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AN ALGEBRA OF ABSTRACT VECTOR VARIABLES

F. Sommen*

Abstract: In this paper we introduce an abstract algebra of vector variables that

generalizes both polynomial algebra and Clifford algebra. This abstractly defined algebra

and its endomorphisms contains all the basic SO(m)-invariant polynomials and operators

used in Clifford analysis.

I – Introduction

Consider the Clifford algebra Rm generated by the Euclidean space Rm =

span{e1, ..., em} and determined by the relations eiej + ejei = −2δij . Then a

vector variable is a first order Clifford polynomial of the form x =
∑
xjej . The

corresponding Dirac operator or vector derivative in the variable x is the operator

∂x =
∑
ej ∂xj

. Clifford analysis deals with the function theory of solutions of

∂xf(x) = 0, called monogenic functions (see [1], [2]).

More in general one may consider operators belonging to the algebra

Alg{xj , ∂xj
, ej} = Alg{x, ∂x, ej} of Clifford differential operators and in particu-

lar to Spin(m)-invariant operators.

On Clifford-algebra valued functions one may consider the following represen-

tations. Let s ∈ Spin(m) and a ∈ Rm; then first we put h(s)[a] = s a s, where

for b ∈ Rm, b denotes the standard anti-automorphism determined by a b = b a,

a = −a for a ∈ Rm. Then for Rm-valued functions one can consider the repre-

sentations

L(s) f(x) = s f(s x s) , H(s) f(x) = s f(s x s) s ,

which admit straightforward generalizations defined on functions f(x1, ..., xl) of

several vector variables x1, ..., xl ∈ Rm. A polynomial P (x1, ..., xl) is called
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SO(m)-invariant if P = H(s)P , i.e. if

P (x1, ..., xl) = s P (s x1 s, ..., s xl s) s .

In [3] we have shown that the algebra of all such polynomials is generated by the

set {x1, ..., xl, e1...m}, e1...m the pseudoscalar. Prom this it follows that the algebra

of Rm-valued differential operators P (x, ∂x) that are invariant under the repre-

sentation L of Spin(m) is generated by {x, ∂x, e1...m}. In the case of H-invariant

operators on Rm-valued functions we can consider both left and right operators

P (x, ∂x)f(x) and f(x)P (x, ∂x) and it is in fact more appropriate to consider op-

erators with values in End(Rm). Using the isomorphism of End(Rm) with the

Clifford algebra Rm,m, we proved in [4] that the algebra of H-invariant operators

is generated by the left and right operators f → xf , f → fx, f → ∂xf , f → f∂x,

the pseudoscalar f → e1...mf and the projection operators f → [f ]k of Rm onto

the spaces Rk
m of k-vectors. Both results may readily be generalized to the case

of functions f(x1, ..., xk) and it can be shown that all Spin(m)-representations

can be expressed either by L or by H acting on functions of several vector vari-

ables (see also [5]). This clearly motivates the study of the algebra Alg{x1, ..., xl}

generated by several vector variables, as well as the algebra of endomorphisms

on this algebra. Note that this algebra indeed contains all the above mentioned

Spin(m)-invariant operators, except the pseudoscalar f → e1...m f .

In this paper we introduce an abstract axiomatically defined version of the

algebra Alg{x1, ..., xl}, which we call the “radial algebra” R(S) generated by a

set S of “abstract vector variables”. Note that these “abstract vector variables”

are no longer vectors in some Clifford algebra. There is indeed no a priori defined

linear space V to which the variables x ∈ S belong. The algebra R(S) is hence

independent of any dimension m or quadratic form Q that could be specified for

a linear space V leading to the interpretation of V as the space of vectors in

a Clifford algebra. Nevertheless, radial algebras still have all the properties of

both Clifford algebras and polynomial algebras. Moreover, in case S is finite, the

algebra R(S) is isomorphic to an algebra Alg{x1, ..., xl} of true vector variables

in some Clifford algebra. Due to this fact, radial algebras generated by finite sets

of variables behave like algebras of vector variables belonging to a vector space

of unspecified but finite dimension. In case S is infinite, injective representations

of R(S) are only possible using infinite dimensional Clifford algebras. In any

case, a universal representation of all radial algebras in terms of Clifford algebras

seems only possible in some universal Clifford algebra of unspecified and unlimited

dimension. This is in fact also the idea behind “geometric algebra” in the sense

of [6]. The problem there is that it is not really possible to define anything
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like a universal geometric algebra (in the standard mathematical sense). Radial

algebras however are well-defined sets which behave as if they were embedded in

some fictive universal geometric algebra G.

In section II we define radial algebras and establish their representation by

Clifford polynomials in case S is finite.

In section III we study fundamental examples of endomorphisms on radial

algebras. In particular we give an axiomatic definition of abstract vector deriva-

tives. Surprisingly this leads to the existence of a scalar m which in the Clifford

polynomial representation would play the role of the dimension. But now the

dimension m is a purely abstract scalar and may hence be considered as a pa-

rameter.

In the last section we characterize the algebra EndR(S) of endomorphisms

in terms of endomorphisms on Clifford polynomials. We also give a direct char-

acterization based on the use of abstract vector variables and vector derivatives.

II – Radial algebras and their Clifford polynomial representation

The starting object in the definition of radial algebra is a set S of “abstract

vector variables”. The radial algebra R(S) is the universal algebra generated by

S and subjected to the constraint

(A1) for any x, y, z ∈ S , [{x, y}, z] = 0 ,

whereby {a, b} = ab+ ba and [a, b] = ab− ba.

This axiom means that the anti-commutator of two abstract vector variables is

a scalar, i.e. a quantity which commutes with every other element in the algebra.

It is clearly inspired by the similar property for Clifford vector variables. Consider

indeed the real Clifford algebra Rm determined by the relations

ej ek + ek ej = ±2δjk ,

then for any two vector variables x =
∑
xjej and y =

∑
yjej , we have that

x y + y x = ±2
∑
xjyj = 2x · y. The main difference between Clifford algebra

and radial algebra lies in the fact that the abstract vector variables x ∈ S have

a merely symbolic nature; they are not vectors belonging to an a priori defined

vector space V of some dimension m with some quadratic form on it.

