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ON QUASIMONOTONE INCREASING SYSTEMS
OF ORDINARY DIFFERENTIAL EQUATIONS

G. HERZOG

Abstract: We prove an uniqueness theorem for the initial value problem
' (t) = f(t,z(t)), x(tg) = zo, in case that f is quasimonotone increasing with respect
to an arbitrary cone, and is satisfying a one-sided Lipschitz condition with respect to a
single linear functional. An inequality concerning the difference of solutions is obtained.

Let R™ be ordered by a cone K with Int K # (). A cone K is a closed convex
subset of F with AK C K, A > 0, and K N (—K) = {0}. We define z < y &
y—x € K, and we use the notation z < y for y —x € Int K and K* for the dual
cone, i.e., the set of all ¢ € (R™)* with p(z) > 0, z > 0. We have Int K* # (.
For z,y € E, © < y we define the order interval [z,y| ={z € E: z < z < y}.

Now we fix p > 0. Then R" can be normed by a norm || - ||,, such that
{x e R": ||z||, < 1} = [—p,p] (see e.g. [4]). For z,y € R" we have 0 <z <y =
lelly < ol ol < ¢ & —cp< 2 < cp, and —y < 2 < y = ally < [l

Now let f: [0,00) x R™ — R™ be continuous, and let (tg,xg) € [0,00) x R™.
We consider the initial value problem

(1) (1) = f(ta(t),  w(to) = 0.

The function f is called quasimonotone increasing (in z) (in the sense of
Volkmann [7]) if

(t,z),(t,y) € [0,00) x R", <y, pe€ K",
() =oy) = o(f(t,2) <o(fty)) .
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According to a theorem of Volkmann (see [7]) we have the following assertion
if f is quasimonotone increasing:

Let [a,b] C [0,00), and let u,v € C1([a, b], R™). Then

W(t) = ftu(t) <o'(t) = f(to(t), te€lab],
u(a) €< v(a) = u(t) <o(t), telab].

Next, if ¢ € Int K*, there are constants «, 8 > 0 with
aflzll, < (z) < Bllzlp, ==0.
We consider the following condition (P):

There exists ¢ € Int K* and L € C([0,00),R) with

$(fty) - f(t2) S L) vy - ) |

(t,x),(t,y) € [0,00) x R"  x<y.

We will prove the following theorem:

Theorem 1. Let f: [0, 00)xR"™ — R™ be continuous, quasimonotone increas-
ing and satisfy (P). Then we have:

1) Problem (1) is uniquely solvable on [tg, o).

2) Let x(t;to, o), t > to denote the solution of problem (1). The following
inequality holds:

t
B
Hm(t;to,xo) — z(t; tg,yo)Hp < o exp(/ L(s) ds) llzo — vollp
to
(to, o), (to,y0) € [0,00) x R™, ¢ >1q .

Remarks.

1. The amazing on Theorem 1 is that a one-sided estimate with respect to a
single linear functional leads to the norm inequality in Theorem 1.

2. Theorem 1 leads to stability results for the differential equation in prob-
lem (1). For example if f(¢,0) = 0, ¢ > 0, and limsup f; L(s) ds < oo, then
t—o0

the origin is stable in the sense of Liapunov.
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3. Theorem 1 also leads to results on periodic solutions of the differential
equation in problem (1). If for example f is periodic in ¢ with period T" then
there exists a unique 7T-periodic solution on [0, o) if log(§)+f(;‘FL(s) ds < 0.

4. Condition (P) does not imply uniqueness to the left. Consider for example
i R2 = R2, fo,y) = (— ¢z, ¢7), with K = [0,00)? and ¥(z,) = 2 +y.
5. Conditions related to (P) can imply existence and uniqueness of the solution

of initial value problems in ordered Banach spaces (see [2]).

6. For related uniqueness conditions in case that K is the natural cone we
refer to [6]. o

Proof:

1) Let z: [to,w) — R™ be a solution of problem (1), with [tp,w) a right maxi-
mal interval of existence. We will show that w=o00. We define g: [0, c0) xR"™ — R"
as g(t,x) = f(t,x) — f(¢t,0). The function g is quasimonotone increasing. Let
A: [0,00) — [1,00) be defined as A(t) = || f(¢,0)]|, + 1. We have

—f(t,0) +AX(t)p>0, —f(t,0) —A{t)p<k 0, tel0,00).

