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HOMOGENIZATION OF TWO RANDOMLY
WEAKLY CONNECTED MATERIALS

M. BRIANE and L. MAZLIAK

Introduction

In this paper, we are interested in an homogenization problem of two disjoint
g-periodic materials O1. and Oy, connected in each cell of size € by a small
bridge the size of which is random. We therefore extend the kind of deterministic
problems first studied by Khruslov [8] and then in [3].
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Fig. 1 — Period cell Yi(¢).
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Fig. 2 — Section of the random set O-.

In [3], the first author studies the homogenization of the Neumann problem

{—Au5+u€ =f in O,

ou
6n€ =0 on 90, ,

where O, = 01 U O2. U O, where as above, in each cell of size ¢, O, is a (deter-
ministic) bridge of small size. He proves that the asymptotic behaviour depends
on the size of the bridge. More precisely, it depends on whether the order £
of this size is such that o < 2 (supercritical case), « = 2 (critical case), o > 2
(subcritical case). The proof is based on Tartar’s energy method by finding good
test functions in order to identify the limit problem.

Homogenization problems in a random setting have been already widely stud-
ied by: Kozlov [9], Varadhan and Papanicolaou [11], Bensoussan [2], Dal Maso
and Modica [6] e.g. for general random coefficients, then by Zhikov [14] and [15]
e.g. for randomly perforated domains. A survey of homogenization results in a
random context can be found in the book of Jikov, Kozlov and Oleinik [7]. How-
ever, in these texts, the geometry of the system is always random and therefore
cannot be specificied. The only central tool used consists in ergodic hypotheses
on the coeflicients in order to pass to the limit.

On the contrary, we are interested in keeping the geometrical setting (essential
to solve the problem in the deterministic case), letting just the bridge size be
random. The major difference with the deterministic case comes from the absence
of strong convergences due to the randomness of the solutions. In particular, the
imbedding of L2(Q; H'(0)) in L?(Q x O) is not compact if 2 is not countable.
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This makes it difficult for passing to the limit in the equation. This problem
can be dealt with by averaging on the space variable and using the law of large
numbers (see Lemma 3.4 and its proof below).

As in the deterministic case, we obtain three distinct cases following the mean
size of the bridge. In particular, we prove that the system is not coupled when
there are sufficiently large bridge with positive probability.

Notations

(Q, F, P) is a probability space such that the o-algebra is countably generated.
In particular, LP(£2), 1 < p < oo is a separable Banach space.

We denote by E(y) = / YdP, ¢ € L'(Q) the expectation of the random
variable . .

O is a bounded open set in R, N > 3, with a Lipschitz boundary.

V = L?(9; H(O)) is the space of random variables with values in H'(O).
Taking an orthonormal basis (e, (x)),en of HY(O), V is the space of functions u
that can be written as follows

u(w,x) = Z Up(w) en(x)

n>0

where 4, € L*(Q) and Y5 HﬂnH%z(Q) < oo. It is an Hilbert space, provided
with the norm

lul} = 3" lanll3ai) = E(lu@, )i o)) -
n>0

We denote also Vi,. = L%(; HE (O)).

Dq(0) is the space of smooth random functions i.e. functions ¢(w,-) € D(O)
such that ||Vl e@x0) < 00, Vj € N.

L>(; C*(0)) is the space of smooth random functions i.e. functions p(w, -) €
C1(0) such that [lo]| + [[Velle(ax0) < 0.

For X a given open subset of RN, H #(X ) is the space of Z"-periodic functions
which belong to H. (X).

1
Moreover, we denote by ][ f the normalized integral m / f.
Y Y
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1 — The homogenization problem

1.1. Geometry of the problem

Let Y = [0,1["V be the unit cube of RN, N > 3. E; and E, are two
Y-periodic open subsets of RY with Lipschitz boundary, which are connected.
It is also assumed that F; N Ey = (). Observe that such sets exist since we
assumed that N > 3.

We denote for e >0, O;e =eE;N0,i=1,2and V; = E,NY,i=1,2.