Nevertheless, by only using (A1) one can already deduce many properties valid

for the algebra of Clifford vector variables. We first define the wedge product of
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vectors by

x1 ∧ ... ∧ xk =
1

k!

∑

π

sgn(π)xπ(1)... xπ(k)

leading e.g. to the basic relation for Clifford vectors

x y = x · y + x ∧ y , x · y =
1

2
(x y + y x) .

Lemma 2.1. Every element F (x1, ..., xl) ∈ R(S) depending on the abstract

vector variables x1, ..., xl may be written into the form

F (x1, ..., xl) =
∑

i1<...<ik

Fi1...ik(x1, ..., xl)xi1 ∧ ... ∧ xik ,

whereby Fi1...ik are linear combinations of products of inner products xi · xj .

Proof: For l = 1, every F (x) ∈ R(S), x ∈ S, is clearly of the form
∑
cj x

j =

A(x2) + xB(x2). More in general F (x1, ..., xl) may always be written as a linear

combination of products of vector variables xj1 ...xjs so that we only need to

consider these and prove the decomposition by induction on the total degree s of

the product.

In case two indices in the above product are the same, we can write the

product into the form

xj1 ... xjs =
∑
scalar l.o.p. ,

whereby l.o.p. refers to a lower order product. As the coefficients are scalar,

the decomposition follows by induction. Hence we may restrict to the case of

products of l different vector variables like x1...xl. But it is in fact clear from

(A1) that for any permutation π,

xπ(1)... xπ(l) = x1... xl +
∑
scalar l.o.p.

whence also

x1... xl = x1 ∧ ... ∧ xl +
∑
scalar l.o.p. .

Hence the decomposition again follows by induction on the degree.

Every element of the radial R{x1, ..., xl} generated by finitely many vector

variables may hence be decomposed as a sum of k-vectors. Moreover, as every

element ofR(S) belongs to some subalgebraR{x1, ..., xl} we have a way of writing

elements of R(S). The above lemma suggests the following nomenclature. Let



AN ALGEBRA OF ABSTRACT VECTOR VARIABLES 291

C(R(S)) be the center of R(S); then we call C(R(S)) the scalar subalgebra of

R(S), denoted by R0(S). In view of (A1), the scalars x · y =
1
2{x, y} do belong

to R0(S).

An element a ∈ S is called a k-vector if a may be written as a sum of elements

of the form bx1∧ ...∧xk, b ∈ R0(S), xj ∈ S. The space of all k-vectors is denoted

by Rk(S). However, there are some problems which have to be solved in order

to make this nomenclature meaningful.

1) It is not immediately clear whether the decomposition in Lemma 2.1 of an

element f ∈ R(S) is unique although all methods used to perform it lead

to the same decomposition.

2) Lemma 2.1 suggests that the scalar algebra R0(S) be generated by the

abstract inner products x · y, x, y ∈ S. But also this is not immediately

clear, since it can only follow from the uniqueness of the decomposition.

3) There seems to be no extra condition following from (A1) which might link

the scalar variables x ·y. They behave like fully independent real variables.

To be more precise, consider for any pair u, v ∈ S a scalar variableXuv such

that Xuv = Xvu. Then the algebra generated by all these scalar variables

Xuv is a polynomial algebra in the variables Xuv = Xvu, (u, v) ∈ S × S,

which we’ll denote by P{Xuv}. The independence of the scalars u · v is

expressed by the fact that after substitution Xuv = u · v, R0(S) turns out

to be isomorphic to P{Xuv}. But again, this is not so obvious as it may

seem. Note hereby that this property doesn’t hold for finite-dimensional

Clifford vector variables. Indeed, for l > m we have that for any collection

of vector variables xj =
∑

k xjk ek in Rm

detxi xj = ±(x1 ∧ ... ∧ xl)
2 = 0

while of course for a general symmetric matrix Xij , detXij needn’t vanish

as a polynomial in the variables Xij .

All these problems involve only finitely many abstract vector variables. They

will hence be clarified as soon as we have established the representation of the

radial algebra R{x1, ..., xl} by Clifford polynomials. As expected, this represen-

tation is determined by the application xj → xj =
∑
xjk ek. This indeed defines

an algebra representation

· : R{x1, ..., xl} → Alg{x1, ..., xl} .

Note hereby that the algebra R{x1, ..., xl} is in fact defined as the quotient alge-

bra A/I, where A is the free algebra generated by the set {x1, ..., xl} and I is its
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two-sided ideal generated by all the products of the form [{xi, xj}, xk]. By replac-

ing the variables xj by xj , an epimorphism is obtained from A to Alg{x1, ..., xl}

which maps I to zero. The above map is hence well defined as an algebra epimor-

phism from R{x1, ..., xl} = A/I to Alg{x1, ..., xl}. We now come to the complete

characterization of R{x1, ..., xl} by

Theorem 2.1. The map · : R{x1, ..., xl} → Alg{x1, ..., xl} is an algebra

isomorphism if and only if m ≥ l.

Proof: It is clear that in case m < l, · can’t be an isomorphism because

[x1 ∧ ... ∧ xl] = x1∧...∧xl = 0. For l ≤ m all wedge products of vectors belonging

to the set {x1, ..., xl} are linearly independent. Hence let F ∈ R{x1, ..., xl} be

written into the form F =
∑
Fi1...ikxi1∧...∧xik ; then ·[F ]=

∑
·[Fi1...ik ]xi1∧...∧xik

and from ·[F ] = 0 it follows that ·[Fi1...ik ] = 0. Hence if we can prove that for

every element F in the algebra generated by xi · xj , ·[F ] = 0 implies that F = 0,

injectivity of · follows.

To that end consider the algebra P(Xij) of polynomials in the scalar variables

Xij = Xji. The variables Xij have a purely formal character and may hence be

interpreted as real or complex variables. The application

Xij → xi · xj → xi · xj = ±
m∑

k=1

xik xjk ,

hence corresponds to the map xik → ±
∑

k xik xjk from the set of l×m matrices

into the symmetric matrices l × l transforming polynomials in the variables Xij

into special polynomials in the variables xjk. The advanced injectivity is now

reduced to surjectivity of this map. For m ≥ l any complex symmetric matrix

X = (Xij) can be written into the form X = ±V V t = ±(
∑

k xik xjk), V being a

complex l×m matrix. This also means that any polynomial P (Xij) is determined

by P (xi · xj) and certainly that every polynomial P (xi · xj) is determined by

·[P (xi · xj)] = P (xi · xj) = P (xi · xj).

