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NONLINEAR FILTERING WITH
AN INFINITE DIMENSIONAL SIGNAL PROCESS

C. Boulanger and J. Schiltz

Abstract: In this paper, we investigate a nonlinear filtering problem with correlated

noises, bounded coefficients and a signal process evolving in an infinite dimensional space.

We derive the Kushner–Stratonovich and the Zakai equation for the associated filter

respectively unnormalized filter. A robust form of the Zakai equation is established for

an uncorrelated filtering problem.

0 – Introduction

Consider a diffusion process X = {X i
t , i ∈ Z; t ∈ [0, T ]} solution of the

infinite dimensional system of stochastic equations

(0.1) dX i
t =

∑

j∈Z
σij(t,Xt) dw

j
t + bi(t,Xt) dt ,

where {wj
t , j ∈ Z; t ∈ [0, T ]} is an infinite dimensional Brownian motion with

variance γj t, γj being positive real numbers such that
∑

j∈Z γj < +∞. These

equations have been considered by several authors (see e.g. [6], [23], [14], [19]).

They are related with certain continuous state Ising-type models in statistical

mechanics, as for instance the “plane rotor model”, and also with models arising

in population genetics.

In this paper we take a diffusion of a similar type as signal process of a

nonlinear filtering problem. Our aim is to prove that the unnormalized filter

associated with a nonlinear filtering problem with correlated noises, bounded

coefficients and a signal process evolving in an infinite dimensional space, solves

a Zakai equation. Moreover a Kushner–Stratonovich equation for the filter is

deduced by usual arguments form the Kallianpur–Striebel formula and a robust

form of the Zakai equation is established in the case of independent noises.
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This problem has already been investigated when the signal process is finite

dimensional by many authors. It has been known for a long time in nonlinear

filtering theory that the filter solves the Kushner–Stratonovich equation (see e.g.

[13] or [7]) but the nonlinearity of that equation prevents any progress in the

study of the properties of its solution. Later, M. Zakai [24] has showed that the

unnormalized filter associated with an uncorrelated nonlinear filtering problem

is, if it exists, solution of a stochastic partial differential equation of parabolical

type. Then M. Davis [4], M. Davis and S.I. Marcus [5] and E. Pardoux [20]

have extended Zakai’s method to the case of nonlinear filtering problems with

correlated noises.

In [11], P. Florchinger has proved that the unnormalized filter associated with

a nonlinear filtering problem with independent noises and bounded coefficients

solves a Zakai equation, even if the signal process is infinite dimensional.

The robust form of the Zakai equation has been introduced by J. Clark [3]

to define a “robust” filter associated with a non correlated filtering system with

bounded observation coefficients. The idea is to reduce the Zakai equation to a

deterministic differential equation with random coefficients, by means of a mul-

tiplicative transformation. W. Hopkins [15] then established, by means of an

analogous method, a robust form for the Zakai equation for an uncorrelated non-

linear filtering system with unbounded observation coefficients.

This paper is divided in five sections organized as follows. In the first section,

we introduce the nonlinear filtering problem studied in this paper and we show

that it has a unique strong solution with a.s. continuous paths. In section two, we

define an unnormalized filter linked with the filter defined in the previous section

by means of a Kallianpur–Striebel formula. In the third and fourth sections

we derive the Zakai and Kushner–Stratonovich equations associated with our

nonlinear filtering problem. The fifth section, finally, is devoted to the proof of

a robust form for the Zakai equation under the hypothesis that the noises are

independent.

1 – Setting of the problem

Let (Ω,F , P ) be a complete probability space and γ = {γi, i ∈ Z} a summable

sequence of strictly positive real numbers. Set

L2(γ) =

{
x = (xi) ∈ RZ : ‖x‖2γ =

∑

i∈Z
γi |xi|

2 < +∞

}
,
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L2(γ × γ) =

{
x = (xij) ∈ RZ×Z : ‖x‖2γ×γ =

∑

i,j∈Z
γi γj |x

i
j |

2 < +∞

}

and

L2(γ × p) =

{
x = (xik) ∈ RZ×p : ‖x‖2γ×p =

∑

i∈Z

p∑

k=1

γi |x
i
k|

2 < +∞

}
.

