposition 5

∫

Ω
p(x)uε(x) dx =

∫

Ω×Y×R
Ψ dνε

→
∫

Ω×Y×R
Ψ dν

=

∫

Ω×Y
Ψ
(
x, y, u(x, y)

)
dx dy

=

∫

Ω×Y
p(x)u(x, y) dx dy

=

∫

Ω
p(x)u∞(x) dx .
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Proposition 7. If u ∈ Adm2(Ω, dx;Y ), for p = 1 and p = 2,

(∗)
∫

Ω

∣∣∣u
(
x,
x

ε

)∣∣∣
p
dx →

∫

Ω×Y

∣∣∣u(x, y)
∣∣∣
p
dx dy .

Comments. G. Allaire [A1, (1.3)] calls admissible a function u ∈ L2(Ω × Y )

satisfying this property for p = 2. When u(x, y) := v(x)w(y) (v ∈ L2(Ω),

w ∈ L2(Y )) and p = 1, (∗) is a consequence of Proposition 1. Indeed, with

the scalar product of L2(Ω),

∫

Ω

∣∣∣u
(
x,
x

ε

)∣∣∣ dx =
〈
|v|,

∣∣∣w
( ·
ε

)∣∣∣
〉
→

〈
|v|,

(∫

Y
|w(y)| dy

)
1Ω

〉
=

∫

Ω×Y
|u(x, y)| dx dy.

Proof: We use the functions uε(x) :=u(x, x
ε ) and the measures νε and ν of

Theorem 6. Let Ψ(x, y, λ) = |λ|p. Then
∫

Ω×Y×R
Ψ dνε =

∫

Ω

∣∣∣u
(
x,
x

ε

)∣∣∣
p
dx

and ∫

Ω×Y×R
Ψ dν =

∫

Ω×Y×R
|λ|p dν(x, y, λ) =

∫

Ω×Y
|u(x, y)|p dx dy .

The result follows from (4). For p = 2 the uniform integrability of the |uε|2 comes

from |uε(x)|2 ≤ α(x)2.

8 – Properties of the limit measure

We recall once more that the sequence (uε)ε is bounded in L2
R(Ω, dx) and that

(νε)ε denotes a narrow convergent subsequence with limit ν.

Theorem 8. For the subsequence under consideration,

1) the disintegration of the limit ν is for dx ⊗ dy-almost every (x, y) of first

order, that is ∫

R
|λ| dν(x,y)(λ) < +∞ .

Setting û(x, y) =
∫
R λ dν(x,y)(λ), one has û ∈ L2(Ω× Y ). Moreover

(11) ∀ψ ∈ Adm2(Ω, dx;Y ),

∫

Ω
uε(x)ψ

(
x,
x

ε

)
dx →

∫

Ω×Y
û(x, y)ψ(x, y) dx dy .
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2) u∞(x) =
∫
Y û(x, y) dy defines a function belonging to L2(Ω) and uε con-

verges weakly to u∞ in L2.

Remark. The convergence (11) extends the simplified version of the two-

scale convergence method we gave in Section 5. It partially recovers Remark 1.11

of [A1].

Proof: 1) With the choice Ψ(x, y, λ) = |λ|, (3) gives:
∫

Ω×Y

[∫

R
|λ| dν(x,y)(λ)

]
dx dy ≤ sup

ε
‖uε‖1 < +∞

hence ∫

R
|λ| dν(x,y)(λ) < +∞ dx⊗ dy-a.e.

So we can set

(12) û(x, y) :=

∫

R
λ dν(x,y)(λ) .

We check û ∈ L2(Ω× Y ). We use again (3):

∫

Ω×Y
|û(x, y)|2 dx dy =

∫

Ω×Y

∣∣∣
∫

R
λ dν(x,y)(λ)

∣∣∣
2
dx dy

≤
∫

Ω×Y×R
|λ|2 dν(x, y, λ)

≤ lim inf

∫

Ω×Y×R
|λ|2 dνε(x, y, λ)

= lim inf

∫

Ω
|uε(x)|2 dx < +∞ .

Thus û ∈ L2(Ω × Y ). Proposition 5 applies to Ψ(x, y, λ) :=ψ(x, y)λ, and (4)

gives ∫

Ω
uε(x)ψ

(
x,
x

ε

)
dx →

∫

Ω×Y

[∫

R
λ dν(x,y)(λ)

]
ψ(x, y) dx dy

=

∫

Ω×Y
û(x, y)ψ(x, y) dx dy .

2) As in part 2) of the proof of Theorem 6, u∞ ∈ L2(Ω) and the weak con-

vergence uε → u∞ follows from (4) applied to Ψ(x, y, λ) := p(x)λ (p ∈ L2(Ω)).

