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RATIONAL ARITHMETICAL FUNCTIONS OF ORDER (2,1)
WITH RESPECT TO REGULAR CONVOLUTIONS

P. Haukkanen

Abstract: S.S. Pillai’s arithmetical function P (n) =
∑

m (mod n)(m,n) is an example

of a rational arithmetical function of order (2, 1). We generalize P (n) with respect to

Narkiewicz’s regular convolution and show that the generalized Pillai’s function is an

example of a rational arithmetical function of order (2, 1) with respect to Narkiewicz’s

regular convolution. We derive identities for rational arithmetical functions of order (2, 1)

with respect to Narkiewicz’s regular convolution and therefore also for Pillai’s function

and its generalization.

1 – Introduction

S.S. Pillai’s [7] arithmetical function P (n) is defined by

(1.1) P (n) =
∑

m (mod n)

(m,n) ,

where (m,n) is the greatest common divisor of m and n. The structure of P is

(1.2) P = I ∗ I ∗ e−1 = I ∗ I ∗ µ = I ∗ ϕ ,

where ∗ is the Dirichlet convolution, I(n) = n, e(n) = 1 (n≥1), µ is the Möbius

function, and ϕ is the Euler totient function. Equation (1.2) may be referred

to as Cesàro’s formula (see [2, p. 127]). The arithmetical function P is an ex-

ample of a rational arithmetical function of order (2, 1) in the terminology of
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Vaidyanathaswamy [11], who called a multiplicative function f a rational arith-

metical function of order (r, s) if there exist nonnegative integers r and s and

completely multiplicative functions g1, g2, ..., gr, h1, h2, ..., hs such that

(1.3) f = g1 ∗ g2 ∗ · · · ∗ gr ∗ h
−1
1 ∗ h−1

2 ∗ · · · ∗ h−1
s ,

where the inverses are under the Dirichlet convolution. By convention, the iden-

tity function e0 is a rational arithmetical function of order (0, 0), where e0(1) = 1

and e0(n) = 0 for n > 1.

Rational arithmetical functions of order (2, 0) are said to be quadratics or

specially multiplicative functions. The well-known identical equations [5, 9] for a

quadratic f given as f = g1∗ g2 are

f(m) f(n) =
∑

d | (m,n)

f(mn/d2) (g1g2) (d) ,(1.4)

f(mn) =
∑

d | (m,n)

f(m/d) f(n/d)µ(d) (g1g2) (d) .(1.5)

A further well-known identity [9] for f is

(1.6) f(m) (g1g2) (n) =
∑

d |n

f(n/d) f(mnd)µ(d) .

Narkiewicz’s [6] A-convolution ∗A is a well-known generalization of the Dirich-

let convolution. Yocom’s [12] A-multiplicative functions is a generalization of

completely multiplicative functions in the setting of Narkiewicz’s A-convolution.

This suggests we define rational arithmetical functions in the setting of Narkie-

wicz’s A-convolution. In fact, we define an arithmetical function f to be an

A-rational arithmetical function of order (r, s) if there exist A-multiplicative func-

tions g1, g2, ..., gr, h1, h2, ..., hs such that

(1.7) f = g1 ∗A g2 ∗A · · · ∗A gr ∗A h−1
1 ∗A h−1

2 ∗A · · · ∗A h−1
s .

Some properties of A-rational arithmetical function of order (2, 0) are given in

[3] and [5]. In this paper we give properties of A-rational arithmetical functions

of order (2, 1). We motivate the study of these functions by an A-analogue of

Pillai’s function. This function appears to be a concrete example of an A-rational

arithmetical function of order (2, 1). AllA-rational arithmetical functions of order

(2, 0) are also A-rational arithmetical functions of order (2, 1).
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We show that A-rational arithmetical functions of order (2, 1) satisfy identities

of the types of (1.4), (1.5) and (1.6). Unfortunately, however, these identities then

become restricted identities in the sense that these identities do not hold for all m

and n. We also note that these identities serve as characterizations of A-rational

arithmetical functions of order (2, 1).

2 – Preliminaries

In this section we introduce the concept of Narkiewicz’s regular convolution.

