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KIRCHHOFF-CARRIER ELASTIC STRINGS
IN NONCYLINDRICAL DOMAINS

J. LiMAcO FERREL and L.A. MEDEIROS

In Memoriam Yukiyoshi Ebihara

Abstract: The existence and uniqueness of local and global solutions for the
Kirchhoff-Carrier nonlinear model for the vibrations of elastic strings in noncylindrical
domains are investigated by means of the Galerkin Method. The asymptotic behaviour

of the energy is also studied.

1 — Introduction

Let a: [0,7] — R and §: [0,7] — R, be two, twice continuously differentiable
functions such that:

a(t) < B(t) forall 0<t<T.
We consider the noncylindrical domain @, contained in R?, defined by:

@Z{(x,t) eR?: a(t) <z < B(t), for allO<t<T} )

The lateral boundary S of @ is given by
£ = U {a@),80)} x {t}
0<t<T

In this work we investigate the existence, uniqueness and the asymptotic be-
haviour of solutions of the following noncylindrical mixed problem, for Kirchhoff—
Carrier elastic strings:
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0%u B 1 ou\? 0%u R
W_M</a(t) (835) dx)(w:f(x,t) in Q

(1.1) u=0 on %
u(z,0) = up(z), %(x,O) =wui(z) in «a(0) <z<p(0).

In the bibliography at the end of this article a complete list of papers dealing
with the Kirchhoff-Carrier operator

2
Lw = ow —M(/ \Vw]Qd:):) Aw
ot? Q

in a cylinder can be found. Regular global solutions are obtained in Arosio—
Spagnolo [1], Lions [13] and Pohozhaev [16]; local weak solutions in Ebihara—
Medeiros-Miranda [7] for the degenerate case, i.e. M(s) > 0, cf. also Yamada
[17].  For perturbated Kirchhoff-Carrier operators see Arosio-Garivaldi [2].
We refer to Bainov and Minchev [6] for estimates on the interval of existence
of local solutions. Variational inequalities for Lu are discussed in Frota—Larkin
[8]. In these references complete information is given about the operator Lu.

For global existence in the cylindrical case we refer to Brito [4], Hosya—Yamada
[9] and Kouemou Patcheu [12]. Note that in this case initial data are chosen
inside a fixed ball. In the present work we also need to choose the initial data
satisfying analogous restrictions (see Section 6, Theorem 6.1, condition (6.10)).
In Nakao—Nakazaki [14], existence and decay for solutions of the nonlinear wave
equation, in noncylindrical domains for the d’Alembert operator Ou = uy — Au
is investigated. They employed the penalty method as in Lions [14]. In the work
of Komornik—Zuazua [11], for d’Alembert operator with dissipative nonlinear
conditions on part of the boundary a method to study the asymptotic behaviour
of the energy was introduced. We adopt this method here to our case.

Some results for noncylindrical domains in dimensions n > 2 will be published
elsewhere.

The plan of this work is as follows:
Introduction
Notations, Assumptions and Local Results
Approximations and Estimates
Proof of the Theorems
Applications
Global Solutions
Asymptotic Behaviour.

N Ot W=
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2 — Notations, assumptions and local results

We consider real functions «(t), 5(t) and M (\) satisfying the following con-
ditions:

(H1) a, 3 € C?([0, +<]; R) with a(t)<B(t), o/(t) <0, #(t) > 0 and

1/2
/ / mo
max{la' o), |90} < (52)
for all 0 <t < .
(H2) M € C*([0,00[; R) such that M()\) > mg > 0 for all A > 0.

Remark 2.1. Note that the assumption o/(t) < 0 and () > 0 means that
@ is increasing in the sense that v(¢) = 3(t) — «(t) is increasing.

Remark 2.2. The condition

max{lo/), 1901} < (")

is equivalent to

e\ 1/2
/ / 0
a(t)“‘y’Y(t)’S(?) , forall 0<y<1.

In fact, if y=0 and y=1 in this last inequality we recover the hypothesis (H1).
Reciprocally, if (H1) is true we have:

won< () e s ()"

By (H1) we have /() < 0 and #'(t) > 0. Then

ma\1/2
o) +y (1) <y () < (20) forall 0<y <1
and
o \1/2
—Qﬂw+yaw)s—w@—ﬁwwwﬂwysﬂﬂwg(2)

mo
2

1/2
O/(t)‘f‘y’)’,(t)‘ﬁ ( ) forall 0<y<1.
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Remark 2.3. In the investigation of global solutions of (1.1) we make a

. , , mo\1/2
stronger assumption; namely max{|co/(¢),|5'(t)} < C <7> with
6 \5 T+1

~ x
Observe that when (x,t) varies in @) the point (y, t), with y =

o ..
varies in the

cylinder @ =]0,1] x]0,T[. The mapping 7: Q — Q, given by 7: (x,t) — (y,t) is
a diffeomorphism. We transform system (1.1) by means of the change of variables
r—a

u(z,t) =v(y,t) with y= ,
v

which transforms the operator

-~ 0%u B®) / Ou\? 0%y ~
Tu=22 " gu gu
. (Lo G) &) gm = 0

into the operator

. v 1 - /(1 [L/0v\2 0%v 0 O
Iv=">"—"_—M= = - _Z =
YT e T 2 (’Y/o (8y) dy) oy? Oy (a(y’t) 8y)
)

9%v v
b(y,t t) — i .
Here we have
e dx=vdy,
o M) =MN - =00,
mo o/+v’y)2
e a y’t = — ( > O s
! !
o blyt)=-2 (aﬂy> |
Y
1 !
. C(y,t):_<a+w)_
Y

Then, the noncylindrical mixed problem (1.1) is transformed in the following
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cylindrical mixed problem:

Lo(y,t) =g(y,t) in Q,
(2.1) v(0,t) =v(1,t)=0 on 0<t<T,

ov
v(y,0) = vo(y), a—y(y,t) =vi(y) on 0<y<l1.

We represent, as usual, by ((, )), || - |land (, ), | - |, respectively, the scalar
product and norm in H}(0,1) and L?(0,1). By a(t,v, w) we denote the positive,
continuous, symmetric bilinear form in H{ (0, 1):

1 ov Ow
a(t,U,UJ) :/0 a’(yat) 8_2/ 8_3/ dy .

