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SKEW SEMI-INVARIANT SUBMANIFOLDS
OF A LOCALLY PRODUCT MANIFOLD

Liu XiMIN and FANG-MING SHAO

Abstract: In this paper, we defined and studied a new class of submanifolds of a lo-
cally Riemannian product manifold, i.e., skew semi-invariant submanifolds. We give two
sufficient conditions for submanifolds to be skew semi-invariant submanifolds. Moreover,
we discussed the sectional curvature of skew semi-invariant submanifolds and obtained

many interesting results.

1 — Introduction

In the early years of the sixties, S. Tachibana [1] introduced and studied a
class if important manifolds, i.e., locally product manifolds. After that, some
authors discussed this class of manifolds, they obtained many very interesting
results (cf. [2], [3], [4] and [5]). In [6], A. Bejancu defined and studied semi-
invariant submanifolds of a locally product manifold. In this paper, we defined
and discussed a new class of submanifolds of a locally product manifold, i.e.,
skew semi-invariant submanifolds, which contain semi-invariant submanifolds as
a special case.

There are two parts in this paper, in section one we give the definition of skew
semi-invariant submanifolds and some preliminaries which we will use later. In
section two we discuss the parallelism of the canonical structures P and @ and
the sectional curvature of skew semi-invariant submanifolds.
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2 — Definitions and preliminaries

In this paper, we suppose that all manifolds and maps are C'*°-differentiable.
Let (M, g, F) be an almost product Riemannian manifold, where g is a Rie-
mannian metric and F' is a non-trivial tensor field of type (1,1), F' is called an
almost product structure. Moreover g and F' satisfying the following conditions

1) F2=1 (F#%I), g(FX,FY)=g(X,Y),

where X,Y € TM and I is the identity transformation.

We denote by V the Levi-Civita connection on M with respect to g, if
VxF =0, X € TM, we call M a locally product Riemannian manifold.

Let M be a Riemannian manifold isometrically immersed in M and denote by
the same symbol g the Riemannian metric induced on M, for p € M and tangent
vector X, € T, M, we write

(2) FX, = PX, +QX,

where PX,, € T,M is tangent to M and QX € TpLM is normal to M.

For any two vectors X, Y, € T,M, we have g(FX,,Y,) = g(PX),Y}), which
implies that g(PX,,Y,) = g(Xp, PY,). So P and P? are all symmetric operators
on the tangent space T,M. If a(p) is the eigenvalue of P? at p € M, since P? is
a composition of an isometry and a projection, hence «(p) € [0, 1].

For each p € M, we set D)y = Ker(P? — a(p)I), where I is the identity
transformation on T, M, and «(p) is an eigenvalue of P? at p € M, obviously, we
have Dg = Ker P, Dll, = KerQ, D; is the maximal F' invariant subspace of T}, M
and Dg is the maximal F' anti-invariant subspace of T,M. If a;1(p), ..., ax(p) are
all eigenvalues of P? at p, then T,M can be decomposed as the direct sum of the
mutually orthogonal eigenspaces, that is,

T,M =Dy @@ Dy* .
Now we give the following definition.

Definition. A submanifold M of a locally product manifold M is called a
skew semi-invariant submanifold if there exists an integer k£ and constant functions
aj, 1 <1i <k, defined on M with values in (0, 1) such that

(i) Each oy, 1 <i <k, is a distinct eigenvalue of P? with T,M = Dg @ D; @
Dyt & ---@ Dy, for p € M.

(ii) The dimensions of Dg, D; and Dy, 1 <1 < k, are independent of p € M.
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Remark. Condition (ii) in the above definition implies that DY, D} and
Dpi, 1 <14 <k, defined P invariant, mutually orthogonal distributions which we
denote by D°, D! and D%, 1 < i < k, respectively. Moreover the tangent bundle
of M has the following decomposition

TM=D"eD'eoD* @& ...¢ D% .

Particularly if £ = 0 then M is a semi-invariant submanifold [6]. If k& = 0,
and D)(D}) is trivial, then M is an invariant (anti-invariant) submanifold of M
[4].

Denote the induced connection in M by V, we have the formulas of Gauss
and Weingarten

(3) VxY =VxY + h(X,Y),
(4) VxN = —Any X + VEN |

for all vector fields X,Y € TM and N € T+M. Here h denotes the second
fundamental form and T+M denotes the normal bundle of M in M. Moreover
we have

(5) g(h(X,Y),N) = g(AnX,Y) .
For N € T+M, we set
(6) FN=tN+ fN

where tN € TM, fN € T+ M.
From F(VxY) = VxFY, (3), (4) and (6) we have

(7) P(VxY)+ Q(VxY) +th(X,Y) + fh(X,Y) =
= VxPY + h(X,PY) — Agv X + VxQY ,

for X, Y € TM. Comparing tangential and normal components in (7) we obtain
(8) PVxY =VxPY —th(X,Y) - Agv X ,

(9) QVxY = h(X,PY)+VxQY — fh(X,Y),

for X, Y € TM. From (8) and (9) we can get

(10) PX,Y]=VxPY —VWPX + AgxY — Agv X ,

(11) Q[X,Y] = h(X,PY) - h(PX,Y) + V¥ QX — V3 QX .
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We have the following lemma immediately from (10) and (11)

Lemma 1.1. Let M be a skew semi-invariant submanifold of a locally
product manifold M, then

(i) The distribution D° is integrable if and only if ApxY = ApyX for all
X,Y € DY.