Background material on regular convolutions can be found e.g. in [5, Chapter

4] and [6]. We here review the concepts and notations which are needed in this

paper.

For each n, let A(n) be a subset of the set of positive divisors of n. The

elements of A(n) are said to be the A-divisors of n. The A-convolution of two

arithmetical functions f and g is defined by

(f ∗A g)(n) =
∑

d∈A(n)

f(d) g(n/d) .

Narkiewicz [6] defines an A-convolution to be regular if

(a) the set of arithmetical functions forms a commutative ring with unity with

respect to the ordinary addition and the A-convolution,

(b) the A-convolution of multiplicative functions is multiplicative,

(c) the constant function 1 has an inverse µA with respect to the A-convolu-

tion, and µA(n) = 0 or −1 whenever n is a prime power.

The inverse of an arithmetical function f such that f(1) 6= 0 with respect to the

A-convolution is defined by

f ∗A f−1 = f−1 ∗A f = e0 .

It can be proved [6] that an A-convolution is regular if and only if

(i) A(mn) = {de : d ∈ A(m), e ∈ A(n)} whenever (m,n) = 1,

(ii) for each prime power pa (> 1) there exists a divisor t = τA(p
a) of a such

that

A(pa) = {1, pt, p2t, ..., prt} ,

where rt = a, and

A(pit) = {1, pt, p2t, ..., pit} , 0 ≤ i < r .
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The positive integer t = τA(p
a) in item (ii) is said to be the A-type of pa.

A positive integer n is said to be A-primitive if A(n) = {1, n}. The A-primitive

numbers are 1 and pt, where p runs through the primes and t runs through the

A-types of the prime powers pa with a ≥ 1. The order of an A-primitive number

pt (>1) is defined by

o(pt) = sup
{

s ∈ Z+ : τA(p
st) = t

}

.

For all n, let D(n) be the set of all positive divisors of n and let U(n) be the

set of all unitary divisors of n, that is,

U(n) =
{

d > 0: d |n, (d, n/d) = 1
}

=
{

d > 0: d‖n
}

.

The D-convolution is the classical Dirichlet convolution and the U -convolution is

the unitary convolution [1]. These convolutions are regular with τD(p
a) = 1 and

τU (p
a) = a for all prime powers pa (> 1). Further, if A = D, then o(p) = ∞ for

all primes p, and if A = U , then o(pa) = 1 for all prime powers pa (>1).

For a positive integer k, the Ak-convolution is defined by Ak(n) = {d :

dk ∈ A(nk)}. It is known [8] that the Ak-convolution is regular whenever the

A-convolution is regular. The symbol (m,n)A,k denotes the greatest k-th power

divisor of m which belongs to A(n). Note that (m,n)D,1 is the usual greatest

common divisor of m and n.

The function γA(n) is defined as the product of the A-primitive divisors of n.

The function γD(n) is the product of the distinct prime divisors of n with the

convention that γD(1) = 1. Under the usual notation γD(n) = γ(n). Further,

γU (n) = n for all n.

The A-analogue µA of the Möbius function is the multiplicative function given

by

µA(p
a) =

{

−1 if pa (>1) is A-primitive,

0 if pa is non-A-primitive .

In particular, µD = µ, the classical Möbius function, and µU = µ∗, the unitary

analogue of the Möbius function [1].

Yocom [12] defines an arithmetical function f to be A-multiplicative if f is

not identically zero and

f(n) = f(d) f(n/d)

whenever d ∈ A(n). In particular, D-multiplicative functions are the usual com-

pletely multiplicative functions and U -multiplicative functions are the usual mul-

tiplicative functions. It is known [12] that a multiplicative function f is A-multi-

plicative if and only if

f−1 = µA f .
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It is also known [12] that an A-multiplicative function f is completely determined

by its values at A-primitive prime powers pt. In fact,

f(n) =
∏

pt∈A(n)

f(pt)∂p(n)/t ,

where n =
∏

p p
∂p(n) is the canonical factorization of n. Further properties of

A-multiplicative functions can be found in [12].