On the probability space (92, F, P), we consider an indexed by k € ZV family
of independent and identically distributed random processes (a(€))e>0 such that
Ve >0, 0 < ag(e) < a a.s. where a is a positive constant. In the sequel, the
index k is omitted when only the distribution of «; is used. Therefore, we shall
write expressions such as E(a(g)).

For each k € Z", we define a cylindrical “bridge” Q(c) joining Y; and Y3
such that Yj(e) = Y1 U Y2 U Qk(e) is connected; the length of Q () is a positive
constant £ > 0 and its section area is equal to ay(e).

We set

0. = U (ek+eQr(e))NO
kezZN

which is the union of the random bridges and
Os = Ola U 025 U Oe

is the (random) domain connected by bridges of random size.

1.2. Position of the problem

Our aim is to study the homogenization of the model, i.e. the asymptotic
behaviour of the following Neumann problem in the random domain O,

(1) Oue

on

—Ague +ue = f in O,
=0 on 00, ,
where f is a given (deterministic) function of L?(O).
We need to formulate the problem in a Hilbert setting in order to get a varia-
tional formulation. Since O is a random set, we have to take care of measurability
for solutions of (1). Instead of the “natural” space L2(€2; H'(O,)) (which is not
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well defined since O. is random), we consider a larger space. More precisely,
consider 65, the deterministic open set obtained by replacing in O, each cylinder
Qi(€) by a similar one @y, but with a (deterministic) section equal to a. The
Hilbert space V. = L2(Q; H'(0,)) is provided with the norm

[l = E(lu@.MEng,) = [ 15,08 +Iauf)

Let us consider the space V. of the restrictions u|p, of functions u € 175,
provided with the norm

Jul, = [ 1o.(u*+ |Voul?)
QxO0
We may then obtain the following result.

Lemma 1.1. Assume that there exists a deterministic function g(g) > 0
such that

(2) ar(e) > gle), Ve>0, VkezZ"V .
Assume moreover that O is only composed of entire cells.

Then, (V.| - |lv.) is an Hilbert space.

The proof is given in Appendix.
We can now give a variational formulation of problem (1). From Lax—Milgram’s
theorem, there exists a unique u. € V. such that

(3) / 105qus-Vx<p+/ 1OEU690:/ lo. fy, Veel:.
QxO QOxO QOxO

2 — The results

2.1. The limiting behaviour

Our first result describes the limiting behaviour of problem (3). Of course, it
is still a very imprecise result. We however emphasize that it requires very little
on the random processes «y.

Proposition 2.1. Let x} € H#( ), A€ RN and i = 1,2, be the unique (up
to an additive constant) solution of

(4) [ v Ve= [ A-Vo, VeeyE),
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and A; be the positive definite matrix
1
(5) Ai)\z—/(A—fo‘), Ae RN .
Yl Jy,

Assume that

(6) lim E(a(e)) =0.

e—0

Then, there exist two functions u;- € Vipe = L*(Q; HL (0O)), i = 1,2 such that
1o, .uie = 1o us and a subsequence €' such that w;r — w; in Vi,. where u; are
solutions of the equation

(7) / (A1 Vsur + As VIUQ) -V + / (91 uy + 09 UQ) p =
Qx0 Qx0

= 0f907 V¢EWOC7
Qx0O

where 0; = P{}" and 0 = 01 + 05.

2.2. Identification of limiting behaviour parameters

To determine the homogenization of problem (3) completely, we have to find
an additional equation to (7) in order to caracterize the functions w;, i = 1,2.
Of course, we have to require more restrictive assumptions on the random pro-
cesses a/(g).

Similarly to the deterministic case, we will distinguish three cases:

— the supercritical case where a(e) is much larger than 2 with positive prob-
ability,

— the subcritical case where a(e) is much smaller than £2,
— the critical case where () is of order 2.
The following results give a precise mathematical sense to these notions, and

precise the homogenization equation (7).