On the other hand, consider the nonlinear filtering problem associated with the

signal-observation pair (xt, yt) ∈ L
2(γ)×Rp solution of the stochastic differential

system

(1.1)





xit = xi0 +

∫ t

0
bi(s, xs) ds+

∫ t

0

∑

j∈Z
σij(s, xs) dw

j
s +

p∑

k=1

gik(s, xs) dv
k
s , i∈Z ,

yt =

∫ t

0
h(s, xs) ds+ vt ,

where

1) W = {wi
t, t ∈ [0, T ], i ∈ Z} is a family of independent Brownian motions

with variances γi t.

2) V = {vt, t ∈ [0, T ]} is a p-dimensional standard Brownian motion inde-

pendent of W .

3) x0 is an L2(γ)-valued random variable independent of W and V .

4) The maps b : [0, T ] × RZ → RZ, σ : [0, T ] × RZ → RZ×Z and g : [0, T ] ×

RZ → RZ×p, as well as their partial derivatives, are uniformly bounded. In

particular there exists a strictly positive constant K for which

(H1)
∀ t ∈ [0, T ], ∀x ∈ L2(γ),

‖b(t, x)‖2γ + ‖σ(t, x)‖
2
γ×γ + ‖g(t, x)‖

2
γ×p ≤ K (1 + ‖x‖2γ)

and

(H2)

∀ t ∈ [0, T ], ∀x, y ∈ L2(γ),
∥∥∥b(t, x)− b(t, y)

∥∥∥
2

γ
+
∥∥∥σ(t, x)− σ(t, y)

∥∥∥
2

γ×γ
+
∥∥∥g(t, x)− g(t, y)

∥∥∥
2

γ×p
≤

≤ K ‖x− y‖2γ .

5) h : [0, T ]× RZ → Rp is a bounded Lipschitz function.
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Then, the stochastic differential system (1.1) is well defined for the stochastic

processes x in L2(Ω × [0, T ];L2(γ)) and y in L2(Ω × [0, T ];Rp). Moreover, if

u = {uit, t ∈ [0, T ], i ∈ Z} is an L2(γ)-valued square integrable and adapted

process, we have (cf. [14]):

(1.2) E

[(∫ t

0

∑

i∈Z
uis dw

i
s

)2]
= E

(∫ t

0

∑

i∈Z
γi |u

i
s|

2 ds

)
,

which allows us to prove the following existence and unicity theorem:

Theorem 1.1. For any L2(γ)-valued random variable x0, independent of

the Brownian motion {Wt, t ∈ [0, T ]}, the stochastic differential system (1.1)

has a unique continuous L2(γ)-valued strong solution {xt, t ∈ [0, T ]} such that

E(sup0≤t≤T ‖xt‖
2
γ) < +∞.

Proof: We use Picard’s iteration method to construct an approximation of

the solution of (1.1). Set

(1.3)





x
(0)
t = x0 ,

x
i(n+1)
t = xi0 +

∫ t

0
bi(s, x

(n)
s ) ds+

∫ t

0

∑

j∈Z
σij(s, x

(n)
s ) dwj

s

+

∫ t

0

p∑

k=1

gik(s, x
(n)
s ) dvks , for each n ≥ 0 .

At first, we show by induction on n, that E{supt∈[0,T ] ‖x
(n)
t ‖2γ} < +∞, to ensure

that (1.3) makes sense.

E

{
sup

t∈[0,T ]
‖x

(n+1)
t ‖2γ

}
= E

{
sup

s∈[0,T ]

∑

i∈Z
γi

(∣∣∣∣x
i
0 +

∫ t

0
bi(s, x

(n)
s ) ds

+

∫ t

0

∑

j∈Z
σij(s, x

(n)
s ) dwj

s +

∫ t

0

p∑

k=1

gik(s, x
(n)
s ) dvks

∣∣∣∣
2
)}

.

The relation (1.2), as well as the Minkowski and Burkholder inequalities imply

that the latter quantity is smaller than

C E

(
∑

i∈Z

{
γi |x

i
0|

2 +

∫ T

0
γi |bi(t, x

(n)
t )|2 dt+

∫ T

0

∑

j∈Z
γi γj |σ

i
j(t, x

(n)
t )|2 dt+

+

∫ T

0

p∑

k=1

γi |g
i
k(t, x

(n)
t )|2 dt

})
≤
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≤ C

{
E ‖x0‖

2
γ +K E

∫ T

0

(
1 + ‖x

(n)
t ‖2γ

)
dt

}
,

due to condition (H1),

≤ C1 + C2E
{

sup
t∈[0,T ]

‖x
(n)
t ‖2γ

}
≤ ... ≤ C E

{
sup

t∈[0,T ]
‖x

(0)
t ‖

2
γ

}
< +∞ .

