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PERFECT SQUARES IN THE SEQUENCE 3, 5, 7, 11, ...

W.L. McDaniel

Abstract: We prove that the only square terms in the sequence {un}, defined by

u0 = 1, u1 = 3, un+2 = un+1 + un − 1 are u0 and u12 = 289.

1 – Introduction

We trust that the reader did not assume that the sequence of the title is

the sequence of odd primes! The sequence under consideration here is defined

recursively by un+2 = un+1 + un − 1, with initial terms (omitted above) u0 = 1

and u1 = 3. The recursive relationship is, of course, very close to that of the

sequence {Fn} of Fibonacci numbers (Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1), and

one can readily show, by induction, that un = 2Fn + 1. Our purpose, here, is

to show that {un} has only two terms which are perfect squares: u0 = 1 and

u12 = 289.

The character of the terms of {Fn} has been the subject of a number of

investigations. The values of n have been found for which Fn is a square [1], for

which Fn has the form m(m+1)/2 (i.e., is a triangular number) [5] or m(3m−1)/2

(a pentagonal number) [6], for which Fn is the product of consecutive integers [7]

and [8], and for which Fn = m(m+2) [9]. Among other results are the values of n

for which Fn is of the form m2+1, m3 and m3±1 [2], [3], [4], [9]. It is remarkable

that Fn has none of the above forms if n > 12. Our result in this paper adds to

this list the values of n such that Fn is of the form 2m(m+1) (twice the product of

consecutive integers). Our approach involves using the periodicity of the sequence

modulo any integer to show that, for each integer n 6= 0 or 12, there exists an

integer w(n) such that the Jacobi symbol (un |w(n)) = (2Fn + 1 |w(n)) = −1.
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Main Theorem. The sequence {un} contains exactly two terms which are

perfect squares: u0 = 1 and u12 = 289.

Corollary. The only terms of {Fn} of the form 2m(m + 1) are F0 = 0 and

F12 = 2 · 8 · 9.

2 – Identities and preliminary lemmas

We will require the sequence of Lucas numbers {Ln} which satisfies the same

recursive relation as {Fn}, but with initial terms L0 = 2, L1 = 1. Let k, m and

n be integers. Properties (1) through (6) are well-known.

F−n = (−1)n+1 Fn .(1)

F2n = Fn Ln and L2n = L2
n − 2 (−1)n ,(2)

L2
n − 5F 2

n = (−1)n · 4 ,(3)

Fm+n = Fm Ln − (−1)n Fm−n ,(4)

L4m ≡

{

−1 (mod 8) if 3 6 | m,

2 (mod 8) if 3 |m ,
(5)

Fn and Ln are even iff 3 |n(6)

(hence un = 2Fn + 1 is a square only if 3 |n) ,

F2kt ≡ ±F2k (modL2k), if t is odd .(7)

Luo [5] has used (7). The proof readily follows from (4) — just notice that

F2kt = F2k(t−1) L2k− (−1)2k F2k(t−2) ≡ −F2k(t−2) ≡ ... ≡ (−1)
t−1

2 F2k (modL2k) .

Lemma 1. If k = 2u, u ≥ 3 and t is odd, then (u2kt |L2k) = (u2k |L2k).

Proof: From (7), (u2kt |L2k) = (2F2kt + 1 |L2k) = (2F2k + 1 |L2k) or

(−2F2k + 1 |L2k). We prove the lemma by showing that the product of the two

Jacobi symbols on the right is +1:

(2F2k + 1 |L2k) · (−2F2k + 1 |L2k) = (1− 4F 2
2k |L2k) = (25− 20 · 5F 2

2k |L2k)

which, by (3),

=
(

25− 20 (L2
2k − 4) |L2k

)

= (105 |L2k) = (L2k | 105) .
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Now, L24 = 2207 ≡ 2 (mod 105), and by induction (using (2)), we have L2·2u ≡

22 − 2 ≡ 2 (mod 105) for u ≥ 3. Hence (L2k | 105) = (2 | 105) = +1.

Lemma 2. If k = 2u, u ≥ 4, then (2F2k + 1 |L2k) = (4Fk + Lk | 21).

Proof:

(2F2k + 1 |L2k) = (2 |L2k) (4F2k + 2 |L2k)

which, by (2),

= (4F2k + L2
k − L2k |L2k) = (4F2k + L2

k |L2k) = (L2k | 4F2k + L2
k)

= (L2
k − 2 |Lk) (L

2
k − 2 | 4Fk + Lk)

= (−2 |Lk) (2 | 4Fk + Lk) (2L
2
k − 4 | 4Fk + Lk) ;

using (3), this

=
(

2L2
k − (L2

k − 5F 2
k ) | 4Fk + Lk

)

= (L2
k + 5F 2

k | 4Fk + Lk)

= (21F 2
k | 4Fk + Lk) = (4Fk + Lk | 21) .

