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ON NONHOMOGENEOUS BIHARMONIC EQUATIONS
INVOLVING CRITICAL SOBOLEV EXPONENT

M. Guedda

Abstract: In this paper we consider the problem ∆2u = λ |u|qc−2 u + f in Ω,

u = ∆u = 0 on ∂Ω, where qc = 2N/(N −4), N > 4, is the limiting Sobolev expo-

nent and Ω is a smooth bounded domain in RN . Under some restrictions on f and λ,

the existence of weak solution u is proved. Moreover u ≥ 0 for f ≥ 0 whenever λ ≥ 0.

1 – Introduction

In this article, we show that the problem

(Pλ,f )

{

∆(∆u) = λ |u|qc−2 u+ f in Ω,

u = ∆u = 0 on ∂Ω ,
(1.1)

where Ω is a smooth bounded domain in RN , N > 4, ∆ is the Laplacian operator

and qc = 2N/(N−4), has weak solutions in H2
θ (Ω) = H2(Ω) ∩H1

0 (Ω) equipped

with the norm

‖u‖H2

θ
=

(
∫

Ω
|∆u|2

)1/2

.

To this end we consider the functional

Fλ(u) =
1

2

∫

Ω
|∆u|2 dx−

λ

qc

∫

Ω
|u|qc dx−

∫

Ω
fu dx , u ∈ H2

θ (Ω), λ > 0 .(1.2)

Under some suitable conditions, it is proved that (1.1) admits at least two solu-

tions. Our arguments make use of the mountain pass theorem and of the Lions

concentration-compactness principle.
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Recently, Van der Vorst [10] considered the following problem

S = inf

{
∫

Ω
|∆u|2; u ∈ H2

θ (Ω),

∫

Ω
|u|qc = 1

}

.(1.3)

He proved that the infimum in (1.3) is never achieved by a function u ∈ H2
θ (Ω)

when Ω is bounded. In contrast Hadiji, Picard and the author in [7] considered

the problem

Sϕ = inf

{
∫

Ω
|∆u|2; u ∈ H2

θ (Ω),

∫

Ω
|u+ ϕ|qc = 1

}

.(1.4)

They showed that the infimum in (1.4) is achieved whenever ϕ is continuous and

non identically equal to zero. More precisely it is shown that, for any minimizing

sequence (um) for (1.4), there exists a subsequence (umk
) and a function u ∈

H2
θ (Ω) such that

umk
⇀ u weakly in H2

θ (Ω) and ‖u+ ϕ‖qc = 1 .

On the other hand, Bernis et al. [1] considered a variant of (1.1) where f

is replaced by β |u|p−2 u, 1 < p < 2. They proved the existence of at least two

positive solutions for β sufficiently small. At this stage, we would like to mention

that when Ω = RN P.L. Lions [9] proved that S is achieved only by the function

uε defined by

uε(x) =

[

(N − 4) (N − 2)N (N + 2) ε2
]
N−4

8

(

ε+ |x− a|2
)

N−4

2

, x ∈ RN ,

for any a ∈ RN and any ε > 0. This note is organized as follows. In Section 2 we

verify that Fλ satisfies the (PS)c condition. In Section 3 we prove the existence

of a local minimizer u of Fλ. Moreover, we show that u ≥ 0 whenever f ≥ 0 and

λ ≥ 0. Section 4 is devoted to the existence of a second solution to (1.4). The

results presented in this paper have been announced in [6].

Notice that if f ≡ 0, the result of Section 3 is valid and gives the trivial

solution u = 0. The method we adopt is closely related to the one of [3].

Before the verification of the (PS)c condition, let us remark that if v is a

solution to (1.1) then u = λ
1

qc−2 v satisfies
{

∆(∆u) = |u|qc−2 u+ g in Ω,

u = ∆u = 0 on ∂Ω ,
(1.5)

where g = λ
1

qc−2 f.
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2 – Verification of the (PS)c condition

Let Ω be a bounded domain in RN , N > 4, and f ∈ L2(Ω). We denote by

Fλ : H
2
θ (Ω)→ R the functional defined by

Fλ(u) =
1

2

∫

Ω
|∆u|2 dx−

λ

qc

∫

Ω
|u|qc dx−

∫

Ω
fu dx ,(2.1)

where ∆ is the Laplacian operator and λ is a real parameter. We first look for

critical points of F
def
= F1. We show that F satisfies the Palais–Smale condition

in a suitable sublevel strip.

