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LINES ON DEL PEZZO SURFACES
WITH K% =1IN CHARACTERISTIC 2 IN THE SMOOTH CASE

P. CrRAGNOLINI and P.A. OLIVERIO

Abstract: In the case when the branch divisor of the antibicanonical map is smooth,
we prove the existence in characteristic 2 of 240 (—1)-curves on a smooth projective
surface with ¢ = 0, K % =1, |-Kg| ample and containing an irreducible reduced curve,

concluding in this case the proof of Castelnuovo’s criterion of rationality.

1 — Introduction

In this paper we prove the following theorem:

Theorem 1.1. Let S be a smooth, projective surface over an algebraically
closed field K of characteristic 2. Assume that:

() 4(5) =0;
(ii) —Kg is ample;
(iii) K2 =1.

Then the anti bicanonical map ¢2 = ¢|_ak| is a 2:1 morphism whose image is
a quadric cone Q C P3. Suppose moreover that the branch divisor A C Q of ¢
is smooth. Then S contains 240 (—1)-curves.

More precisely, there are 120 distinct planes H in P? not passing through
the vertex V' of the cone Q such that ¢p5(H) = I'y + 'y where I'1, I'y are two
(—1)-curves such that I'y - I'y = 3. Every (—1)-curve arises in this way.

Call a pair {I'1,T's} of (—1)-curves of type (1,1,1), (2,1), (3) if I'1NI'y contains
3 points, respectively 2, respectively 1 point (cf. 2.3) and denote n(1,1,1)s MN2,1);
n(3) the number of such pairs. Then the possible values of n(y 1,1y, n2,1), n(3) are
shown in (72) and table 1.

Received: July 6, 1998; Revised: November 23, 1998.
AMS Subject Classification: 14J26.
Keywords: Del Pezzo surface; (—1)-curve.



60 P. CRAGNOLINI and P.A. OLIVERIO

Since the surface S can’t be minimal, Theorem 1.1 gives together with the
results proved in [10], [11] a proof in positive characteristic of Castelnuovo’s
rationality criterion ¢ = P» = 0 for a smooth algebraic surface in all cases but
K% =1, Char(K) = 2 and the branch divisor of ¢2 is not smooth (cf. 2.5 (iv)).
Indeed, (see [5]) a minimal surface S for which ¢ = P» = 0 is either rational or
else

(1) Pic(S) = Z[-Ks],
(2) |—Kg| contains an irreducible reduced curve,
(3) Ki>o.

We are left to exclude the second possibility, which is done in [10] in the case
K% > 2 and in [11] and Theorem 1.1 in the case K% = 1 when Char K # 2 or the
branch divisor A of ¢9 is smooth.

Our proof uses elementary methods and is based on the fact that the
(—1)-curves in S occur as the pull-back ¢4(H) having at least 3 singular points
of planes H C P3 (see 2.2).

There exists a Segre-Hirzebruch Fyg surface F over A = P! and a morphism
Y: F — P3V with the property that the planes through @ € A such that their pull-
back is singular above ) are parametrized up to a purely inseparable extension
of degree 2 by the image 1/(IFg) of the fiber of F over @ (see (7)). Then the pairs
of (—1)-curves correspond to the triple points of ¥ (F), hence to triples of nodes
of the double curve A of 1.

To prove the irreducibility of A and count the number of nodes, we determine
the contribution to its arithmetic genus of the other singularities, and this requires
heavy computer calculations. On the other side, we find all the (—1)-curves on
the given surface and not just prove the existence of one and get information on
their type and configuration.

To perform the computations in section 6 we used CoCoA, a Grobner-basis
based symbolic system (by A. Capani, G. Niesi, L. Robbiano, Dept. of Mathe-
matics, University of Genova) running on a unix machine.

The rationality criterion is proved or sketched in [1], [2], [3], [4], [6], [8], [9]-

Notations and conventions

If C is a curve, p,(C) = h'(C,0¢) is its arithmetic genus. If S is a smooth
surface, q(S) = h!(S,0g), Ks is a canonical divisor and P»(S) = h%(S,2K5).
A (—1)-curve in S is an irreducible curve I' s.t. T? =T Kg = —1.
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Char (K) is its characteristic of the field K. F, is the Segre-Hirzebruch surface
P(Op1 & Op1(d)). P™ is the projective space of the hyperplanes of P". T'Qq is
the tangent space of the hypersurface Q at QQ € Q.

K{[[t]] is the ring of formal power series, () is its maximal ideal and K[[¢]]* =
{& € K[[t]: £(0) # 0}; on(t) € (t"). By a formal neighborhood of a point P on
a curve C' we mean the finite set of local parametrizations of C' by power series
centered at P; each parametrization corresponds to a branch of C' through P.
If f is a polynomial, fx = g—};; if £(t) € K[[t]] then &'(t) = %.

M(n,m,S) is the vector space of m x n matrices with entries in a ring S;
it M € M(n,m,K), Sgp(M) is the subspace of K" generated by its rows.
If CharK = 2 and N = (n;;) € M(n,m,K), then N2 = (n?)), NI = (/m;;).

W is the orthogonal of the subspace W of K™ with respect to the standard
bilinear symmetric form !X -Y. #A is the number of elements of a finite set A.
Im f is the image of the function f.

2 — The anticanonical model of S

Let S be a smooth, projective surface defined over an algebraically closed
field K of characteristic 2 satisfying the hypothesis (i), (ii), (iii) of Theorem 1.1.
Remark that (i), (ii), (iii) imply that every divisor in the linear system |—Kg|
is irreducible and reduced, and |—Kg| has projective dimension equal to 1, as
shown in [11]. The following facts up to 2.3 are based on [7] and proved in [11].

If S=K[Xo, X1, W, Z] is graded by deg Xo= deg X; =1, degW =2, deg Z =3,
and R = @,,50 Rn, Rn = H(S, —nKg), is the anticanonical ring of S, there ex-
ists a Surjecti;fe graded K-algebra homomorphism & — R mapping X¢, X1, W, Z
to xg,z1 € R1, w € Ra, 2z € R3. An isomorphism §/(0) = R is induced, where
o= 2%+ 7Za(Xo, X1, W) +b(Xo, X1,W), and 0, a, b are homogeneous of degree
6, 3, 6 respectively.

s 15w < P@1,1,2,3)

o2 N
Q — P(1,1,2)
R

]P:3
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If ¥ = ProjR C P(1,1,2,3) = ProjS§ is the anticanonical model of S, then
n: S — X, n=(xg,r1,w,2), is an isomorphism, as —Kg is ample.

The map j: P(1,1,2) — P3, j(zo,71,w) = (23, 1071, 2%, w), induces an iso-
morphism between P(1,1,2) and the quadric cone @ = {TyT, — T% = 0} in P3,
and the antibicanonical map ¢9: S —P3, ¢g = (23, 2071, 2%, w), factors through
Q. The projection IT: P(1,1,2,3) — P(1, 1, 2) sending (zq, x1,w, 2) to (zg, z1,w)
induces 7: ¥ — P(1,1,2), which corresponds to the antibicanonical map after
the identifications S = ¥ and P(1,1,2) = Q, which we shall assume from now
on. It follows that ¢o is 2:1 onto Q.