We have the following results:

Theorem 2.1. Let §; be the interval Ja(t), 5(t)[, 0 <t < T, and suppose
that (H1) and (H2) hold. Then, given

up € Hy(Q0) N H*(Q), w1 € Hy(Q), f e L2(0,T]; Hy(2)) ,
there exists 0 < Ty < T and a unique function
uw: Qo — R, @QZQX]O,TQ[,
satisfying the conditions:
we L0, To; Hy ()NH? (), u' € L>(0,To; Hy (), u” € L(0,To; L*())
solution of (1.1) in Q.
Theorem 2.2. Under the assumptions of Theorem 2.1, given
vo € H}(0,1) N H?(0,1), v € HY0,1) and g€ L™([0,T]; Hi(0,1)) ,

there exists 0 < Ty < T and a unique function

v: Qo — R
satisfying the conditions:

v e L°(0,Ty; Hi(0,1) N H%(0,1)), o' € L*°(0,Tp; HL(0,1)) ,

which is solution of (2.1), in Qo = ]0,1[ x |0, Tp[.
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in @ we obtain the term

Remark 2.4. By the change of variables y = T

2

) / ) 82
aryyy gv + <a +’yy> 7Y i (2.1) that gives serious trouble when we

v 79y v /oy
0%’
multiply both sides of the equation (2.1) by 9 and integrate in (. However,
Y

under the assumptions (H1) and (H2), the bad terms can be absorbed by the

positive terms that the nonlinearity M (\) provides. Indeed, we incorporate the
mo  moyO%v . . mo _ Mg -
37 W) a7 n Lv, so that M(A\)=M(\)— 5 > 5 The remaining
terms can be written in divergence form:

term (7

mo 0%v o +~'y + v N (o/+ V’y)Q v
272 9y? v vy v oy

__2 m0_<o/+’y’y>2(9v
oy \ 292 v dy

giving a positive symmetric bilinear continuous form a(¢,v,w), which can be

handled easily when getting a priori estimates. Thus the operator Lv is well
adapted to apply the energy method.

Remark 2.5. When getting estimates for v’ in H}(0,1) and v in H?(0,1)

terms of the form

g {8@’(1,&}2 N (—a) [81)’(0,15)]2

yL Oy Y Oy
appear. In order to guarantee its positivity we need that o’ < 0 and 3> 0 or, in
other words, that @ is increasing.

3 — Approximations and estimates

Let {w;}, 7 = 1,2, ..., be the solutions of the spectral problem:
((wj,v)) = \j(w;,v), forall ve H(0,1) .

They can be chosen to constitute an orthonormal basis of L2(0,1).

We represent by V,,, = {w1,ws, ..., wy, } the subspace of H}(0,1) generated by
the first m eigenfunctions w; orthonormal in L?*(0,1). Note that this is equiv-
alent to say that —w? = A\jw;, w;(0) = w;(1) =0, for j = 1,2,..., i.e, they
are eigenfunctions of the Laplace operator with zero Dirichlet conditions on the
boundary. In the one dimensional case we are working on, we obtain A; = ( gm)?
and w;=+/2sinjrx, j = 1,2, ....
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We look for v,,(t) € V, solution of the system of ordinary differential equa-
tions:

(Lum(t),v) = (g(t),v) forall veV,,,
(3.1) m(0) = vom ,
v, (0) = v,
By vo;, and vy, we denote the projections of vy and v; over V,,,. Note that

vom — vo  in HE(0,1) N H?(0,1)
and
Vlm — U1 1D H&(O, 1),

as m — OQ.

Estimate I. Let us consider v = v/,(¢) in (3.1). We obtain:

1d 1 /1 d
2 Z 2 M( . 2) . 2
(32 5 gl OF + 525 M S lom@I? ) Zlem®I +
/
+ a(t, vm, vy,) + (b(y,t) 85)517 Ufn) - <C(y7t) 8(;;_;7 v;n) = (g,v),) -
If we set A
]\7()\) :/ M(s)ds ,
0
we have

63 5o (S 1om®I)] + 5 32 1om @) om0 +
d

M
v (1 2) 1 '<1 2) 2
LM (= lom®))?) = =5 M = [om@®]?) Sllom @),
o (7 [[om (@)l 572 7Hv N7 ) llom @)l

1
(3.4) alt, v V) = 5

where

We also have:

ovl, v=L 1 [10b
(0000 2 i) = gt 02| =5 [ S (o) dy
(3.5) y=0 270 ¢
Y AT



472 J. LIMACO FERREL and L.A. MEDEIROS

Substituting (3.3), (3.4) and (3.5) in (3.2), we obtain:

1d , 1d 1 N 1d
3:6) 5 ln®F +5 %2 lon(0l?) | + 5 Fattvmom) +
/

+ o Loa( ||vm<t>|r2) lom@1? + 555 37 on(0)

2y
1
(t ’Um,Um + = / ab +< ( )882};;172};71)_}—(9’@7,71)
From (3.6) we obtain:
1d d 9 1d
(3.7) 55’ _d_[ ( ’Um )H )}“‘5% (t, Vm, Um) +

(3 e 1?) ”“m“)””ﬁf‘? (5 lom1?) <

1
< S lg@®F + C1 o (OF + Ca [lum (B -

-2
We have, by hypothesis, 4/ > 0 since @ is increasing, and
—~ /1
(3:8) (= i) = C ol
(3.9) a(t, v, vm) > 0.

