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ON THE HYPERBOLIC DIRICHLET
TO NEUMANN FUNCTIONAL

F. Cardoso * and C. Cuevas

Abstract: We prove the injectivity of the linearization of the hyperbolic Dirichlet to

Neumann functional associated to metrics near the euclidean one in a “small” bounded

domain of R3, under some suitable transversality and geometric conditions.

1 – Introduction and statement of the results

Let M denote the set of all riemannian metrics g on Rn which coincide with

the euclidean metric e, outside a bounded domain Ω with smooth boundary ∂Ω.

We consider the anisotropic wave equation

(1.1)

2gu =
∂2u

∂t2
−∆gu = 0 in Ω× (0, T ) ,

u = f on Γ = ∂Ω× (0, T ), f ∈ C∞
0 (Γ) ,

u =
∂u

∂t
= 0 in Ω× {0} .

There is a unique solution to (1.1); hence we may define the hyperbolic Dirich-

let to Neumann map as the linear operator

Λg : C
∞
0 (Γ)→ C∞(Γ) ,(1.2)

Λgf = du · νg
∣

∣

∣

Γ
=

∂u

∂νg

∣

∣

∣

∣

Γ
,(1.3)
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where u is the unique solution to (1.1) and νg is the g-outward unit normal to

∂Ω. The hyperbolic Dirichlet to Neumann Functional:

(1.4)
Λ: M→ Op(Γ) ,

g 7→ Λg ,

where Op(Γ) denotes the space of all linear operators from C∞
0 (Γ) into C∞(Γ),

is known to be invariantly defined on the orbit obtained by the action over M,

of the group D of all diffeomorphism ψ of Ω, each of which restricts to the identity

on ∂Ω. In fact, any such ψ can be used to construct a new metric, the pull-back

metric, ψ∗g, such that Λψ∗g = Λg. A natural conjecture is that this is the only

obstruction to the uniqueness of Λ.

For fixed g, we consider the following map:

(1.5) ψ ∈ D Ag−→ ψ∗g ∈M .

It is easy to see that the tangent space TID of D at the identity mapping I is

the vector space Γ0(TΩ) of all smooth vector fields on Ω which vanish on ∂Ω.

On the other hand, the tangent space TgM ofM at g is the vector space Γ0(S
2Ω)

of all smooth sections of symmetric 2-tensors on Rn which are supported on Ω.

We introduce respectively on Γ0(TΩ) and on Γ0(S
2Ω), the inner products

〈X,Y 〉 =
∫

Ω
g(X,Y ) vg , X, Y ∈ Γ0(TΩ) ,(1.6)

〈〈m, l〉〉 = 1

n

∫

Ω
tr(m̂ ◦ l̂) vg , m, l ∈ Γ0(S

2Ω) ,(1.7)

where vg (resp. tr) denote the volume element (resp. the trace) associated to g

and m̂ is the unique linear map (in fact a section of End(TΩ)) defined by

(1.8) g(m̂u, v) = m(u, v), for all u, v ∈ Γ(TΩ) .

Of course, ĝ is the identity on Γ(TΩ) and the factor 1/n in (1.7) is taken so as

to have 〈〈g, g〉〉 = volg(Ω).

Consider as in [1], the formal linearizations of Ag at I and of Λ at g, respec-

tively:

(1.9) A′
g[I] :=A′

g : Γ0(TΩ)→ Γ0(S
2Ω)

and

(1.10) Λ′
g : Γ0(S

2Ω)→ Op(Γ) .
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Let (A′
g)

∗ denote the formal adjoint of A′
g with respect to the inner product

(1.6) and (1.7) and diamg(Ω) the diameter of Ω in the metric g. In [1] the authors

stated the following

Conjecture 1. Let m ∈ Γ0(S
2Ω) and assume that

a) Λ′
g(m) = 0,

b) (A′
g)

∗(m) = 0 and

c) diamg(Ω) < T is sufficiently small that the exponential map for g is a global

diffeomorphism in Ω.

Then m is identically zero.

Remark 1. The Condition b) in Conjecture 1.1 is obviously necessary.

In fact, the range of A′
g is contained in the kernel of Λ′

g. Therefore, we should

expect that Λ′
g be injective on a “transversal” subspace of the range of A′

g; hence

we shall refer to Condition b) as the Transversality Condition. The Condition c)

is necessary to avoid the appearance of caustics.

Remark 2. Cardoso and Mendoza, [1], proved that Conjecture 1.1 holds

if n ≥ 2 and g is the euclidean metric e; they also proved the conjecture when

n = 2 and g is near the euclidean metric in the C3 topology.