An arithmetical function f is said [3, 5] to be an A-specially multiplicative

function if f = g1∗A g2, where g1 and g2 are A-multiplicative functions. In the lan-

guage of A-rational arithmetical functions (see (1.7)), A-specially multiplicative

functions are A-rational arithmetical functions of order (2, 0) or A-quadratics.

It is known [3, 5] that generalizations of (1.4) and (1.5) can be written as

f(m) f(n) =
∑

d∈A((m,n))

f(mn/d2) (g1g2) (d) ,(2.1)

f(mn) =
∑

d∈A((m,n))

f(m/d) f(n/d)µA(d) (g1g2) (d) ,(2.2)

where m,n ∈ A(mn). Since (2.1) and (2.2) do not hold for all m and n, these

identities are referred to as “restricted” identities.

If f = g1 ∗A g2, then the function g1g2 is referred to as the A-multiplicative

function associated with f and is denoted briefly as f ′. It can be shown that an

A-specially multiplicative function f is completely determined by the values of f

and f ′ at A-primitive prime powers pt.

3 – Pillai’s function in regular convolution rings

We recall that Pillai’s function P (n) is defined as

(3.1) P (n) =
∑

m (mod n)

(m,n) .

Now, let f be an arithmetical function, let A be a regular convolution and let k

be a positive integer. We define the generalized Pillai’s function P f
A,k(n) as

(3.2) P f
A,k(n) =

∑

m (mod nk)

f
(

(m,nk)A,k
)

.

If f = I, A=D and k=1, then P f
A,k(n)=P (n). If f = I, A=U and k=1, then

P f
A,k(n) is the unitary analogue of Pillai’s function (see [10]).
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We show that the structure of P f
A,k(n) depends on the generalized Euler func-

tion ϕA,k(n) which is defined as the number of integers m (mod nk) such that

(m,nk)A,k = 1. It is known that

ϕA,k(n) = (Ik ∗Ak
µAk

) (n) ,

where Ik(n) = nk (see [8]). It is clear that ϕD,1 is the classical Euler totient

function.

Theorem 3.1. We have

(3.3) P f
A,k(n) =

∑

d∈Ak(n)

f(dk)ϕA,k(n/d) .

Proof: Let S = {1, 2, ..., n}. We write

S =
⋃

d∈Ak(n)

Sd ,

where m∈Sd if and only if (m,nk)A,k=dk. It is clear that this is a partition of S,

and m ∈ Sd if and only if m = dkj, 1≤ j≤nk/dk, (j, nk/dk)A,k = 1. Therefore

|Sd | = ϕA,k(n/d). We thus arrive at our result.

Now suppose that f is an A-multiplicative function. Define fk by fk(n) =

f(nk). It can be verified that fk is Ak-multiplicative. The structure of P f
A,k can

be written as

(3.4) P f
A,k = fk ∗Ak

Ik ∗Ak
µAk

= fk ∗Ak
ϕAk

.

Thus P f
A,k is an Ak-rational arithmetical function of order (2, 1).

In particular, if f = I, then P f
A,k ≡ PA,k = Ik ∗Ak

Ik ∗Ak
µAk

= Ik τAk
∗Ak

µAk
,

where τAk
is the number of Ak-divisors of n. The function g given by g =

Ik ∗Ak
Ik = Ik τAk

is an Ak-quadratic with g′ = I2k.

4 – Identities

In this section we derive analogues of the identities (1.4), (1.5) and (1.6) for

A-rational arithmetical functions of order (2, 1). Throughout this section we write

an A-rational arithmetical function f of order (2, 1) in the form

(4.1) f = g1 ∗A g2 ∗A h−1 = g ∗A h−1 ,

where g1, g2 and h are A-multiplicative functions.
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Theorem 4.1. Let f be an A-rational arithmetical function of order (2, 1)

given as in (4.1). Then

(4.2) f(pit) = g(pt) f(p(i−1)t)− (g1g2)(p
t) f(p(i−2)t)

for all A-primitive prime powers pt and i = 2, 3, ..., o(pt).