In conclusion, ¥ is the 2:1 covering of P(1,1,2) defined by

(1) o=2%+Za(Xo, X1,W) +b(Xo, X1,W) =0 .

Remark 2.1. Let V = (0,0,0,1) be the vertex of the quadric cone Q. Then
(i) if E € |—Kg| then ¢2(E) is a line in Q passing through the vertex V';

(ii) if I' € S is a (—1)-curve, then ¢a|r: I' — ¢o(I') is 1:1 and ¢2(T") is
a smooth conic in Q, the intersection of Q with a plane H in P3 s.t.
V& H;

(iii) pa(A*) =pa(A*) =4.u
Key-lemma 2.2. Let H be a plane in P3, H % V; then the divisor ¢4(H)
has a (—1)-curve as component <= it has (at least) 3 (maybe infinitely near)

singular points. If this happens, ¢5(H) = I'y + I'y where T'; are (—1)-curves for
i=1,2andI'y-T'9 = 3. Every (—1)-curve in S arises in this way. n

Remark 2.3. If I'{,I'5 is as in 2.2 then I'1 + I'y is smooth outside the rami-
fication and singular in T'1 NTy, hence 1 < #(I'1NT) <3 and 1 NTy = A*NT.
We call T'1,T's a pair of (—1)-curves of type (1,1,1), respectively (2,1), respec-
tively (3) if #(T; NT2) is 3,2, 1. w

Let a=as+ a1 W, b= Fg+ B4W +,32W2 +60W3, where oy, §; € K[X(), Xl]z'.

Remark 2.4. The non-singularity of Y implies:

(i) Bo #0;

(ii) a #0.

Proof: The non-singularity of ¥ in P(1, 1,2, 3) is equivalent to

{UZO’XOZO'X1:O'W:O'Z:0}:@.
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(i) If Bp = 0 then X is singular in 771(0,0,1).
(ii) Otherwise, o = 22 + b.

We want to show that ) # {bx, = bx, = bw = 0}. The last set is equal to
{63 ﬁ%Xi + B4 /Bin + BgXi =0, W?=04}i—12. The first equation has 10 solutions
in P!; if for i = 0 we have a solution (ag,a;) € P! with a; # 0, then Euler’s The-
orem on homogeneous functions, gives the relation Xobx, + X1 bx, = 0 and we
are done. The same if for i=1 we have a solution (ag, a1) with ag#0. We are left
with the case 37 5§X0+ 04 ﬂZXO—F ﬁgXO =X{" and 32 522X1 + G4 ﬁle + ﬂgxl = 60.
Multiplying the first by X2, the second by X7, summing up, using Euler’s re-
lation Xo B4x, + X1 Bax, = 0 for d even and the fact that CharK = 2, we get
0= X2 X1+ X? X{0 as polynomials, excluded. u

It follows that m has A = {a = 0} as branch divisor and A* = 77 !(A) as
ramification divisor; then A = j(A) and A* = n~!(A*) are the branch divisor
and the ramification divisor of ¢o. The vertex V = (0,0,0, 1) of the quadric cone
Q is an isolated branch point, since S is smooth.

Remark 2.5. We have:
(1) pa(A7) =pa(4) = 4;
(ii) V€ AC Q and deg A =3, V being the vertex of the cone Q;
(iii) A is smooth <= {a3 = a3 =0} = () in P!;
(iv) the following cases may occur:

(1) if A is smooth, then it is a twisted cubic curve in P3;
if A is not smooth then it decomposes into:

(2) a smooth conic and a line;

(3) three distinct lines;

(4) a double line and a line;

(5) a triple line.

Proof:
(i) holds because ¢a|a+: A* — A is purely inseparable and by 2.1 (iii).
(ii) The fact that the vertex V of the cone Q lies in A follows from (iv);
moreover A* € |[-2Kx| so deg A - deg ¢y = A* - (—2Ky) = 6.
(iii) If {ag = an = 0} # (), we may choose projective coordinates s.t.
a=XW+Xpq, g€ K[Xo, Xl]g. Then (aXO, ax, aw) = (0, 0, 0) in (X(), X1, W) =
(0,1,¢(0,1)).
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If a1 and ag have no common roots, we may assume projective coor-
dinates s.t. a1 = Xg, a3 =mX; + Xoq, m € K— {0}, ¢ as before. Then if
(ax,,ax,,aw) = (0,0,0), we get X9 =0, X; =0, ¢ =0, W=0, excluded.

(iv) (0,0,1) € A implies V' = j((0,0,1)) € A. Suppose A smooth; we may

assume a1 = Xo and after W+ n~'W + ¢, q as before, X; — nX; for suitable
n € K — {0}, we get a = XoW + X3. Then

(2) a: P! —p3 alxg, 1) = (:cg, w%xl, wozc%, a;:i‘)

is an isomorphism and A = a(P!) is a twisted cubic curve.

If A is not smooth, we get in the same way for a the normal forms W Xy,
X1(X1 + Xo) (X1 +pXo), pe K—{0,1}, X#(X; + Xo), X}, which correspond
to cases (2), (3), (4), (5).m

From now on we make the assumption of Theorem 1.1 that A = A is smooth.
We choose coordinates (g, r1,w) on P(1,1,2) so that a = XoW + X} and A =
a(P') is the twisted cubic curve defined by (2).

We shall identify A to P! by a and choose on A the canonical coordinates
X = (z0,71) of P, so that V= (0,1).

3 — The surface F and the map ¢: F — P3V

To apply 2.2, we look for hyperplanes H in P for which H Z V and ¢}(H)
has at least 3 singular points.

Let H = {hoTp + hiTy + hoTs + h3Ts = 0}, hy # 0. Consider H € P3V and
choose on P3V the dual coordinates; then H = (hg, h1, ha, h3) and

Z2+aZ+b=0,
hng+h1X0X1+h2X22+h3W:0.

¢5(H) : {
For Q/ = (CC(),CCl,'w) S A - {(0707 1)}7 Q = j(Q/) = (xgaxoxlax%w) € A— {V}?
consider
Fo= {H ePV| H>Q, 3Q* € ¢;1(Q) s.t. ¢3(H) is singular in Q*} .

The singularity of ¢5(H) at @* can be expressed by

< 1.

h1X1 h1Xo ha 0

ax,Z +b ax,Z +b awZ +b a
(3) rank( Xo X, OX; X, Ow W ) ,)
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As h3 #0,if Q ¢ A then Fo =0, whileif Q € A—{V}

Fo#0 <= (hs fx, +hi X1 fw)(Q) = (h3 fx, +h1 Xo fw)(Q) =0 .