The main result of this paper is:

Theorem 1. Conjecture 1.1 holds if n = 3, g is near the euclidean metric in

the C3 topology and in addition, one of the following two conditions is true:

I – The g Levi-Civita connection commute with rotation, i.e., ∇g◦J = J◦∇g

(see Section 4 for the definition of J).

II – The generalized gradients of solutions of the eikonal equation are

g-Killing fields (see [2] for the definition).

The article is organized as follows: In Section 2 and 3 we develop the nec-

essary preliminaries dealing with invariant formulas for A′
g, (A′

g)
∗ and Λ′

g and

the generalized X-ray and Radon transform. In Section 4 we present the proof

of Theorem 1.1 with condition I and in Section 5 we prove Theorem 1.1 with

condition II.
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2 – Invariant formulas

Cardoso and Mendoza, [1], proved the following two propositions:

Proposition 1. If X ∈ Γ0(TΩ) and m ∈ Γ0(S
2Ω), then it follows that

A′
g(X)( · , · ) = g(∇X, · ) + g( · ,∇X) ,(2.1)

(A′
g)

∗(m)( · ) = − 2

n

n
∑

i=1

∇eim( · , ei) .(2.2)

In (2.1) ∇ denotes the g Levi-Civita connection on Γ0(TΩ) and in (2.2) ∇ is the g

Levi–Civita connection on Γ0(S
2Ω) and (ei)i=1,...,n ∈ Γ(TΩ), is a g orthonormal

frame. We also observe that the right-hand side of (2.2) is independent of the

chosen ortonormal frame.

We denote by m̃ ∈ Γ̃0(S
2Ω) the symmetric 2-tensor on Γ(T ∗Ω) corresponding

to m via g, i.e. m̃(U#, V #) = m(U, V ) for all U, V ∈ Γ(T (Ω)), where U#( · ) =
g(U, · ). We have the following:

Proposition 2. The linearization of Λ at g ∈M, satisfies

(2.3)
〈

Λ′
g(m)f, h

〉

L2(Γ)
=

∫ T

0

∫

Ω

{

m̃(du, dv) +
1

2
tr(m̂)

[

g̃(du, dv)− ut vt
]

}

vg dt ,

for all f, h ∈ C∞
0 (Γ), where u is a solution of (1.1), v is a solution of

(2.4) 2gv = 0 in Ω× (0, T ) , v = vt = 0 in Ω× {T} , v|Γ = h ,

and 〈 · , · 〉L2(Γ) is the L
2-inner product in Γ with respect to the measure induced

by the metric g ⊗ dt2.

3 – The geodesic X-ray transform and the Radon transform

Let g ∈M. We remind that g coincides with the euclidean metric, e, outside

Ω. We shall deal with sections of the following vector bundles

P Q




y





y

G G
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where G denotes the manifold of geodesics (with respect to g), P the bundle of

parallel vector fields and Q the bundle of quadratic forms on P. The generalized

X-ray transform Rg is the map

(3.1) Rg : Γ0(S
2Ω)→ Γ(Q) ,

defined by

(3.2) Rg(m)γ (P1, P2) =

∫

γ
m(γ(t))

(

P1(γ(t)), P2(γ(t))
)

,

where γ∈G and P1, P2 ∈ Γ(P). There is a global non-vanishing section T : G→P,
given by

(3.3) Tγ(γ(t)) = γ̇(t) ,

since as it is well known if γ is a geodesic, then γ̇(t) = Pγ,0,t(γ̇(0)), where Pγ,0,t
is the parallel transport along γ, from 0 to t. In [1] it was proved the following:

Proposition 3. Let m ∈ Γ0(S
2Ω) satisfy Λ′

g(m) = 0 and diamg(Ω) < T be

so small that the exponential map for g is a global diffeomorphism in Ω. Then

(3.4) Rg(m)γ (Tγ , Tγ) = 0 ,

for all g-geodesic γ.

Let G′ denote the space of generalized hiperplanes Σ = Σsφ = Σ(φ, η, s), where

s ∈ R, η ∈ Sn−1 is a normal vector to Σ and φ( · , η) is a solution of the eikonal

equation

(3.5)



























g
(

∇gφ( · , η), ∇gφ( · , η)
)

= 1 ,

φ( · , η)
∣

∣

∣

Σ
= s ,

∇gφ( · , η)
∣

∣

∣

Σ
= η .

We assume that

(i) the metric g satisfies Condition II of Theorem 1.1.

(ii) φ(x, tw) = t φ(x,w), for all (w, t) ∈ Sn−1× R.