On the other hand, the same arguments and condition (H2) show that

(1.4) E
{

sup
t∈[0,T ]

‖x
(n+1)
t − x

(n)
t ‖2γ

}
≤ C E

∫ T

0
‖x

(n)
t − x

(n−1)
t ‖2γ dt .

Consequently, the sequence (x(n))n≥0 is a Cauchy sequence in the complete space

L2(Ω × [0, T ]; L2(γ)), so it possesses a limit, which ensures the existence of an

a.s. continuous process x = {xt, t ∈ [0, T ]} such that

E
{

sup
t∈[0,T ]

‖x
(n)
t − xt‖

2
γ

}
→ 0, when n→ +∞ .

Furthermore, it is easy to check that x verifies (1.1).

Now, let us prove the uniqueness of the solution.

If x̃ = {x̃t, t ∈ [0, T ]} denotes another solution of (1.1), the same arguments

that we have used to prove (1.4) imply that

E
{

sup
t∈[0,T ]

‖xt − x̃t‖
2
γ

}
≤ C

∫ T

0
E
[
sup

0≤s≤t
‖xs − x̃s‖

2
γ

]
dt .

Therefore, the uniqueness of the solution follows from Gronwall’s lemma.

Moreover, since x
(n)
t tends almost surely to xt, we get by Fatou’s lemma that

E{supt∈[0,T ] ‖xt‖
2
γ} < +∞.

To determine the infinitesimal generator associated with the stochastic process

{xt, t ∈ [0, T ]}, we denote for all t ∈ [0, T ], x ∈ L2(γ), i, j ∈ Z and k = 1, ..., p

the matrices a(t, x) and α(t, x) in MZ×Z(R) and MZ×p(R) respectively, defined

by

aij(t, x) =
∑

l∈Z
γl σ

i
l(t, x)σ

j
l (t, x)

(1.5) and

αik(t, x) =
p∑

l=1

gil(t, x) g
k
l (t, x) .
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Notice that the matrix a(t, x) exists, since the map σ is uniformly bounded and

γ is a summable sequence. Furthermore, under the condition (H2), the matrices

a(t, x) et α(t, x) satisfy the following property:

For every strictly positive constant C, there exists a strictly positive constant

KC such that, for any t ∈ [0, T ],

(1.6)
∥∥∥a(t, x)− a(t, y)

∥∥∥
2

γ×γ
+
∥∥∥α(t, x)− α(t, y)

∥∥∥
2

γ×p
≤ KC ‖x− y‖

2
γ ,

for all x, y ∈ L2(γ) such that ‖x‖2γ and ‖y‖2γ are less than C.

Notation 1.2. Denote by D
2 the set of functions f : [0, T ] × RZ → R

such that there exists M ∈ N∗, a subset {i1, ..., iM} ⊂ Z and a C1,2
0 -function

f : [0, T ] × RM → R such that f(t, x) = f(t, xi1 , ..., xiM ) for every t ∈ [0, T ] and

x ∈ RZ.

Hence, we have:

Proposition 1.3 (cf. [14]). The process {xt, t ∈ [0, T ]}, solution of the

stochastic differential system (1.1) is a Markov diffusion process whose infinites-

imal generator L is defined for every function f in D
2 by

(1.7)

Lf(t, x) =
∂

∂t
f(t, x) +

∑

i∈Z
bi(t, x)∇if(t, x) +

1

2

∑

i,j∈Z
aij(t, x)∇i,jf(t, x)

+
1

2

∑

i∈Z

p∑

k=1

αik(t, x)∇i,kf(t, x) .

Then, as usually in nonlinear filtering theory we define the filter associated

with (1.1) by

Definition 1.4. For all t ∈ [0, T ], denote by Πt the filter associated with the

stochastic differential system (1.1), defined for every function ψ in D
2 by

(1.8) Πt(ψ) = E
[
ψt(t, xt)/Yt

]
,

where Yt = σ(ys / 0 ≤ s ≤ t).

Remark. We could have defined the filter for a larger class of functions, but

we have restricted it here to functions in D
2, because the Zakai and Kushner–

Stratonovich equations are only valid for such functions.
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2 – The reference probability measure

In order to define an unnormalized filter, we make use of the “reference prob-

ability measure” method to transform the stochastic process {yt, t ∈ [0, T ]} into

a standard Wiener process. With this aim set

Definition 2.1. For all t in [0, T ], denote by Zt the Girsanov exponential

defined by

(2.1) Zt = exp

(∫ t

0

p∑

k=1

hk(s, xs) dv
k
s +

1

2

∫ t

0
|h(s, xs)|

2 ds

)
.