We immediately have the following

Corollary 2.1. Every element a ∈ R(S) may be decomposed in a unique

way as a finite sum of the form

a = [a]0 + [a]1 + [a]2 + ...

whereby [a]k ∈ Rk(S).
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Note that this solves the first problem, namely the uniqueness of the decom-

position established in Lemma 2.1. It readily follows from the uniqueness of the

same decomposition in Alg{x1, ..., xl}, l ≤ m.

Corollary 2.2. The center C(R(S)) of R(S) is generated by the formal

inner products x · y = 1/2{x, y}, x, y ∈ S. Moreover it is canonically isomorphic

to the polynomial algebra P{Xuv}, u, v ∈ S, Xuv = Xvu.

This settles the remaining two problems.

Corollary 2.3. We have the following formula for the products of a vector

with a k-vector

xx1 ∧ ... ∧ xk = [xx1 ∧ ... ∧ xk]k+1 + [xx1 ∧ ... ∧ xk]k−1 ,

[xx1 ∧ ... ∧ xk]k+1 = x ∧ x1 ∧ ... ∧ xk

= 1/2
(
xx1 ∧ ... ∧ xk + (−1)

k x1 ∧ ... ∧ xk x
)

[xx1 ∧ ... ∧ xk]k−1 = x · x1 ∧ ... ∧ xk

= 1/2
(
xx1 ∧ ... ∧ xk − (−1)

k x1 ∧ ... ∧ xk x
)
.

For special values of k, this corollary could have been obtained by direct

computation and only making use of (A1). But by making use of the Clifford

algebra representation this property follows immediately from the orthogonal

decomposition of Rm as a direct sum of the subspace parallell and the subspace

orthogonal to the k-vector x1 ∧ ... ∧ xk. This is typical for radial algebra (and

endomorphisms on radial algebra) in general; identities can often be proved in

two ways: in a direct axiomatic way and by means of the Clifford-polynomial

representation. This will be illustrated in the next section for identities between

operators.

In the sequel we’ll make use of the name “radial algebra with constraints”.

By this is meant a free algebra Alg(S) generated by some set S satisfying the

axiom (A1) together with extra constraints of the form

F (x1, ..., xl) = 0

for some well specified symbolic expressions F belonging to R(S). Immediate

examples of this are
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i) orthogonality constraints

x y = −y x, for any x, y ∈ S ;

ii) linear dependence of dimension l

x1 ∧ ... ∧ xl = 0, for some {x1, ..., xl} ;

iii) orthogonal frame relations

xi xj + xj xi = ±2 δij , i, j = 1, ...,m ;

iv) null constraints

x2 = 0, for any x ∈ S .

There are lots of interesting examples of constraints possible. Note that uni-

versal Clifford algebras are also radial algebras with constraints.

Another specialization has to do with the choice of the set S of variables.

Examples are

i) the algebra R{x1, ..., xl};

ii) the algebra R{xj}, x1, ..., xn, ... a sequence of variables;

iii) the algebra R{xp}, p ∈M , M being a manifold;

iv) radial algebras of several families of variables,

R{x1, ..., xl; u1, ..., un} , R{xj ; yj ; uj} , R{xp, yq}, p∈M, q∈N .

This leads to new examples of radial algebras with constraints. For exam-

ple one can consider the algebra R{xj , yj} depending on orthogonal families of

vector variables, meaning that xj yk = −yk xj . There is a richness of possibili-

ties in defining radial algebras of special types, each having a special geometric

interpretation.

III – Fundamental endomorphisms on radial algebra

In this section we give an axiomatic definition of the fundamental elements

of the algebra of endomorphisms End(R(S)). As expected, they are abstract

versions of well known operators from Clifford algebra as well as Clifford analysis

(see also [l]–[7] esp. [4]).
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(i) Involution, anti-involution

Like for Clifford numbers we can define the main involution a→ ã and anti-

involution a→ a on R(S) simply by the axioms

a b = b a , ã b = ã b̃ , x = x̃ = −x for x ∈ S .

Using the Clifford vector representation of R(S), these maps essentially coincide

with the involution and anti involution on Clifford algebras.

(ii) Vector multiplication

We may consider the basic multiplyers

x : a→ x a, x| : a→ ã x , x ∈ S .

It is easy to see that the set W = {x, x| : x ∈ S} generates a subalgebra of

End(R(S)) which is a radial algebra with constraints

x y| = −y|x , x, y ∈ S ,

x y + y x = −(x| y|+ y|x|) , x, y ∈ S .

It may be useful to consider the “affine variables”

X =
1

2
(x− x|), X ′ =

1

2
(x+ x|) , x ∈ S ,

generating a radial algebra with constraints

XY = −Y X , X ′Y ′ = −Y ′X ′ , {X,Y ′} = −{Y,X ′} .

(iii) Directional derivatives

Let x, y ∈ S; then on elements F ∈ R(S) one may define the operators

Dy,x ∈ End(R(S)) by means of the axioms

(D1) Dy,x[F G] = Dy,x[F ]G+ F Dy,x[G] ,

(D2) Dy,x[x] = y , Dy,x[z] = 0 for z ∈ S with z 6= x .
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The first axiom states that Dy,x behaves like a scalar first order differential

operator. The second axiom specifies that Dy,x corresponds to the directional

derivative with respect to x in the direction y. If F (x) refers to the presence of

the element x in the expression F , we can indeed prove the following

Lemma 3.1. For any F ∈ R(S) we have that

Dy,xF (x) = lim
ε→0

1

ε

(
F (x+ ε y)− F (x)

)
.