Let
X2 XoX1 X W

(4) M = 0 Xiow O 00X, € M(3,4,8) .
0 Xoow 0 ox

Euler’s Theorem applied to o gives Xgox, + X10x, = 0. The smoothness of
A implies rank M(Q') = 2 if Q' € A— {(0,0,1)}, rank M((0,0,1)) = 1. Let
Sr(M(Q')) be the subspace of K* generated by the rows of M(Q'), and denote
by L the orthogonality in K* with respect to (X,Y) = X - Y.

Remark 3.1. ForallQ € A—{V}, L(Q) = P(Sg(M(Q")) is a line in P? and
Q € L(Q) C TQq, where T Qg is the tangent plane to Q in (). Moreover

) Fo = P(SrOI@Q))") = {H e P | H 5 L@} c P
is a line in P3V which represents the net of the planes in P containing L(Q). u

To determine Fy, remark that zo # 0 for Q" € A — {(0,0,1)}, so we can
multiply by X the equations to modify degrees. Looking at the rows of M, we
define the following matrix

X2 X 0 X§ 0
N = 0 X1(TX0 X00'X0+WO'W X%UW
X3 ox, + Wow Xv()UX1 0 Xg ow

Remark 3.2. N € M (3,4,Ss) and the following properties hold:
(i) rank N(Q') =2 VQ' € A;
(i) Sr(N(Q)) = Sr(M(Q)*" VQ € A—{(0,0,1)}.

Proof: Using Euler’s relation we get Sgr(N) C Sg(M)*; moreover we have
rank N(Q') > 2 if Q' € A—{(0,0,1)}, rank M((0,0,1)) = 2. u

Using the relation XoW = X3 on A and remarking that W has exponent
at most 3, we can eliminate W multiplying by Xg. On A we have Z = Vb, so
taking the square we eliminate Z. Thuslet N = Xg N2 where N is the matrix
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obtained taking the square of each entry of N. Then

_ ) Ry 0 Ry O
(6) N=|wl|=| 0o A R & |,
1) Ry Fo 0 G

Ry = X§ 0%, + X0 W2y =B85 X1°+ XoS, S eK[Xo, Xi)7,
Ry =X, Ry=XxM}MX{,
F =X{ X{ok, = XiX{o%,, F=X}o%k, .

6 yv4 2 10 2
GlzXOXIUW’ GQZXO ow -

Remark 3.3. The following properties are consequences of 3.2.
(i) N € M(3,4,K[Xo, X1]18);
(i) Rovo+ Rivi+ Ravo =0 and for all X = (2, 71) € P! = A we have:
(1) rank N(X) = 2, rank (Ro, Ry, R2)(X) = 1;
(2) 2o #0 = 1y(X), 12(X) are independent;
(8) X=V=(0,1) = 11 (V), (V) are independent.
(i) Sr(N(Q)) = SrR(MP(@Q)) ", VQ=j(@Q)eA—-{V}.u

The Kernel of the surjective linear map K3 — SR(N), Y — yovo +y1v1 + yava,
where Y = (Yp, Y1, Y2), is spanned by the relations (Ry, R1, Rs).

Let V = IP’% X K?{/ L P! be the trivial vector bundle with fiber K3 and let
K={(X,Y)eV|Y € ((Ro,Ri1,R2)(X))} be the sub bundle generated by the
relations. Define

F=PWV/K) L Pl=Ax=A4
to be the associated P!-bundle and denote by Fx = p~!(X) its fiber. Let
P: F—P%  (X,Y) = yoro(X) + y1v1(X) + yaa(X) .

Let (_): P* — P" be the purely inseparable morphism (z;) — (z?) and (_)[%]

(2
be the inverse bijection.

Remark 3.4. From 3.3 it follows

(i) ¢ is a morphism and for all X = Q = j(Q') € A the restriction map
Ylr,: Fg — P?Y s linear, so that ¢(Fg) = PSr(N(Q)) is a line in P3V.
Moreover, if Q # V then

(") U(FQ)'H) = F(Sn(M(Q)") = Fo .
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(ii) For H € Fg, we have H D L(Q) > Q and deg A = 3, so v is finite,
#~Y(H) < 3 for all H € 1(F), and ¥(F) is a surface. u

We have determined Fg, the planes H for which ¢5(H) is singular over Q;
by 2.2 the (—1)-curves on S correspond to Fg, N Fg, N Fg,, hence to the triple
points of the surface ¥ (F). The proof of Theorem 1.1 reduces therefore to show
that the surface ¢(F) — {hg=0} contains 120 triple points.

We need normal forms for F;, G; up to coordinate change in P(1,1,2,3). The
projective transformations PGL(2,K) of IP’%Imxl) send any 3 distinct points to
any 3 distinct points; since we are in case (1) of 2.5 (iv) as in that proof we may
fix 1 of the 3 points and get a = Xo W + X3.

After Xg — 63/3X0 and W— W/ﬁé/s, we may assume [y = 1. Denote
by O the square of a polynomial. Then Z — Z + v1(X¢, X1)(W) + 71 (X0, X1),
v € K[Xo, X1)i, gives b— b+anW +avyz+0 = W3+ (B2 + Xom) W2 +
(,84 + Xovs + X% ’)/1) W + B + X% ~v3 + 0. Choose =1 so that (ﬁg + Xo ’}/1) W2 =
cX?W? =0 and 73 so that 84 + Xoy3 + X{ 71 = c3 X7

Hence a = XoW + X3 and b = W3 + 3 X{ W + XoX1H? + L?, where H =
C()Xg + 1 X X1 + 02X12 and L = dng + legXl + d2X0X12 + ng% + dyW X1,
with ¢;, d; € K, (co,do) # (0,0) because ¥ is smooth above (1,0,0).

Setting t = X;/X it follows

Fl = t4F2 )
G1=t'Gs ,
(8) Ro=X{®+EX;X{*+ X5x3H",
Fy = X0X{° + es X(X1' + XOXTH? + X§X{L* + X"H*
Ga = X§X12 + X0 X7 + & XX + 3 X' X{ + X X1 H? + X§°L? .
The Pl-bundle F is a Segre-Hirzebruch surface Fy; = P(Op1 @ Opi(d)).
We want to find generators of PicF and determine d.
For i = 1,2 and j = 0, 1,2 let ry = Rj(l,t), fl = Fi(l,t), g = Gi(l,t);
ty =1/t =Xo/X1, rv; = R;(tv,1), fvi=Fi(tv,1), gv;=Gi(tv,1). Then
Toz(t9+63t7+th2)2:t2 4, r=1, T2:t4,
(9) fo=tB t et + R+t 2+ 0

g =t 2+ + At +est” +th> 412,
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where h = ¢ + c1t + cot?, | = do + dit + dat? + dst3 + dgt*. Tt follows
d
g = —92(t) = 9,

(10) g =cot+crt+eat®+ ettt

thge + fo = g* .

Proposition 3.5. For Q € A — {V'}, the line L(Q) defined in 3.1 verifies
(i) L(Q) is the tangent to A in Q < g(Q) =0 < ¢4(Q) = 0;
(i) L(Q) 3V = n(Q) =0,

From the geometry of the twisted cubic A and (10) it follows {g2 = g5, =0} =
{fa=g2=0} =0, i.e. go has 12 distinct roots in K.