Integrating (3.7) on [0, t[ contained in the interval of existence of vy, (t) solution
of (3.1), we obtain

(3.10) [ OF + lom(®)]1* < Ko+ Ky / (W + om(s)]2) ds

where K, K1 are constants independent of m.
From (3.10) and Gronwall inequality, we obtain:

(3.11) [l ()] + [lom@®)|IP < C on [0,7] .
82 !
Estimate II. In the approximate system (3.1) we take v = — 5 ;” This
Yy

gives:

9%, |

Lo+ (2 ponton?)
3.12) 5 L@ + 55 31(2 1o 0l?) 7| 5
N (t _821);1) N (b( N ovy, _821)7’n> N < ( t)% _621)7’n> B
a ,Um7 ayQ y7 ay ) 8y2 Cc y7 ay ? 8y2 =

_ ( _02%)
- g7 8y2 .
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We have:
o 58) <12 a0 (5
a5 oy ) 2dt o
1 1
(3.13) -3 /D < )
B 2 {8@ (%m} ;n aa vy, Ovy,, y=1
8 Jdy Oy ay Oy Oy ly=o
Note that:
ol 9%,

o’ 0%’ 1
m m ) — [ py ) Lom d
)=/ (1) 52 5

<b(y7t)7_
Oy 0y?
——/1b( t)la(‘%;”fd
Y 20y oy

Integrating by parts we get:

oy, 0%y, Lob [ ov], 1 ovl \?[v=1
)= () g ()

y=0

3.14 b(y,t
(3:14) < ®1) oy 0y? dy
/ /
Remark 3.1. Since b(y,t) = —2 ¥y ,
Y

2p=t é’(avin(l,t))Q B g’(av%(O,t))Q
o Oy o oy

1 ovl,
500 (52)

which is non negative, by the hypothesis o/ < 0, (3 > 0 on the non-decreasing
boundary. On the other hand,

o, 0%/ 1o Ov,, 1 O
pHLm T my _ [ OUm | Ol
(C(y’ ) oy 0y? > /0 Ay {C(y’t) ay] dy d
(315) avm 8"0/ y=1
c(y,t) — =2
(y,1) 9y By |

Substituting (3.13), (3.14) and (3.15) in (3.12), we obtain:

0%v,, |2

0y

d /
IO + 5233 (Z o) &

1
2 272
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3 [ (51 v (5

Pa 0vm] ovl, i da dvy, Ovl, |V~

+77
0y Y 0y Oy 0Oy ly—o

0y Oy

Lo
Lol

(3.16) . 1 Byt \2 =1
5 ) 5 (y’t) ( 8?4 ) y=0
/ { 0vm]8v:nd oyt 2om OO T

y) ay y y? ay ay y:O
<8g o), )
dy’ Oy
_ 1o /1,
Remark 3.2. Denoting by u(t) = " M(; |l ), we have:

2 2 v o1

/ 2 / 2 / / 2 2
w(t ———M(— >+—M<—v v,V ——M(—v >|v
(t) 3 o] 73 [[o]]7 ) (v, v)) M [0l ) o]l
and, by Estimate I and the fact that M € C'([0, o[, R) we obtain, by the hypo-

thesis (H1) on «, f:
W @) < C+ ol -

From (3.16) and Remark 3.2, we have:

1d 2, 1 d |Pv,|?> 1d/ [t Ovm \
5 g lm O+ 500 5 [+ 5 5 (oo (G2) a) +

L2 (8v4n<1,t>)2+ (=a) (av;ﬂm,t)f _
v Jy v dy
1/t 0%vm \? L9 [da dvy ] Ovl,
=5 w0 (%) d“/o oy e o

da vy, Ol |V=1 Lob (81);” )2 J
9y Oy 0Oy ly=o 0o Oy \ Oy

1o Ov,, 1 Ov! Oy, Ol V=1 dg Ov!
— | A lew,t) m—| 7 dy + — +(, m).
/oay [c(y ) ﬁy] dy )5, 9y Oy ly= \9y Oy
Remark 3.3. We have the identity:

Ovp, 1o Ovp, 1 0%v, Lov,,
Z|(1—y) =2 = —y) —Ddy— [ =g
3y —(0,t) = /ay [(1 Y) By (y,t)] dy /0(1 Y) a2 Y oy Y

(3.17)
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or )
0“vm

Oy?

9vm

0,t) <
8y( )]R

by the Estimate II.

v,
8—y2 + ”'UmH < C+

L2(0,1)

M
L2(0,1)

0
A similar estimate is true for %(1, t).
Y

Remark 3.4. We have:

/ / 2 a / / /
a(y,t)=m02_<a+7y> >0 and 8- _o*tVYT
2y v Jy Y
O//"— ,y//y Oé/“l— ,yly ,7/
c(y,t) = — - —.
v 7 v

Then, since o' + ' = 3, we obtain:

da Ov,, OV, [V=1 26"y Ov ov! 20’y Ov o,
a0 = a0 =+ (1) (1, 8) — =0, ¢
dy 9y 9y ly—o 72 3?/( ) 5y( ) 72 6y( ) dy

Oy, OV Y71 By +~6"\ v ov,
a _( 2 ) oy 1) gy (1)

o'y +a’"y\ Ovp, ov!
t (0,¢) .

£ (0,2)

c(y,t) —
(y:1) 3y dy |

Let us consider, for example,

B | Ovm ‘ o, ‘ ‘ﬁ’ "1% 1 Ov, 2 o, 2
1,t —(1,¢ — 1.t
| Gman]|Fza S (L8] + 13 L
I 150 2
If X_% then 2 i ( (;)y (1,t)> goes to the left side of (3.17) and it is compen-
/
0
sated with i( 82 (1, t)) which gives a positive contribution in the first member.
By |9vm : :
The term ’ 5 —(1, t)’ can be estimated as in Remark 3.3. We get
Yy
5/ / 8’Um 2 aQUm 2
L,t)| <C
’ v 19y gy (WY = ’

with a possibly different constant C.

The same argument is true for all the other terms above.
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Remark 3.5. From the hypothesis on o and 3, we can estimate all the other
20 12
terms in the left side of (3.17) by C‘%’ and C|[v!, ()2
Then by the Remarks above, we modify (3.17) obtaining:

d. ;2 d|d%v, > d ! A%v,, \?
, — — — <
B18)  Glonl®+u) g G|+ 5 [t () ay <
0?vp, |2
2 m
< Co + Cy ||y, (1) [I* + B
Lo d 0P 2 d v, 00y, |2
Substituting M%’W in (3.18) by 7 {M(t) 2 } — W (t) v and by
Remark 3.2, we obtain:
dl. , o v, |2 /1 (8vm>2
: — —n <
(319) [uvma)u ) |G o] + [Catn (F2) | <
/ 2 / v [*
< Cot Cullm I+ llvm O 755 n [0,77.

If
0%vp,

hin () = 07, (011 + u(t) gz )

2 1 a,u 2
+/ a(y,t (—m> dy ,
o (Wi, ) W
we have from (3.19):

dh,

— < Co+ Cihp + 1 in [0,7].