Proof: An arbitrary element F ∈ R(S) can always be written into the

canonical form

F = f1 F1 + x f2 F2 ,

whereby f1, f2 ∈ R0(S) are scalars and where F1 and F2 do not contain the

variable x, i.e. they belong to R(S\{x}). We now evaluate Dy,x[F ] using both

axioms:

Dy,x[f1 F1 + x f2 F2] = Dy,x[f1]F1 + f1 Dy,x[F1] +Dy,x[x] f2 F2

+ xDy,x[f2]F2 + x f2 Dy,x[F2]

= Dy,x[f1]F1 + y f2 F2 + xDy,x[f2]F2 .

On the other hand, it is clear that

F (x+ ε y)− F (x) = f1(x+ ε y)F1 + (x+ ε y) f2(x+ ε y)F2 − f1 F1 − x f2 F2

=
[
f1(x+ ε y)− f1

]
F1 +

[
(x+ ε y) f2(x+ ε y)− x f2

]
F2

and so

lim
ε→0

F (x+ ε y)− F (x)

ε
=

[
lim
ε→0

f1(x+ ε y)− f1(x)

ε

]
F1

+ x

[
lim
ε→0

f2(x+ ε y)− f2(x)

ε

]
F2 + y f2 F2 .

Hence it suffices to prove that Dy,x[f ] = limε→0
f(x+εy)−f(x)

ε
for f ∈ R0(S).

This requires only a bit of calculations to check it for the generators of R0(S):

(i) Dy,x[x
2] = Dy,x[xx] = xDy,x[x] +Dy,x[x]x = x y + y x

= lim
ε→0

1

ε

[
(x+ ε y)2 − x2

]
;

(ii) Dy,x[{x, y}] = Dy,x[x] y + xDy,x[y] +Dy,x[y]x+ y Dy,x[x]

= 2 y2 = lim
ε→0

1

ε

[
(x+ ε y)y + y(x+ ε y)− {x, y}

]
;
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(iii) Dy,x[{x, z}] = Dy,x[x] z + xDy,x[z] +Dy,x[z]x+ z Dy,x[x]

= y z + z y = lim
ε→0

1

ε

[
(x+ ε y) z + z(x+ ε y)− {x, z}

]
, z 6=y ;

(iv) f ∈ R0(S\{x}) : Dy,x[f ] = 0 .

For x = y the operator Dx,x corresponds to the classical Euler operator Ex

with respect to the variable x. As can be expected, the abstractly defined Euler

operator Ex = Dx,x measures the degree of homogeneity with respect to the

variable x. Indeed, the variable x ∈ S occurs k times in a product x1... xl if and

only if

Ex x1... xl = k x1... xl .

Hence for a general expression F (x) ∈ R(S), the relation

Ex F (x) = k F (x)

means that F is homogeneous of degree k in the variable x. One may hence

also consider the projection 〈F 〉x,k of F ∈ R(S) on the space of homogeneous

elements (polynomials) of degree k in x.

(iv) Vector derivatives

The formal vector derivative ∂x is supposed to be the abstract equivalent of

the vector derivative or Dirac operator

∂x = ±
m∑

j=1

ej ∂xj
,

where {e1, ..., em} satisfies the relations ej ek + ek ej = ±2δjk. The advantage

of such an operator is evident from the fact that all differential operators with

respect to xj are expressable in terms of the vector derivative ∂x. In particular

the directional derivative Dw,x, w a fixed vector not depending on x, is given by

Dw,x = w · ∂x =
1

2
(w ∂x + ∂xw) .

In [6], this identity together with the fact that ∂x is formally a vector is used as

an abstract definition for ∂x. In that case the operator ∂x is indeed determined

by all inner products w ·∂x with fixed vectors. But in radial algebra this is a little
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problematic. First of all there is no a priori defined vector space V to which the

variables x ∈ S belong. Hence it doesn’t make much sense to say that

i) ∂x is a vector;

ii) y · ∂x = Dy,x, for any fixed vector y ∈ V .

It does make sense to replace (ii) by the condition

ii)′Dy,x =
1
2{y, ∂x} for x, y ∈ S with x 6= y

and one can also require that ∂x ∈ End(R(S)) transforms scalars into vectors.

But this is not the same as saying that ∂x is formally a vector because one can

consider both operators F → ∂xF and F → F∂x. Hence ∂x ∈ End(R(S)) would

have to correspond to either the left operator F → ∂xF or the right operator

F → F∂x. Moreover, there is an even harder problem with the evaluation of the

action ∂xx of ∂x on the element x. Note that for a vector variable x belonging to a

m-dimensional vector space V we have that ∂xx = m. The problem hereby is that

if we want ∂x to correspond to ∂x in the Clifford-algebra representation x→ x, we

have to assume that ∂x[x] = m. But this also removes the freedom of choosing the

dimension m in the Clifford-polynomial representation of Theorem 2.1, which in

case S is infinite leads to problems. The only alternative seems to be to assume

that ∂x[x] is a constant. Then of course ∂x need not correspond to ∂x in the

Clifford-polynomial representation.

We found it best to introduce the left and right operators ∂x[F ] and [F ]∂x by

means of the axioms

(D1) ∂x[fF ] = ∂x[f ]F + f ∂x[F ] ,

[fF ] ∂x = F [f ] ∂x + f [F ] ∂x , f ∈ R0(S), F ∈ R(S) ,

(D2) ∂x[FG] = ∂x[F ]G, [GF ] ∂x = G[F ] ∂x if G ∈ R(S\{x}) ,

(D3) [∂xF ] ∂y = ∂x[F ∂y] , x, y ∈ S ,

(D4) ∂xx
2 = x2 ∂x = 2x, ∂x{x, y} = {x, y} ∂x = 2 y , y 6= x .

As an unpronounced axiom we also assume that for any subset T of S with

x ∈ T and F ∈ R(T ), the value of ∂x[F ] or [F ]∂x does not depend on whether

F → ∂x[F ] or F → [F ]∂x is considered as an element of End(R(T )) or of

End(R(S)). We are now able to prove

Theorem 3.1. The axioms (D1) up to (D4) lead to a consistent definition

of endomorphisms F → ∂x[F ] and F → [F ]∂x, mapping scalars into vectors and
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we have that for any y 6= x,

Dy,x[F ] =
1

2

(
y ∂x[F ] + ∂x[yF ]

)
.