Now choose p > 0 with —up < xg < up, and let u: [to,w;) — R™, respectively
v: [to,wz) — R™ be solutions (both defined on a right maximal interval of exis-
tence) of the initial value problems

u'(t) =g(tu(t) —A@E)p,  ulto) =—pp,
respectively
v(t) = gt (1) + At p,  v(to) = up.

We have u/(t) —g(t,u(t)) < 0, t € [tg,w1), u(tp) < 0, which implies u(t) < 0,
t € [to,w1) (since g(¢,0) =0, t > 0). Analoguous v(t) > 0, t € [tp,w2). Moreover
we have

P(u'(t) = w(f(M(t)) - fl(t, 0)) = A(t)(p) > L(t)p(u(t)) — A1) ¥(p) ,
Y(u(to)) = —pt(p) -

Applying common results on differential inequalities (see e.g. [8]) we get that
there is a function

h € C(Jto, ), (0, 00))

with
Y(u(t)) > —h(t), teto,wr) .
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Hence
h(t)

lu®)lly < -

<

1/1(—“(75)) ’ t e [thwl) ]

This implies by standard reasoning that w; = oco. Analoguous we get wy = 0.
We have for ¢ € [tp,w) that

u'(t) = f(tu(t) = —f(£,0) = AMt)p < 0 =2'(t) — f(t, (1)) ,

and
2'(t) = f(t,2(t) =0 < —f(£,0) + A(t) p = 2'() — f(t,0(t)) -
Since u(ty) < z(tp) < v(tg) we have

u(t) < z(t) <o(t), teltow).
This implies w = o0.

Next we show that problem (1) is uniquely solvable. Let z;: [tg,00) — R™,
i = 1,2 be solutions of problem (1). We redefine u and v. Let p > 0 and let
u: [tg,00) — R™, respectively v: [tg,00) — R™ be a solution of the initial value
problems

u'(t) = f(t,u(t) —pp,  ulto) =z0—pp ,
respectively
o'(t) = f(t, () +pp,  v(to) =z0+ pp .

We have u(t) < z;(t) < v(t), t € [ty,0), i = 1,2. Hence
u(t) —v(t) < x1(t) —z2(t) K v(t) —u(t), tety,00).

Therefore
[1(t) = z2(t)[lp < lo(t) —u®)llp, t € [to,o0)

Since

B (v'(8) =) < L) (v(t) —u(®)) +2p0(p), € [to,00)

and
v(v(to) = ulto)) =21 (p) ,

we have that ¢ (v(t) — u(t)) (and therefore ||v(t) — u(t)||,) tends to 0 as p tends
to O+. Hence 1 = 9.
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2) Let zg,yp € R, u > 0, and let

zo + Yo — ||lro — yollp ro + Yo + ||ro — Yollp p
up = 5 - —up,  w= 5 4 up

We have
llvo — UOHp = ||zo — yOHp +2u,
and
uy L g L vy, UKLy <KL .

We again redefine u and v. Let u: [tg,00) — R"™, respectively v: [tg,00) — R”
be the solution of the initial value problem

W'(t) = f(t,u(t) —pp,  ulto) =uo
respectively

V(t) = f(t,o(t) +up,  v(to) = o -
We have for ¢ € [tg,00) that

u(t) < z(t;to, z0) < v(t),  u(t) < z(tito, yo) < v(t) ,
and therefore
u(t) —v(t) < x(t;to, wo) — x(t; to, yo) < v(t) — u(t) ,

which implies

|t t0.20) = a(t:t0.90)|| < [fo(t) —u(t)]

Now

$(v'(0) = u'(1)) < L (o) —ul®) +2p%(p),  te [to,00) .
We get
0 (o) — u(t)) < exp( [L(s)ds) w0 — o) + [exp( [L(r)dr) 20 0(p)ds

for ¢ € [tp, 00). Therefore

Haz(t;to,xg) — x(t; to,yg)Hp < Hv(t) — u(t)Hp < — <

t

exp(/ L(s) ds) <||:v0 —yollp + 2,u) + 2”:5(2)) /exp(/L(T) dT) ds ,

to

<

el

for ¢ € [to, 00).
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As p tends to 0+ we get for ¢ € [tp, 00) that

t
Hl‘(t; to, o) — »’U(t;fo,yo)Hp < g eXP(/L(S) dS) lzo — yollp - m

Now we will illustrate Theorem 1 by some examples:

1. Let R3 be ordered by the natural cone K ={(x1,z2,23): x; > 0, i=1,2,3}.
Now consider the quasimonotone increasing function f: [0, 00) x R? — R3,

—2(1+t) (Yz1 + 1) + T2 + Y73
ftx) =1 Yo —2(1+1) (o2 + 22) + Y23
YT+ YTz —2(1 +1t) (Y73 + 73)
Choosing ¥ (x) = z1 + z2 + z3 we find
W(fty) — f(t2) S 20+ )0y —2), te[0,0), z<y.