Let S be the best Sobolev embedding constant of H2
θ (Ω) into L

qc(Ω); that is

S = inf

{
∫

Ω
|∆u|2; u ∈ H2

θ (Ω),

∫

Ω
|u|qc = 1

}

(2.2)

and

K =
N

q

qc

2 q (4 qc)
q

qc

‖f‖qq , q =
qc

qc − 1
.(2.3)

Proposition 2.1. The functional F satisfies the (PS)c condition in the

sublevel strip (−∞, 2
N S

N
4 −K); that is if {um} is a sequence in H

2
θ (Ω) such that

F (um)→ c and dF (um)→ 0 in H−2
θ (Ω) ,(2.4)

where

c <
2

N
S

N
4 −K ,

then {um} contains a subsequence which converges strongly in H2
θ (Ω).

Proof: Let {um} be a sequence in H2
θ (Ω) which satisfies (2.4). From (2.4) it

is easy to see that {um} is bounded in H2
θ (Ω); thus there is a subsequence {umk

},

and an element u of H2
θ (Ω) such that

umk
⇀ u weakly in H2

θ (Ω)(2.5)

and

umk
→ u strongly in Lp(Ω) , 1 ≤ p < qc and a.e. in Ω .(2.6)

The concentration-compactness Lemma of Lions [9] asserts the existence of at

most a countable index set J and positive constants {νj}, j ∈ J such that

|umk
|qc ⇀ |u|qc +

∑

j∈J

νj δxj ,(2.7)
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weakly in the sense of measures, and

|∆umk
|2 → µ ,(2.8)

for some positive bounded measure µ. Moreover,

µ ≥ |∆u|2 +
∑

j∈J

S ν
N−4

N

j δxj ,(2.9)

where

xj ∈ Ω and νj = 0 or νj ≥ S
N
4 .(2.10)

We assert that νj = 0 for each j. If not, assume that νj0 6= 0, for some j0. From

the hypothesis (2.4),

c = lim
k→∞

F (umk
)−

1

2

〈

dF (umk
), umk

〉

,

c ≥
2

N

∫

Ω
|u|qc −

1

2

∫

Ω
fu+

2

N
S

N
4 .

Using the Hölder inequality one has

c ≥
2

N
S

N
4 −

N
q

qc

2 q (4 qc)
q

qc

‖f‖qq .

This contradicts the hypothesis. Consequently νj = 0 for each j and

lim
k→∞

∫

Ω
|umk

|qc =

∫

Ω
|u|qc ,

which implies

umk
→ u strongly in H2

θ (Ω) .

The proof is complete.

3 – Existence of a solution

In this part we consider the problem of finding solutions to (Pλ,f ). We show,

under suitable conditions on f and λ, that Fλ has an infimum on a small ball in

H2
θ (Ω). We suppose first that λ = 1, and denote by F the functional F1. The

proof is based on the following lemma.
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Lemma 3.1. There exist constants r and R > 0 such that if ‖f‖2 ≤ R,

then

F (u) ≥ 0 for all ‖u‖H2

θ
(Ω) = r .(3.1)

Proof: Thanks to the Sobolev and Hölder inequalities we have

F (u) ≥
1

2

∫

Ω
|∆u|2−

1

qc
S−qc

(

∫

Ω
|∆u|2

)

qc
2−|Ω|

1

2
− 1

qc S−1 ‖f‖2
(

∫

Ω
|∆u|2

)1/2
.(3.2)

Inequality (3.2) can be written

F (u) ≥ h
(

‖u‖H2

θ

)

,(3.3)

where

h(x) =
1

2
x2 − λ0 x

qc − λ1 x , λ0 =
1

qc
S−qc and λ1 = ‖f‖2 |Ω|

1

2
− 1

qc S−1 .