Proof:
(i) The line L(Q) = P(Sp(M(Q')) is tangent to A = «a(P!) in Q

o' (t) = (0,1,0,%) € Sg(M). But ¢ # 0, so the condition is equivalent to the
fact that the 2 vectors (1, X1ow, Xoow) and (t?,0x,,0x,) are dependent, which
is equivalent — by Euler’s relation and by (X¢ow,ox,) # (0,0) (smoothness
of A) — to ox, + t*Xoow = 0 and to X§(o%, +t*X3 of,) = 0 and finally to
t'go+ f2=g* =0

(ii) V=(0,0,0,1) € (Sr(M(Q')) <= the first 3 columns of M have rank 1
= fw=0+= g2(Q)=0.n

Let U = {(.’Eo,l’l) e P! | xo 75 O}, Uy = {(wo,xl) e P! | Ro(l‘o,l‘l) 7& 0}

By 3.3 (ii) it follows that {U, Uy} is an open cover of P!, Uy > V, and that
vo(X), v2(X) are independent for X € U, vi(X), vo(X) are independent for
X € Uy. Local affine coordinates on V/K are

on 7"71([]) t=m1/x0 and yo, y2, Wwhere y; =yilu ;

on N (Uy) tv =xo/x1 and yvi, yve, where yv,; = yiluy, -

Let F = UU(j‘m where U= p_l(U) = (joUU:Q, ﬁvz p_l(Uv) = [7{/71U0V,2

—

o= {(X.Y) € U| Yo #£0},

Ty = {(X,Y) € U|Ys #£0},
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Ova = {(X.Y) € Oy | Yva # 0} .

Ova = {(X,Y) € Uy | Vi #0} .
Affine coordinates are
on Uy (t,up) where uy = y2/y0 ,
on U, (t,ug) where us = yo/y2 ,
on Uyy  (tv,v1) where vi =yya/yv1 ,
on l~]V72 (tv,v2) where va = yv1/yve -
Let ¥, ¥, Yi, vy, be the restrictions of 4 to U, Uy, Ui, ﬁw
By (6), we have v = (t4,0,1,0), v2 = (r0, f2,0,92), vva= (0, fv.1, Tvo, 9v1),
vya = (rvo, fva, 0, gve). It follows

Vg =Yoo +Yora, Wy, =Yvavva+Yvarve,
Yo = 1o+ ugva = (t*+ uro, uofa, 1, uog2)
(11) o = ug g + 1o = (t*ug + 1o, f2, u2, g2) ,
Yy =vya +vivve = (v1rve, fuit+vifve, rvo, gvit+vigve)
Yy =vavv1 +vyva = (v, vafvat fv2, varvo, vagva+ gv2) -

We define on F the divisors D, E, Fx = p~1(X) for X € PL.
Remarking that Rg # 0 in Uy

D = ¢*{hy=0} = {Yo X2 + Y1 Ry = 0}
= {0, %X8), (Ov,YvaRo = 0)}
= {([7071)’ (Uz,u2), (Uy1,1), (ffv,z,vz)} ,

E ={(U,%2), (Ov, X{Yv1+X§Vi)}

= {(ﬁo,uo), (Ua,1), (U1, 1+tHor), (Uv,z,vri-t%/)} -

Proposition 3.6. D, E, Fx are irreducible, smooth, rational divisors on F.
If we denote their classes in PicF respectively by d,e, f and by h" the class
of a hyperplane HY in P3V, then

f2=0, d-f=e-f=1, d-e=4,
P )=d=e+14f, d®>=18, ¢=-10.



70 P. CRAGNOLINI and P.A. OLIVERIO

Hence F is a Segre—Hirzebruch surface F1g. Moreover, for all (a,b) € P
(12) ¢*{ah1 + bhg = 0} = F + {afg(t) + bgg(t) = 0}|U + TIFV

wherer =1<a#0andr=2<a=0.
In particular, *{h3 = 0} = E 4 {g2(t) = 0}|7 + 2Fy, according to 3.5 and
the fact that {hs =0} = {HVe P3| HV> V}.

Proof: FE is a divisor since y%(x‘ll yv1 +agyve) =t* #£0in UNUy.

The other assertions follow from the local definition of D, E and the fact that
Y*(hY) = e + 14 f, which is a consequence of (12).

The proof of 12 goes as follows: *{ah; + bhs = 0} = {a(Y1F1 + YoF?) +
b(Y1G1 + YQGQ) = 0} = {(0, YQ(GFQ + bGQ)), (U\/, (YV71+ t%/}/Q) (CLFl + bGl))},
((6), (8)). The value of r follows from aFy +bG1 = aXoX{7 +bXZ X106+ X3(...)
and FV = {Xo = O} [ |

Corollary 3.7. Let Lg be the line {h; = hg = 0} C P3V.

(i) ¥(E) and ¥ (Fy), for all X € P!, are lines in P3V;

(il) ¢(F) =9¢(Fy) = Lo and Y(Fx) # Lo, for all X € U;
(iii) ¢|g: E — Ly is a purely inseparable morphism of degree 4;
(iv) degy(F) =18 and ¢: F — () is a birational morphism.
Proof:
(iii) E[; = {Y2=0} and ¢(E N Uy) = Yoro = Yo(t*,0,1,0).
The second assertion of (ii) follows from the injectivity of ¢|g.

(iv) deg(F) divides d? = 18 and deg ) (F) > 12, because by 3.5 (ii), 3.6 and
(i), (ii) above ¥(F) N {hs = 0} contains the distinct lines ¢ (F,,), i = 1...12,
where ¢; are the distinct roots of go. n

Remark 3.8. The critical set {rankdy) < 2} of ¢ is E'U Ugpetig(p)=0} Fp-
From 3.4 (ii) it follows that the singularities of 1(IF) are

(13)  Sing(y(F)) = Lo U U ¥ (F,) U {double points} U {triple points} .

9(p)=0
Proof: By 3.4(i), the critical set is {(z,y) € F| %(z,y) = 0}. In U
by (11) we have 9y /0t = Y5(0,t*gh,0,95), while in Fy = {tyv = 0} C Uy,

\%
ad)ﬁv/atv =Yyi1+ t%/YVQ) (0, f{/71,0,g{/71) and f‘//’lz 1 for ty = 0. n
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4 — The map £ and the double curve A CF

The map 1 can be better understood through the following definition. For
every t € U C P!, the lines ¢(F;) and Lo = ¥(E) in P3V are distinct by 3.7
and intersect in ¢(E N ), hence span a plane &(t) = (¢(Fy), Lo) € @, where
® ={HYC P3| HYD Lo} = {ah1 +bh3 = 0] (a,b) € P!} is the pencil of planes
containing Lo. A morphism &: P! — ® is defined, and we have

1
S F E IP)3V (i)[Q]PS\/
L o2 lp
P04 2= pt &, papt

Remark 4.1. Choose on the pencil ® the projective coordinates for which
{ahi + bhg = 0} = (a,b), and let oo = (0,1) € ®. Then

(i) & (oc0) =c1+4 ...+ c12+V, where ¢; are the distinct roots of gs.
Hence ¢ is separable, £(V) = oo, deg{ = 13 and oo is not a branch

point.
(ii) In the affine coordinate b/a on ® — {oc}, fort € U, ty € Uy we have
4 6
(14 =L-vsl quy=L gm=2
92 92 gvi 92

(iii) The critical {d§ = 0} set of { is R = {p € U| g(p) =0} = {p1...pda},
where p; are the distinct roots of g and 1 < d < 4 ((10)). The ramifi-
cation of £ at p; is 6n;, where n; is the multiplicity of the root p;. The
branch locus of € is E(R} = {p}...p4} € ®—{oo}; it follows that &|R is
injective.