(ii) The distribution D' is integrable if and only if h(X, FY) = h(FX,Y) for
all X,Y € D'

We define the covariant derivatives of P and () in a manner as follows

(12) (VxP)Y = VxPY — PVxY |
(13) (VxQ)Y = VxQY —QVxY |

for all X,Y € TM. Using (8) and (9) we have

(14) (VxP)Y =th(X,Y)+ Agy X ,
(15) (VxQ)Y = fh(X,Y) - h(X,PY) .

Let D' and D? be two distributions defined on a manifold M. We say that D!
is parallel with respect to D? if for all X € D? and Y € D', we have VxY € D
D' is called parallel if for X € TM and Y € D', we have VxY € D!, it is easy to
verify that D! is parallel if and only if the orthogonal complementary distribution
of D! is also parallel.

Let M be a submanifold of M. A distribution D on M is said to be totally
geodesic if for all X,Y € D we have h(X,Y) = 0. In this case we say also that
M is D totally geodesic. For two distributions D! and D? defined on M, we say
that M is D'-D? mixed totally geodesic if for all X € D! and Y € D? we have
h(X,Y) =0.

Proposition 1.1. Let M be a skew semi-invariant submanifold of a locally
product manifold M, for any distribution D®, if ANPX = PANX, forall X € D®
and N € T+M, then M is D®-DPmixed totally geodesic, where a # f3.

Proof: From the assumption we have P2AyX — a AyX = 0, which im-
plies that AyX € D® So for all Y € D8, N € T*M, a # 3, we have
0=g(AnX,Y) = g(h(X,Y),N), that is h(X,Y) = 0, hence M is D*-D” mixed
totally geodesic. n
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From (2) and (6) we can obtain

(16) fQRX,=-QPXp,
(17) QtN =N — f°N ,

for all X, € T,M, N € T,;-M. Furthermore, for X, € Dyi, 1 <14 <k, we have
(18) f? QXp = i QXp .

Also if X, € Dg then it is clear that f2 QX, = 0. Thus if X, is an eigenvector
of P? corresponding to the eigenvalue a(p) # 1, then QX is an eigenvector of
f? with the same eigenvalue a(p). (17) implies that a(p) is an eigenvalue of f? if
and only if v(p) = 1 —a(p) is an eigenvalue of Qt. Since Qt and f? are symmetric
operators on the normal bundle T M, their eigenspaces are orthogonal. The
dimension of the eigenspace of Qt corresponding to the eigenvalue 1 — a(p) is
equal the dimension of Dy if a(p) # 1. Consequently, we have

Lemma 1.2. Let M be a submanifold of a locally product Riemannian
manifold M. M is a skew semi-invariant submanifold if and only if the eigenvalues
of Qt are constant and the eigenspaces of Qt have constant dimension.

3 — Skew semi-invariant submanifold

Theorem 2.1. Let M be a submanifold of a locally product manifold M, if
VP =0, then M is a skew semi-invariant submanifold. Furthermore each of the
P invariant distributions D°, D' and D%, 1 < i < k, is parallel.

Proof: Fix p € M, for any Y), € D))" and any vector field X € T'M, let Y be
the parallel translation of Y), along the integral curve of X. Since (VxP)Y =0,
we have by (8)

Vx(P? —a(p)Y) = P?VxY —a(p) VxY =0

since P?Y —a(p)Y = 0 at p, it is identical 0 on M. Thus the eigenvalues of
P? are constant. Moreover, parallel translation of T,M along any curve is an
isometry which preserves each D®. Thus the dimension of each D% is constant
and M is a skew semi-invariant submanifold.

Now if Y is any vector field in D%, we have P?Y = aY (« constant), i.e.,
P?2VxY = aVxY which implies that D is parallel.
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Next we turn our attention to the vanishing of VQ. For X,Y € TM, if
(VxQ)Y = 0 then (15) yields
(19) fr(X,)Y)=hX,PY).
In particular, if Y € D¢ then (19) implies
(20) fPR(X,Y)=ah(X,Y)
consequently we have

Proposition 2.1. Let M be a skew semi-invariant submanifold of a locally
product manifold M, if VQ = 0, then M is D*-D? mixed totally geodesic for
all o # (3. Moreover, if X € D® then either h(X,X) = 0 or h(X,X) is an
eigenvector of f? with eigenvalue o.