Since (Zt)t∈[0,T ] is a martingale we can introduce the reference probability

measure as follows.

Definition 2.2. Denote by P the reference probability measure, defined on

the space (Ω,F ,Ft) by the Radon–Nikodym derivative

(2.2)
dP

dP /Ft
= Z−1

t .

Then, by Girsanov’s theorem, the process {yt, t ∈ [0, T ]} is a standard Brow-

nian motion on the space (Ω,F ,Ft, P ) independent of the Wiener process W .

Hence we can define the unnormalized filter associated with the system (1.1)

in the following way

Definition 2.3. For all t in [0, T ], denote by ρt the unnormalized filter

associated with the system (1.1), defined for every function ψ in D
2 by

(2.3) ρt ψ = E
[
ψ(t, xt)Zt /Yt

]
,

where E denotes the expectation under the probability P .

Furthermore, we have the following Kallianpur–Striebel formula which links

the filter and the unnormalized filter

Proposition 2.4 (cf. [16] or [21]). For all t in [0, T ] and every function ψ in

D
2, we have

(2.4) Πt ψ =
ρt ψ

ρt 1
.
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Remark. If the signal process, driven by an infinite dimensional Brownian

motion, is itself finite dimensional, then P. Florchinger and J. Schiltz have shown

[12] that, under a local Hörmander condition the unnormalized filter has a smooth

density with respect to the Lebesgue measure. The essential tool of the proof

is the Malliavin Calculus for finite dimensional processes driven by an infinite

dimensional Brownian motion (cf. [22]). This result has not yet been extended

to the case of infinite dimensional processes, but it should be possible to do so,

using the results of P. Cattiaux, S. Roelly and H. Zessin ([2]) who established

a one-to-one correspondence between the laws of smooth infinite dimensional

Brownian diffusions and the Gibbs states on the path space Ω = C(0, 1)Zd
and

give an infinite dimensional version of the Malliavin calculus integration by parts

formula.

The same problem has already been investigated when the noise appearing in

the system process is finite dimensional by several authors. D. Michel [18] and

J.M. Bismut and D. Michel [1] have solved this problem in the case of systems

with dependent noises and bounded coefficients. The case of independent noises

and unbounded observation coefficients has been handled by G.S. Ferreyra [8]

whereas P. Florchinger [9] has treated the case of dependent noises.

3 – The Zakai equation

In this section, we show that the unnormalized filter ρt defined by (2.3) solves

a Zakai equation associated to the system (1.1).

For this, we need the following stochastic Fubini theorem:

Lemma 3.1 (cf. [14]). If Ut is a stochastic process such that E
∫ t
0 U

2
s ds <

+∞, then

E

[∫ t

0

∑

i∈Z
U i
s dw

i
s /Yt

]
= 0 ,(3.1)

and

E

[∫ t

0

p∑

k=1

Uk
s dy

k
s /Yt

]
=

∫ t

0

p∑

k=1

E
[
Uk
s /Yt

]
dyks .(3.2)
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Theorem 3.2. For every function ψ in D
2, the unnormalized filter ρt is a

solution of the stochastic partial differential equation

(3.3) ρt(ψ) = ρ0(ψ) +

∫ t

0
ρs(Lψ) ds+

∫ t

0

p∑

k=1

ρs(Lkψ) dy
k
s ,

where Lk is the first order differential operator defined for any function ψ in D
2

by

(3.4) Lkψ(t, x) =
∑

i∈Z
gik(t, x)∇iψ(t, x) + hk(t, x)ψ(t, x) .

Remark. In [17] N.V. Krylov gives sufficient conditions to ensure the unique-

ness of the solution of such an equation.

Proof: By Itô’s formula,

dψ(t, xt) = Lψ(t, xt) dt+
∑

i,j∈Z
σij(t, xt)∇iψ(t, xt) dw

j
t

+
∑

i∈Z

p∑

k=1

gik(t, xt)∇iψ(t, xt) dv
k
t

and

dZt =
p∑

k=1

Zt h
2
k(t, xt) dt+

p∑

k=1

Zt hk(t, xt) dv
k
t

=
p∑

k=1

hk(t, xt)Zt dy
k
t .