(iv) Up to the identification P! = A, the singular set of A* = ¢2_1(A) is
¢35 ' (R) and the contribution of ¢y (p;) to pa(A*) is n;; A* is rational.

Proof: By (12) ¢*{ah; +bhg = 0} = E+ Fy + F,p), where F,; =
{afa(t) + bga(t) = 0} 5 + (n—1)Fy = >, Fx,, >;ri = 13. The relation
t*ga 4+ fo = ¢g* in (10) and 3.5 (ii) imply that fs, g» have no common roots, so
{Flap) }ap)ept 18 a pencil without fixed component and Fi, ) = p*§*(a,b). The
case a=0 proves (i), while looking at F(, )|, Flap)lg, we get (ii); (10) gives £,

(iii) As oo is not a branch point, R C UN{gs # 0}, s0 R = {¢'= ¢%/g3 = 0}.
The other assertions follow from deg g = 4, and the relation (10).
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(iv) A local computation shows that A* is singular in 771(Q) <= L(Q) is
tangent to A in @Q; then we use 3.5 (i). If As is a copy of A and ¢’: Ay — A is the
K-linear Frobenius map, 7! 0 ¢2 is a normalization of A*, hence the assertion
on n;. A* is rational since p,(A*) =4 =degg = n; (2.5(1)). n

To understand ¢ (F), let HY = (a,b) € ®, a plane in P3V containing Lj.

If H' ¢ ¢(R), ie. (a,b) # (1,p7), then ¢*(HY) = E + Fy + F(,3), where
Flap) = Fe, + ...+ Fes, {e1,...,e13} = £ '(a,b). The scheme intersection
between HY and ¢(F) is HY - ¢(F) = . *(HY) = 5Ly + (Fe,) + ... + (Feyy)
because of 3.7 (ii), 3.4 (i). The 13 lines ¢)(F,,) are all distinct and intersect L in
different points, since | g is injective. One of the ¢ (F,,) is Ly < HY = 0o <
a=0.

If HY = (1, p%) € E(R), HY-$(F) = 5 Lo+ mb(F,) +(Fer) +. .- +6(Fery ).

From 3.8, we see that ¢(F) is singular along Lo and the d lines ¢ (F(; ,)). The

other singularities in H" arise from the intersections of the lines ¢ (F, ); there are
13 —-m

(5

describe by transversality a curve A in ¢(F), which is the closure of

U 9@ ne(Fer)
e#e*E]P’l
£(e)=€(e*)=HV €®

and the triple points are its nodes. Let A = ¢*(A) be the so-called double curve
of . The restriction ¢: A — A is a 2:1 morphism.

To count the nodes of A, we need local parametrizations. If (a,b) € ® and
e € £ 1(a,b), let A, be a formal neighborhood of A NTF,, by which we mean a set
of parametrizations of A at its points. Let A(qp) = Uece—1(ap) Ae; We study A(qp)
in the cases (a,b) € & — ({(R) U {c0}), (a,b) € £(R), (a,b) = cc.

) double points and triple points. Varying H" € ®, the double points

Case 1. Suppose (a,b) € ® — (£(R) U {cc}); then £ 1(a,b) = {e1...e13} C
UN{ga #0, g #0}. Let e, e* € £ 1(a,b), e # e*; then ¥(F.) and 1)(Fe+) lie in the
plane (a,b) € ® and must intersect outside Lo, s0 ¢~ ()(Fe) Ntp(Fex)) = { P, P*},
where P € F,—E, P* € F« —E, hence P, P* € Us.

Therefore we look for power series solutions of the equation

Ya(t, ug) = Pa(t™, u3)
t £t
with (¢, ug2) centered at P, (t*,u3) centered at P*.
As g(e), g(e*), ga(e), gale”) are all # 0, by (1) we have

_ (ugtt + 2 g(t)* ug
) = ( O 92(t)> '

(15)
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It follows that (15) is equivalent to the 2 conditions

" { () = ()
t £t
(17) L(t,t%) ( 2 ) = B(t,t")
U
where
92(t")  g2(t) 0
(18) L= 4 prd , B= 12 g4(t) 42 g4(t*)
92(t)  g2(t%) g2(t) ga(t*)

If det L = (t + t*)* is invertible, every solution of (16) gives a unique solution of
(17). We are assuming that (a,b) € £(R) is not a branch point, so there exists a
power series t*(t) € K[t — ¢e]] such that

dt*

(19) (W) =¢@t), tle)=e, —(e)#0.

As t +t*(t) € K[t — €]]*, (17) has solutions ua(t), u3(t) € K[[t — €]]. Let

(20) A(t) = (tua(t)),  A™(E) = (), ua(t)) -

Then A, \* are parametrizations of A at P = (e,uz(e)), P* = (e*,u3(e)) and if
P(P) = ¢(P*) is not a triple point there are no other branches through these
points, hence A is smooth, horizontal in neighborhoods of P, P*. Using (10), we
can compute the explicit solution of (17)

94(t) - + t*2 QQ(t), U,Q(t) — t*2 92(t) .

(21) us(t) = G+t

Remark that the situation is symmetric in t, t*, i.e. t** = t¢.

It remains to see what happens near the points of A which are inverse images
of triple points of A. Let P € F., P* € Fex, P° € Feo, e,e*,¢® € £ 1(a,b),
e, *,e® distinct s.t. Y(P) = ¥(P*) = ¢(P°) is a triple point in the plane (a,b),
intersection of the distinct lines ¢(F.), ©¥(Fex), ¥(Feo). Then P, P* P° ¢ E,
hence P, P* P° € Up, and as before we get 2 parametrizations for A near P:
App+(t) = (t,uap p+(t)) relative to (P, P*) and Ap po(t) = (t,ugp po(t)) relative
to (P, P°).
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By (21), thp p«(€) + thp po(€) = (e* + €°)? g*(e) # 0 because e* # ¢° and
g(e) # 0, hence there are 2 smooth branches of A through P with different
tangents. In conclusion, A has a node in P and, by symmetry, in P*, P°.
If H = o(P)[1/2 = (P2 = (P°)[1/2]] then by 2.2 ¢5(H) = I'y + 'y and
I'1,Ty is a pair of (—1)-curves of type (1,1,1) (see 2.3), i.e. having 3 distinct
intersection above a(p(e)), a(p(e*)), a(p(e®)) (figures 1 and 2).