The next lemma is easy to prove so we omit the proof.

Lemma 2.1. Let M be a submanifold of a locally product manifold M, then
VQ =0 if and only if VxtN =t V5N for all X € TM and N € T+ M.

Theorem 2.2. Let M be a submanifold of a locally product manifold M, if
V@Q =0, then M is skew semi-invariant submanifold.

Proof: If TM = D' then we are done. Otherwise, we may find a point p € M

and a vector X;, € D, a # 1. Set N, = QX),, then N, is an eigenvector of Q¢

with eigenvalue v(p) = 1 — a(p). Now, let Y € TM and N be the translation of
N, in the normal bundle T+ M along an integral curve of Y, we have

Vi (QtN —~(p) N) = V¢ Qt N — v(p) Vi N = Q(VytN) — v(p) Vi N .

By Lemma 2.1, this becomes Vi (Qt N — v(p) N) = Qt Vi# N — ~v(p) Vi N = 0.
Since Qt N—~(p) N = 0at p, Qt N—v(p) N = 0 on M. It follows from Lemma 1.2
that M is a skew semi-invariant submanifold. m

For a submanifold M of a locally product manifold M, let R (resp. R) denote
the curvature tensor of M (resp. M), then the equation of Gauss is given by

9(R(X,Y) 2, W) = g(R(X,Y) Z, W) + g(h(X, W), h(Y, 2))

2y — g(h(X, 2), h(Y,W))

for X, Y, Z, W € TM.
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The sectional curvature of a plane section of M determined by two orthogonal
unit vectors X,Y € TM is given by

(22) Ky(XAY) =g(R(X,Y)Y, X) .

The sectional curvature of a plane section of M determined by two orthogonal
unit vectors X,Y € T M is given by

(23) Kn(X AY) =g(R(X,Y)Y, X) .
For X,Y € TM, from (21), (22) and (23) we can obtain

(24)  Ku(XAY)=Ky(XAY)+g(h(X,X), h(Y,Y)) = (X, V).

Proposition 2.2. Let M be a skew semi-invariant submanifold of a locally
product manifold M, if VQ = 0, then for any unit vectors X € D® and Y € D?,
a# B3, we have Kpf(X AY) = Ky (X AY).

Proof: It can be followed easily from Proposition 2.1. n

Lemma 2.2. Let M be a skew semi-invariant submanifold of a locally
product manifold M, then the followings are equivalent

(i) (VxQ)Y — (WwQ) X =0 for all X,Y € D°.
(i) h(P,X,Y) = h(X,PY) for all X,Y € D,
(iii) Q[X,Y] = V&£QY — V4+QX for all X,Y € D*.
(iv) ANPY — PANY is perpendicular to D® for all Y € D* and N € T+N.

The proof is very trivial, we omit it here.

We call P a commutative if any of the equivalent conditions in the above
Lemma holds.

For each P invariant D?, let n(a) = dim D®. For each D% we may choose
a local orthonormal basis E?, ..., E™®_ Define the D® mean curvature vector
by H® = E?:(Of) h(E!, E'), then the mean curvature vector is given by H =
LH+H' '+ H* + -+ H®), n=dim M.

A skew semi-invariant submanifold M of a locally product manifold M is
called D% minimal if H* = 0 and minimal if H = 0.

For any unit vector X € D®, « # 0, defined the « sectional curvature of M
and M by

Ho(X) = Ki(XAY),  Ho(X) = Ky(X AY)
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respectively, where Y = %. From (24) we have
_ 1 1
(25)  Ha(X) = Ha(X) = — g(h(X, X), h(PX, PX)) = = |h(X, PX)[?
a a

Then we have the following proposition

Proposition 2.3. Let M be a skew semi-invariant submanifold of a locally
product manifold M, if P is o commutative, o # 0, then

Ha(X) = Ho(X) + |h(X, X)P = ~ n(X, PX)P

Let {E', ..., E™®} and {F', ..., F*®} be the local orthonormal bases for D®
and D?, respectively. We define a-3 sectional curvatures of M and M by

n(a) n(p) o n(a) n(p) o
Pap=> Y Ky(E'ANFI), pag=>_ > Ky(E'ANF),
i=1 j=1 i=1 j=1

respectively.
From (24) we see that for a # 3 we have

n(a) n(B)
(26) pap = Pap + g(H* H?) = > 3" |R(E' N F7)?
=1 j=1
for a = 8 we have
n(a) n(B) ‘ ,
(27) Paa = Paa — P > |W(E* AFT)?
i=1 j=1

Using (26) and (27) we have the following proposition
Proposition 2.4. Let M be a skew semi-invariant submanifold of a locally
product manifold M.

(i) If H* is perpendicular to H®, a # 3, then Pap < Pap, and the equality
holds if and only if M is D*-D? mixed totally geodesic.

(ii) If M is D® minimal, then poo < Paa, and the equality holds if and only
if M is D® totally geodesic.
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