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ON NONHOMOGENEOUS BIHARMONIC EQUATIONS
INVOLVING CRITICAL SOBOLEV EXPONENT

M. GUEDDA

Abstract: In this paper we consider the problem A%y = A|ul|%~2u + f in Q,
u = Au = 0 on 09, where ¢ = 2N/(N—4), N > 4, is the limiting Sobolev expo-
nent and  is a smooth bounded domain in RY. Under some restrictions on f and A,

the existence of weak solution v is proved. Moreover v > 0 for f > 0 whenever A > 0.

1 — Introduction

In this article, we show that the problem

A(Au) = Mul%2u+ f inQ,

1.1 P
1) (Pap) {u:Au:O on 99 ,

where € is a smooth bounded domain in RY, N > 4, A is the Laplacian operator
and g. = 2N/(N —4), has weak solutions in HZ(Q) = H?*(Q) N H} () equipped

with the norm
N
Jullg = ( [ 1)
Q

To this end we consider the functional
A

C

1
(1.2) Fy(u) = —/ Auf? do — / ]t dx—/ fudz, we H2(Q), A>0.
2 Ja Q Q
Under some suitable conditions, it is proved that (1.1) admits at least two solu-
tions. Our arguments make use of the mountain pass theorem and of the Lions
concentration-compactness principle.
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Recently, Van der Vorst [10] considered the following problem

(1.3) Szinf{/ﬂ|Au!2; we H2(Q), /Qlu\‘” _ 1} .

He proved that the infimum in (1.3) is never achieved by a function u € HZ(Q2)
when (2 is bounded. In contrast Hadiji, Picard and the author in [7] considered
the problem

They showed that the infimum in (1.4) is achieved whenever ¢ is continuous and
non identically equal to zero. More precisely it is shown that, for any minimizing
sequence (u,,) for (1.4), there exists a subsequence (u,,,) and a function u €
HZ(9) such that

Um,

—u weakly in HZ(Q2) and |ju+ Pllg. =1

k

On the other hand, Bernis et al. [1] considered a variant of (1.1) where f
is replaced by B |u[P~2u, 1 <p < 2. They proved the existence of at least two
positive solutions for 3 sufficiently small. At this stage, we would like to mention
that when Q = RY P.L. Lions [9] proved that S is achieved only by the function
ue defined by

N—-4

_ _ 2] 78
ue(m):[(zv 4) (N 2)N(NN+42)5] Cemv

(a—i- \x—aP) 2

for any a € RY and any ¢ > 0. This note is organized as follows. In Section 2 we
verify that F)\ satisfies the (PS). condition. In Section 3 we prove the existence
of a local minimizer u of F)\. Moreover, we show that © > 0 whenever f > 0 and
A > 0. Section 4 is devoted to the existence of a second solution to (1.4). The
results presented in this paper have been announced in [6].

Notice that if f = 0, the result of Section 3 is valid and gives the trivial
solution u = 0. The method we adopt is closely related to the one of [3].

Before the verification of the (PS). condition, let us remark that if v is a
1
solution to (1.1) then u = A2 v satisfies
{ A(Au) = |u|%2u+g in Q,

(1.5)
u=Au=0 on 01} ,

1
where g = a2 f.
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2 — Verification of the (PS). condition

Let © be a bounded domain in RY, N > 4, and f € L?(92). We denote by
Fy: HZ(Q) — R the functional defined by

(2.1) F,\(u)zl/ |Au|2dx—>\/ |u\cha:—/ fu de |
2 Ja qc JO Q

where A is the Laplacian operator and A is a real parameter. We first look for
critical points of F def Fy. We show that F' satisfies the Palais—Smale condition

in a suitable sublevel strip.
Let S be the best Sobolev embedding constant of Hj(f2) into L%(Q); that is

(2.2) S = mf{/Q Aul% e H2(Q), /Qyu\qc - 1}

and
q

N ac q
(2.3 K= g g= e
2q (4qc)qC Gc —

Proposition 2.1. The functional F satisfies the (PS). condition in the
sublevel strip (—oco, % S%—K); that is if {u,,} is a sequence in HZ(Q) such that

(2.4) F(um) —c and dF(uy) — 0 in Hy?(Q),
where 5~
c< N ST - K,
then {u,,} contains a subsequence which converges strongly in HZ ().
Proof: Let {u,,} be a sequence in H3(2) which satisfies (2.4). From (2.4) it

is easy to see that {u,,} is bounded in HZ(f2); thus there is a subsequence {uy,, },
and an element u of HZ(f2) such that

(2.5) U, —u  weakly in Hg ()
and
(2.6) Um, — u strongly in LP(Q), 1<p<gq. and a.e. in (.