Remark 3. The generalized hiperplanes are closed submanifolds of dimension

n−1. On the other hand taking into account (i) it is easy to see that they are

totally geodesic submanifolds.
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Let Q′ denote the quadratic bundle over G ′. The generalized Radon transform

Rg is the map

(3.6) Rg : Γ0(S
2Ω)→ Γ(Q′) ,

defined by

(3.7) Rg(m)Σ (X,Y ) =

∫

Σ
m(X,Y )µΣ ,

where µΣ denotes the volume element induced on Σ by the metric g.

Corollary 1. There is an orthonormal frame T1, ..., Tn−1, N of TRn such

that

(3.8) Rg(m)Σ (Ti, Tj) = 0 ,

for all i, j ∈ {1, ..., n−1}.

Proof: Let Σ = Σλφ in G′ and φi ∈ C∞(Rn), i = 1, ..., n−1, such that

g(∇gφ, ∇gφi) = 0 ,(3.9)

g(∇gφi, ∇gφj) = δij .(3.10)

Denoting Ti :=∇gφi and N :=∇gφ, i = 1, ..., n−1, it follows from (3.9) and

(3.10) that Ti|Σ ∈ Γ(TΣ) and T1, ..., Tn−1, N is an orthonormal frame of TRn.

We can assume that Σ∩Σ0φi ∩Σ0φj is not-empty for all i, j ∈ {1, ..., n−1} and
denote

Ni := Σ ∩ Σ0φi ,

Nij := Σ ∩ Σ0φi ∩ Σ0φj .

Let Φσi be the geodesic flow associated to the field ∇gφi, then σ 7→ Φσi ( · ) are
the geodesics which start at Ni and, using (3.4), we obtain

Rg(m)Σ (Ti, Tj) =

∫ ∞

−∞

∫

Ni

m(Φσi (y))
(

Φ̇σi (y), Φ̇
σ
i (y)

)

dSy dσ

=

∫

Ni

Rg(m)
Φ

(•)
i (y)

(

Φ̇
(•)
i (y), Φ̇

(•)
i (y)

)

dSy

= 0 .

A similar calculation holds for Φσij , the geodesic flow associated to the field

∇gξij , where ξij = (φi + φj)/
√
2, taking into account that m is symmetric and

(3.4). We obtain

Rg(m)Σ (Ti, Tj) =
1

2
Rg(m)Σ (Ti + Tj , Ti + Tj) = 0 ,

which concludes the proof.
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4 – Proof of Theorem 1.1 with condition I

In this section Ω will be a smooth bounded domain in R3. It is convenient that
Ω be placed in the open first octant in R3. Consider the vector bundles P and Q

over G as in the beginning of Section 3. A section m = (mij)i,j=1,2,3 ∈ Γ0(S
2Ω)

belongs to L2(S2Ω) if

‖m‖20 =
∫

Ω

(

m2
11 +m2

22 +m2
33 + 2 (m2

13 +m2
12 +m2

23)
)

dx1 dx2 dx3 <∞ ,

where

mij = m

(

∂

∂xi
,
∂

∂xj

)

,

and x1, x2 and x3 are the standard euclidean coordinates in R3. The correspond-
ing Sobolev space based on L2(S2Ω) will be denoted by Hs(S2Ω).

There is a natural frame for P, manely

(4.1) T = γ̇ , N = Jγ̇ , M ,

where γ̇ is the unit tangent vector to the g-geodesic γ, J denotes the π
2 clockwise

rotation (with respect to g) in the plane generated by T and the axis oz andM is

the parallel transport along γ of the vector product of the euclidean counterparts

of T and N . We say that a section H of Q is in L2(Q) if

‖H‖20 =

∫

G

(

H2
TT +H2

NN +H2
MM + 2 (H2

TN +H2
TM +H2

NM )
)

dµ < ∞ ,

whereHAB :=H(A,B), and dµ represents the naturally defined Liouville measure

on G. The corresponding Sobolev space will be denoted by Hs(Q). We shall need

the following (see [5]):

Lemma 1. If g is near the euclidean metric in the C3 topology, then

Rg : H
s
comp(S

2Ω)→ H
s+1/2
loc (Q)

is a bounded linear operator with a bounded inverse.

We shall also introduce local coordinates in G, parametrizing a geodesic by

(x1, x2, θ, ϕ) or (x2, x3, θ, ϕ) or (x1, x3, θ, ϕ), where (x1, x2) (resp. (x2, x3), resp.