From this inequality, we get a number 0 < Ty < T', such that h,,(t) is bounded
in [0, Tp] independently of m. This gives the second estimate

9%v,,
y?
Note that p(t) is strictly positive on [0, 7.

2
<C on [0, .

(3.20) lom (D17 +

Estimate III. Taking v = v/ (¢) in the approximate system (3.1) we obtain

2 1
P = ) (Gotot) = [ 4 [atw) 2] ey +

! av;n " ! 8Um " _ "
+/0 b(yvt)TyU dy+/0 C(yvt)TyUmdy - (gavm) .

From the first and second estimates and the hypothesis on «, 3, we get:

(3.21) v ()2 < C  on [0,Tp] .
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4 — Proof of the theorems

Proof of Theorem 2.2: In this step we prove that the estimates obtained
above are sufficient to take limits in the approximate equation (3.1). In view of
(3.11), (3.20) and (3.21) a subsequence represented by (vy) can be extracted from

(vp) such that:
(4.1) vp = v weak star in L°°(0,Tp; Hi(0,1) N H%(0,1)) ,
(4.2) v, =" weak star in L>(0,Ty; H} (Q)) .

By the classical compactness argument of Aubin-Lions, cf. Lions [13], it fol-
lows that:

(4.3) vp — v strongly L*(0,Tp; Hi(0,1)) .
Because of the estimate (3.21) the subsequence satisfies also:
(4.4) vf — " weak star in  L™(0, Tp; L*(2)) .
From hypothesis (H1), (H2) and the estimates (3.11) and (3.20), we obtain:

1 /1 2\2 0%v
S 0(Z lm®I) 53

Then, the sequence (vg) is such that

(4.5)

<C on [O,To[

1 - /1 2 92,
4.6 — M= i)
(4.6) St (2 o)) 5
weak star in L>(0, Tp; L*(£2)). u
1 - /1 5\ 0%v , N
Lemma 4.1. x = 5 M 5 lo(®)]| 97 where v is the limit in (4.1).

1 - /1
Proof of Lemma 4.1: Let us introduce the notations u(t) = —2M<— ||k (t) HZ)
v v

1 . /1
and p(t) = 2 M<§ ||U(t)||2> Because of (4.6), for every w € L?(0,Ty; L*(0,1)),

we have:
To 62,0 TO 62’Uk
/0 (X—M(t)(w,w) dt—/o (X_,uk(t)aygaw> dt
To E)%k 0%
4.7 ) o — 5, w | dt
(47 + [Cu (55 - 5 v)

[t~ o] (G )
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By (4.6) the first right side integral of (4.7) goes to zero when k — oo and the
second one, by (3.20), also goes to zero. To analyse the third member of the right
side of (4.7) we employ hypothesis (H2) on M (A). Then, we have:

[k (t) — p(B)] < C‘ lor ()1 Hv(t)HZ‘ < cllor(®) =@ (low @I + @) -

It follows from (4.3), estimates (3.11), (3.20) and Lebesgue convergence the-
orem, that the last term of (4.7) goes to zero when k — oco. n

Integrating by parts we obtain that a(t,vg, w) — a(t,v,w) weakly in
L?(0,T; H'(0,1)) and
0 Ou, 0 ov . 2 2
4.8) — t)y — | = — t) — kl L=(0,T;L*(0,1)) .
@8) (a0 Gr) = g(atwn ) weakdyin  L20.7:L%0.1)
We also have, by the same argument,

o’ ov’
(4.9) b(y,t) Dy b(y,t) 3y

Qv v . 2 .72
(4.10) c(y,t) dy c(y,t) 3y weakly in L*(0,7"; L°(0,1)) .

Because of (4.4), (4.6), Lemma 1, (4.8), (4.9) and (4.10) we take m = k in the
approximate equation (3.11) and we let k& go to 400 obtaining:

weakly in L%(0,T; L*(0,1)) ,

(Lv,w) = (g,w) for all w € L*(0,Ty; L*(0,1))
or, equivalently,
(4.11) Lv=g¢g in L?*(0,Ty; L*(0,1)) .
From (4.1), (4.2) and (4.4), we obtain
(4.12) v(0) =vg, V'(0)=wv; on Q.

Uniqueness

If v and © are two solutions in the conditions of Theorem 2.2, then w = v — 0
satisfies:

1 . /1 v 1 - /1 9%t 0 ow
(418) = (,Yuvu g T M(SI01) 55 - 5, (a0 5, ) +

ow’ ow
— =0 in L*0,T;L*0,1
3y +c(y, ) 3y 0 in L7(0,75L°(0,1)) ,

w(0) = w'(0) =0 in Q and w =0 on |0, 1[ x |0, Tp|.

+ b(y, 1)
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Multiplying (4.13) by w’ and integrating we obtain:
1d 1 Y d
(4.14) 2dt|w OF + 53 31(= vO1) Fw @I +
8w 8w
- — d b( —w'd "dy =
+2dt ( ) ZJ+/ (y,t 8yw Z/‘i'/ c(y,t 8ywy

[ Swe) - S (Raere)] (S

1 d 1dr1 - /1
5z M (= IR Gl = 5 5 (55 97 (2 1ol ol

r 1
(4.15) —%Qgﬂi(—HMF>
v\
1 1
=g 95 007 G (5 Wl b
27 [[v]] 7HH [[wl]
1 ow’ Lob
4.1 ! Ny .
(416) [ o) Gt dy = =5 [ ay

Substituting (4.4) and (4.5) in (4.3) we obtain:

(417) %Qw'(tﬂ? w0 (L) ol + [atn (30 dy) <
< (W' @) + Jw®)]?) -

Integrating (4.17) over 0 <t < T, we have:

t
W (OF + [ < Co [ (o )F +lwE)]?) ds
This implies w = 0 by Gronwall’s inequality. u

Proof of Theorem 2.1: If v is the solution of Theorem 2.2 we consider the
function

(4.18) u(z,t) =v(y,t), z=a+yy.
We also set

(4.19) 9(y,t) = fla+y, 1),
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(4.20) vo(y) = u(@,0) = uo(a(0) +7(0)y) ,

o1(y) = o' (2,0) = ur (a(0) +(0) )

(4.21)
+ (a/(0) ++/(0)y) upy(a(0) +7(0)y) -

The function u(z,t) defined by (4.18) is the solution of Theorem 2.1. To see
this it is sufficient to observe that the application

= (55)

from Q into ]0,1[ x |0, Tp[ is of class C? and we have:

9% 1 0%v
(4.22) @(wvt) = 8—y(y’t) ,

(423)  W(xt) = (1)~ é% (ats- g—y) by, 1) %<y,t>+c<y,t> g—;@,w ,

T—o
with y = ——

v
B 1 du\? 1 [/0v\?