Proof: Let i = 2. Then

g(pt) f(pt)− (g1g2)(p
t) =

(

g1(p
t)+g2(p

t)
) (

g1(p
t)+g2(p

t)−h(pt)
)

− (g1g2)(p
t)

= g1(p
t)2 + g1(p

t) g2(p
t) + g2(p

t)2−
(

g1(p
t)+g2(p

t)
)

h(pt)

= g(p2t)− g(pt)h(pt)

= (g ∗ h−1)(p2t)

= f(p2t) .

Let i ≥ 3. Then

g(pt) f(p(i−1)t)− (g1g2)(p
t) f(p(i−2)t) =

=
(

g1(p
t) + g2(p

t)
) [

(g1 ∗ g2)(p
(i−1)t)− (g1 ∗ g2)(p

(i−2)t)h(pt)
]

− g1(p
t) g2(p

t)
[

(g1 ∗ g2)(p
(i−2)t)− (g1 ∗ g2)(p

(i−3)t)h(pt)
]

=
i−1
∑

j=0

g1(p
(j+1)t) g2(p

(i−1−j)t) +
i−1
∑

j=0

g1(p
jt) g2(p

(i−j)t)−
i−2
∑

j=0

g1(p
(j+1)t) g2(p

(i−1−j)t)

− h(pt)

(

i−2
∑

j=0

g1(p
(j+1)t) g2(p

(i−2−j)t) +
i−2
∑

j=0

g1(p
jt) g2(p

(i−1−j)t)

−
i−3
∑

j=0

g1(p
(j+1)t) g2(p

(i−2−j)t)

)

=
i
∑

j=0

g1(p
jt) g2(p

(i−j)t)− h(pt)
i−1
∑

j=0

g1(p
jt) g2(p

(i−1−j)t)

= g(pit)− h(pt) g(p(i−1)t)

= (g ∗ h−1)(pit)

= f(pit) .

This completes the proof of Theorem 4.2.



336 P. HAUKKANEN

Example 4.1. If PA,k is as given in Section 3, then

PA,k(p
it) = 2 pktPA,k(p

(i−1)t)− p2ktPA,k(p
(i−2)t)

for all Ak-primitive prime powers pt and i = 2, 3, ..., o(pt).

Theorem 4.2. Let f be an A-rational arithmetical function of order (2, 1)

given as in (4.1). Then

(4.3) f(mn) =
∑

d∈A((m,n))

g(m/d) f(n/d)µA(d) g
′(d)

whenever γ(m) | γ(n) and m,n ∈ A(mn).

Proof: By multiplicativity, it is enough to prove that for all A-primitive

prime powers pt (>1)

(4.4) f(p(a+b)t) = g(pat) f(pbt)− g(p(a−1)t) f(p(b−1)t) g′(pt)

whenever a+b ≤ o(pt), a, b ≥ 1. We proceed by induction on a. By Theorem 4.1,

(4.4) holds for a = 1. Suppose that (4.4) holds for a < n, where 2 ≤ n ≤ o(pt)−1.

Then

f(p(n+b)t) = f(p(n−1+b+1)t)

= g(p(n−1)t) f(p(b+1)t)− g(p(n−2)t) f(pbt) g′(pt)

= g(p(n−1)t)
[

g(pt) f(pbt)− g′(pt) f(p(b−1)t)
]

− g(p(n−2)t) f(pbt) g′(pt)

= g(p(n−1)t) g(pt) f(pbt)− g(p(n−1)t) f(p(b−1)t) g′(pt)

− g(p(n−2)t) f(pbt) g′(pt)

=
[

g(pnt) + g(p(n−2)t) g′(pt)
]

f(pbt)− g(p(n−1)t) f(p(b−1)t) g′(pt)

− g(p(n−2)t) f(pbt) g′(pt)

= g(pnt) f(pbt)− g(p(n−1)t) f(p(b−1)t) g′(pt) .

This completes the proof of Theorem 4.2.