(x1, x3)) is the point of intersection of the geodesic with the x1x2 (resp. x2x3,

resp. x1x3) plane and (θ, ϕ) is the spacial position of the speed vector. Let

(4.2) T = T (x1, x2, θ, ϕ, t), N = N(x1, x2, θ, ϕ, t), M =M(x1, x2, θ, ϕ, t) ,
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be the orthonormal frame with respect to g, defined by (4.1). We assume that

(4.3) t→M(x1, x2, θ, ϕ, t) and t→ N(x1, x2, θ, ϕ, t)

are extended as odd functions for t ≤ 0. We also denote

(4.4)

Θ1 := γ∗

(

∂

∂θ

)

= β0N ,

Θ2 := γ∗

(

∂

∂ϕ

)

= δ0M ,

Xi := γ∗

(

∂

∂x

)

= αi T + βiN + δiM , i = 1, 2 ,

where βj and δj , j = 0, 1, 2 are functions that depend of the variables x1, x2, θ, ϕ, t

and α1, α2 only depend on the variables x1, x2, θ and ϕ. To see this, we note that

Tg(Θi, T ) = g(∇TΘi, T ) = g(∇ΘiT, T ) =
1

2
Θi g(T, T ) = 0 ,

and

Tg(Xi, T ) = g(∇TXi, T ) = g(∇XiT, T ) =
1

2
Xi g(T, T ) = 0 .

Now, at t=0,

Θ1
∣

∣

∣

t=0
=
∂γ̇

∂θ
= −N ,

and

Θ2
∣

∣

∣

t=0
=
∂γ̇

∂ϕ
= cos θM .

If g is the euclidean metric, geodesics are straight lines and in this case T =

cos θeiϕ + sin θe3, N = sin eiϕ − cos θe3 and M = i eiϕ, where (ei)i=1,2,3 is the

canonical basis in R3.
It is easy to see that when g is nearly euclidean i.e. ‖g − e‖Ck(Ω) ≤ δ, then

T, N, M, Θi and Xi are close to their euclidean counterparts, so that we may

assume that

(4.5) sup
0≤x,y,t≤L
0≤θ,ϕ≤π/4

{

2
∑

i=0

(
∣

∣

∣

∣

∂βi
∂t

∣

∣

∣

∣

+

∣

∣

∣

∣

∂δi
∂t

∣

∣

∣

∣

)

+ |N(β0)|+ |M(δ0)|
}

≤ ε ,

where L is the length of the sides of the isosceles triangles with sides on the

coordinates axis whose faces generate a prisme which completely encloses Ω. We

shall need the
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Lemma 2. The following identities hold:

(4.6) ∇Θ1M = ∇NM = 0 ,

(4.7) ∇Θ1N = −T (β0)T ; ∇NN = −T (β0)
β0

T ,

(4.8) ∇Θ2N = T (δ0)M ; ∇MN =
T (δ0)

δ0
M ,

(4.9) ∇Θ2M = −T (δ0) (T +N); ∇MM = −T (δ0)
δ0

(T+N) ,

(4.10) ∇MT =
T (δ0)

δ0
M ; ∇NT =

T (β0)

β0
N ,

(4.11) ∇XiN = −T (βi)T + T (δi)M ; i = 1, 2 ,

(4.12) ∇XiM = −T (δi) (T+N); i = 1, 2 ,

(4.13)
T (δi)

δi
=
T (δj)

δj
;

T (βi)

βi
=
T (βj)

βj
; i, j = 0, 1, 2 ,

(4.14) M(βi) = 0; T (δi) = N(δi); i = 0, 1, 2 ,

(4.15) N(αi) =M(αi) = 0; i = 1, 2 ,

(4.16)
N(βi)

βi
=
N(βj)

βj
;

M(δi)

δi
=
M(δj)

δj
; i, j = 0, 1, 2 .

Proof: Because (taking into account Condition I)

∇Θ1N = ∇Θ1JT = J ∇Θ1T = J ∇TΘ1 = J T (β0)N = −T (β0)T ,

we obtain (4.7).

To establish (4.12), write

∇XiM = aT + bN ,

where we have

a = −g(M,∇TXi)

= −T (βi) g(M,N)− T (δi) g(M,M)

= −T (δi) ,
and
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b = −g(M,∇XiN)

= T (βi) g(M,T )− T (δi) g(M,M)

= −T (δi) .

To establish (4.14), (4.15) and (4.26), we note that [Θ1,Θ2] = 0; in this way,

∇NM −∇MN = [N,M ]

=
M(β0)

β0
N − N(δ0)

δ0
M .

Using (4.6) we obtain

∇MN =
N(δ0)

δ0
M − M(β0)

β0
N ,

and if we compare with (4.8), we conclude that M(β0) = 0 and T (δ0) = N(δ0).

On the other hand, using the fact that [Xi,Θ1] = 0, we obtain

∇XiN −∇NXi = [Xi, N ] = −Xi(β0)

β0
N ;

thus

∇XiN = −Xi(β0)

β0
N +∇NXi

=

(

−Xi(β0)

β0
+ αi

T (β0)

β0
+N(βi)

)

N +

(

N(αi)− βi
T (β0)

β0

)

T +N(δi)M

=

(

N(βi)− βi
N(β0)

β0

)

N +
(

N(αi)− T (βi)
)

T +N(δi)M .