4.24 / <—>d :—/ (—)d .
(4.24) o \az) =5 \ay) W
From (4.22)—(4.24) we obtain:

B®) / Ou\? 9%u .
2y ([ )P
(4.25) e - ( [ (G) i) G = Lo

r—a
with y = —— . Then u solves (1.1), with initial conditions ug and u;.

The reglrlylarity of v given by Theorem 2.2, implies the regularity of u claimed
in Theorem 2.1.

To prove the uniqueness observe that from (4.22)—(4.25) we have the equiv-
alence between the mixed problems (1.1) and (2.1). Then, if u and @ are two
solutions of (1.1) given by Theorem 2.1, then v and v obtained by (4.18) are
solutions in the conditions of Theorem 2.2. Since we have uniqueness for v, i.e.,
v =0 it implies u = . n
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5 — Applications

We will give examples of functions a(t) and 3(t) in C*(]0, 0o[,R), such that
at) < B(t), o/(t) <0and F'(t) > 0. If v(t) = B(t) — a(t), we have +'(t) > 0 and,
by hypothesis, (H1), Remark 2.2, we must have:

o0+ < ()"

foral 0 <t<Tand 0 <y <1.
Let us consider the family of straight lines:

z=d(t)+ )y
depending of the parameter ¢ > 0.

We rewrite (H1) as:

o= (M) e g ()"

Case 1. Let us consider in the (z,t) plane the lines:

1/2
at) =ap—at  with 0 <ag < (%) ,

1/2
B(t) = fo+ Frt  with 0< f < (?) ,

with ag < [y positive constants.
The noncylindrical domains are cones with basis the intervals [«g, (o).

Case 2. Let us consider the curves

oft) = TR (1 4 1)

_ apt+fo
() = 203

By the conditions of Lemma 1, we can choose

k\)‘,_‘

+(t+t0)ﬁ, k=1,2,...

m)ﬁ

These curves could be written as:
($—.’L‘0)2k =t+1p,

t >0, with o = ao;rﬁo.
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6 — Global solutions

In this section we prove that if we add some damping to the noncylindrical
Kirchhoff-Carrier model, with certain restrictions on the initial data, we obtain
a global solution in time. Note, however, that we also impose certain restrictions
on the boundary of the noncylindrical domain.

In fact, with the notation and hypothesis fixed in Section 2, we consider now,
for the sake of simplicity, the domains of the form

a(t)=—p(t) forall t>0.

Then
y(t) =26(t) forall t>0

and by Remark 2.2, we must have:

mo

(6.1) 0< i) < 0(2)1/2 :

SHONE
6 \5 T+1) "

We suppose, in the present section, that

with

(6.2) M()\):mg+m1>\, mg,m1 >0, AX>0.
This is a particular case in which (H2) holds.
The mapping from @ into the cylinder @ is given by:

x+ 0
20

(6.3) Y= or z=Q2y-1)p,

with 0 <y < 1.
We consider the perturbated system (6.4). The modified Kirchhoff-Carrier
model with damping is, for § > 0 fixed, of the type:

B / du\? d%u 3 Ou ~
"_ ou ou Qo ou AT .
! M</—ﬁ(t)(8a:> dx) a2 * 5(6 " O +u> -
(64) u= on %,

u(,0) =ug(z), u'(z,0)=ui(z) on —fo<z<fo,

where Gy = 3(0).
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In addition to (H1), (H2) we assume that

y (8'(t))?
(H3) For all t > 0, |8"(t)| < B0

If we consider the mapping (6.3) from Q into Q, the mixed problem (6.4) in
the noncylindrical domain @ has the following form in Q:

, 1 ( 1 2) v 0 ( 81})
S v/ d gv_9 v

/
8—v+c(y,t)@+5vl =0 in Q,

+ b(y,t) 9y

(6.5) dy
v=0 on X,

v(y,0) =vo(y), v'(y,0)=vi(y), O0<y<1.

Note that v(y,t) = u((2y—1)3,t) and @ = (0,1) x (0, 7).
The coefficients of the operator Lv(y,t) in (6.5) are given by:

1 mo

o alnt) = 1|5 - (Fa-20)) ]

—_

« byt = |F0-2y)],

=

1
o ) =55 [F"0-20)]
We have:

—% d(y,t) = % {ﬂ”ﬁ (1-2y)°+ ? -(pa- 2y)ﬂ :

Then, by (4.20), we obtain:

0

B8 (1 -2y < 18"6] < (8)* <

and
mo

(Fa-2p))]<@)2 <.

We have, consequently

1,
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Note that g
v = é —u—i-u

15} 83:
which gives in (6.5) the damping dv’.
Now we determine the condition on the initial data vy, v; which implies the

global existence of solution for the mixed problem (6.5).
Let us fix the number § such that

(6.7) 5 220 <m>/ (4;;2) .

Let us define the function H(t) by:

! 2 g ! 52 2
H(t) = [v I + 5 (VV'(£), Vo) + ¢ [lv(®)l]

(6.8) 1 /1 , , " ,
5 M (55 1001 ) |20 + [ alw.0) (A0 dy
0%v ov
where Av = 502 Vv = EW and v is a solution of the approximate problem for
Y Y
(6.5).

Lemma 6.1. We have H(t) > 0, for all t > 0.

Proof: In fact,

(e %)

§ 2 /2
o5 ol + '

‘5(Vv Vo] <

‘(Vv Vo) <

4
We know that M(\) = 7 Fma > 20 2 , then

1 ~ mo
832 M) = 16 32

and a(y,t) > 0. It implies:

1 362
> 2 - 28 24 2
H(t) = 3 [P+ G Ioll* + g 140 -

16 52

We represent by Cy the constant:

—~/ 1
(69) i = = ’1)1|2 + — M(Qﬂ HU0||2> + a(O Uo,vo) .
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Theorem 6.1. Suppose (H1) and (H3) are true and «(t) = —(3(t). Suppose
also that M = M(\) is of the form (6.2). Then given

vo € H}(0,1) N H%(0,1), v € H(0,1)

and ¢ > 0 satisfying (6.7), if vo,v; are such that

(6.10) C1H(0) < ZravTn 3 (H;O)l/z <4+7r2>

16m1 Qﬁo 2

with C1 and H(0) as in (6.9) and (6.8), then the mixed problem (6.5) has a unique
weak solution v(y,t), defined for all t > 0, y € (0,1).