Moreover, for any definition of vector derivatives based on (D1) up to (D4) there

has to be a unique constant scalar m for which

∂xx = x ∂x = m, x ∈ S .

Proof: Note that the rules (D1), (D2) and (D3) would be satisfied for

general first order Clifford differential operators with constant coefficients. It is

only (D4) which determines the specific nature of vector derivatives. And there

is no mentioning of dimension or quadratic form there. Nevertheless, (D1) up to

(D4) can only lead to well-defined endomorphisms F → ∂x[F ] and F → [F ]∂x if

something like a dimensional constant m = ∂xx is being introduced. To see this,

let us evaluate ∂x[F ], F ∈ R(S), as much as we can.

Consider again the canonical decomposition F = f1F1 + xf2F2, where

fi ∈ R0(S), Fi ∈ R(S\{x}). Using (D1), (D2) we immediately get

∂x[F ] = ∂x[f1]F1 + ∂x[f2]xF2 + f2 ∂x xF2 .

Hence evaluation of ∂x[F ] is possible as soon as evaluation of ∂x[f ], f ∈ R0(S)

and ∂xx is determined. As R0(S) is generated by the elements {y, z}, y, z ∈ S,

due to (D1) the evaluation of ∂x[f ] is determined by the knowledge of ∂x{y, z}.

Moreover, due to (D2), ∂x{y, z} = 0 as soon as both y and z differ from x, so

that the evaluation of ∂x[f ] is determined by the knowledge of ∂xx
2 and ∂x{x, y},

y 6= x specified in (D4). It is also clear that the object ∂x[f ], f ∈ R0(S), belongs

to the space R1(S) of vectors. Evaluation of ∂xF is hence determined by the

knowledge of ∂xx. Using (D3) and (D4) we arrive at the identities

2 ∂xx = ∂x[x
2 ∂x] = [∂xx

2] ∂x = 2[x] ∂x ,

2 ∂xx = ∂x[{x, y} ∂y] = [∂x{x, y}] ∂y = 2[y] ∂y ,

so that also for any x, y ∈ S,

∂xx = ∂yy .

Due to the unpronounced axiom, it follows that ∂y can only be in the algebra

generated by y and is hence independent from x. But if ∂xx is independent from

x, it is a scalar constant mx. Moreover, as we have that mx = my, the rules (D1)
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up to (D4) can only lead to endomorphisms F → ∂x[F ], F → [F ]∂x provided

that there is a constant m for which

∂xx = x ∂x = m, for all x ∈ S .

It is clear also that if one accepts a constant like m, the meaning of ∂x[F ]

and [F ]∂x is well-defined and it is also clear that, independent of the value of m,

2Dy,x[F ] = y ∂x[F ]+∂x[yF ] for y 6= x. Anyway, let us demonstrate this explicitly

using the axioms of ∂x. Of course we have that

y ∂x[f1F1 + xf2F2] = y ∂x[f1]F1 + y ∂x[f2]xF2 +mf2 y F2 ,

while

∂xy[f1F1 + xf2F2] = ∂x[f1] y F1 + ∂x[f2] y xF2 + f2 ∂x[y xF2]

= ∂x[f1] y F1 + ∂x[f2] y xF2 −mf2 y F2 + 2 f2 y F2 .

Hence we find that

{y, ∂x}[F ] = {y, ∂x}[f1]F1 + {y, ∂x}[f2]xF2 + 2 f2 y F2

= {y, ∂x}[f1]F1 + x{y, ∂x}[f2]F2 + 2 f2 y F2 ,

where the last step is based upon the axiom (A1) of radial algebra. Looking back

at the proof of Lemma 3.1 it clearly suffices to prove that both operators {y, ∂x}

and 2Dy,x coincide when acting on scalars:

(i) {y, ∂x}[x
2] = y ∂x[x

2] + ∂x[x
2] y = 2 y x+ 2x y

= 2{x, y} = 2Dy,x[x
2] ;

(ii) {y, ∂x}[{x, y}] = y ∂x[{x, y}] + ∂x[y{x, y}]

= 2 y2 + 2 y2 = 4 y2 = 2Dy,x[{x, y}] ;

(iii) {y, ∂x}[{x, z}] = 2 y z + 2 z y = 2{z, y} = 2Dy,x[{x, z}], z 6= y ;

(iv) f ∈ R0(S\{x}) : {y, ∂x}[f ] = 0 = 2Dy,x[f ] .

As to the value of the dimensional constant m, there are several possibilities.

One can in fact choose whatever fixed value for m which one likes, it need not

even be a positive integer. Nevertheless the positive integer values for m play a

singular role in the expression

∂x1
x1 ∧ ... ∧ xl = (m− l + 1)x2 ∧ ... ∧ xl ,
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which vanishes for m = l− 1. In problems involving l vector variables one has to

avoid the values m ∈ {0, ..., l − 1} in order to keep the generality of formulas.

Moreover, rather than assigning a fixed value to m, it may be more useful to

consider m to he a parameter, in which case ∂x behaves like a vector derivative

in a vector space of unspecified dimension.

(v) Other endomorphisms

We may now define the endomorphisms

∂x : F → ∂xF , ∂x| : F → F̃ ∂x ,

generating a subalgebra of End(R(S)) which is a radial algebra with constraints

∂x ∂x| = −∂y| ∂x , {∂x, ∂y} = −{∂x|, ∂y|} .

Also here one can consider the “affine vector derivatives”

∂X =
1

2
(∂x + ∂x|) , ∂X′ =

1

2
(∂x − ∂x|)

generating a radial algebra with constraints

∂X ∂Y = −∂Y ∂X , ∂X′ ∂Y ′ = −∂Y ′ ∂X′ , {∂X , ∂Y ′} = −{∂Y , ∂X′} .