Let

g(x) =
1

2
x− λ0 x

qc−1 − λ1 for x ≥ 0 .

There exists λ > 0 such that, if 0 < λ1 ≤ λ, g attains its positive maximum and

we get (3.1), with

r =

(

qc S
qc

2

)
1

qc−1

and R = |Ω|
− 1

2
+ 1

qc S λ ,

thanks to (3.3).

Remark 3.1. Arguing as above we can see that there exists a constant α > 0

such that

F (u) ≥ α, for all ‖u‖H2

θ
= r .

Proposition 3.1. Let R and r be given by Lemma 3.1. Suppose that f 6≡ 0

and

max
(

‖f‖2, ‖f‖q
)

< min(R′, R) ,(3.4)

where

R′ =
4 qc S

N
4q

N
(

2 (qc − 1)
)

1

q

.

Then there exists a function u1 ∈ H2
θ (Ω) such that

F (u1) = min
Br

F (v) < 0 ,(3.5)
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where

Br =
{

v ∈ H2
θ , ‖v‖H2

θ
(Ω) < r

}

,

and u1 is a solution to (P1,f ). Moreover, u1 ≥ 0 whenever f ≥ 0.

Proof: Without loss of generality, we can suppose that f(a) > 0 for some

a ∈ Ω.

Let

uε(x) =
ε
N−4

4 φ(x)
(

ε+ |x− a|2
)

N−4

2

, ε > 0 ,

where φ ∈ C∞0 (Ω) is a fixed function such that 0 ≤ φ ≤ 1 and φ ≡ 1 in some

neighbourhood of a.

Since
∫

Ω
fuε dx > 0, for a small ε ,

we can choose t > 0 sufficiently small such that

F (t uε) < 0 .

Hence

inf
Br

F (v) < 0 .(3.6)

Let {um} be a minimizing sequence of (3.6). From (3.4) and Lemma 3.1 we may

assume that

‖um‖H2

θ
< r0 < r .(3.7)

According to the Ekeland variational principle [5] we may assume

∆2um − |um|
qc − f → 0 in H−2

θ (Ω) .(3.8)

On the other hand, from (2.3) and (3.4), we get

1

N
S

N
4 −K > 0 .(3.9)

We deduce, from (3.8)–(3.9) and Proposition 2.1, that {um} has a subsequence

converging to u1 ∈ H2
θ (Ω), and u1 is a weak solution to (P1,f ).

Now we suppose that f ≥ 0. Let v ∈ H2
θ (Ω) be a solution to the following

problem

−∆v = |∆u1| .
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As in [10, 11] we get v > 0, v ≥ |u1| in Ω,
∫

Ω
|∆v|2 =

∫

Ω
|∆u1|

2 and

∫

Ω
|v|qc ≥

∫

Ω
|u1|

qc .

It then follows that

F (v) ≤ F (u1) and ‖v‖H2

θ
≤ r .

Consequently F is minimized by a positive function.

This method allows us under suitable conditions on f and λ, to prove the

existence of solutions to (Pλ,f ).

Theorem 3.1. Suppose that f 6≡ 0, then there exists λf > 0 such that if

the following condition is satisfied

0 < λf < λ
1

qc−2 < min

(

1

‖f‖2
,

1

‖f‖q

)

min(R′, R) ,(3.10)

Problem (P )λ,f has at least one solution uλ. Moreover uλ ≥ 0 whenever f ≥ 0.

Proof: For the proof we consider Problem (P1,g) where g = f λ
1

qc−2 .

Condition (3.10) implies that g satisfies (3.4). So the existence follows imme-

diately from Proposition 3.1.

Now suppose, on the contrary, that uλ exists for any λ such that

0 < λ
1

qc−2 < min

(

1

‖f‖2
,

1

‖f‖q

)

min(R′, R) .

Note that, since λ−
1

qc−2 uλ is the solution to (P1,g) obtained by (3.5), we have

‖uλ‖H2

θ
(Ω) ≤ r λ

1

qc−2 .