Example 4.2. We have

PA,k(mn) =
∑

d∈Ak((m,n))

mk τAk
(m/d)PA,k(n/d)µAk

(d) dk

whenever γ(m) | γ(n) and m,n ∈ Ak(mn).
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Theorem 4.3. Let f be an A-rational arithmetical function of order (2, 1)

given as in (4.1). Then

(4.5) g(m) f(n) =
∑

d∈A((m,n))

f(mn/d2) g′(d)

whenever γ(m) | γ(n) and m,n ∈ A(mn).

Proof: By (4.3), we have

∑

d∈A((m,n))

f(mn/d2) g′(d) =

=
∑

d∈A((m,n))

∑

e∈A((m/d,n/d))

g(m/(de)) f(n/(de))µA(e) g
′(e) g′(d)

=
∑

d∈A((m,n))

∑

δ∈A((m,n))
d∈A(δ)

g(m/δ) f(n/δ)µA(δ/d) g
′(δ)

=
∑

δ∈A((m,n))

g(m/δ) f(n/δ) g′(δ)
∑

d∈A(δ)

µA(δ/d)

= g(m) f(n) ,

that is, (4.5) holds.

Example 4.3. We have

mk τAk
(m)PA,k(n) =

∑

d∈Ak((m,n))

PA,k(mn/d2) d2k

whenever γ(m) | γ(n) and m,n ∈ Ak(mn).

It is known [4] that generalized Ramanujan sums can be involved in the iden-

tical equations (1.4) and (1.5). In Theorems 4.4 and 4.5 we show that generalized

Ramanujan sums can also be involved in equations (4.3) and (4.5).

Let α and β be arithmetical functions. We use Sα,βA,k(m,n) to denote the

generalized Ramanujan sum defined by

(4.6) Sα,βA,k(m,n) =
∑

d∈Ak(n)

dk |m

α(d)β(n/d) ,

where m is a nonnegative integer and n is a positive integer. With α(n)=I(n)=n

for all n, β = µ, A = D and k = 1, the sum Sα,βA,k(m,n) reduces to the classical
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Ramanujan sum C(m,n). With α=Ik and β=µAk
, the sum Sα,βA,k(m,n) becomes

the generalized Ramanujan sum CA,k(m,n) by Sita Ramaiah [8].

Theorem 4.4. Let f be an A-rational arithmetical function of order (2, 1)

given as in (4.1), let α be an arithmetical function and let c be a nonnegative

integer. Then

(4.7)
∑

d∈Ak((m,n))

g′(d) g(m/d) f(n/d)Sα,µA,k(c, d) =
∑

d∈Ak((m,n))

dk | c

α(d) g′(d) f(mn/d2)

whenever γ(m) | γ(n) and m,n ∈ Ak(mn).

Proof: By Theorem 4.2,
∑

d∈Ak((m,n))

g′(d) g(m/d) f(n/d)
∑

e∈Ak(d)

ek | c

α(e)µ(d/e) =

=
∑

e∈Ak((m,n))

ek | c

α(e)
∑

d∈Ak((m,n))

e | d

g(m/d) f(n/d) g′(d)µ(d/e)

=
∑

e∈Ak((m,n))

ek | c

α(e) g′(e)
∑

δ∈Ak((m/e,n/e))

g
(

(m/e)/δ
)

f
(

(n/e)/δ
)

g′(δ)µ(δ)

=
∑

e∈Ak((m,n))

ek | c

α(e) g′(e) f(mn/e2)

whenever γ(m) | γ(n) and m,n ∈ Ak(mn).

Example 4.4. We have
∑

d∈Ak((m,n))

dk τAk
(m/d)PA,k(n/d)CA,k(c, d) =

∑

d∈Ak((m,n))

dk | c

d3k PA,k(mn/d2)

whenever γ(m) | γ(n) and m,n ∈ Ak(mn).

Theorem 4.5. Let f be an A-rational arithmetical function of order (2, 1)

given as in (4.1), let α be an arithmetical function and let c be a nonnegative

integer. Then

(4.8)
∑

d∈Ak((m,n))

f(mn/d2) g′(d)Sα,IA,k(c, d) =
∑

d∈Ak((m,n))

dk | c

α(d) g′(d) g(m/d) f(n/d)

whenever γ(m) | γ(n) and m,n ∈ Ak(mn).
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Proof: Theorem 4.5 follows by Theorem 4.2 in a way similar to as Theo-

rem 4.4 follows by Theorem 4.2.