Hence,

d(ψ(t, xt)Zt) = Lψ(t, xt)Zt dt+
∑

i,j∈Z
σij(t, xt)∇iψ(t, xt)Zt dw

j
t

+
∑

i∈Z

p∑

k=1

gik(t, xt)∇iψ(t, xt)Zt dv
k
t +

p∑

k=1

hk(t, xt)ψ(t, xt)Zt dy
k
t

+
∑

i∈Z

p∑

k=1

gik(t, xt)hk(t, xt)∇iψ(t, xt)Zt dt

= Lψ(t, xt)Zt dt+
∑

i,j∈Z
σij(t, xt)∇iψ(t, xt)Zt dw

j
t

+
p∑

k=1

Lk(ψ(t, xt))Zt dy
k
t .
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Consequently,

ψ(t, xt)Zt = ψ(0, x0) +

∫ t

0
Lψ(s, xs)Zs ds+

∫ t

0

∑

i,j∈Z
σij(s, xs)∇iψ(s, xs)Zs dw

j
s

+

∫ t

0

p∑

k=1

Lk(ψ(s, xs))Zs dy
k
s .

Since Zt is in L
p(Ω), for all p, the boundedness of the functions σ, g and h implies

that we can use Lemma 3.1. Hence

ρt(ψ) = E
[
ψ(t, xt)Zt /Yt

]

= E
[
ψ(0, x0) /Y0

]
+

∫ t

0
E
[
Lψ(s, xs)Zs /Ys

]
ds

+
p∑

k=1

∫ p

0
E
[
Lk(ψ(s, xs))Zs /Ys

]
dyks ,

which gives the equality (3.3).

4 – The Kushner–Stratonovich equation

In this section, we prove that the filter Πt defined by (1.8) solves a Kushner–

Stratonovich equation. With this aim, we show at first:

Proposition 4.1. For all t in [0, T ],

(4.1) ρt 1 = exp

(∫ t

0

p∑

k=1

Πs(hk) dy
k
s −

1

2

∫ t

0

p∑

k=1

(Πs(hk))
2 ds

)
.

Proof: Applying Itô’s formula and Lemma 3.1 to the process Zt, we get

ρt 1 = E[Zt /Yt]

= 1 +

∫ t

0

p∑

k=1

E
[
Zs hk(s, xs) /Ys

]
dyks

= 1 +

∫ t

0

p∑

k=1

Πs(hk) ρs 1 dy
k
s ,

which, according to Itô’s formula, is the same exponential process than the one

in equality (4.1).
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This allows us to prove the following result:

Theorem 4.2. For all t in [0, T ] and every function ψ in D
2, the filter Πt(ψ)

is the solution of the stochastic differential equation

(4.2)

Πt(ψ) = Π0(ψ) +

∫ t

0
Πs(Lψ) ds

+

∫ t

0

p∑

k=1

(
Πs(Lkψ)−Πs(hk)Πs(ψ)

) (
dyks −Πs(hk) ds

)
.

Proof: We successively apply Itô’s formula to the processes (ρt 1)
−1 and

ρt ψ(ρt 1)
−1 to find

d((ρt)
−1) = (ρt 1)

−1
(
−

p∑

k=1

Πt(hk) dy
k
t +

p∑

k=1

(Πt(hk))
2 dt

)

and

d(Πt(ψ)) =
1

ρt 1

(
ρt(Lψ) dt+

p∑

k=1

ρt(Lkψ) dy
k
t

)

+
ρt ψ

ρt 1

(
−

p∑

k=1

Πt(hk) dy
k
t +

p∑

k=1

(Πt(hk))
2 dt

)

+
1

ρt 1

(
−

p∑

k=1

Πt(hk) ρt(Lkψ) dt

)

= Πt(Lψ) dt+
p∑

k=1

Πt(Lkψ) dy
k
t

+
p∑

k=1

Πt ψ
(
−Πt(hk) dy

k
t + (Πt(hk))

2 dt
)

−
p∑

k=1

Πt(hk)Πt(Lkψ) dt .

5 – The robust form of the Zakai equation

In this section, we derive the robust form of the Zakai equation (3.1) obtained

previously. This allows to turn up the resolution of an Itô type stochastic dif-

ferential equation to an ordinary partial differential equation parameterized by

the paths of the observation process. Since, in the case of a multidimensional
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observation process, this method is however only adapted to the case of a non-

correlated filtering problem, we shall suppose in this section that g ≡ 0, so we

consider the system process-observation pair (xt, yt) ∈ (L2(γ) × Rp) solution of

the stochastic differential system

(5.1)





xit = xi0 +

∫ t

0
bi(s, xs) ds+

∫ t

0

∑

j∈Z
σij(s, xs) dw

j
s , i ∈ Z ,

yt =

∫ t

0
h(s, xs) ds+ vt .