Now comparing with (4.11), we obtain

N(αi) = 0, T (δi) = N(δi),
N(βi)

βi
=
N(β0)

β0
, i = 1, 2 .

It follows from similar computations (taking into account that [Xi,Θ2] = 0) that

M(βi) =M(αi) = 0,
M(δi)

δi
=
M(δ0)

δ0
, i = 1, 2 ;

this concludes the proof.

We introduce the following notation:

Ai :=
βi
δ0
T (δ0) , Bi :=

δi
δ0
M(δ0) , Ci :=

δi
β0
T (δ0) , Di :=

βi
β0
N(β0) .
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We shall need the

Proposition 4. If m satisfies the hypotheses of Theorem1.1 with Condition I

and H = Rg(m), then the following system of equations holds:

(4.17) Θi(HTT ) = Xi(HTT ) = 0 , i = 1, 2 ,

Θ1(HNN ) = −
∫

γ
T (β0)m(N,T ) +A0

(

m(N,T+N)−m(M,M)
)

,(4.18)

Θ2(HNN ) = −
∫

γ
M(δ0)m(N,N) ,(4.19)

Xi(HNN ) = −
∫

γ
T (βi)m(N,T ) +Ai

(

m(N,T+N)−m(M,M)
)

+Bim(N,N) ,

(4.20)

Θ1(HMM ) = −
∫

γ
N(β0)m(M,M) ,(4.21)

Θ2(HMM ) = −
∫

γ
T (δ0)m(M,T+N) + C0m(N,T ) ,(4.22)

Xi(HMM ) = −
∫

γ
T (δi)m(M,T+N) + Cim(M,T ) +Dim(M,M) ,(4.23)

Θ1(HTN ) =

∫

γ
T (β0)m(N,N) +A0

(

m(T, T+N)−m(M,M)
)

,(4.24)

Θ2(HTN ) = −
∫

γ
M(δ0)m(T,N) ,(4.25)

Xi(HTN ) =

∫

γ
T (βi)m(N,N)−Ai

(

m(T, T+N)−m(M,M)
)

−Bim(T,N) ,

(4.26)

Θ1(HNM ) = 2

∫

γ
A0m(T+N,M) ,(4.27)

Θ2(HNM ) =

∫

γ
T (δ0)m(M,M)− 2C0m(T,N) ,(4.28)

Xi(HNM ) =

∫

γ
T (δi)m(M,M)− 2Cim(T,N)−Dim(N,M) ,(4.29)
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Θ1(HTM ) = −
∫

γ
N(β0)m(T,M) ,(4.30)

Θ2(HTM ) =

∫

γ
T (δ0)m(M,M)− C0

(

m(T, T )−m(N,N)
)

,(4.31)

Xi(HTM ) =

∫

γ
T (δi)m(M,M)− Ci

(

m(T, T )−m(N,N)
)

−Dim(T,N) .

(4.32)

Proof: The meaning of (3.4) in Proposition 3.1 is that HTT = 0, and hence

(4.17) holds. The Transversality Condition satisfied by m means that

∇T m(T, T ) +∇N m(T,N) +∇M m(T,M) = 0 ,(4.33)

∇T m(N,T ) +∇N m(N,N) +∇M m(N,M) = 0 ,(4.34)

∇T m(M,T ) +∇N m(M,N) +∇M m(M,M) = 0 .(4.35)

We begin by computing (4.18). Since ∇Θ1N = −T (β0)T , using (4.34), after

integrating by parts (taking into account (4.3), (4.8), (4.9), (4.15) and that m is

compactly supported in Ω), we obtain

Θ1(HNN ) =

∫ ∞

−∞
Θ1m(N,N)

=

∫ ∞

−∞
∇Θ1 m(N,N) + 2m(∇Θ1N,N)

=

∫ ∞

−∞
−β0 Tm(T,N)− 2T (β0)m(T,N)− β0Mm(N,N)

+

∫ ∞

−∞
β0m(∇MM,N) + β0m(M,∇MN)

=

∫ ∞

−∞
−T (β0)m(T,N)+M(β0)m(N,N)+A0

(

m(M,M)−m(T+N,N)
)

= −
∫ ∞

−∞
T (β0)m(T,N) +A0

(

m(T+N,N)−m(M,M)
)

.