Lemma 4.1. Let f be an A-rational arithmetical function of order (2, 1)

given as in (4.1). Then

(4.9) g′(pit) = g(pit) f(pit)− g(p(i−1)t) f(p(i+1)t)

for all A-primitive prime powers pt and i = 1, 2, ..., o(pt).

Proof: If i = 1, then (4.9) holds by Theorem 4.1 (with i = 2). Assume that

(4.9) holds for i = n−1. Applying Theorem 4.1 to g(pnt) with h = e0 and to

f(p(n+1)t) we obtain

g(pnt) f(pnt)− g(p(n−1)t) f(p(n+1)t) =

=
[

g(pt) g(p(n−1)t)− g′(pt) g(p(n−2)t)
]

f(pnt)

− g(p(n−1)t)
[

g(pt) f(pnt)− g′(pt) f(p(n−1)t)
]

= g′(pt)
[

g(p(n−1)t) f(p(n−1)t)− g(p(n−2)t) f(pnt)
]

.

Now, by the induction hypothesis,

g(pnt) f(pnt)− g(p(n−1)t) f(p(n+1)t) = g′(pnt) .

This completes the proof of Lemma 4.1.

Theorem 4.6. Let f be an A-rational arithmetical function of order (2, 1)

given as in (4.1). Then

(4.10) f(m) g′(n) =
∑

d∈A(n)

g(n/d) f(mnd)µA(d)

whenever m,n ∈ A(mnγA(n)).

Proof: By multiplicativity, it is enough to consider the case in which m

and n are prime powers. Let m = pat and n = pbt, where pt is A-primitive and

a+ b+ 1 ≤ o(pt).

If b = 0, then both sides of (4.10) reduce to f(pat).

If a = 0 and b > 0, then we obtain by Lemma 4.1
∑

d∈A(pbt)

g(pbt/d) f(pbtd)µA(d) = g(pbt) f(pbt)− g(p(b−1)t) f(p(b+1)t) = g′(pbt) ,

that is, (4.10) holds.
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If a, b > 0, then by (4.4) and Lemma 4.1

∑

d∈A(pbt)

g(pbt/d) f(p(a+b)td)µA(d) =

= g(pbt) f(p(a+b)t)− g(p(b−1)t) f(p(a+b+1)t)

= g(pbt)
[

g(pbt) f(pat)− g(p(b−1)t) f(p(a−1)t) g′(pt)
]

− g(p(b−1)t)
[

g(p(b+1)t) f(pat)− g(pbt) f(p(a−1)t) g′(pt)
]

= f(pat)
[

g2(pbt)− g(p(b−1)t) g(p(b+1)t)
]

= f(pat) g′(pbt) ,

that is, (4.10) holds.

Example 4.5. We have

PA,k(m)nk =
∑

d∈Ak(n)

τAk
(n/d)PA,k(mnd)µAk

(d)/dk

whenever m,n ∈ Ak(mnγAk
(n)).

Remark 4.1. If f is an A-quadratic, then f is an A-rational arithmetical

function of order (2, 1) with f = g under the notation of (4.1). Clearly Theorems

4.1–4.6 hold in this case with the replacement f = g, and it can be verified that

then the condition γ(m) | γ(n) may be left out, cf. (2.1) and (2.2).

Remark 4.2. If A = D, the Dirichlet convolution, then the conditions

m,n ∈ Ak(mn), m,n ∈ Ak(mnγ(n)) hold for all m and n, and therefore these

conditions may be left out. If A = U , then the identities in this section are trivial.