Remark 6.1. Before going into the proof of Theorem 6.1, we analyse the
restriction (6.10) on the initial data wg, u; of (6.4).
We have

() voly) = uo((2y — 1) o), with fo = B(0) ,
() or(y) = (25— 1) o) + (25— 1) F(0) oo ((2 — 1) o)
Let us represent (—0o, Bo) by Q. Then we have:

(iii) [vol®> =25 HUOHHl Q)

() altv0.) < % ol = 72 ol
(V) |4U0|2 = 8/30 ‘4UO|L2(QO) 5

: (8'(0))?
(Vl) |U1’2 < ﬁi ‘u1|L2 (Q0) + ﬁo H OHHI(QO) )

(vil) [lorl]* < 480 [[urll qq) + 880 B2(0) [AuolZa o) + 860 lluollF gy -
1
(viti) [ a(y,0, (Auo)?) dy < fomo |Auola(a

Because of (iii)—(viii) and Remark 2.2, we obtain:

. - 1 1 =
(%) C1 < Co= g5 lulia, + w = [l ) + v M ([l )

and

(x) H(0) < Go = 12ﬁ0||U1HH1 () T 1350 m0|AU0|%2(QO)

582 )
2460+ _ﬁ[) ||u0HHé(Q0)
+ ﬁoM(nuouHé(QO)) INT P
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Therefore, if we take
ug € Hi () N H*(Qo) and  uy € HL(Q)

and fix § satisfying (6.4), and ug and u; are restricted to

2mo /0
\Co Gy < ZROVIT0 5
32my

then the mixed problem (6.5) has a unique solution u defined for all ¢ > 0 and
T € Qt.

Proof of Theorem 6.1: We will employ the Faedo—Galerkin method choos-
ing a Hilbertian basis in H}(0,1) N H?(0,1) (cf. Brezis [3]). We do only the a
priori estimates that imply the convergence of approximate solutions as we have
done in Section 3, employing classical compactness arguments as in Lions [13].
In fact, we use the basis of eigenvectors of the spectral problem

(v,w)) = Mv,w) for all we H}(0,1) .

Note that this basis can be obtained explicitly as in Section 3. Let us obtain the
a priori estimates.

Estimate I. Multiply both sides of (6.4); by v’ and integrate on (0,1).
We obtain:

0.11) 5 ZWOF + % (757 (55 00R)) +

,8/ 2 2 ﬁ/ =(1 2
+ 3 3 (55 0@ ) ool + 5 BQM( 25 OI?)

1d 1 Lob

+g gt ) — o) =5 [T (o) dy

+/ c—vv’dy+5|v’|2 =0
o Oy

with L on
AV
- = dy >0 .
)y (V)" dy >
By (6.6) we obtain:
1 11 ov\? mo 3

12 ——d(t =—[ -d t()d .

012)  —gatun) = [ a0 (5) vz Tl
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/
Because of (H3), i.e., [0"] < (ﬁﬁ) we obtain:
ﬂ”(l 2y) dv
, —vd / v'|d
‘/ vt y‘ 0 25 oy |"
= Jo 287 oyl Y
1 \4 2 1
(B |ov / I e
—| d — dy .
o am oyl Ml T
. u(@B)t  mo 1 (8 ,
If we consider p such that 15 T 165 we obtain i mop Then:
! o, mo 3’ 24 mo 1/2 P
[ty oo an] < TGl + 15 (52) P
Whence,
! ov ol VMo
6.13 /c 1) —o'dy > — o2 = Y—— |2 .
(6.13) et ) G/ ay = 5 ol - )

From (6.12) and (6.13), we have:

1 / ! 8’0 / /12
(6.14) —ia(t,v,v)—i—/ c(y,t) — v dy+ |V |* >
0

% 1/2
- ()
165 \ 2
By (6.14) we modify (6.11), obtaining:

©015) 5l OP+ 5 (55755 00R)) +

1d 1 /mo\"?\
- — - | — < .
+2dta(tvv) ((5 8/6’( ) )\v\ <0

The parameter 0 was fixed satisfying the condition (6.7), what implies:

) i <m0>1/2
2 860 .

Then, from (6.15) we get:

— =M= - — <0.
3 iV OF + 5| 157 (55 OIP) | + 5 Fatt o) + 5 W@F < 0
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Integrating from 0 to ¢, we get:

1 6 rt

3 WOF + 55 3 (55 00IF) + G alto,0) + 5 [ o/(s)ds <

2 2 Jo

— — M| — —a(0
=5 lu1]® + 15, (2% [[voll )+ 26( , 0, V)

for all ¢t > 0.

If we set

1 1 ~/ 1
C1= = | M 2) 0
1 2|U1| + 15, <2ﬁ [[vol|* ) + a(0, vo, vo)

we obtain the first estimate

(6.16) L0+ 22 )2 <

2 16 52

for all ¢ > 0. Note that C'; does not depend on ¢, but depends on wvg, v1, (o,
a(y, 0).