To establish (4.20) we proceed in a similar way. In fact,

Xi(HNN ) =

∫ ∞

−∞
βi∇Nm(N,N) + δi∇Mm(N,N) + 2m(∇XiN,N) =
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=

∫ ∞

−∞
−βi Tm(N,T )− βiMm(N,M) + δiMm(N,N)− 2T (βi)m(T,N)

+

∫ ∞

−∞
−2 δim(∇MN,N) + 2T (δi)m(M,N)

+

∫ ∞

−∞
βim(∇MN,M) + βim(N,∇MM)

=

∫ ∞

−∞
−T (βi)m(T,N) +M(βi)m(N,M)−M(δi)m(N,N)

+

∫ ∞

−∞
Ai
(

m(M,M)−m(N,T+N)
)

= −
∫ ∞

−∞
T (βi)m(T,N) +Bim(N,N) +Ai

(

m(N,T+N)−m(M,M)
)

.

The remaining equations follow from analogous computations.

Proof of Theorem 1.1 with Condition I: It follows from Proposition 4.1

and (4.5) that there is a constant C1 > 0 such that

(4.36) ‖dH‖L2(Q) ≤ C1 ε ‖m‖L2(S2Ω) ,

where ε can be made arbitrarily small by requiring that g be sufficiently close to

the euclidean metric. On the other hand, by the Poincaré inequality, we obtain

that there is a constant C2 > 0 such that

(4.37) ‖H‖H1(Q) ≤ C2 ‖dH‖L2(Q) ,

and using Lemma 4.1, it follows that there is a constant C3 > 0 such that

(4.38) ‖m‖L2(S2Ω) ≤ C3 ‖H‖H1/2(Q) ≤ C3 ‖H‖H1(Q) .

Using (4.36)–(4.38) we get H = 0 if ε is chosen small enough and, consequently,

m = 0.

5 – Proof of Theorem 1.1 with condition II

In this section Ω will be a smooth domain in R3. It is convenient that Ω be

placed in the open first octant in R3. Consider the quadratic bundle Q′ over G′
as in the beginning of Section 3. A section M of Q′ belongs to L2(Q′) if

(5.1) ‖M‖20 =

∫

G′

(

M2
T1T1

+M2
T2T2

+M2
NN+2 (M2

T1N+M
2
T2N+M

2
T1T2

)
)

dµ < ∞ ,
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whereMAB :=M(A,B), dµ represents the naturally defined Liouville measure on

G′ and T1, T2, N are the vector fields given by Corollary 3.1. The corresponding

Sobolev space based on L2(Q′) will be denoted by Hs(Q′). We shall need the

Lemma 3. If g is near the euclidean metric in the C3 topology, then

Rg : H
s
comp(S

2Ω)→ H
s+n−1

2
loc (Q′)

is a bounded linear operator with a bounded inverse.

Proof: The adjoint, R∗
g, of Rg is given by

R∗
gh(x) =

∫

Sn−1
h
(

ω, φ(x, ω)
)

dω .

Let P = (2π)1−nR∗
g ∂

n−1
s Rg. Using Fourier inversion formula, making t ω = ξ

and observing that dt dω = |ξ|1−ndξ, we obtain

(5.2) Pf(x) = (2π)−n
∫

Rn

∫

Rn
ei(φ(x,ξ)−φ(y,ξ))f(y) dξ dy .

By Taylor’s formula with integral remainder, we get

(5.3) φ(x, ξ)− φ(y, ξ) =
〈

x− y, kx,y(ξ)
〉

,

where

(5.4) kx,y(ξ) =

∫ 1

0
Dxφ

(

y + s(x−y), ξ
)

ds .

We observe that since g is near the euclidean metric, the function kx,y is a global

diffeomorphism. If we substitute (5.3) in (5.2) we obtain that P is a pseudodif-

ferential operator of order zero, with amplitude function given by

(5.5) a(x, y, ξ) =
1

det
[

Dξkx,y(k
−1
x,y(ξ))

] .

Hence, we obtain from the standard estimates for pseudodifferential operators

(see [4], Proposition 9.2) and the fact that Dξkx,y(ξ) is near the identity, that

‖P − I‖L(L2) < 1 and, consequently, Rg is inversible.

Let us consider the following open set

U =
{

Σ ∈ G′ : Σ is transversal to the x-axis
}

.
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We may parametrize a generalized hiperplane Σ ∈ U by Σ = Σ(x, θ, ϕ), where

xe1 is the point of intersection of Σ with the x-axis and Ne = Ne(θ, ϕ) is the

representation of the normal vector of Σ in spherical coordinates. We remind that

the generalized hiperplanes are totally geodesic by Condition II. We consider the

following map

Exp: R2 → Σ ,

given by

Exp(x1, x2) = Expxe1
(x1T

e
1 + x2T

e
2 ) ,

where Te
1 = ∂Ne

∂θ , Te
2 = ∂Ne

∂ϕ and Expxe1
denote the exponential map at xe1.