Choosing p = (1,1,1) we have |z|, = max{|z1|,|z2], 23|}, o = 1, and
B = 3. According to Theorem 1 we have

|t t0.20) —a(t:0.90)|| | < Bexp(—(t —t0) 2+~ 10)) llz0 — woll, -
t> lo, To,Y%0 € RS'

2. Let R? be ordered by the natural cone K = {(x1,z2): z; > 0, i = 1,2}.
Now let g € C([0,00), (0,00)) and consider

29(t)

The function f: [0,00) x R? — R2 f(t,z) = A(t)z is quasimonotone
increasing. Although the eigenvalues of A(t) are (independent of t) —3

and —%, there are functions g such that the origin is unstable. Setting
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g(t) = exp(5sin?(t)) it is numerically evident that x;(t;0,(1,1)) — oo,
i=1,2 as t — oo (comp. the example of Markus and Yamabe [5]). Setting
Y(x) = x1 + x9 we have

PY(A(t)x) < (max{@, f(t)} — 1) Y(x), x>0.

According to Theorem 1 z(t;tg, 29) — 0 as t — oo for every zg € R? if for
example there exists ¢ < 1 with

max{?,%(t)}gq, t>0.

. Again let R? be ordered by the natural cone K ={(z1,22): #; > 0, i=1,2}.
Let g1, 92: R? — R be continuous with g;(x1,.) increasing for every x; € R
and g2 (-, x2) increasing for every xo € R. Then f: R? — R2,

max xl,O 1\Z1, T2
[ _( {1,0} g >>

max{zz,0} ga(w1, 72)

is quasimonotone increasing. Equations of the type 2’ = f(z) are describing
the interaction of two cooperating species (see e.g. [1]). If for example
Y(x) = x1 + x2, p=(1,1), and there is a constant L € R with

o(f) — f@) <Ly -2), =<y,

then we have according to Theorem 1 that
Hﬂ?(t;toafﬂo) - x(t;to,yo)Hp <2 eXp(L(t - to)) lzo — yollp
for t > to, Zo,Yo € R2.

. Let R? be ordered by the cone K = {(x1,79,23): w3 > (/23 +23}. Tt
holds that K = K*, and now we choose ¥(x) = z3 (¢ € Int K*), and
p=(0,0,1) € Int K. We have ||z, = |z3| + \/2? + 23, a = §, and f = 1.
For the cone K in this example it is much more complicated to decide
wether a given function is quasimonotone increasing or not, than for the
natural cone. Applying the Mean Value Theorem the following assertion is
easy to prove (for general cones):
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Let f: [0,00) x R™ — R™ be continuous and let f(¢,-) €
CHR™ R"), t > 0. Then f is quasimonotone increasing if
and only if f, (¢, x) is a quasimonotone increasing matrix for
every (t,z) € [0,00) x R™. (Here a matrix is called quasi-
monotone increasing if the linear mapping induced by this
matrix is quasimonotone increasing.)

For matrices we have the following sufficient condition to be quasimonotone
increasing in our example:

The matrix

ap b ¢
A= -b a9 d
c d as

is quasimonotone increasing if a3 > max{ay, as }, compare [3].
It is worth to be mentioned, that there are quasimonotone
matrices A of this type such that A+ Al is never monotone
(A € R). (Example of Lemmert and Volkmann: Set ¢ = 1
and all other entries 0).

Now consider the quasimonotone function f: [0,00) x R — R3,
—3x1 — w9 — a3+ cos(x; — xo + 61¢)
flt,x) = x1 — 3xg + cos(xy —x2 + 61)
—xr1— 23
We have
w(fty) — f(t0) < —vly—2), ten,00), z<y.

Hence according to Theorem 1
Hx(t; to, o) — w(t;tmyo)Hp <2 eXp(—(t - to)) lzo — yollp

for t > tg, x0,y0 € R3. Since 2exp(—%) < 1 we have that the differential

™

equation in problem (1) has a unique F-periodic solution on [0, c0), which

is assymptotically stable.
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