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ON QUASIMONOTONE INCREASING SYSTEMS
OF ORDINARY DIFFERENTIAL EQUATIONS

G. Herzog

Abstract: We prove an uniqueness theorem for the initial value problem

x′(t) = f(t, x(t)), x(t0) = x0, in case that f is quasimonotone increasing with respect

to an arbitrary cone, and is satisfying a one-sided Lipschitz condition with respect to a

single linear functional. An inequality concerning the difference of solutions is obtained.

1

Let Rn be ordered by a cone K with IntK 6= ∅. A cone K is a closed convex

subset of E with λK ⊆ K, λ ≥ 0, and K ∩ (−K) = {0}. We define x ≤ y ⇔
y− x ∈ K, and we use the notation x¿ y for y− x ∈ IntK and K∗ for the dual

cone, i.e., the set of all ϕ ∈ (Rn)∗ with ϕ(x) ≥ 0, x ≥ 0. We have IntK∗ 6= ∅.
For x, y ∈ E, x ≤ y we define the order interval [x, y] = {z ∈ E : x ≤ z ≤ y}.
Now we fix p À 0. Then Rn can be normed by a norm ‖ · ‖p, such that

{x ∈ Rn : ‖x‖p ≤ 1} = [−p, p] (see e.g. [4]). For x, y ∈ Rn we have 0 ≤ x ≤ y ⇒
‖x‖p ≤ ‖y‖p, ‖x‖p ≤ c ⇔ −cp ≤ x ≤ cp, and −y ≤ x ≤ y ⇒ ‖x‖p ≤ ‖y‖p.
Now let f : [0,∞) × Rn → Rn be continuous, and let (t0, x0) ∈ [0,∞) × Rn.

We consider the initial value problem

x′(t) = f(t, x(t)) , x(t0) = x0 .(1)

The function f is called quasimonotone increasing (in x) (in the sense of

Volkmann [7]) if

(t, x), (t, y) ∈ [0,∞)× Rn, x ≤ y, ϕ ∈ K∗,

ϕ(x) = ϕ(y) =⇒ ϕ(f(t, x)) ≤ ϕ(f(t, y)) .
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According to a theorem of Volkmann (see [7]) we have the following assertion

if f is quasimonotone increasing:

Let [a, b] ⊂ [0,∞), and let u, v ∈ C1([a, b],Rn). Then

u′(t)− f(t, u(t))¿ v′(t)− f(t, v(t)) , t ∈ [a, b] ,
u(a)¿ v(a) =⇒ u(t)¿ v(t) , t ∈ [a, b] .

Next, if ψ ∈ IntK∗, there are constants α, β > 0 with

α‖x‖p ≤ ψ(x) ≤ β‖x‖p , x ≥ 0 .

We consider the following condition (P):

There exists ψ ∈ IntK∗ and L ∈ C([0,∞),R) with

ψ
(

f(t, y)− f(t, x)
)

≤ L(t)ψ(y − x) ,

(t, x), (t, y) ∈ [0,∞)× Rn , x ≤ y .

We will prove the following theorem:

Theorem 1. Let f : [0,∞)×Rn → Rn be continuous, quasimonotone increas-

ing and satisfy (P). Then we have:

1) Problem (1) is uniquely solvable on [t0,∞).
2) Let x(t; t0, x0), t ≥ t0 denote the solution of problem (1). The following

inequality holds:

∥

∥

∥x(t; t0, x0)− x(t; t0, y0)
∥

∥

∥

p
≤ β

α
exp

(

t
∫

t0

L(s) ds
)

‖x0 − y0‖p ,

(t0, x0), (t0, y0) ∈ [0,∞)× Rn , t ≥ t0 .

Remarks.

1. The amazing on Theorem 1 is that a one-sided estimate with respect to a

single linear functional leads to the norm inequality in Theorem 1.

2. Theorem 1 leads to stability results for the differential equation in prob-

lem (1). For example if f(t, 0) = 0, t ≥ 0, and lim sup
t→∞

∫ t
0 L(s) ds <∞, then

the origin is stable in the sense of Liapunov.
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3. Theorem 1 also leads to results on periodic solutions of the differential

equation in problem (1). If for example f is periodic in t with period T then

there exists a unique T -periodic solution on [0,∞) if log( β
α
)+
∫ T
0 L(s) ds < 0.