Theorem 2.2. Assume that the process (a(g))e>0 is such that there exists
a random variable v such that
a(e)

(8) 2 7 strongly in L'(Q) .
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Then, the sequence of functions (1o u.) weakly converges in L?(Q x O) to the
function 01uq + Oaus where u1 and ug are the (deterministic) solutions in H'(O)
of the coupled system

1
—divx(Alvzlq) +01u + = E(’y) (u1 — 'LLQ) =0, f inO,

/
9) : 1 -
—div,(A2Vug) + 02 ug + 7 E(y)(ug—u) =02 f inO,
Alvxul -n=20 in 0N .
Remark 2.1.

1) Observe that hypothesis (8) implies (6).

2) The previous theorem deals with the critical case (E(y) > 0) and the
subcritical case (E(y) =0).

3) Of course, (8) implies that for every k € Z", there exists an independent
sequence of random variables (7g)ezy such that

ax(e)

(10) 5~ — Y strongly in LY(Q) .
5

Theorem 2.3. Assume that

) P28 1)) =0

and that there exists g € L'(§2) such that

2

€
RN a(e < . .
(12) a(e) 1{ {5 o0} = o a8
Then, u = uj = ug is the deterministic solution in H'(O) of the Neumann
problem
(13) —div, (A1 + A2) Vyu+0u=60f inO,
(A1 +A2)Vyu-n=0 on 00 .

Let us give two examples to illustrate these theorems.

Example 2.2: Suppose that a(e) = ae” where 3 is an i.i.d. (independent and
identically distributed) bounded and positive random variable. One can easily
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check that the subcritical case corresponds to P(3 > 2) = 1, the supercritical
case to P(8 < 2) > 0 and the critical case to P(3 >2) =1, P(8=2) > 0.

Example 2.3: Suppose that a(e) = ve® 4 (1 —v) €% where v is a Bernoulli
random variable (p = P(v =1) =1 — P(v =0)) and 63, d2 are two fixed positive
numbers. Assume for example that 6; < 2, d > 2 and p > 0. Then (11)
is satisfied and condition (12) is satisfied with v = v. This kind of situation
corresponds to a random mixing of two sizes of bridges €% and %2.

3 — Proofs of the results

3.1. Weak convergence and Extension property

We begin by stating two technical lemmas. The first one is just an observation
about weak convergence.

Lemma 3.1. Let u.(w,z) — u(w,z) weakly in L?(2; H'(O)),, and v.(z) —
v(x) weakly in L*(O),. Then

lim Ug Ve :/ uv .
e=0Jaxo Qx0

Proof: Consider 1) € L?(€2). Observe that E(tu;.) is a bounded sequence in
H'(0), which strongly converges in L?(0) up to a subsequence. Since 1p,. — 6;
weakly in L°°(0O) and E(yu;e) — E(u;) weakly in H'(O), we obtain thanks to
Rellich’s Theorem and up to a subsequence, E(yu;.) — E(1u;) strongly in L?(O)
and thus for the whole sequence 1o,  F(¢u;.) — 6; E(1u;) weakly in L(O). Since
the tensor products ¢(x) ¥ (w), » € L*(0) and ¢ € L?(2), generate L2(Q x O),
we deduce from the latter that 1o, u;c — 6; u; weakly in L’(2x0). u

We now state an extension result which will be useful in the proof of Propo-
sition 2.1.

Lemma 3.2. There exist extension operators P;., i = 1,2, from V. =
L*(Q; HY(Oy.)) into Viee = L*(%; H] .(O)) and constants ¢; > 0 such that for any
S ‘/;:87 ]-Oigpisu = ]-OZ-EU and

(14) [Picullvipe < cillullvie,  i=1,2,
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and for any u € Vie N L>®(Q x Oye)

(15) [Picull L2 (ox0) < cillullp=@xo,),  i=1,2,
where the constants c¢; only depend on the open set O.

Proof: E;, i =1,2, are connected open sets with Lipschitz boundary, we can
then use an extension result due to Acerbi, Chiado-Piat, Dal Maso, Percivale [1]:
there exist extension operators, pi, i = 1,2, from H'(O;.) into H}_(O) and
constants ¢; > 0 such that for any u € H'(O;.), 1o,.picu = 1o, u and

(16) Ipicullmr o) < cillulmron), =12,
and for any u € H'(O;c) N L*>®(0;.),

(17) lullzee 0y < cillull=(ory,  i=1,2,
where the constants ¢; only depend on the set O.