It follows from this that ‖uλ‖H2

θ
(Ω) → 0 as λ ↓ 0.

Passing to the limit in (Pλ,f ) we deduce that f ≡ 0, which yields to a contra-

diction.

4 – Existence of a second solution

In this section we shall show, under additional conditions that (Pλ,f ) possesses

a second solution. Here we use the mountain pass theorem without the Palais–

Smale condition [2, 8]. As in the preceding section, we first deal with the case λ=1.
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Assume that condition (3.4) is satisfied and that f > 0 in some neighbourhood

of a. Set

vε =
uε

‖uε‖qc
.

The main result of this section is the following.

Theorem 4.1. There exists t0 > 0 such that if f satisfies

‖f‖qq <
t0
K1

∫

Ω
fvε dx, for small enough ε > 0 ,(4.1)

where

K1 =
N

q

qc

2 q (4 qc)
q

qc

,

then (P1,f ) has at least two distinct solutions.

Proof: The proof relies on a variant of the mountain pass theorem without

the (PS) condition. We have, for ε sufficiently small (see [4]),

‖∆vε‖
2
2 = S +O(ε

N−4

2 ) .(4.2)

Set

h(t) = F (t vε) =
1

2
t2Xε −

1

qc
tqc − t

∫

Ω
fvε dx for t ≥ 0 ,

where Xε = ‖∆vε‖
2
2.

Since h(t) goes to −∞ as t goes to +∞, supt≥0 h(t) is achieved at some tε ≥ 0.

Remark 3.1 asserts that tε > 0, and we deduce

h′(tε) = tε (Xε − tqc−2ε )−

∫

Ω
fvε dx = 0 and h′′(tε) ≤ 0 ,(4.3)

thus
(

1

qc − 1

)
1

qc−2

X
1

qc−2

ε ≤ tε ≤ X
1

qc−2

ε .(4.4)

Let t0 =
1
2 (

1
qc−1

)
1

qc−2 S
1

qc−2 . We deduce from (4.2) and (4.4) that, for ε0 small,

t0 < tε for ε ∈ (0, ε0) .(4.5)

Thus

sup
t≥0

h(t) = sup
t≥t0

h(t) .
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On the other hand, since the function t −→ 1
2 t
2Xε −

1
qc
tqc is increasing on the

interval [0, X
1

qc−2

ε ], we get

h(tε) ≤
2

N
S

N
4 − tε

∫

Ω
fvε dx+O(ε

N−4

2 ) ,

thanks to (4.2). Hence

h(tε) ≤
2

N
S

N
4 − t0

∫

Ω
fvε dx+O(ε

N−4

2 ) .(4.6)

Consequently if we let

t0

∫

Ω
fvε dx > K1 ‖f‖

q
q ,(4.7)

we deduce that

sup
t≥0

F (tvε) <
2

N
S

N
4 −K .(4.8)

Note that there exists t1 large enough such that

F (t1 vε) < 0 and ‖t1 vε‖H2

θ
> r ,(4.9)

where r is given by Lemma 3.1. Hence

α ≤ c2 = inf
γ∈Γ

max
s∈[0,1]

F (γ(s)) <
2

N
S

N
4 −K ,

where

Γ =

{

γ ∈ C
(

[0, 1], H2
θ (Ω)

)

: γ(0) = 0, γ(1) = t1 vε

}

,

provided ε is small enough. Then, according to the mountain pass theorem

without the (PS) condition, there exists a sequence {um} in H2
θ (Ω) such that

F (um)→ c2 and dF (um)→ 0 in H−2
θ (Ω) .

Since c2 <
2
N S

N
4 −K, we deduce from Proposition 2.1 that there exists u2 such

that c2 = F (u2) and u2 is a weak solution to (P1,f ).

This solution is distinct from u1 since c1< 0 < c2. So the proof is complete.

Finally, by using Theorem 4.1, we deduce the

Corollary 4.1. Assume (3.10). If

λ
q−1

qc−2 <
t0

K1 ‖f‖
q
q

∫

Ω
fvε dx ,

for ε small enough, then problem (Pλ,f ) has at least two solutions.
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