Remark. If we set

(13) σx :=

∫

Y
ν(x,y) dy ,
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the choice Ψ(x, y, λ) :=Φ(x, λ) where Φ ∈ Cthb(Ω;R) and (2) give
∫

Ω
Φ(x, uε(x)) dx →

∫

Ω×Y

[∫

R
Φ(x, λ) dν(x,y)(λ)

]
dx dy

=

∫

Ω

[∫

R
Φ(x, λ) dσx(λ)

]
dx .

This proves that, as noticed by W. E [E, (4.6)], the subsequence (uε)ε (more

precisely the sequence of classical Young measures on Ω × R associated to the

functions uε) converges to the Young measure on Ω×R, σ, whose disintegration

is defined in (13).

9 – Huyghens type results

Since, for any (x, y) ∈ Ω×Y , û(x, y) is the mean of ν(x,y), Huyghens’ theorem

says:

(14) ∀ r ∈ R,
∫

R
|λ− r|2 dν(x,y)(λ) =

∫

R
|λ− û(x, y)|2 dν(x,y)(λ)+ |û(x, y)− r|2.

Proposition 9. Suppose that the |uε|2 are uniformly integrable and that û

given by Theorem 8 belongs to Adm2(Ω, dx;Y ). The subsequence under consid-

eration satisfies:

1) For any ũ ∈ Adm2(Ω, dx;Y ),

(15) lim
ε→0

∥∥∥uε − ũ
(
·, ·
ε

)∥∥∥
2

2
=

∫

Ω×Y

[∫

R
|λ− ũ(x, y)|2 dν(x,y)(λ)

]
dx dy

and the minimum is attained when ũ = û.

(16) 2) lim
ε→0

∥∥∥û
(
·, ·
ε

)
− u∞

∥∥∥
2

2
=

∫

Ω×Y

∣∣∣û(x, y)− u∞(x)
∣∣∣
2
dx dy .

(17) 3) lim
ε→0

∥∥∥uε − u∞
∥∥∥
2

2
= lim

ε→0

∥∥∥uε − û
(
·, ·
ε

)∥∥∥
2

2
+ lim

ε→0

∥∥∥û
(
·, ·
ε

)
− u∞

∥∥∥
2

2
.

Remarks. Suppose that the |uε|2 are uniformly integrable and let v ∈ L2(Ω).

Taking ũ(x, y) = v(x) in (15), one gets, with σ defined by (13),

(18)

lim
ε→0

‖uε − v‖22 =
∫

Ω×Y

[∫

R
|λ− v(x)|2 dν(x,y)(λ)

]
dx dy

=

∫

Ω×R
|λ− v(x)|2 dσ(x, λ) .
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1) An analogous formula for the L1-norm and classical Young measures al-

ready exists [V2, Th. 9]. Other quantitative results in L1 combining Young

measures and the biting lemma are given in Saadoune–Valadier [SV].

2) For Ω = ]0, 1[ and un = n1/2 1]0, 1
n
[, ν(x,y) = δ0, û = 0 and u∞ = 0. Formula

(18) with v = u∞ does not hold: the left member equals 1, the second 0.

The uniform integrability of the |uε|2 is lacking.

Proof: 1) Let us choose Ψ(x, y, λ) = |λ− ũ(x, y)|2. Proposition 5 applies:
∫

Ω×Y×R
Ψ dν = lim

ε→0

∫

Ω×Y×R
Ψ dνε .

So (15) follows from

∫

Ω×Y×R
Ψ dνε =

∫

Ω

∣∣∣∣uε(x)− ũ
(
x,
x

ε

)∣∣∣∣
2

dx .

Finally by Huyghens’ theorem,
∫
R |λ− ũ(x, y)|2 dν(x,y)(λ) is minimal when ũ(x, y)

is chosen to be û(x, y).

2) The measure θε on Ω× Y image of dx by x 7→ (x, x
ε ) converges to dx⊗ dy

(cf. Prop. 2). Set ψ(x, y) = |û(x, y)− u∞(x)|2. The expected result follows from

the uniform integrability of the functions |û(·, ·ε)− u∞(·)|2 and from

∫

Ω×Y
ψ dθε =

∫

Ω

∣∣∣∣û
(
x,
x

ε

)
− u∞(x)

∣∣∣∣
2

dx .

3) Formula (17) follows easily from (18) (with v=u∞), (14) (with r=u∞(x)),

(15) and (16).

Comment. One has 0 in (15) (with ũ = û) if and only if ν(x,y) is the Dirac mass

δû(x,y). Getting 0 in (15) means that the two-scale method recovers quite well

the (sub)sequence. When a strictly positive value is obtained, some oscillations

escape to this analysis.

The strong convergence uε → u∞ of the subsequence under consideration

holds if and only if the right members of (15) (with ũ = û) and of (16) are 0.

Each one can be 0 independently. For example, if un(x) = sin(nx1), (15) is 0 and

(16) is not. But, if un(x) = sin(n2x1), û(x, y) ≡ 0, hence (16) is 0 but (15) is not.
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