Now, let u € Vj., since p;. is a continuous operator between the Banach spaces
H'(0;c) and H} _(O), one has that w — pj;-u(w,-) is measurable and belongs to
LY(Q; HL (0)), from Bochner’s integral theory, (see e.g. Yosida [13]) and also to
V by (16).

We then define extension operators denoted by Pi. by Pi.u: w +— pj-u(w,-)
which satisfy 1o, P.u = 10, u, i = 1,2.

Moreover, estimates (14) and (15) are direct consequences of estimates (16)
and (17) respectively. u

3.2. Proof of Proposition 2.1

Taking function wu. as test function in equation (3), one obtains using the
boundedness of (||ucl|z2) the following estimates |[lo.ucllr2(ox0) < ¢ and
110, Vaue| r2@ox0yv < ¢ where ¢ is a deterministic constant.

Then, there exist a subsequence, denoted e for simplicity, v € L?(Q2 x O)
and ¢ € L2(Q x O)" such that 1p_u. — Ou (recall that @ is the constant equal
to the limit volume fraction of material) and & = 1p.Vzu. — £ weakly in
L?(Q2 x O)N. Then, using the extension operator P, there exist u; € V such
that u;. = Pig(ug‘oie) — u; weakly in V', i =1,2.
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3.2.1. First step: Ou = 01 u1 + 02 us

Omne has 1p.u. = 1o, uie + 1o, u2: + 1o us and by the Cauchy-Schwarz
inequality

Lo.te s 00y < Lo Exoy = [ Tareau =

ekeO
=cE( Y [eQue)]) = cE( Y teNax(e)) < ¢ B(ale))
ekeO ekeO

which implies that 1o u. — 0 strongly in L' (€2 x O) by (6).

Since (1, ue) is bounded in the Hilbert space L?(2 x O), we obtain that
1o us — 0 weakly in L?(Q x O).

It remains to prove that 1o, u; — 6;u;, i = 1,2 weakly in L?(2 x O).

This convergence is clear in the deterministic case due to the compact imbed-
ding of H'(O) in L?(O) (Rellich’s theorem). Here, it is a direct consequence of
Lemma 3.1 with u. = ¢ u;, and v. = 1p,_, where ¢ € Dq(O) which is dense in
L3(92 x O).

3.2.2. Second step: £ = A1V, up + A3V, us

We have §o = §1c + §2c + E3c where §ie = 10, Ve, 0 = 1,2.

Proceeding as in first step, we have {3. = 19_¢ — 0 weakly in L?(Q x O)V.
Let us prove that & — & weakly in L2(Q x O)N where & = A;Vu;, i = 1,2.
For that, as in the deterministic case of [3], using the fact that E1 N Ey = (), we
consider the (deterministic) test function w? of W1(0) for some p > 2, defined
by

wi(r) = A -z weakly in W1P(0),
(18) wl)‘g(:c) = )\'m—axf‘<§> in O,
wi‘s(x):/\-x in Oz, j#1,

where x? are solutions of (4).
Now, we apply Tartar’s energy method [12] by plugging function w3 for
¢ € Dg(0O) in equation (3). We obtain

/ Es'vw?gsﬁ'/ fe'v@wi)\e“‘/ 1OEU€<PU’Z‘>\5:/ 1Osf‘10wi>\s
Qx0 Qx0O Qx0O Qx0O
and then, using the strong convergence w} — X -z in L2(0),

/ & Vuley — — E-Vwk-w—/) bupr-z+ | Ofpr-az
QOx0O

Qx0O Qx0O Qx0O
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the latter is equal to / € - Ao by plugging ¢ A - z in (3) and then passing to
QxO

the limit.
Thus

/ fa-Vwi)‘scp—> E- Xy .
Qx0O Qx0

On the other hand, using the definition (18) of w}

€)
| evuro=[ goVude+ | eire+ [ 6 Vude.
QxO0 Qx0 Qx0 Qx0
Since Vw;\ is bounded in LP(O) for some p > 2, the third term on the right