It is readily seen that

{∂x, y} = −{∂x|, y|} = 2Dy,x, for x 6= y, x, y ∈ S ,

{∂x, x} = −{∂x|, x|} = 2Ex +m ,

so that we also have the identities

[{∂x, y}, z] = [{∂x, y}, ∂z] = 0, for z 6= x, x, y ∈ S ,(1)

[{∂x, y}, x] = 2 y, [∂y, {∂x, y}] = 2 ∂x , x, y ∈ S .(2)

We also have that

{∂x, y|} = {∂x|, y} = 0, for x 6= y, x, y ∈ S ,(3)

{∂x, x|} = −{∂x|, x} = B is independent of x ∈ S and(4)

{B, Y } = 2Y, {B, Y ′} = −2Y ′ , x, y ∈ S ,(5)

{B, ∂Y ′} = 2 ∂Y ′ , {B, ∂Y } = −2 ∂Y , x, y ∈ S .(6)
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One can verify these relations directly, but it is a lot simpler to make use of the

Clifford algebra representation. The relations (l)–(6) together with the relations

among the elements of the sets {x, x| : x ∈ S}, {∂x, ∂x| : x ∈ S} determine the

subalgebra of End(R(S)) generated by {x, x|, ∂x, ∂x| : x ∈ S} only in case S has

infinitely many elements and this algebra does not depend on the dimensional

constant m. In case S is finite, counter-examples will be given in the next section.

IV – Clifford algebra representation of End(R(S))

The identities among the generators x, x|, ∂x, ∂x| can be verified directly.

But it is easier to represent x, x|, ∂x and ∂x| by true vector derivatives and

multiplication defined on some space of Clifford vectors. We also have to give

a characterization of the algebra End(R(S)) generalizing the characterization of

R(S) in Theorem 2.1.

Due to this theorem, the algebra R{x1, ..., xl} generated by finitely many

abstract vector variables can be identified with the algebraR{x1, ..., xl} generated

by the true vector variables xj =
∑m

k=1 xjk ek, {e1, ..., em}, m ≥ l being a Clifford

basis with for example e2
j = −1. The algebra End(R{x1, ..., xl}) is hence also

isomorphic to the algebra End(R{x1, ..., xl}).

As the dimension ∂xx introduced in radial algebra is purely formal and in

fact of no importance for the subalgebra generated by the operators x, x|, ∂x,

∂x|, we can, without too much loss of generality, identify ∂xx with the dimension

m in the Clifford algebra representation. This means that the operator ∂xj
is

identified with the true vector derivative ∂xj
= −

∑m
k=1 ek ∂xjk

. Similarly one can

identify the endomorphisms xj , xj |, ∂xj
| with the corresponding endomorphisms

xj , xj |, ∂xj
| on the algebra R{x1, ..., xl}. To see how these endomorphisms look

like we represent them by operators on Clifford polynomials. Let P{xjk} be the

polynomial algebra generated by the set of real variables {xjk : j = 1, ..., l; k =

1, ...,m}. Then R{x1, ..., xl} is a subalgebra of the tensor product P{xjk}⊗Rm.

Hence the endomorphisms on R{x1, ..., xl} are representable by endomorphisms

on P{xjk} ⊗Rm i.e. by elements from End(P{xjk})⊗ End(Rm).

The algebra End(Rm) is isomorphic to the Clifford algebra Rm,m over ultra-

hyperbolic space and the isomorphism is obtained by defining the generators of

Rm,m as elements of End(Rm):

ej : a→ ej a , ej | : a→ ã ej .
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These elements indeed satisfy the defining relations for Rm,m

{ej , ek} = −{ej |, ek|} = −2 δjk , ej ek| = −ek| ej

(see also [4], [7]).

Moreover, by considering the “affine generators”

fj =
1

2
(ej − ej |) , f ′j =

1

2
(ej + ej |) ,

and the primitive idempotent

I = I1...Im , Ij = −fj f
′
j =

1

2
(1 + ej ej |)

we can identify Rm as a linear space with the minimal left ideal

Rm I = Rm,m I = ΛV ′m I ,

where V ′m is the affine space span{f
′
1, ..., f

′
m} and ΛV

′
m is the subalgebra of Rm,m

generated by V ′m (which is also the Grassmann algebra). The action b[a] of

b ∈ Rm,m = End(Rm) on an element a of Rm is hereby directly given by left

multiplication

b[a] I = b a I .

Using the representation xj → xj , we may thus make the identifications

xj →
∑

xjk ek , xj | →
∑

xjk ek| ,

∂xj
→ −

∑
∂xjk

ek , ∂xj
| → −

∑
∂xjk

ek| ,

and one can now easily verify the relations among these operators. In particular

we have the identifications

B = {∂xj
, xj |} → −

∑
ek ek| ,

showing that indeed B is independent of j and representable by a Clifford bivector

in Rm,m. Note that we have the relation

−
{∑

ek ek|, fl
}
= 2 fl

so that, in view of the identification Xj →
∑
xjk ek, we obtain {B,Xj} = 2Xj .

The other relations are similar.
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It is noteworthy that the primitive idempotent I is itself the projection oper-

ator a→ [a]0 of a ∈ Rm onto the scalars. Moreover, the operator B satisfies the

relations

B[a]k = (m− 2k) [a]k

so that the projection operators a → [a]k of a ∈ Rm on Rk
m are in fact the

eigenprojections of the operator B. They are hence expressable as polynomials

in B and in particular we have that

I = [·]0 = exp(−B) .

Next consider the representation H of Spin(m) given by

H(s) f(x) = s f(s x s) s , s ∈ Spin(m) ,

acting on Clifford algebra valued functions. Then under the identification Rm,m =

End(Rm) this representation can be rewritten as follows: first we consider the

subgroup of Spin(m,m)

S̃O(m) =
{
s s| : s ∈ Spin(m)

}
,

whereby the map a→ a| from Rm to Rm| is determined by the identity a I = a| I.

Next for an Rm-valued function f(x) we may consider the function f(x) I and

we have that

L(S) f(x) I = S f(S xS) I = H(s)[f(x)] I , S = s s| ∈ S̃O(m) .

The group S̃O(m) is identifyable to the rotation group SO(m) and in [4] we

have shown that the algebra of invariant differential operators under the repre-

sentation L(S̃O(m)) = H(Spin(m)) is generated by the operators x, x|, ∂x, ∂x|,

a → [a]k and a → e1...m a. But as the operators a → [a]k are expressable as

polynomials in B = {∂x, x|} this algebra is really generated by the set of opera-

tors {x, x|, ∂x, ∂x|, e1...m}. A similar result holds of course in the case of several

vector variables x1, ..., xl. Moreover, one may consider there the algebra Inv(l,m)

of all the invariant elements of End(P{xjk})⊗Rm,m under the representation L

of S̃O(m).