P
)\ . * P
E
Fcl Fe ]Fe* ]FC13
Fig. 1: A(g ) for (a,b) € @—(&(R) U {o0}).

- TP) = 9 = (P
)\’jp< Ap*. p p* Apo.p pe (a,b)

P,P° AP*,P" AP‘),P*

(Fe) o(Foo )
P (Fer )
E T 7 )
F, Fex Feo

Fig. 2: Nodes of A(g ) for (a,b) € @—(£(R) U {o0}).

Remark 4.2. Ap_(¢r)u{oo}) = Uap)ed—(¢(R)U{oo}) Mab) has only nodes as
singularities, is contained in U, and the number of nodes in Ap_(e(R)U{o0}) €quals
3 times the number of triple points of Y(F) in Upgveo—(¢(r)ufoo) H -

FEach triple point corresponds to 1 pair of (—1)-curves of type (1,1,1).

If \ denotes the class of A in PicF, then \- f = 12.
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Proof: If e € £&71(® — (RU {o0})), ¢ (a,b) = {e,e1,...,e12}, A is
parametrized at its intersection with F. by Ace, () as above. So F. intersects
Ap_(¢(R)U{oo}) transversally in 12 points and A - f = 12. »

Case II. Suppose (a,b)=&(p), p€R. Then £*((a,b)) = mp+er1+...+€13-m,
and e; ¢ R by 4.1(iii), m > 2. Let e € {ey,...,e13—m}. Since e is not a
ramification point and £(p) = £(e), there exists t*(t) € K[|t — p]] such that
E(t*(t)) = £(t), t*(p) = e. Let n be the multiplicity of the root p of g (4.1). Then
the vanishing order of t* at p is 6n and equals the vanishing order of ¢’ at p. The
corresponding solutions of (15) are the parametrizations

(22) Ape = (Luz(t)), Ay = (1), us(t))
of A, where us is defined by 21 and
4 (%
(23) wi(t) = W“;g + 12 ga(t (1)), wd(t) =22t () (1) .

(t+t

It follows that N (p) = (1,ub(p)) # (0,0), i.e. that branch of A is smooth at
(p,uz(p)), while \*(p) = (0,0), i.e. A is singular at (e, u3(p)).

Since (a,b) - Y(F) =5Lo+my(F,) + 9 (Fe,) + ... +(Fey;_,,), Fe intersects
A in 13—m points; 12—m of them are not necessarily distinct, correspond to
Y(Fe) Np(Fe,), e € {e1,...,e13-m} — {e}, and lie in the smooth, transversal to
F. parametrizations A, ¢, of A.. The last is singular, different from the previous
ones by 3.5 and 2.5, corresponds to ¢ (F) N1(F,) and lies in A} .. Thus Fe - A =
12 —m + F.- Im (A*) = 12 because F.- Im (A*) = m, the vanishing order at e of
€(t). As A f =12, we have determined all A., consisting of the 12—m smooth
curves Ac e, and the singular curve A7

(24) Ae - {)\evei}61'6{61,...,613_m}—{6} U {)\;k),e}

Ae,e; may intersect e, in F forming a node iff i(F.), ¥(F,), ¢(F;) intersect
in a triple point, as in case I; )\;e does not intersect A, .

To study A,, remark that ¢(F,) intersects ¢ (Fe,) in 13 —m distinct points:
if H2 € ¢(F,) N(Fe,) N(Fe,), then H-A > 4 by 3.5, excluded by 2.5. These
intersections lie in the 13 — m parametrizations A, .,, transversal to IF,. Since
F, - A = 12, further parametrizations of A, giving m — 1 intersections with F,
must be found, arising from the self intersections of m(F),).

We need m and the power series of £ at p. Remark that to find the normal
forms we have fixed 1 of 3 points in P*. We may thus assume (see 4.1)

(25) pZO, 621, COZO, 92(0):d0#07 g(p):07 f2(1>:
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By (9), (10), (14) it follows that

go =B+ B2+ 33+ A3t + B0+ d3 0+ c3t”
+ (cg +dg)2 8 + 17 + 112

(26) g = cit+eat:+ Jatd it
) = t"+g"/g2 = ant' +agt® +art’ + Y ait’
i>8
hence m € {4,6,7} if n =1, as
¢ ) 6
¢y di -l
(27) ag =1+ , ag = , ay = —; .
2 da da

Case II splits as follows, n being the multiplicity of the root p of g.

I114. n=1,m=4hence c; #0, dg+c} # 0, ag # 0. We look for solutions
of (16) with ¢ close to t*. Set t*= ¢ (1+(); then (16) becomes

{ &) =¢(t(+9)

28
(28) ¢ £0.

Substituting and dividing by ¢* ¢, we get an affine curve C in the plane (¢, ()
29)  asP+ast’(+art’ +art’(+os5(t,¢) =0, o05(t,¢) € (t,()°

C has in (0,0) a triple point with tangents ( =€;t, j=1,2,3, €; roots of
(30) ay X + agX + a7 € K[X] .

Since a7 # 0 and there is no X2, it follows that €; # 0 and that the ¢; are distinct;
so (0,0) is an ordinary triple pomt with branches t — (t,(;(t)), ¢(0) = 0,

)
(;(0) = ¢;. We get 3 solutions of (16), t;(t) = ¢t(1+(;(t)) € K[[¢]]. The

corresponding parametrizations of A, are given by (17), (18), (20), (21)
g'(t)
t2¢(t)?

Hence ), (t) are transversal to F, and P, ; = A, ;(0) = (0, cl/e ), A 5.;(0)=(1,0).
As F,-Tm(),;) = 1, we have found the 3 missing intersections, and

~ 2
(1) Aps(t) = (g (1),  iny(t) = 5+ (1+G0) o) -

(32) Ay = N im0 U{ i Him1,23 -
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All Xpe;, Ap; are smooth, transversal to IF, and their intersections with I, are
respectively P,; = X, (0), which are distinct by 3.5, 2.5, and pp,j, which are
distinct since €; are distinct. It may be P,; = ]—T’p,j = P. Consider in this case
the plane H = w(P)[%]. We already know that ¢4(H) has 1 singular point above
a(p(p)) and 1 above a(p(e;)); it may have 2 above a(p(p)).

Remark 4.3. Let PcFg, Q€U and H=1(P)!1/? a plane containing L(Q).
By 3.4, ¢3(H) has at least 1 singular point above a/(Q).
Let I = I(H, A; Q) be the intersection multiplicity of H, A at «(Q). Then

(i) I>landI>2<+= Pec EUU,rF,={dp=0}NT;
(ii) I=3+= PeDNF,, pe€R <= P = (p,uz) € Uy with uz = 0.
Let P = (0,u2) € F,NTs.