4. Condition (P) does not imply uniqueness to the left. Consider for example

f : R2 → R2, f(x, y) = (− 3
√
x, 3
√
x), with K = [0,∞)2 and ψ(x, y) = x+ y.

5. Conditions related to (P) can imply existence and uniqueness of the solution

of initial value problems in ordered Banach spaces (see [2]).

6. For related uniqueness conditions in case that K is the natural cone we

refer to [6].

Proof:

1) Let x : [t0, ω)→ Rn be a solution of problem (1), with [t0, ω) a right maxi-

mal interval of existence. We will show that ω=∞. We define g : [0,∞)×Rn→ Rn

as g(t, x) = f(t, x) − f(t, 0). The function g is quasimonotone increasing. Let
λ : [0,∞)→ [1,∞) be defined as λ(t) = ‖f(t, 0)‖p + 1. We have

−f(t, 0) + λ(t) pÀ 0, −f(t, 0)− λ(t) p¿ 0 , t ∈ [0,∞) .

Now choose µ > 0 with −µp ¿ x0 ¿ µp, and let u : [t0, ω1) → Rn, respectively

v : [t0, ω2) → Rn be solutions (both defined on a right maximal interval of exis-

tence) of the initial value problems

u′(t) = g(t, u(t))− λ(t) p , u(t0) = −µ p ,

respectively

v′(t) = g(t, v(t)) + λ(t) p , v(t0) = µ p .

We have u′(t)− g(t, u(t))¿ 0, t ∈ [t0, ω1), u(t0)¿ 0, which implies u(t)¿ 0,
t ∈ [t0, ω1) (since g(t, 0) = 0, t ≥ 0). Analoguous v(t)À 0, t ∈ [t0, ω2). Moreover

we have

ψ(u′(t)) = ψ
(

f(t, u(t))− f(t, 0)
)

− λ(t)ψ(p) ≥ L(t)ψ(u(t))− λ(t)ψ(p) ,

ψ(u(t0)) = −µψ(p) .

Applying common results on differential inequalities (see e.g. [8]) we get that

there is a function

h ∈ C
(

[t0,∞), (0,∞)
)

with

ψ(u(t)) ≥ −h(t) , t ∈ [t0, ω1) .
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Hence

‖u(t)‖p ≤
ψ(−u(t))

α
≤ h(t)

α
, t ∈ [t0, ω1) .

This implies by standard reasoning that ω1 = ∞. Analoguous we get ω2 = ∞.
We have for t ∈ [t0, ω) that

u′(t)− f(t, u(t)) = −f(t, 0)− λ(t) p¿ 0 = x′(t)− f(t, x(t)) ,

and

x′(t)− f(t, x(t)) = 0¿ −f(t, 0) + λ(t) p = v′(t)− f(t, v(t)) .

Since u(t0)¿ x(t0)¿ v(t0) we have

u(t)¿ x(t)¿ v(t) , t ∈ [t0, ω) .

This implies ω =∞.

Next we show that problem (1) is uniquely solvable. Let xi : [t0,∞) → Rn,

i = 1, 2 be solutions of problem (1). We redefine u and v. Let µ > 0 and let

u : [t0,∞) → Rn, respectively v : [t0,∞) → Rn be a solution of the initial value

problems

u′(t) = f(t, u(t))− µp , u(t0) = x0 − µp ,

respectively

v′(t) = f(t, v(t)) + µp , v(t0) = x0 + µp .

We have u(t)¿ xi(t)¿ v(t), t ∈ [t0,∞), i = 1, 2. Hence

u(t)− v(t)¿ x1(t)− x2(t)¿ v(t)− u(t) , t ∈ [t0,∞) .

Therefore

‖x1(t)− x2(t)‖p ≤ ‖v(t)− u(t)‖p , t ∈ [t0,∞) .