2,/
Estimate II. We multiply both sides of the equation (6.5); by —Av' = —ZUQ
Y
and integrate on (0,1).
We obtain:
1d 1 /1 d
1 L hwee M< tQ)At2
017) 5 GO+ 55 7 (55 1001 ) FlavP +
b8 Lty o2y [0 (a0
2dt Jo Y, v Y 2 Jo a\y, v) ay
1 Lob /o 1 o'\ [v=1
LB e duo(3)
2 Jo Oy \ Oy y2(y)8y y—O
[o(manyor, oo
0o Oy \9dy 9y /) Oy ayayayyo
Lo o'’ ov o' |v=1
_|_/ [ —} dy — c(y, +o@OIP =0.
R SR EO]
The inequalities below for the various terms of this identity are true. In fact,
we have:
L, 2 mo 3 2
, —= >
(6.18) 5 ) @t B0y = ZE A
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L9 [Oa Ov] OV mo 8 , 2 (mo 12 /4 4 p2
— | — — | —dy| < A il ) "2
/oay{ayﬁy] 0y y‘_64ﬁ3| vl +ﬁo<2> < 2 )”U” )

1 [10b /ov\? 1 /mo\/?
2 Z ) =) dyl < 2
(6.20) ‘2/08y<8y) y'_2ﬁo(2> I

(6.19)

om o (5= SR

R )
a5 (2 et

Bl = G0a)s G500

~(5) ()

Using (6.18)—(6.24) the following inequality can be obtained from (6.17):

©25) 5 GO + 5553155 10I?) ZlavoP +

s [aw @ora— (5 (T jaup + 00

t
4 f—'<a—“(1,t)> + %(—(o t)>2

+{5_25ﬁo(”;)m ()i < o.

The coefficient of |Av|? is assumed to be positive, i.e.,

mog,—ﬂ/gcﬂ) >0.

™
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From the condition (6.7) on ¢, it follows from (6.25):

GO + 5 8 (5 e@]?) ZlavoP +
1
+ g [alvn @u@)Pdy + 3 IR < 0.

Estimate III. Multiply both sides of (6.7); by w = —Awv and integrate on
(0,1). We have:

1
~" 80) + 17 31 (55 ol ) Al — a(t, v, Av) -

s o _ ) (@_ )_
5(1),Av)+(bay, Av ) + cé)y’ Av) = 0.

Whence,

d 1
(6:27) (Ve Vo)~ I + 75 8 55 ol ) 10l -

dt 452
o’ ov
— _ = — 2 _ — =
a(t,v, Av) thH v||* + ( Av) (Cay’ AU) 0.

We obtain the inequalities:

m 3 1
(6.28) alt.v.~M0) > <4_W) Avf?
o’ 2 2
(6.29) <b(y, 1) — 3 Av) < 32ﬂ2 |Avl* + [V

(6.30)

(C(y’“g—;’ _A”>’ < Tou A0l

By (6.28), (6.29), (6.30), we modify (6.27) obtaining:

d
(6.31) - (V' Vo) + 5 *II I”+ ﬁoz |Avf? =2l < 0,

dt 2.dt

since M(\) > % > 0 and the coefficient of |Av|? is also positive. Note that § is

)
a fixed parameter. Multiply (6.31) by 1 and adding to (6.26) we cancel —2 ||v/||?,
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obtaining:

1

d 1112 d / 52 112 1 2
(632) 5 [P+ 5 (V0 Vo) + 5 )2 + o M (5 el ) Aol +

N =

832

|Avf* <

1 0
+ %/0 a(y,t) (Av)? dy| + ;7;052
1 1 2 ' 2
< g5 (510007 | 120k

Note that M()\)= % + my A with mg,m; >0. Then M’(\)=m; is constant.
We obtain:

Gy )] -G ) s

ﬁ/ 2 . f_
16 51 o], with — (' =a'<0,
or
1 my o]
6.33 2
(6.33 (55 100)] < 2 oy
From Estimate I, we have:
o] <01>1/2
.34 0 gy ==
(6:34) /2 = \mg
with
€1 = 5P+ 5 357 ol ) a0, v, w)
1—21)1 15 2 6o 0 a(0,vg,v9) -

Then, from (6.31) and (6.32) it follows:

639 [oor 1 (s lvle)| 18 < 25 E) o

Then, from (6.31) and (6.34), we have:

2 | o~ 2, 1 1 2) 2
(636) dtln 1P+ 5 (V0,0 + S IR + 5 (5 el 18w +

+ [law (Av)zdy] " (326—2@0)/ 1) B <o
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With the notations of Theorem 6.1, we obtain from (6.35):

mo |Av|?

(6.37) % H'(t) < (—32 5+ v(t)) P

where

and ||v'(t)|| < VH(t).

Suppose that y(t) > and let us see that this leads us to a contradiction.

In fact, we have:

then

(6.38) ~(0)

By assumption (6.10) of Theorem 6.1 about vg, v, we obtain, from (6.37):

m0(5

(0) <=5

2

mo
5} This minimum exists and it is

greater than zero, by continuity of (¢). We have:

Let us consider t* = min{t >0, y(t) =

7(t)<%5 on 0<t<t*,
(6.39)
(t) =22
7 32
‘We obtain:
t*
(6.40) H({t*)—H(0) = [ H'(s)ds

0

By (6.34) we have H'(s) < 0 on (0,t*), then H(t*) < H(0) or H(t*)'/? < H(0)'/2,
Consequently,

) < () e <

which is in contradiction with (6.39)2 .

1 my mo
- H -
\/_0 < > 1 (0) < 9 )
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Then, from (6.37) we have H'(t) < 0 for all ¢ > 0 and, therefore, the global
estimate

(6.41) [v' ()| + |Av(t)[* < ¢, forall t>0.

The estimate for v”(¢) and the uniqueness can be proved as in the local case. m

7 — Asymptotic behaviour

In this section we investigate the behaviour, when ¢ goes to infinity, of a
perturbed energy associated to the global solution v obtained in Theorem 6.1.
In fact we consider

) B0 = G OF + 757 (55 1001 + 5 et oo, 0(0)

which we still call the energy associated to the solution v of the mixed problem
(6.5).
Remember that M(\) = % + my\, then M()\) = —)\ + —)\2 and (7.1)

takes the form

(12) Blo.t) = 3 1OF + 1595 WO + 555 @1 + 5 at v(e),o(0)

Observe that E(v,t) depends on the boundary S = f(t) of the noncylindrical
domain @, and that —a(t) = 5(t).

Theorem 7.1. If v is the global solution of the mixed problem (6.5), then
we have
t _ds

E(th) < C’16_02 0 B(=)? )

for all t > 0.

)
60 Co

Remark 7.1. Note that C; = Cy 82 E(vo,0), Cy = and

142k 16(k+96
L 160k +9)

Ch —
0 B3 mo

with k& such that 20k = % .
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Proof of Theorem 7.1: Let us consider the perturbation of E(v,t) given
by:

(7.3) F(u,t) = E(v,1) +k [2(/(8), v()) + 6 |/ (2) 2]

where k is a constant to be fixed; see Remark 7.1. This method of working with a
perturbed energy F(v,t) was employed by Komornik—Zuazua [11]. We also refer
to Nakao-Narazaki [15] and Hosya—Yamada [9].