(iii) ¢5(H) has 2 infinitely near singular points above a(Q) <=
<= w9y Is a root of

(33) X3 4+ dixX? +di(dy+ &) € K[X];

(iv) ¢5(H) has 3 infinitely near singular points above a(Q) <= we have
ug = 0
(34) do+c2 =0
di+di+c3=0;

(v) the 3 distinct points P, ; are exactly the points of F,NU s.t. ¢3(H) has
2 infinitely near singular points above a/(Q);

(vi) assuming (25), P,j = P,i = P <= ¢; = ¢3/dy <= if H = w(P)[%]
then ¢5(H) =I'y + I'y with I'; having intersection 2 above a(p(p)) and
1 above a(p(e;)), i.e. I'1,T'g is a pair of (—1)-curves of type (2,1) (2.3).

Proof:
(i) follows from 3.5, 3.8.

(i) If I = 3, we must be in case (i) and P ¢ E, since otherwise H 3 V
by 36 and V € A, V # a(Q), degA = 3. So P € F, N Us, we may assume
p =0 and in the coordinates (t,us) of Uy P = (0,a). Then L(Q) is tangent to A
at «(Q), and the pencil of planes containing L(Q) is isomorphic to A sending a
plane to its third intersection with A. So there is exactly 1 plane H s.t. I = 3,
ie. HN(A—{a(Q)}) =0. And if P € D, i.e. a =0, then )(P) = (ho, h1,0, h3),
so aft) = (1,t,t%,t3) ¢ H for t # 0.
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(iii) Let P = (0,u2) € F, N Uy; then H = tho(P)I/2 = (0,0, /uz,dp). In
the affine chart of P(1,1,2,3) containing 7~ *(a(Q)) with coordinates z = Z/X§,
w=W/XZ t=X1/Xo, ¢3(H) is defined by

2 3

+(w+t)z+b=0,

(35) z (2w ) z
Vuz t® +dow =0 .

Substituting w = dal,/ug t2 in the first equation, after z + dy — z we get
PH AL+ 324+ BE+CB+ D+ B+ Ft5 =0

where A = \/uz/dy, B =d} + \Juz, C =do+ ¢}, D =d3}, E = c3. Blowing up at
(t,z) = (0,0), which is singular as expected, the strict transform lies in z = tv;
after v — v+v/ B, we get v2+ At v+(AVB+C) t+t? v+(vVB+D) >+ Et3+ Ft* =0.
So we have 2 infinitely near singular points at (¢, z) = (0,0) <= AVB + C =0,
from which (iii) follows.

(iv) Suppose AvVB+C = 0; blowing up at (t,v) = (0,0), the strict transform
liesinv=ts and is s+ As++vB+ D+ (E+s)t+Ft> = 0. Let a; be the roots of
X2+ AX +VB+D; after s +a; — s weget s>+ As+(E4a;)t+ts+Ft2=0.
So we have 3 infinitely near singular points at (¢,z) = (0,0) <= A= FE+a; =0,
which is equivalent to 34.

(v) Just check that c‘ll/eg, j =1,2,3, are roots of 33.

(vi) P,; = (0, c/€5) and by (25), (20), (21) Py; = (0,d). All the assertions
follow from (iii) and (iv). m

Proposition 4.4. In case 14 (n =1, m =4), if (a,b) = &(p), p € R, then
(36)  &((a,b)) =4dpter+...+e, Ay =2, UN;, U...UA .

A, is defined in (22), (31), (32) and Ae, = {Ac, ¢, }j#i U{ N5 e, } (24); A, intersects
F,in P,1,...,P,9, distinct, and P, 1, P, 2, P, 3, distinct.

There are pairs of (—1)-curves of type (2,1) <= P,; = P, ; <= ¢; = ¢}/do
(4.3 (vi)). If their number is n, (51, then 0 <n, 91y < 3.

The singularities in A(a,b) are, except nodes, the n, (s 1) singularities P,; =
P,; €Im(\,e;) NIm (X, ;) and the 9 cusps Py elIm(X;,.) (figure 3). u
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* *
* / Ap,e1 * / Ap,EQ
p,1 p,9
\\/ \\_/
: 18
\v \\_/
Fel FEQ

Fig. 3: A(a) of type 14,2,3,4.

IT1g. n=1,m=6hencec; #0,d; #0,dp=c?, ay =0, ag # 0, ar # 0.
As in II 14, we solve the first of (28). Substituting and dividing by % ¢, we
get the equation of an affine curve C’ in the plane (¢, ():

a6 C(14+ ¢+ +art 1+ A1+ ¢+ P+ +C+)] +

(37)
+ agt?’¢C"+13(...) = 0.

Let 11,72 be the distinct roots of 1+ X +X?; C’ intersects {t = 0} in the 3 distinct
points By = (0,0), By = (0,71), Ba = (0,172). The above equation becomes
ag ¢ (C+m)? (¢ +n2)? +art+ 03 = 0 and defines the following parametrizations
at Bj: t — (1,((t), C(t) = 5Lt + o2(t) € K[[t]], 02(t) € (t)? for j = 0 and
¢ (50,0 £5(C) = 1y % (Ch ) + 03 (C+1y) € K[C+5]] for j=1,2.
We get therefore 3 solutions of (16), (¢,¢*(t)) and (¢;(¢),t;(¢)), j = 1,2, centered
at 0 the first, at n; the second: *(t) = (1 + ((t)), t;(¢) = t;(¢) (1 +¢).
The corresponding parametrizations of A, as in (31) are

~ 4
3 0= Ean0). w0 =20 (1) w0
where 4y is defined by (21), and for j = 1,2
) _
39) 3i0) = (10 125(0) . 250 = B 4 20 (14 P (1(0))

~ ~ d2
Thus Ap(t) = (t,di + 01(1), Ap(Q) = (0 Z (C+m5)* + 03(C +15), 05(C + 1))
As F,-Tm()\,) = 1, F,-Im()\, ;) = 2 we found all A,

(40) Ap = {Ap,ei}izl..] U {S\p} U {S\p,j}jzl,Q .
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Let P, = \,(0) = (0,d}), P, = X, j(nj) = (0,0), Ppi = \pe;(0) = (0,d3)
(by (25), e, =1). From 4.3 it follows

Proposition 4.5. In case 1g, (n =1, m = 6), if (a,b) = &(p), p € R, then
(41) f*((a,b)):6p+el—|—...+e7, A(a7b):ApUA61U---UAe7-

A, is defined in (22), (38), (39), (40) and A, is as in 4.4. A, intersects F,, in the
distinct points P,1,...,P,7, P,, and in P,., P, . # P,.

H = (P, .)"/? has intersection I = 3 with A at a(p(p)) and ¢3(H) has 3
infinitely near singular points above a(p(p)) <= di +d3 + c5 = 0.

In this case, by 2.1 ¢5(H) is a pair of (—1)-curves having intersection multi-
plicity 3 above a(p(p)), i.e. a pair of type (3) (2.3). If we denote by n, 3) the
number of such pairs, we have therefore 0 < np,3) < 1.