Since

ψ
(

v′(t)− u′(t)
)

≤ L(t)ψ
(

v(t)− u(t)
)

+ 2µψ(p) , t ∈ [t0,∞) ,

and

ψ
(

v(t0)− u(t0)
)

= 2µψ(p) ,

we have that ψ(v(t) − u(t)) (and therefore ‖v(t)− u(t)‖p) tends to 0 as µ tends
to 0+. Hence x1 = x2.
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2) Let x0, y0 ∈ Rn, µ > 0, and let

u0 =
x0 + y0 − ‖x0 − y0‖p p

2
− µ p , v0 =

x0 + y0 + ‖x0 − y0‖p p
2

+ µ p .

We have

‖v0 − u0‖p = ‖x0 − y0‖p + 2µ ,
and

u0 ¿ x0 ¿ v0 , u0 ¿ y0 ¿ v0 .

We again redefine u and v. Let u : [t0,∞) → Rn, respectively v : [t0,∞) → Rn

be the solution of the initial value problem

u′(t) = f(t, u(t))− µ p , u(t0) = u0 ,

respectively

v′(t) = f(t, v(t)) + µ p , v(t0) = v0 .

We have for t ∈ [t0,∞) that

u(t)¿ x(t; t0, x0)¿ v(t) , u(t)¿ x(t; t0, y0)¿ v(t) ,

and therefore

u(t)− v(t)¿ x(t; t0, x0)− x(t; t0, y0)¿ v(t)− u(t) ,

which implies
∥

∥

∥x(t; t0, x0)− x(t; t0, y0)
∥

∥

∥

p
≤
∥

∥

∥v(t)− u(t)
∥

∥

∥

p
.

Now

ψ
(

v′(t)− u′(t)
)

≤ L(t)ψ
(

v(t)− u(t)
)

+ 2µψ(p) , t ∈ [t0,∞) .

We get

ψ
(

v(t)− u(t)
)

≤ exp
(

t
∫

t0

L(s) ds
)

ψ(v0 − u0) +

t
∫

t0

exp
(

t
∫

s

L(τ) dτ
)

2µψ(p) ds ,

for t ∈ [t0,∞). Therefore
∥

∥

∥x(t; t0, x0)− x(t; t0, y0)
∥

∥

∥

p
≤
∥

∥

∥v(t)− u(t)
∥

∥

∥

p
≤
ψ
(

v(t)− u(t)
)

α
≤

≤ β

α
exp

(

t
∫

t0

L(s) ds
) (

‖x0 − y0‖p + 2µ
)

+
2µψ(p)

α

t
∫

t0

exp
(

t
∫

s

L(τ) dτ
)

ds ,

for t ∈ [t0,∞).
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As µ tends to 0+ we get for t ∈ [t0,∞) that

∥

∥

∥x(t; t0, x0)− x(t; t0, y0)
∥

∥

∥

p
≤ β

α
exp

(

t
∫

t0

L(s) ds
)

‖x0 − y0‖p .

2

Now we will illustrate Theorem 1 by some examples:

1. Let R3 be ordered by the natural cone K={(x1, x2, x3) : xi ≥ 0, i=1, 2, 3}.
Now consider the quasimonotone increasing function f : [0,∞)×R3 → R3,

f(t, x) =











−2(1 + t) ( 3
√
x1 + x1) + 3

√
x2 + 3

√
x3

3
√
x1 − 2 (1 + t) ( 3

√
x2 + x2) + 3

√
x3

3
√
x1 + 3

√
x2 − 2 (1 + t) ( 3

√
x3 + x3)











.

Choosing ψ(x) = x1 + x2 + x3 we find

ψ
(

f(t, y)− f(t, x)
)

≤ −2 (1 + t)ψ(y − x) , t ∈ [0,∞), x ≤ y .

Choosing p = (1, 1, 1) we have ‖x‖p = max{|x1|, |x2|, |x3|}, α = 1, and
β = 3. According to Theorem 1 we have
∥

∥

∥x(t; t0, x0)− x(t; t0, y0)
∥

∥

∥

p
≤ 3 exp

(

−(t− t0) (2 + t− t0)
)

‖x0 − y0‖p ,

t ≥ t0, x0, y0 ∈ R3.

2. Let R2 be ordered by the natural cone K = {(x1, x2) : xi ≥ 0, i = 1, 2}.
Now let g ∈ C([0,∞), (0,∞)) and consider

A(t) =









−1 g(t)

2
1

2g(t)
−1









.