Remark. In the case of a one-dimensional observation process, M. Davis

[4] respectively J.M. Bismut and D. Michel [1] have derived a robust form for

the Zakai equation for a correlated nonlinear filtering system with bounded co-

efficients, whereas P. Florchinger [10] proved a similar result for a correlated

nonlinear filtering system with unbounded observation coefficients.

Moreover, we define

Definition 5.1. For every t in [0, T ] and every function ψ in D
2, set

(5.2) νt ψ = E
[
ψ(t, xt)Ut /Yt

]
,

where Ut is the stochastic process defined by

(5.3) Ut = exp

(
−

∫ t

0

p∑

k=1

yks dhk(s, xs)−
1

2

∫ t

0

p∑

k=1

(hk(s, xs))
2 ds

)
.

Besides, by an integration by parts in the stochastic integral appearing in the

formula (2.1), we get

Zt = exp

(
〈h(t, xt), yt〉 −

∫ t

0

p∑

k=1

yks dhk(s, xs)−
1

2

∫ t

0

p∑

k=1

(hk(s, xs))
2 ds

)
,

which allows us to deduce that for any function ψ in D
2, we have

(5.4) νt ψ = ρt

(
ψ exp

(
−〈h(t, xt), yt〉

))
.

With this, we can prove the following theorem:
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Theorem 5.2. For every function ψ in D
2, νt(ψ) solves the ordinary partial

differential equation

(5.5)





d

dt
νt ψ = νt Lytψ,

ν0 ψ = E[ψ(0, x0)] ,

where Lyt is the second order partial differential operator, parameterized by the

paths of the process y, defined for any function ψ in D
2 by

Lytψ(t, x) = Lψ(t, x)−
∑

i,j∈Z

p∑

k=1

γj(σ
i
j(t, x))

2∇ihk(t, x)∇iψ(t, x) y
k
t

−

(
1

2

p∑

k=1

(hk(t, x))
2 −

p∑

k=1

Lhk(t, x) y
k
t

+
1

2

∑

i,j∈Z

p∑

k=1

γj
(
σij(t, x)∇ihk(t, x) y

k
t

)2
)
ψ(t, x) .

Proof: By Itô’s formula,

dhk(t, x) = Lhk(t, xt) dt+
∑

i,j∈Z
σij(t, xt)∇ihk(t, xt) dw

j
t .

Consequently,

Ut = exp

(
−

∫ t

0

p∑

k=1

yks Lhk(s, xs) ds−
1

2

∫ t

0

p∑

k=1

(hk(s, xs))
2 ds

−

∫ t

0

∑

i,j∈Z

p∑

k=1

yks σ
i
j(s, xs)∇ihk(s, xs) dw

j
s

)
.

Further applications of Itô’s formula give

dUt = −
p∑

k=1

Ut Lhk(t, xt) y
k
t dt−

1

2

p∑

k=1

Ut (hk(t, xt))
2 dt

−
∑

i,j∈Z

p∑

k=1

Ut σ
i
j(t, xt)∇ihk(t, xt) y

k
t dw

j
t

+
1

2

∑

i,j∈Z

p∑

k=1

Ut γj
(
σij(t, xt)∇ihk(t, xt) y

k
t

)2
dt
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and

dψ(t, xt) = Lψ(t, xt) dt+
∑

i,j∈Z
∇iψ(t, xt)σ

i
j(t, xt) dw

j
t .

Hence,

d(ψ(t, xt)Ut) = Lψ(t, x)Ut dt+
∑

i,j∈Z
σij(t, xt)∇iψ(t, xt)Ut dw

j
t

−
p∑

k=1

ψ(t, xt)Ut y
k
t Lhk(t, xt) dt−

1

2

p∑

k=1

ψ(t, xt)Ut (hk(t, xt))
2 dt

−
∑

i,j∈Z

p∑

k=1

ψ(t, xt)Ut σ
i
j(t, xt)∇ihk(t, xt) y

k
t dw

j
t

+
1

2

∑

i,j∈Z

p∑

k=1

γj ψ(t, xt)Ut

(
σij(t, xt∇ihk(t, xt)) y

k
t

)2
dt

−
∑

i,j∈Z

p∑

k=1

γj Ut (σ
i
j(t, xt))

2∇ihk(t, xt)∇iψ(t, xt) y
k
t dt .

The conclusion is then straightforward by means of Definition 5.1 and Lemma3.1.
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