We write

M = Rg(m) , (Exp)∗(µΣ) = δ dx1 dx2 .

Here µΣ is the volume element on Σ induced by the metric g. We may finally

write:

M(X,Y ) =

∫

R2
m
(

Exp(x)
) (

X◦ Exp(x), Y ◦ Exp(x)
)

δ(x) dx1 dx2 .

Let γ(t, x, θ, ϕ) = Exp(t(x1, x2)) be the g-geodesic through x with tangent

vector x1T
e
1 + x2T

e
2 , and consider the g-orthonormal fields

N = ∇gφ , T1 = ∇gφ1 , T2 = ∇gφ2 ,

given by Corollary 3.1, along the g-geodesic γ. Let

(5.6)
N :=N(t, x, θ, ϕ) = N(γ(t)) , T1 :=T1(t, x, θ, ϕ) = T1(γ(t)) ,

T2 :=T2(t, x, θ, ϕ) = T2(γ(t)) , T :=T (t, x, θ, ϕ) = γ̇(t) .

We note that

(5.7)

Θ1 := γ∗

(

∂

∂θ

)

= β0N ,

Θ2 := γ∗

(

∂

∂ϕ

)

= β1T1 + β2T2 + β3N ,

X := γ∗

(

∂

∂x

)

= α1T1 + α2T2 + α3N ,

where the functions (see Lemma 5.2) α1, α2, β0, β1 and β2 depend on the vari-

ables x, θ, ϕ and α3, β3 depend on the variables t, x, θ and ϕ.

Remark 4. If g is near the euclidean metric then T1, T2, N, X, δ and Θi

are close to their euclidean counterparts.
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We note that T = x1T1 + x2T2. In fact, since Σ is totally geodesic, it follows

that N and T are g-orthonormal. Therefore T = a1T1+ a2T2; now using the fact

that Ti is a g-Killing field, we obtain that ai is constant.

We introduce the following notation

A :=
1

2 (β1 x2 − β2 x1)
.

Lemma 4. The following statements hold:

(5.8) ∇NN = ∇TiTi = ∇ΘiN = 0 , i = 1, 2 ,

(5.9) [N,T1] = [N,T2] = 0 .

(5.10)
The coefficients α1, α2, β0, β1, β2 in (5.7)

are independent of the variable t .

(5.11) ∇T1T2 = AT (β3)N , ∇T2T1 = −AT (β3)N ,

(5.12) ∇T1N = ∇NT1 = −AT (β3)T2 , ∇T2N = ∇NT2 = AT (β3)T1 ,

(5.13) ∇Θ2T1 = −β2AT (β3)N − β3AT (β3)T2 ,

(5.14) ∇Θ2T2 = β1AT (β3)N + β3AT (β3)T1 ,

(5.15) ∇Θ2N = −β1AT (β3)T2 + β2AT (β3)T1 ,

(5.16) ∇Θ1T1 = −β0AT (β3)T2 , ∇Θ1T2 = β0AT (β3)T1 ,

(5.17) N(β1) = N(β2) = N(α1) = N(α2) = 0 .

Proof: To establish (5.8), we write

∇NN = a1T1 + a2 T2 ;

since Ti is a g-Killing field, we have

ai = g(∇NN,Ti) = −g(N,∇NTi) = 0 .
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The statement (5.9) is a consequence of [Θ1, T ] = 0. To get (5.10), we observe

that

(5.18) ∇T1T2 = g(∇T1T2, N)N , ∇T2T1 = g(∇T2T1, N)N .

Using (5.18) and the fact that ∇Θ2T = ∇TΘ2, we obtain that β1 and β2 are

independent of the variable t. Futhermore,

(5.19) 2AT (β3) = g(∇T1T2, N)− g(∇T2T1, N) .

Since [X,T ] = 0, it follows that α1 and α2 are also independent of the variable t.

We observe that

(5.20) g(∇T1T2, N) = −g(T2,∇T1N) = −g(T2,∇NT1) = −g(N,∇T2T1) .

Using (5.18)–(5.20) we obtain (5.11). To establish (5.17), we use the facts that

[Θ1,Θ2] = [X,Θ1] = 0. The remaining formulas are immediate.

We introduce the following notation:

mij :=m(Ti, Tj), mi0 :=m(N,Ti), m00 :=m(N,N) , i, j = 1, 2 .