1
hand side is bounded by ¢ E(|O.|¢) where % + é = 1, due to Hélder’s inequality,

and thus converges to 0 by (6) since E(|Og|%) < E(|(f)5])é
We have

/ &ie - ng\g Y= 1o,. Vwi)‘g - Valie @
QOxO QOxO

= 102.5Vwi)‘8 - Valpup) — / 1Oingi>\s -V ue
Qx0O Qx0O

the first term on the right hand side is equal to 0 since x7 is solution of (4) and the

second term converges to Ai\-Vgpu; by Lemma 3.1 since 1, Vwi)‘s — A\

QxO0
weakly in L2(O)N.
Finally, we obtain

|oeve=—[ axVeput [ goae
QxO QxO Qx0

= AivmuiuX¢4—/a §j'A¢
Qx0 QxO0

since ¢ € Dq(0O) and
£:Aivmui+£j:§1+§2a Z#]€{1a2}
Hence, & = A;Vu; and € = A1Vaup + AoV us.

3.2.3. Conclusion of the proof

Plugging ¢ € V in (3) yields after passing to the limit

/ €'szo+/ Gusoz/ 0f¢
QxO 19240 19240
which gives (7) by steps 1 and 2. u
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3.3. Proofs of the Theorems

Now the problem is to obtain another equation in order to determine wu;,
i = 1,2 which are already solutions to (3) and thus to determine the weak limit
of 1p,ue which is equal to O1u; + Ous.

3.3.1. Energy cost and compactness results

We again state two preliminary lemmas. The first one yields an estimate of
the energy cost due to each random bridge and is a simple adaptation of a result
proved in [3] for the deterministic case.

Lemma 3.3. LetY = Y, UYy U @ where C~2 is the cylinder of length ¢
and of section area a (it therefore contains every bridge Q(¢)) and let © be the
deterministic function in H;# (Y) (i.e. Y-periodic and locally in H' on the periodic
open set obtained by Y -repetition of }7) defined by

o(y)=1 inYy,
(19) By) =0 inYs,
v is affine in @ .
Then, for any k € Z" and v € L?(Y}(¢)), one has

1 V@~vy—5k(5)]f

- (ex(e)
g2 Yi(e)

v + 6,(e) ]i v| < = Vol L2 (v o))

(20)

1
where 0y(¢) = —2f IV9|* and ¢ > 0, 7 > L are two deterministic constants
€% JYi(e

independent of k and ¢.

The proof of this lemma is given in [3] with ax(¢) = 2. The second result is
a compactness result since it allows us to pass to the limit in a product of weak
convergences. It also provides the mean behaviour of the thin random bridges
using a law of large numbers.

Lemma 3.4. Let (y)pezny be a family of real random variables in L'(Q),
let x € L>®(RY) which has a compact support in Y, and let v. be a sequence of
V N L>*(Q2 x O) such that v. — v weakly in V and v, is bounded in L>°(Q x O).

Then, the following limit holds

(21) /on 3 yk(w)xg - I<:> ve(w,z) — E(y) Y o(w,z) .

ckeO ax0
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The previous sum is intended to be extended over the k € Z" such that

ek+eYi(e) CO.

Proof: We first replace each v, € L'(Q) by its truncature of size n € N,
T (k) where T, (t) = max(—n,min(n,t)), so that (T,,(yx))r is a sequence of
bounded random variables.

Indeed, let

I.(ve) = /ongkzejofy;f(w) X<i — k:> Ve(w, )

and I (v.) similarly defined with 77,(x). Using boundedness of v, and indepen-
dence, we obtain

’ﬁ@&‘ld%ﬂﬁgéﬂ)izﬂ%ww—yﬁh(g_k>

ekeO
< 0/ > Tu(w) — el €™
Qkeo
<cE(Tw(y)—7v) — 0

uniformly with respect to e > 0.

We then may replace v by T), (V).