The proof of the main theorem requires the following known congruence:

(8) F2kt+m ≡ (−1)t Fm (modLk), for all integers k, t and m .

3 – The Proof

Proof of the main theorem: It is readily seen that the sequence {un} =

{2Fn + 1} is periodic with period 8 modulo 3 and period 16 modulo 7. We find

that 2Fn + 1 is a quadratic residue modulo 3 only if n ≡ 0, 1, 2, 4 or 7 (mod 8)

and a quadratic residue modulo 7 only if n ≡ 0, 4, 5, 8, 11, or 12 (mod 16). It

follows that 2Fn + 1 is a square only if n ≡ 0, 4, 8 or 12 (mod 16). Assume that

n 6= 0, −4 or 12 and that un is a square.

Case 1. n 6≡ 0 (mod 16). Then, n ≡ ±4, ±8 or ±12 (mod 32).

We write n = 2kt +m and use (8) to obtain a contradiction in each subcase.

1) m = −4. We take k = 2u, u ≥ 4, t odd. Then (using (1)),

2Fn + 1 ≡ −2F−4 + 1 ≡ 2F4 + 1 ≡ 7 (modL2u) .

Since L8 ≡ −2 (mod 7), it is easy to see, using (2) and induction, that L2u ≡ 2

(mod 7); hence, (7 |L2u) = −(L2u | 7) = −(2 | 7) = −1, a contradiction.
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2) m = 4. Then n ≡ 4 or 36 (mod 64). Taking m = 4, k = 24, and t even, we

have

2Fn + 1 ≡ 2F4 + 1 ≡ 7 (modL24) ,

so n ≡ 4 (mod 64) is eliminated as in 1). If n ≡ 36 (mod 64), then, since 3 |n by

(6), n ≡ 36 (mod 3 · 64). Taking m = 36, k = 3 · 24, and t even, we have

2Fn + 1 ≡ 2F36 + 1 (modL3·24) ;

the congruence holds modulo 769, a divisor of L48, and we find that

(2F36 + 1 | 769) = (435 | 769) = −1 .

3) m = −8. Again, 3 |n implies that n ≡ 24 (mod 3 · 32). Take k = 3 · 23 and

t even; using the factor 1103 of L24 yields (2Fn + 1 | 1103) = (85 | 1103) = −1.

4) m = 8. Taking k = 23 and t even eliminates this subcase, as in 2).

5) m = −12. In this subcase, n ≡ −12 (mod 64), or n ≡ 20 or 84 (mod 128).

Taking m = −12, k = 24 and t even, we have 2Fn + 1 ≡ −2F12 + 1 ≡ −287

(mod L16), but (−287 |L16) = −1. Upon taking m = 20 or 84, k = 25, t even,

and q a divisor of L32 = 1087 · 4481, 2Fn + 1 ≡ 2Fm + 1 (mod q), and we find

that (2F20 + 1 | 4481) = −1, and (2F84 + 1 | 1087) = −1.

6) m = 12. Take k = 2u, u ≥ 4 and t odd. Then

2Fn + 1 ≡ −2F12 + 1 ≡ −287 (modL2u) ,

and

(−287 |L2u) = (L2u | 287) = (L2u | 7) (L2u | 41) = (L2u | 41) .

Now, using (2), it is easy to show that

L2u ≡

{

6 (mod 41), if u is odd,

−7 (mod 41), if u is even ,

and each of (6 | 41) and (−7 | 41) equals −1.

Case 2. n ≡ 0 (mod 16). Let n = 2 · 2ut, u ≥ 3, t odd. If u = 3, then, since

3 |n, n = 48(t/3); by (6), 2Fn + 1 ≡ ±2F48 + 1 (mod L48). Since 769 · 3167 |L48,

we have

(2Fn + 1 | 769) = (2F48 + 1 | 769) ≡ (104 | 769) = −1 ,

or

(2Fn + 1 | 3167) = (−2F48 + 1 | 3167) ≡ (−780 | 3167) = −1 .
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Assume u ≥ 4. By Lemmas 1 and 2, (2Fn +1 |L2·2u) = (4Fk +Lk | 21). Now,

F8 = 21 divides Fk, and from the proof of Lemma 1, Lk ≡ 2 (mod 21); hence

(4Fk + Lk | 21) = (2 | 21) = −1.

Finally, since t may be 0 in each of the above cases except for 1), 6) and

Case 2, un is not a square except possibly when n = 0, −4 or 12. Clearly, only

u0 = 1 and u12 = 289 are squares; this completes the proof.

Proof of the corollary: The proof is immediate, since, if un = 2Fn + 1 =

(2m + 1)2, then Fn = 2m (m + 1).
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