Remark 4.3. For Pillai’s function P (n), Examples 4.1–4.4 reduce to

(4.11) P (pi) = 2 pP (pi−1)− p2 P (pi−2)

for all primes p and integers i ≥ 2,

(4.12) P (mn) =
∑

d | (m,n)

mτ(m/d)P (n/d)µ(d) d , γ(m) | γ(n) ,

(4.13) mτ(m)P (n) =
∑

d | (m,n)

P (mn/d2) d , γ(m) | γ(n) ,
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(4.14)
∑

d | (m,n)

d τ(m/d)P (n/d)C(c, d) =
∑

d | (m,n)
d | c

d3 P (mn/d2) , γ(m) | γ(n) ,

(4.15) P (m)n =
∑

d |n

τ(n/d)P (mnd)µ(d)/d ,

where τ(n) is the number of divisors of n.

5 – Converse forms of Theorems 4.1–4.6

In this section we show that the identities in Theorems 4.1–4.6 serve as char-

acterizations of A-rational arithmetical functions of order (2, 1). To prove this it

is enough to show that the converse forms of Theorems 4.1–4.6 hold.

Theorem 5.1. Let pt be an A-primitive prime power. Suppose that there

exist complex numbers G(pt) and G′(pt) such that

(5.1) f(pit) = G(pt) f(p(i−1)t)−G′(pt) f(p(i−2)t)

for all i = 2, 3, ..., o(pt). Then

(5.2) f(pit) = (g ∗A h−1)(pit)

for all i = 0, 1, ..., o(pt), where g is an A-quadratic such that g(pt) = G(pt),

g′(pt)=G′(pt) and h is an A-multiplicative function such that h(pt)=G(pt)−f(pt).

Proof: Let g1 and g2 be A-multiplicative functions such that

g1(p
t) =

(

G(pt) + z(pt)
)

/ 2 ,

g2(p
t) =

(

G(pt)− z(pt)
)

/ 2 ,

where z(pt) is one of the values of

√

G(pt)2 − 4G′(pt) .

Then
g1(p

t) + g2(p
t) = G(pt) ,

g1(p
t) g2(p

t) = G′(pt) .

We thus may write g = g1 ∗A g2.
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We aim to prove that (5.2) holds. If i=0, then both sides of (5.2) reduce to 1.

If i = 1, then (5.2) reduces to f(pt) = g(pt)−h(pt), which holds by the definition

of h. Let i = 2. Then

f(pit) = f(p2t) = G(pt) f(pt)−G′(pt)

=
(

g1(p
t) + g2(p

t)
) (

g1(p
t) + g2(p

t)− h(pt)
)

− g1(p
t) g2(p

t) .

Now proceeding on the lines of the proof of Theorem 4.1 we obtain

f(p2t) = (g ∗ h−1)(p2t) .

Suppose that (5.2) holds for i < n, where 3 ≤ n ≤ o(pt). Then

f(pnt) = G(pt) g(p(n−1)t)−G′(pt) f(p(n−2)t)

=
(

g1(p
t) + g2(p

t)
) [

(g1∗ g2)(p
(n−1)t)− (g1∗ g2)(p

(n−2)t)h(pt)
]

− g1(p
t) g2(p

t)
[

(g1∗ g2)(p
(n−2)t)− (g1∗ g2)(p

(n−3)t)h(pt)
]

.

Proceeding on the lines of the proof of Theorem 4.1 we obtain

f(pnt) = (g ∗ h−1)(pnt) .

This completes the proof.

Theorem 5.2. If f is multiplicative and if there exist multiplicative functions

G and G′ such that

(5.3) f(mn) =
∑

d∈A((m,n))

G(m/d) f(n/d)µA(d)G
′(d)

whenever γ(m) | γ(n) and m,n ∈ A(mn), then f is an A-rational arithmetical

function of order (2, 1) and f is given as f = g ∗ h−1, where g is the A-quadratic

given by g(pt) = G(pt), g′(pt) = G′(pt) and h is the A-multiplicative function

given by h(pt) = G(pt)− f(pt) for all A-primitives pt.

Proof: Taking m=pt and n=p(i−1)t in (5.3) we obtain (5.1). Now, applying

multiplicativity and Theorem 5.1 we obtain Theorem 5.2.

Remark 5.1. The converse forms of Theorems 5.3–5.6 are similar to the

converse form of Theorem 5.2 in character. We therefore omit the details.
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