Consider a covering (Kj);ezn of RY by cubes K; with no common interior
point and with a length h > 0 (h > ¢).

We shall replace v, by

Ue(w, ) = ][;( love(w,y)dy if :UGIO(j, jezn.
j

Using Poincaré-Wirtinger’s inequality in each homothetic %K ; and rescaling with
respect to h, we obtain the following estimate

(22) 1 = vellz2(0,) < b IVavell2(0,) as.,

where O = U K; and ¢ > 0 the deterministic constant corresponding to
K;CO
Poincaré-Wirtinger’s inequality in any cube of RY of side equal to 1.
Since O has a Lipschitz boundary, |O — Op| < c¢h and then estimate (22)
implies that

(23) 1)~ L) <c [ o~ vl +¢[0—Op < ch

><Oh



200 M. BRIANE and L. MAZLIAK

since (7¢), X, (v¢) are bounded in L>®(2x O) and (V,v.) is bounded in L?(2x O).
Let us compute the limit of I.(7.) at fixed h. We have

I.(v:) :/Q > @‘E/K_ 2 W(% _k>

jezN 7 ekeO
:/Q Z ﬁj€< Z VkY€N+O(a))
jewN ekeK;

where 7. = ][ 1ov. and the term O(e) comes from the sets ek + €Y that
K.

meet the boundajry of K;. Observe that the sum over j is finite since ;. = 0 if
K; N O ={. The law of large numbers gives

Z ye¥ — |K;|E(y) in L*(Q) and for each j € ZV .
EkEKj
One has also 7, — v; = ][ 1pv in L?(£2). Then, passing to the limit in the
K.
definition of I.(7.), gives ’

(24) L@) =~ [ S wIGIEOY = [ BoR
jezN x

where ¥(w, z) = 7j(w) for x € K ; and where ¥ denotes the mean of y over Y.
Now, the lower semi-continuity of the L?(£2x O) norm combined with estimate
(22) yields

1V = vl L2(ax0,) < Mm|[ve — vel[22(ax0,) < ch

and thus, since ¥ is bounded in L>°(Q2) independently of h,

[ @=0)|<ch+10-0u# 7~ vlzzaxo) < V.
X

Then denoting Iy(v) = E(v)x¥ v, we obtain, due to estimate (23)
QxO

e (ve) — To(v)| < [Le(Ve) — L (ve)| + [Le(Ve) — Lo(V)] + [Lo(V) — Lo(v)|
< |L.(v.) — Iy@)| 4+ ¢ Vh .

Recall that by (24) I.(v:) — Ip(v) for any h < 1. Then, the latter estimate
proves that I.(v:) — Ip(v) and concludes the proof of Lemma 3.4. u



HOMOGENIZATION OF TWO CONNECTED MATERIALS 201

3.3.2. Proof of Theorem 2.2

We first proceed as in the deterministic case by plugging in equation (3)
satisfied by u., the function 9. (z) = 9(%) where ¢ is defined by (19). The function
0. separates materials 1 and 2.

Let ¢ € L>(Q; C1(0)), we have

/ lOgvxue : vx((’pﬁe) + Ue P Ve = / f@@s .
QxO0 Qx0 Qx0

Since v = 1 in O1c and 7. = 0 in Oy, we obtain with the notations of the
proof of Proposition 2.1, i.e. §: = 10, Vzue, @ = 1,2,

/ 105Vzu5 -Vep e = / 1e - Ve + 1O€qu5 -V e
QxO Qx0O Qx0

the last term on the right hand side being bounded by c|[1o,[lr2@ax0) <
cE(a(s))% — 0 by condition (6).