Since
(7.4) 2k (W0, 00)] < 5 WP+ kIO
we obtain:
(7.5) 2 (0 (1), v(t)) + kS |o(t)|? > _§ W ()2

Then, from (7.4) and (7.5) we modify (7.3), obtaining:

F(v,t) > <% - %) W' ()| +

mo

16 32

my

3233

O + L a(t, v,0) .

o + ;

ko1
If we take k > 0 such that 5 < 1 we obtain:

(7.6) Flo,t) > %E(v,t) .
From (7.3) we also have
(7.7) F(v,t) < E(v,t) + kW' @) + (k+6)|v®))?,

since 16
W'(t)]? <2E(v,t) and |u(t)]* < WTBQ(t)E(v,t) :
0

From (7.7) we obtain:

F(v,t) < (1+2k)E(v,t) + (2—?) 16 3 E(v,t)
142k 5 k+0 9
< LR BB + (S ) 1662 Blo.t)

since ((t) > F(0) = Fp. Then:

(7.8) F(v,t) < Co[?E(v,t) ,
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with
142k n 16 (k+9)

Co= 53 mo

Taking the time derivative of F'(v,t) we have:

dF dE

+ k(207 (1), 0(0)) + 210/ (8) 2 + 28 (v' (1), v (1))] -
From the first estimate in Section 7, we have:

dE 0
. — < —— @)
(7.10) <)

Multiplying both sides of (6.5); by v and integrating on (0, 1), we obtain:

(7.11)  (W"(t),0(t) + 17 M< |v(t )||2) [o(@)[]* + a(t,v(t), v(t)) +
+ (b(y,t) %’ v(t)) + (c(y,t) g_;’ U(t)) F (), 0(t) = 0.

We verify that:

(712 (.02 o0)] < 2(5) 1w s oo
(1.1 (et 52 00)| < 5 (5) Iotone.
(7.14) afto(®).0(0) = 75 (52 - %) (oI

Then, from (7.12), (7.13) and (7.14) we obtain:

(7.15)  a(t, v(t), v(t)) + (b(y,t) gj, v(t)) + (c(y,t) ?, v(t)) >

1 /
> W(—w )||v<t>||2—9rv (1)
> 9/ ()2 ,

since ? — 44" > 0.
Then, from (7.11), (7.15) and by definition of M()\), we have:

(7.16)  (v"(1),v(t) + 0(v'(8),v(t)) < — o5 [l(®)]* = 8%13 lo@®I* + 91w/ (1)[?
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Then, substituting (7.10) and (7.16) in (7.9), we obtain:

dF 0
< 2 / 2 2/
< WP +R[2 O - 5 o

v(®)]? - 453 lo@)I* + 18|v’(t)|2]

dF ) s kmo 2 kmy 9
N - — <0.
= +.( 20k)|v(oy + 4ﬁ2|hmtﬂl 452||( )" <0

0
Taking k£ such that 20k = 7 Ve get

dF

1) mo mq
1 - 24— 2 2l <.
We have:
2
0 <af(t,v(t),v(t)) < 852 o)l
which substituted in (7.2) gives:
B(,t) < < 0O + S u(t)|2 + ok [o()])
=9 16 32 3238 ’
1) ) ) m
' o < 2@+ 2 1 4) .
(1) B < FWOP + 55 (155 WO + s O]
Substituting (7.18) in (7.17) we obtain:
(7.19) %—kiE(v?t)gO forall t>0.

From (7.8) and (7.19) we obtain:

ft ds
F(v,t) < F(vo,0)e ~weg Joaior )

From (7.6), this last inequality implies:

) t ds

E(v,t) < 2F(vp,0)e % Jos)? g

Applications

Case 1. Suppose that m > 2, is an integer and

Bt)=(t+to)m, ttg>0.
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We have:
m Co m=2
E(v,t) < Cpye w2t

which gives an exponential decay.

Case 2. Suppose that m = 2. Then
B(t) = (t +1t0)"/? .

‘We obtain:
E(v,t) < Ci(t+ to)fCQ , Cy >0,

which gives an algebraic decay.

Remark 7.2. We have:
s = e 2 [ (o
([ Gy w) 5 [ (52)

28y =248, 28dy—dr, 282%-9
oxr Oy

then the above quantity, in the cylinder @), is transformed, into the noncylindrical
domain @), in the following one

+B/ 3! +8 2
E(u,t) = 1[1/ (@@—l—u)d—i—% (%) da

If

20612 6 0
G ) L0 ) G ]
We have M()\) = %A n %v. Then
B = o [1 [ Y o L ([ (2 )
LG (5 ]

The last integral is positive, then:

(7.20)

E(u,t) >

1 -~
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where

B3z Ou 1 —~( [8/0u\?
ut 2/ (———i— )d:c+§M(/_ﬁ<a—m)dx>

The behaviour of F (u,t) depends essentially on 3 because

t _ds

E(u,t) < BC’leCQ 05?2 |

N =

For example, if 3(t) = (1+t)"/2, then
1 ~
5 But) < C1(141)*%

and we need Cy > 2 to have a decay of algebraic type. Note that C's depends on

mo, 0 and (.

Remark 7.3. We found in (7.20)
et s+ Ge)

e (LG ) [T 3G (G e
Observe that

(u')? = ( —i—% %—%x%>2< %(u'—i—%x%f—i—%(%x%f

we have 1 =
E(u,t) < ﬁE(u,t), forall t>0.
Now suppose that 3 is strictly positive and
, o 1
0<f(t) < — forall t>0

120Cy B



with
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L < C<W>1/2 .
120 Co B0 2

Note that &, mg, Cy, C are the constants fixed above.
We obtain

or

) t ds ta
__0 7<—2/—d
6000/0 R = b

5 [tds G2
(g0 ) 3) < EGEN

Substituting in the inequality of Theorem 7.1, we obtain:

Co Bo
B2(t)

E(v,t) < E(v,0) .

But E(u,t) < 23 E(v,t). This gives

< 200561 E(’U(),O)

But) < B
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