The function f : [0,∞) × R2 → R2, f(t, x) = A(t)x is quasimonotone

increasing. Although the eigenvalues of A(t) are (independent of t) − 1
2

and −3
2
, there are functions g such that the origin is unstable. Setting
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g(t) = exp(5 sin2(t)) it is numerically evident that xi(t; 0, (1, 1)) → ∞,
i = 1, 2 as t→∞ (comp. the example of Markus and Yamabe [5]). Setting
ψ(x) = x1 + x2 we have

ψ(A(t)x) ≤
(

max

{

g(t)

2
,
1

2g(t)

}

− 1
)

ψ(x) , x ≥ 0 .

According to Theorem 1 x(t; t0, x0)→ 0 as t→∞ for every x0 ∈ R2 if for

example there exists q < 1 with

max

{

g(t)

2
,
1

2g(t)

}

≤ q , t ≥ 0 .

3. Again let R2 be ordered by the natural cone K={(x1, x2) : xi ≥ 0, i=1, 2}.
Let g1, g2 : R2 → R be continuous with g1(x1, .) increasing for every x1 ∈ R
and g2(·, x2) increasing for every x2 ∈ R. Then f : R2 → R2,

f(x) =

(

max{x1, 0} g1(x1, x2)

max{x2, 0} g2(x1, x2)

)

,

is quasimonotone increasing. Equations of the type x′= f(x) are describing

the interaction of two cooperating species (see e.g. [1]). If for example

ψ(x) = x1 + x2, p = (1, 1), and there is a constant L ∈ R with

ψ
(

f(y)− f(x)
)

≤ Lψ(y − x) , x ≤ y ,

then we have according to Theorem 1 that

∥

∥

∥x(t; t0, x0)− x(t; t0, y0)
∥

∥

∥

p
≤ 2 exp

(

L(t− t0)
)

‖x0 − y0‖p ,

for t ≥ t0, x0, y0 ∈ R2.

4. Let R3 be ordered by the cone K = {(x1, x2, x3) : x3 ≥
√

x2
1 + x

2
2}. It

holds that K = K∗, and now we choose ψ(x) = x3 (ψ ∈ IntK∗), and

p = (0, 0, 1) ∈ IntK. We have ‖x‖p = |x3|+
√

x2
1 + x

2
2, α =

1
2
, and β = 1.

For the cone K in this example it is much more complicated to decide

wether a given function is quasimonotone increasing or not, than for the

natural cone. Applying the Mean Value Theorem the following assertion is

easy to prove (for general cones):
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Let f : [0,∞) × Rn → Rn be continuous and let f(t, ·) ∈
C1(Rn,Rn), t ≥ 0. Then f is quasimonotone increasing if
and only if fx(t, x) is a quasimonotone increasing matrix for

every (t, x) ∈ [0,∞) × Rn. (Here a matrix is called quasi-

monotone increasing if the linear mapping induced by this

matrix is quasimonotone increasing.)

For matrices we have the following sufficient condition to be quasimonotone

increasing in our example:

The matrix

A =









a1 b c

−b a2 d

c d a3









is quasimonotone increasing if a3≥max{a1, a2}, compare [3].
It is worth to be mentioned, that there are quasimonotone

matrices A of this type such that A+ λI is never monotone

(λ ∈ R). (Example of Lemmert and Volkmann: Set c = 1
and all other entries 0).

Now consider the quasimonotone function f : [0,∞)× R3 → R3,

f(t, x) =









−3x1 − x2 − x3 + cos(x1 − x2 + 6 t)

x1 − 3x2 + cos(x1 − x2 + 6 t)

−x1 − 2x3









.

We have

ψ
(

f(t, y)− f(t, x)
)

≤ −ψ(y − x) , t ∈ [0,∞), x ≤ y .
Hence according to Theorem 1

∥

∥

∥x(t; t0, x0)− x(t; t0, y0)
∥

∥

∥

p
≤ 2 exp

(

−(t− t0)
)

‖x0 − y0‖p ,

for t ≥ t0, x0, y0 ∈ R3. Since 2 exp(−π
3
) < 1 we have that the differential

equation in problem (1) has a unique π
3
-periodic solution on [0,∞), which

is assymptotically stable.
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