The concentration-compactness Lemma of Lions [9] asserts the existence of at
most a countable index set J and positive constants {v;}, j € J such that

(2.7) [t |7 = Jul® + D v s,
jeJ
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weakly in the sense of measures, and
(2.8) |Aumk\2 — I,

for some positive bounded measure u. Moreover,

N_4
(2.9) p > |Au + ZSVJ. N0y s
jed
where
(2.10) z; €Q and v;=0 or l/jZS% .

We assert that v; = 0 for each j. If not, assume that v, # 0, for some jp. From
the hypothesis (2.4),

1
c= hrn F(umk) ~3 <dF(umk)7umk> 5

1 2
c>—/|u|qc—§/gfu+NS%.

Using the Hoélder inequality one has
2 Nie
N
SF — ——= |I7lg -

c > —
N 2q (4g0)

This contradicts the hypothesis. Consequently v; = 0 for each j and

hm / [t |7 —/ lu|?e

—u  strongly in Hz () .

which implies

Uy,

The proof is complete. n

3 — Existence of a solution

In this part we consider the problem of finding solutions to (Pj ). We show,
under suitable conditions on f and A, that F\ has an infimum on a small ball in
HZ(9). We suppose first that A = 1, and denote by F the functional Fy. The
proof is based on the following lemma.
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Lemma 3.1. There exist constants r and R > 0 such that if ||f|l2 < R,
then
(3.1) F(u) >0 for all ||U”Hg(ﬂ) =r.

Proof: Thanks to the Sobolev and Holder inequalities we have

(32) Fu) > 5 [ 1au=—s70( [ 1au?) 057 57l ( f jau?)

Inequality (3.2) can be written

(3.3) F(u) = h(|Jull3) -
where
L 1 - 11y
h(w) = 2% =Xz =Mz,  do= e G and A = [|f||l2 Q2" S .
Let )
g(x) = §$*)\0$q6_1 -\ for z>0.

There exists A > 0 such that, if 0 < A\; < A, g attains its positive maximum and
we get (3.1), with

1
qe qdc— PR -
T:<%§;) ©and R=[Q[ 72w SX,

thanks to (3.3). m

Remark 3.1. Arguing as above we can see that there exists a constant o > 0
such that
F(u) > a, for all HuHng =r.

Proposition 3.1. Let R and r be given by Lemma 3.1. Suppose that f # 0
and

(34) max (|| £z, [1llg) < min(R', R) ,

where N
g dast
N (2(ge—1)"

Then there exists a function uy € H3(Q) such that

(3.5) F(uy) = r%inF(v) <0,

r
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where
B, = {v € Hy, |[vllpzo) < T} ’

and uy is a solution to (Py ). Moreover, u; > 0 whenever f > 0.

Proof: Without loss of generality, we can suppose that f(a) > 0 for some
a € Q.
Let

e T ¢(x)

ue(z) = ~~, £€>0,

(s—i- |:L‘—a|2> :

where ¢ € C3°(R2) is a fixed function such that 0 < ¢ < 1 and ¢ = 1 in some
neighbourhood of a.

Since

/ fuedxr >0, for a small ¢,
Q
we can choose t > 0 sufficiently small such that

F(tu) <0.

Hence
(3.6) ing(v) <0.

Let {u,,} be a minimizing sequence of (3.6). From (3.4) and Lemma 3.1 we may
assume that

(3.7) gz <70 <7 .

According to the Ekeland variational principle [5] we may assume
(3.8) AUy, — up | — f — 0 in Hy%(Q) .
On the other hand, from (2.3) and (3.4), we get
(3.9) 1oy k>0,
N

We deduce, from (3.8)—(3.9) and Proposition 2.1, that {u,,} has a subsequence
converging to u; € HZ(), and u; is a weak solution to (P f).