We now have the following

Theorem 4.1. Form ≥ l there is a canonical map from the algebra Inv(l,m)

onto the algebra of 2 by 2 matrices over End(R{x1, ..., xl}).

Proof: Let A ∈ Inv(l,m). Then the restriction of A to the space of poly-

nomials of the form F (x1, ..., xl)I where F belongs to the algebra R{x1, ..., xl},
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transforms the element FI into an element of the form GI, whereby G ∈ P{xjk}⊗

Rm satisfies the invariance relation G(x1, ..., xl) = sG(s x1 s, ..., s xl s) s. But

then G must be of the form G1 + e1...mG2, where G1, G2 belong to the al-

gebra R{x1, ..., xl} generated by the vector variables x1, ..., xl. As this decom-

position is also unique, it follows that there is a pair of operators A11, A21 ∈

End(R{x1, ..., xl}) such that the action of A on FI coincides with the element

(A11[F ] + e1...mA21[F ])I.

Moreover, in a similar way, the restriction of A to elements of the form

Fe1...mI, F ∈ R{x1, ..., xl}, coincides with an element of the form (A12[F ] +

e1...mA22[F ])I, A12, A22 ∈ End(R{x1, ..., xl}). The action of A on elements of the

form (F + e1...mG)I, with F,G ∈ R{x1, ..., xl} is hence determined by the action

of the matrix (Aij) ∈ End(R{x1, ..., xl}) on the pair (F,G) and the application

A→ (Aij) is clearly an algebra morphism.

The surjectivity of this map can be seen as follows. Given a 2 by 2 matrix

(Aij) over End(R{x1, ..., xl}), the above application leads to an endomorphism

A of at least the algebra Alg{x1, ..., xl, e1...m} generated by x1, ..., xl and the

pseudoscalar. One can extend A to an element B ∈ End(P{xjk}) ⊗ Rm,m in

many ways and for any extension B of A, L(S)BL(S), S = s s| ∈ S̃O(m), is also

an extension of A. This implies that the endomorphism

A′ =
1

vol(S̃O(m))

∫

S̃O(m)
L(S)BL(S) dS

is an extension of A which is invariant under the representation L of S̃O(m).

This establishes the surjectivity of the above morphism.

The injectivity of the above morphism cannot be established because the

S̃O(m)-invariant extension constructed in the proof on Theorem 4.1 is not unique.

Even if we restrict ourselves to the algebra of differential operators with polyno-

mial coefficients there can be problems. We do know that the algebra of invariant

differential operators is generated by the set {xj , xj |, ∂xj
, ∂xj

|, e1...m}, but for l

odd, the operator F → [x1∧ ...∧xlF ] vanishes as an element of End(R{x1, ..., xl})

while for m > l it is certainly a nonzero element of End(P{xjk})⊗Rm,m. In case

l is even, the operator

F → x1 ∧ ... ∧ xlF − F̃ x1 ∧ ... ∧ xl

vanishes identically on R{x1, ..., xl}. Moreover, these operators are always in the

algebra generated by the operators xj , xj |, ∂xj
, ∂xj

| the restriction of which to

R{x1, ..., xl} behaves exactly like the subalgebra of End(R{x1, ..., xl}) generated
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by the operators xj , xj |, ∂xj
, ∂xj

|. Hence there can be algebraic expressions in the

algebra generated by the operators xj , xj |, ∂xj
, ∂xj

| which vanish identically on

R{x1, ..., xl} but not on the extension R(S) of this algebra. Another important

example of this is the following. The operator B does not depend on the choice

of vector variables and has the projections a → [a]k as eigenprojections. Hence

a → [a]l+1 is a polynomial Pl+1(B) in B. This polynomial vanishes of course

identically on any algebra R{x1, ..., xl}. This means that the algebra generated

by the operators {x, x|, ∂x, ∂x| : x ∈ S} is the free algebra determined by the

relations (1)–(6) only in case S is infinite. In this case also, the main involution

F → F̃ can no longer be written as a polynomial in B. The algebra generated by

the operators {x, x|, ∂x, ∂x| : x ∈ S} is, in case S is infinite, really different from

the algebra generated by {x, x|, ∂x, ∂x|, ·̃ : x ∈ S}.

The algebra End(R(S)) has another more direct representation which is typ-

ical for endomorphism algebras. Hereby the linear space R(S) is represented as

a minimal left ideal of End(R(S)). Let J be the canonical projection operator

F → 〈F 〉, 〈F 〉 ∈ R being the constant part of F (i.e. the homogeneous part of

degree zero of F ). Then J is a primitive idempotent and it is readily seen that

for any A ∈ End(R(S)),

AJ = A[1] J

so that End(R(S))J = R(S)J .

We also have that for any f, g ∈ R(S),

Ag J [f ] = A[g J [f ]] = A[g] J [f ], i.e. Ag J = A[g] J ,

so that End(R(S)) acts on R(S) by left multiplication on R(S)J . The left ideal

R(S)J can be represented in many ways, leading to a higher flexibility of the

calculus. For example one has that for any x ∈ S and X = 1
2(x − x|), X ′ =

1
2(x+ x|),

xJ = x| J = X ′ J , X J = 0 ,

while for any x1, ..., xl ∈ S we also have that

x1 ∧ ... ∧ xl J = X ′
1...X

′
l J .

It is hence clear that the space R(S)J is identical to the space

Alg{x, x| : x ∈ S} J = Alg{X,X ′ : x ∈ S} J

and any element of this space can be written in a canonical way as

∑
Pj1...jl X

′
j1
...X ′

jl
J



AN ALGEBRA OF ABSTRACT VECTOR VARIABLES 307

where Pj1...jl are scalars i.e. elements of R0(S). This indeed follows from the

identity

XX ′
1 ... X

′
l J = {X,X

′
1}X

′
2 ... X

′
l J −X ′

1 XX ′
2 ... X

′
l J

=
1

2

∑
(−1)k {x, xk}X

′
1 ... X

′
k ... X

′
l J .