We shall need the

Proposition 5. Ifm satisfies the hypotheses of Theorem1.1 with Condition II

and M = Rg(m), then the following system of equations holds:

(5.21) X(MTiTj ) = Θk(MTiTj ) = 0 , i, j, k = 1, 2 ,

X(MTjN ) =
2
∑

i=1

∫

(

Ti(δα3)mij − Ti(δαi)mjo + (−1)j δ α3AT (β3)mio

)

+

∫

(

(−1)j δ α3AT (β3)mk(j)o +X(δ)mjo

)

,

(5.22)

Θ1(MTjN ) =
2
∑

i=1

∫

(

Ti(δβ0)mij + (−1)j δ β0AT (β3)mio

)

+

∫

(

(−1)j δ β0AT (β3)mk(j)o +Θ1(δ)mjo

)

,

(5.23)

Θ2(MTjN ) =
2
∑

i=1

∫

(

Ti(δβ3)mij − Ti(δβi)mjo + (−1)j δ β3AT (β3)mio

)

+

∫

(

(−1)j δ β3AT (β3)mk(j)o +Θ2(δ)mjo

)

,

(5.24)
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X(MNN ) =
2
∑

i=1

∫

(

Ti(δα3)mio − Ti(δαi)moo + (−1)i+1 δ α3AT (β3)mik(i)

)

+

∫

X(δ)moo ,

(5.25)

Θ1(MNN ) =
2
∑

i=1

∫

(

−Ti(δβ0)mio + (−1)i+1AT (β3)mik(i)

)

+

∫

Θ1(δ)moo ,

(5.26)

Θ2(MNN ) =
2
∑

i=1

∫

(

−Ti(δβ3)moo + Ti(δβ3)mio + (−1)i δ β3AT (β3)mik(i)

)

+

∫

Θ2(δ)moo .

(5.27)

Proof: The meaning of (3.8) in Corollary 3.1 is that MTiTj = 0 and hence,

(5.21) holds. The Transversality Condition satisfied by m means that

∇T1m(T1, Tj) +∇T2m(T2, Tj) +∇Nm(N,Tj) = 0 ,(5.28)

∇T1m(T1, N) +∇T2m(T2, N) +∇Nm(N,N) = 0 .(5.29)

We begin by computing (5.22); we have

X(MTjN ) =

∫

δ X m(Tj , N) +

∫

X(δ)m(Tj , N) .

Now using integration by parts (taking into account that m is compactly sup-

ported in Ω), Lemma 5.2, (5.28) and taking k(j) 6= j ∈ {1, 2}, we obtain

∫

δ X m(Tj , N) =
2
∑

i=1

∫

δ αi Timjo +

∫

δ α3N mjo

=
2
∑

i=1

∫

−Ti(δαi)mjo +

∫

δ α3∇Nm(Tj , N) + δ α3m(∇NTj , N)

=
2
∑

i=1

∫

(

−Ti(δαi)mjo − δ α3 Timij + δ α3m(Ti,∇TiTj)
)

+

∫

δ α3m(∇NTj , N)

=
2
∑

i=1

∫

(

−Ti(δαi)mjo + Ti(δα3)mij + (−1)j δ α3AT (β3)mio

)

+

∫

(−1)jδ α3AT (β3)mk(j)o .
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To establish (5.23), we note that

Θ1(MTjN ) =

∫

δΘ1m(Tj , N) +

∫

Θ1(δ)m(Tj , N) .

It follows from similar arguments that

∫

δ β0∇Nm(Tj , N) + δ β0m(∇NTj , N) =

=
2
∑

i=1

∫

−δ β0∇Tim(Ti, Tj) +

∫

δ β0m(∇NTj , N)

=
2
∑

i=1

∫

(

−δ β0 Timij + δ β0m(Ti,∇TiTj)
)

+

∫

(−1)j δ β0AT (β3)mk(j)o

=
2
∑

i=1

∫

(

Ti(δβ0)mij + (−1)j δ β0AT (β3)mio

)

+

∫

(−1)j δ β0AT (β3)mk(j)o .

The remaining formulas follow from similar computations.

Proof of Theorem 1.1 with Condition II: It follows from Proposition

5.1 that there is a constant C1 > 0 such that

(5.30) ‖dM‖0 ≤ C1 ε ‖m‖0 ,

where ε can be made arbitrarily small by requiring that g be sufficiently close to

the euclidean metric. On the other hand, by the Poincaré inequality, we obtain

that there is a constant C2 > 0 such that

(5.31) ‖H‖1 ≤ C2 ‖dH‖0 ,

and using Lemma 5.1 with n = 3, it follows that there is a constant C3 > 0 such

that

(5.32) ‖m‖0 ≤ C3 ‖M‖1 .

Using (5.30)–(5.32) we get that M = 0 and, consequently, m = 0.
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de Matemática, IMPA, 1987.
[5] Lee, J.M., Mendoza, G., Sylvester, J. and Uhlmann, G. – Metric deforma-

tions which preserve boundary lengths, preprint.
[6] Uhlmann, G. – Inverse boundary value problems and applications, Astérisque, 207
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