We have &1 = 10,. Vue — A1V,uy in L?(2 x O) from Proposition 2.1, then
the definition (19) of ¥ gives

lim 10.Vaue - Vapte = / A1Vaur - Ve .
Qx0 Qx0

Moreover, since u1e = Prcus — u; weakly in Vi, and 1p,, is deterministic
and weakly converges to 61 in L?(0), we have by (6) and by Lemma 3.1

/ 10580657% :/ 101590u1€+/ 105@1}5“5 - 9091 Ui
19540 Qx0O Qx0O 19540

and similarly
| get—~ [ o
QxO QxO

Finally, we obtain

(25) lim 1o, Vaue - Vo, =
QxO

= %091f—/ pbiup — AVaur - Ve .
Qx0O Qx0O Qx0O

It remains to find the limit of the left hand side of (25) in another way.
Similarly to the deterministic case, we are led to the case f € L*(0O), using a

density argument. Now, let us observe that (3) can be written for any ¢ € H'(O)
and ¢ € L*(Q)

/Qw(w (/O 1Ogvxu5-Vmcp—l—/oloeuscp—/olosfgo) dP(w) =0
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which implies that a.s.

/ vzus'vx@"i'/ UESOZ/ fSO
O¢ Oc Oe

i.e. uc(w,-) is solution of the Neumann problem (1). Then, the maximum principle
implies that ||ue(w,-)|[Le(0.) < [|fllz(0) a-s.. Considering a subsequence ¢, we
obtain that 1p.us € L*(2 x O) and ||1o,uel|L~@x0) < [|fllze(0) for any e.
Using an integration by parts,

/ 1o.p Vaue - Vi, = / 19. Va0 - Va(pue) — / 19. V- Ve ue .
Qx0O Qx0O Qx0

The last term on the right hand side is bounded by g 1o o oxo) <
c’E(OZ(;)) — 0 since by (8) O;(;?) — 7 strongly in L'(Q).

We will now compute the limit of / 10, Va0e - Va(pus).
Qx0O
We proceed as in the deterministic case using estimate (20). However, we

have to use it cell by cell since the bridge is different in each cell. Denote Y, =
ek + eYy(e), Y4 = ek +€Yi, i = 1,2 and O,, resp. Oiz, the set obtained as the
union of the Y, C O, resp. YE’k C Oz, © = 1,2 and denote ve = pu.. Then, by
rescaling (8) with respect to £ and summing over k such that Y, C O., namely
ek € O, we obtain the estimate

/on 16, Vabe - Vs - /on > k() (07 1y — 03 1ya )

ekeO

ag(e)” N~

<c [ 3 Valia,
@ ckeo

<

By the Cauchy—Schwarz inequality applied in O, the right-hand side is bounded

by )
o € 2r 3
C/Q< > kig) é‘N) IVavell2(0.)

ekeO

and still by Cauchy—Schwarz applied in €2, it is bounded by

ax(©)” x\]? a(e)?\ 3
C|:E< Z 52 £ >:| ’]-OEV:c'UgHLQ(on)SCE( ) =

2
ek€O, €

which tends to 0 by (6) and (8).
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Therefore, we have
26 / LVIUE-VI@—/ Sp(e) (07 141 — 051 132 )0, — 0.
(26) QXOSD O onego k(€) (07 v = Y2 Yfk)

Now, observe that

1 ak(E)
Ok(e) = {2

which implies, because of the boundedness of 1o_v.,

LY a0 1y~ 65 1yz) 0
0 ek ek

X0 rco
—/ S (o 1y - 70y 1y v <
%0 keo : :

<p(|% o)) ~ 0 we.

Using Lemma 3.4 with x = 1y, and v. = @ u;., (26) implies that

LEO) (u - ua)

/ ¥ 1@ Vaue - Vabe —
Qx0 : axo £

Finally, by definition of O, and by Cauchy-Schwarz inequality, we have

2
gc/ 3 / V. |2
Qy 00407 Yer
< caNE(akg€)> #{k, Yo N00 # @}
g
SC&E(ak(;)) — 07
9

since the regularity of O implies that the number of Yz, N OO # 0 is of order of
e!=N and thus

/ ¥ (]‘Oa - 105) Ve - Ve
Qx0

1

S E(y) (ur —u2) ¢ .

(27) / 105 Ve - Vgt —
Ox0 axo ¢

Combining (25) and (27) yields

(28) Alvxul . Vmga +
Qx0 Qx0O

91u1+%E(7)(U1—U2)}¥3:/ O fo

Qx0
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for any ¢ € L*(Q;C1(0)) and by density for any ¢ € V. The coupled system
composed by (7) and (28) has a unique solution in V' by the Lax—Milgram the-
orem and it is clear that F(u;), i = 1,2 are solutions of this system since all
the coefficients are deterministic. This gives (9) and concludes the proof of the
theorem.