It means that by considering Alg{X,X ′ : x ∈ S} J , the splitting between the

commutative and the anti-commutative parts of the algebra is made automati-

cally. Multiplication by X ′, x ∈ S, indeed raises the “anti-commutative degree

of homogeneity” (measured by B) with one, while multiplication with X, x ∈ S,

lowers the anti-commutative degree of homogeneity with one and raises the com-

mutative degree of homogeneity with two.

In view of the identities

∂XX
′ = 0 , ∂X′X ′ = 1/2(m−B) ,

∂XP =
∑

PkX
′
k , ∂X′P =

∑
PkXk ,

P , Pk scalars, we arrive at the basic formulae

∂XPX
′
1 ... X

′
lJ =

∑
PkX

′
kX

′
1 ... X

′
l J ,

∂X′PX ′
1 ... X

′
lJ =

(∑
PkXk + P ∂X′

)
X ′

1 ... X
′
l J ,

whereby ∂X′X ′
1...X

′
l = 0 if X

′ is not among the variables X ′
1, X

′
2, ..., X

′
l and where

∂X′
j
X ′

1 ... X
′
l J = (−1)

j (l − 1−m)X ′
1 ... X

′
j ... X

′
l J .

We now come to the dual picture.

Let A ∈ End(R(S)); then in case S is finite there is a symbolic series E(∂x)

depending on the vector derivatives ∂x, x ∈ S, such that JA = JE(∂x). The

expression E(∂x) is determined by letting JA act on R(S)J . More in general,

for the radial algebra R(∂S) generated by the vector derivatives ∂x, x ∈ S, we

may consider the action from the right: Jf → JfA, f ∈ R(∂S), which again

transforms Jf into something of the form JE(∂x). But E(∂x) itself doesn’t

belong to R(∂S). In case where for every f ∈ R(∂S) and JfA = JE(∂x) the

expression E(∂x) belongs to R(∂S) the map Jf → JfA determines an element

of End(R(∂S)) and the elements A ∈ End(R(S)) with this property determine a

subalgebra FE(S) of End(R(S)) called the endomorphisms of finite type. Note

that this algebra is well-defined for any set S and in case S is finite or countable,

any element of End(R(S)) may be approximated by elements of FE(S).
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Next let P (x) ∈ R(S); then we may define P (x) like for Clifford polyno-

mials and construct the element P (∂x) by replacing vector variables by vector

derivatives.

The Fischer inner product (P,Q) on R(S) may now be defined by

(P (x), Q(x)) J = J P (∂x)Q(x) J .

Moreover, the conjugate A+ of A ∈ FE(S) is given by

(AP (x), Q(x)) = (P (x), A+Q(x))

and it is readily seen that e.g. (P (x)J)+ = J P (∂x). Using the Clifford polynomial

representation it is readily seen that the conjugation A → A+ is the restriction

of the conjugation for operators of End(P{xjk}⊗Rm). Hereby the Fischer inner

product in P{xjk} ⊗ Rm is defined as usual by (P,Q) = P (∂x)Q(x)|x=0 and

restricts to the above one defined for R(S). In particular we have that

e+j = −ej , ej |
+ = ej | , x+

jk = ∂xjk

and therefore, due to the Clifford polynomial representation, for End(R(S)) we

have the relations

x+ = ∂x, x|+ = −∂x|, X+ = ∂X , X ′+ = ∂X′ , x ∈ S .

We hence immediately have the dual relations

J∂x = −J∂x| = J∂X′ , J∂X = 0 ,

J∂x1
∧ ... ∧ ∂xl

= J∂X′
1
...∂X′

l
,

J∂X′
l
....∂X′

1
∂X′ = 1/2

∑
(−1)k J∂X′

l
...∂X′

k
...∂X′

1
{∂x, ∂xk

} ,

J∂X′
l
...∂X′

1
P+X = J∂X′

l
...∂X′

1

∑
∂X′

k
P+
k ,

J∂X′
l
...∂X′

1
P+X ′ = J∂X′

l
...∂X′

1

(∑
∂Xk

P+
k +X ′P+

)
,

whereby P , Pk are scalars in R(S) and whereby J∂X′
l
...∂X′

1
X = 0 if X is not

among the variables X1, ..., Xl while otherwise

J ∂X′
l
... ∂X′

1
Xj = (−1)

j (l − 1−m) J ∂X′
l
... ∂X′

j
... ∂X′

1
.

Any element A ∈ FE(S) can in fact act from two sides, namely from the left

on elements from the left ideal R(S)J and from the right on elements from the
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right ideal JR(∂S). Moreover, in view of the identity (AP (x)J)
+ = JP (∂x)A

+

these two actions are similar and the calculus is symmetrical. It is not at all hard

to formulate the following representation for endomorphisms in FE(S), the proof

of which is left as an exercise to the reader.

Theorem 4.2. Every operator A ∈ FE(S) formally be written as an infinite

linear combination of basic operators of the form

xa1
... xal

J ∂xb1
... ∂xbk

, xaj
, xbs ∈ S .

Conclusion. There are two ways of dealing with radial algebra: either

directly or using a Clifford polynomial representation. The direct approach is

purely symbolic but usually more complicated than the one using Clifford num-

bers. Nevertheless radial algebra is very simple to define axiomatically. From a

mathematical point of view it is quite natural and perhaps also useful for physical

sciences. It may seem that radial algebra is only a restriction of Clifford polyno-

mial algebra, which is also the case. But in radial algebra things are independent

of dimension and quadratic form. Moreover, Clifford polynomial algebra can also

be seen as a special case of radial algebra although it is simpler to work with the

Clifford basis ej , ej | of Rm,m and to make use of scalar coordinates xjk instead

of the more formal vector variables x ∈ S. In fact working with the left ideal

R(S)J makes everything still more formal than working with R(S) itself because

one can express things in terms of the affine variables X,X ′, x ∈ S, and forget

the variables x ∈ S altogether. The use of the variables x ∈ S indeed has to do

with breaking the affine symmetry (see also [4], [7]).
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