Now we suppose that f > 0. Let v € HZ(Q) be a solution to the following
problem
—Av = |Auy| .
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As in [10, 11] we get v > 0, v > |uq| in €,

/|AU|2:/ Auw?  and /th/ ] .
Q Q Q Q

It then follows that
F(v) < F(u;) and ”UHHg <r.
Consequently F' is minimized by a positive function. m

This method allows us under suitable conditions on f and A, to prove the
existence of solutions to (P f).

Theorem 3.1. Suppose that f # 0, then there exists Ay > 0 such that if
the following condition is satisfied

11
1Al2" 11 fllg

Problem (P)) ¢ has at least one solution uy. Moreover uy > 0 whenever f > 0.

(3.10) 0<Ap<Ai? < min< ) min(R’, R) |,

Proof: For the proof we consider Problem (P;4) where g = f)\ﬁ
Condition (3.10) implies that g satisfies (3.4). So the existence follows imme-
diately from Proposition 3.1.

Now suppose, on the contrary, that u) exists for any A such that

BRI
112" 1 1lq

Note that, since = uy is the solution to (P 4) obtained by (3.5), we have

0< N7 < min( ) min(R', R) .

1
urllpziq) < rAse=2.

It follows from this that ||UA||H92(Q) —0as A 0.
Passing to the limit in (Py y) we deduce that f = 0, which yields to a contra-
diction. m

4 — Existence of a second solution
In this section we shall show, under additional conditions that (Py ¢) possesses

a second solution. Here we use the mountain pass theorem without the Palais—
Smale condition [2, 8]. As in the preceding section, we first deal with the case A=1.
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Assume that condition (3.4) is satisfied and that f > 0 in some neighbourhood

of a. Set
Ue

luellge

The main result of this section is the following.

Ve =

Theorem 4.1. There exists tg > 0 such that if f satisfies
t
(4.1) 1£11E < K—O/ fvedx,  for small enough € >0,
1J0

where .
N ac
= @ >
2q (4qc)a

then (P, f) has at least two distinct solutions.

K

Proof: The proof relies on a variant of the mountain pass theorem without
the (PS) condition. We have, for ¢ sufficiently small (see [4]),

N—4
(4.2) [Avcll5 = S+0("7 ).
Set

1 1
h(t):F(tUa):QtQXg—qtqc—t/vagd:c for t >0,

where X, = [|Av|)3.
Since h(t) goes to —oc as t goes to +00, sup;~q h(t) is achieved at some t. > 0.
Remark 3.1 asserts that t. > 0, and we deduce

(4.3)  R(t) = te (Xe —tl7?) - /Q foedz =0 and R"(t.) <0,

thus

(4.4) (qc_ 1) 7 <y < xET

Let tg = %(qcl_l)qc#f2 S We deduce from (4.2) and (4.4) that, for g small,
(4.5) to <te for €€ (0,g0) .

Thus

sup h(t) = suph(t) .
>0 t>to
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On the other hand, since the function ¢ — %t2X‘E — i tde is increasing on the
1

interval [0, X{P], we get

2 _
h(te) < *S%_ts/ fUEd.:E+O(€¥),
N Q

thanks to (4.2). Hence

2

(4.6) ht:) < 5% - to/Q fude+0("7) .

Consequently if we let

(4.7) to/vag dz > Ky | f]19,

we deduce that 9

(4.8) sup F'(tve) < — ST K .
>0 N

Note that there exists t; large enough such that
(4.9) F(tive) <0 and ||t UEHHg >,

where r is given by Lemma 3.1. Hence

a < ¢y = inf max F(y(s)) < S%—K,

2
- v€T s€[0,1] N
where

I = {7 € C([O, 1],H92(Q)>: 7(0) =0, v(1) =t; Us} )

provided ¢ is small enough. Then, according to the mountain pass theorem
without the (PS) condition, there exists a sequence {u,,} in H7(Q2) such that

F(up) —c2  and  dF(up)— 0 in Hy () .

Since co < % ST K , we deduce from Proposition 2.1 that there exists us such
that co = F(u2) and us is a weak solution to (P f).
This solution is distinct from w7 since ¢; < 0 < ¢3. So the proof is complete. n

Finally, by using Theorem 4.1, we deduce the

Corollary 4.1. Assume (3.10). If

= S /f d
qc— v, Z ,
K| fllg Ja” =

for € small enough, then problem (P ¢) has at least two solutions.
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