3.3.3. Proof of Theorem 2.3

The key of the proof in the deterministic case for the supercritical case is the
Poincaré-Wirtinger inequality applied to the basic cell of the material (see [4] for
the general framework). Here, we cannot apply this method since the cells are
all different. However, the key-ingredient is still estimate (20).

We have by the Cauchy-Schwarz inequality and for any v € H'(Yy(¢))

1

1 ak(€)§
52

e2 Yi(e)

Ozk(é')
2

Vo-Vu| <ec

HV’UHLQ(Yk(a)) and Jx(e) > ¢

)

which, combined with estimate (20), yields

_ < ey v .
‘]{/11} fYQ ’ C[ak 1 + ag(e) IVl 22y (o))

We thus obtain, since 7 > 1 and ay(g) < a, the new estimate

@) |- o< — - [Volaieys Yo € HAYE) |
Y1 Yo Oék 5

Let B}, = {a’;—g&) — oo} and let p € Do (O). We proceed similarly to the proof of

Theorem 2.2 with estimate (20), i.e. we plug the function 1, v., where v. = pu.,

in the estimate obtained from (29) by rescaling with respect to ¢, and we sum

over each cell Yy, such that ek € O, which yields

el N
/ Z 1g, 91 1y1 — 92 1y2 Ve| < C/ Ekl 2 ‘VU€HL2 Ye) -
Qx0 =0 ekeo k(€)?

By the Cauchy—Schwarz inequality applied to the sum over k£ and later on to
the integral on €2, the right hand side of the inequality is bounded by

[ (EgOﬁ ) )FHV%HLQ(QXO)SC{E(ng)lEkﬂ%

which converges to 0 by (12) combined with Lebesgue dominated convergence
Theorem.
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On the other hand, from Lemma 3.4 applied with x = 1y;, ¢ = 1,2 and
Ve = P U, We have

Lo am @ty — 0t ys)ee — [ P (w1 — )
Qx0 <o ek ek Qx0
Finally, we obtain
P(Eg) (w1 —u2)p =0, V¢eDqO),
Qx0

which implies u; = w9 since P(E)y) > 0 by (11). The latter, combined with
equation (7) yields (13) since the function E(u;) = E(us2) is also solution of (11),
the matrices A;, i = 1,2, being deterministic. This concludes the proof. m

4 — Appendix: proof of Lemma 1.1

Let u € Vz. We will a.s. extend u(w,-) € H(O.) to a function u(w,-) €

H'(O¢), such that 1p.% = 1p.u and ||u(w,-)

c(e) is a deterministic constant.

I,y < (@) (. s o, where

For that purpose, let us first construct such an extension for each U €
H'(Yj(¢)). Let Yi(e) be an open subset of Y obtained by replacing Yi(e) by
a cylinder of same length ¢ the area section of which is equal to a > ai(e).
Then, by using the usual technics of extension by reflection, we can get a func-
tion U € H*(Yj(e)) such that Uy, () = U and ||U”H1(i7k(s)) < @) |Ul e (vi(e))
where c¢(¢g) is a deterministic constant which depends on g(¢) defined in (2). By
repeating the same procedure in each cell ek + €Yy (e) with u(w,z) = U(Z — k)
we obtain u since {2 is only composed of entire cells.

By construction, & € H'(O,), w — @i(w,-) is measurable and the following
estimate holds a.s.

[a(w; ) 5.y < ) lu(w )laro.) -

Then, we can define an extension operator P from V. into ‘7,5 such that Pu=u
which satisfies || Pulls; < c(e) [[ullv. and 1o, Pu = 10 u.
From the estimates

1
o5 1Pl < Il < 1Pull

we deduce that (V|| - [lv.) is an Hilbert space since (V.,| - ||~ ) is an Hilbert

5
space. m
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