There are pairs of (—1)-curves of type (2,1) <= P,; = P, <= dy = d3;
their number is 0 < n, 1) < 1. The singularities in A,y are, except nodes,
the n, (1) singularities P, ; = P, € Tm(\,,)NIm(X,); P, € Im(X,1)NIm(\,2);
the 7 cusps Py, € Im(\} ) (see figure 4). u

* *
Aper — TR * / Aber X / Aper
: p Pl 24
7
Aper — R
P ~ \v _\\_/
Ap,Q&; ;Ap,l N e
E
F, Fe, F,

Fig. 4: A, of type 1ls.

IT17. n=1,m="Thencec; #0,d; =0, dy=c?, ay =ag =0, ay # 0.

Substituting and dividing by ¢t7¢, we get a curve C": az(1+¢+ 2+ ¢+ +
¢5+¢%) +t(...) = 0 in the plane (,().

The polynomial 1+ X + X%+ X3+ X1+ X° + X° € K[X] has 6 distinct roots
pj #0, j=1...6, in K. Thus C” intersects {t = 0} in the 6 points (0, 41;), and
at (0, ;) we have (j(t) = pj + o1(t) € K[[t]] and hence ¢}(t) = (1 + ;) t + 02(?).
The corresponding parametrizations of A, as in (31) are

g'(t)

(42 Roi(t) = (132 (0), Taglt) = o+ (014G (0) 0a(t)
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Then X, ;(t) = (t, [% + (1+ p3) dg] % + 04(t)) and F,- Im(),;) = 1. As before

(43) A, = {Xpeiti=1.6U {S\p,j}jzl..‘ﬁ .

Let P, =), ;(0) = (0,0), P,; = X\, (0) = (0,d3) (by (25), e; = 1). Then
Proposition 4.6. In case 17 (n=1, m =7), if (a,b) = £(p), p € R, then

(44) §((a,0) =Tp+er+...+es, Agpy=AUA;, U.. . UAg .

A, is defined in (22), (42), (43) and A, is as in 4.4. A, intersects F, in P,1, ...,
P,6, P,. The plane H = )(P,)["/? has intersection I = 3 with A at a(p(p)) and
#5(H) has 3 infinitely near singular points above a(p(p)) <= d3+c3 = 0. In this
case, ¢5(H) = I't + I'z is a pair of (—1)-curves of type (3); thus 0 < n, ) < 1.
There are no pairs of (—1)-curves of type (2,1), since P,; # P,. The singularities

in A, ) are, except nodes, P, € (=1, ¢ Im (), ;) and the 6 cusps P;; € Im(Ay )

(figure 5). m
P
/\p,el‘ . 'k_le P;’l/)‘;,el P;’G/)‘;,ee
“ 1P
)\p,ee - '\_/);6
~ \\/ \\_/
e Jot ' 15
d < ' \v \\_/
E Ap6
Fp 1F€1 Fes

Fig. 5: A(q,) of type 17.

I12. n=2hencec; =0,c0 #0,m=4,a4 =1,a6 = ay =0, ag = c3/d3 # 0,
ag = ay; = 0, a;3 = c§/d§ # 0. Set t* = t (1 + t3¢); substituting in (16) and
dividing by t'6 ¢, we get the curve ¢ + ajo ¢ + a13 +t(...) = 0. The polynomial

(45) X3+ a10X + a1z € K[X]

has 3 distinct roots wj, w;j # 0, j = 1, 2,3 in K. The curve intersects {t = 0} in the
3 points (0, w;), where we have (;(t) = w;j+o1(t) and hence t}(t) = t+w; t44-05(1).
The corresponding parametrizations of A, are

A0
8 G (t)

(46)  Aoy(t) = (ang(1) . (1) 2 (142G ga(t)
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It follows X\, ;(t) = (t, % + 02(t)). Since F,-Im(),;) = 1, A, is as in (32).

Let P, = X,;(0) = (0, %), Poi = Ape,(0) = (0,d3) (e; =1 by (25)). Then

o
BRI

<.

Proposition 4.7. In case 2 (n = 2, m = 4), if (a,b) = &(p), p € R, then
§*((a,b)) and A, are as in (36), A, is defined in (22), (46), (32) and A, is as
in 4.4. A, intersects I, in the points P, 1, ..., P9, Py, j = 1,2,3.

If H = (P, )"/, then ¢5(H) has 2 infinitely near singular points above
a(p(p)), since cg/wjz are the roots of the polynomial Q, defined in (33).

There are of (—1)-curves of type (2,1) <= P,; = P, ; <= dy = ¢}/w;; hence
0 <ny 2,1y < 3. There are no (—1)-curves of type (3). The singularities in A ()
are, except nodes, the n, (5 1y points P,; = Pp,j € Im()\p,ei)ﬂlm(j\p,j); the 9 cusps
PreIm(A,,,) (figure 3). u

II3. n=3 hence ci =c2 =0, c3 #0, m=4, £t) = t* +appt'? +ay t** +
a1g 16 + a1s 8 + aig 9+ ago(t), alg = Cg/dé #£0. If t* = t(l + 0 C), from (16)
dividing by %4 ¢, we get the curve (3 + a4 ¢ + a19 +t(...) = 0. Then

(47) X3 4+ a14X + a9 € K[X]

has 3 distinct roots w} € K, j = 1,2,3, w} # 0. The curve intersects {t = 0} in the
3 points (0,w), where we have (;(t) = w;+o01(t) and hence t}(t) = t+w; t54+07(t).
The corresponding parametrizations of A, are

_ 4
(48)  Ap(t) = (t,iiz(1)), az,j<t>=%+t2 (1+260) ga(0)
J

It follows \,;(t) = (t,;—i + 02(t)), F,-Im(A,;) = 1 and A, is as in (32).
i

Let Pyj = A,;(0) = (0, %), and Py = Ay, (0) = (0,d3) (e; =1). Then

Proposition 4.8. In case 3, (n = 3, m = 4), if (a,b) = &(p), p € R, then
¢*((a, b)) and A(,p) are as in (36), A, is defined in (22), (48), (32) and A, is as
in 4.4. A, intersects F, in P,1, ..., Pyo, Py, j =1,2,3.

If H = ¢(P,;)!"/2, then ¢5(H) has 2 infinitely near singular points above
a(p(p)), as 3 /w;»2 are the roots of the polynomial @), (see (33)).

There are (—1)-curves of type (2,1) <= P,; = P,; <= dy = c3/wh;
hence 0 < n, 51y < 3. There are no (—1)-curves of type (3). The singularities
in A(qp) are, except nodes, the n, o 1) points P,; = ]E’p’j €Im(Ape,) NIm (:\p,j);
the 9 cusps Py, € Im(\; ) (figure 3). w



LINES ON DEL PEZZO SURFACES 83

IT4. n=4 hence c; =ca =c3 =0, m=4, &) =t* + a1t'® + a1t +
aso 120 + ao2 122 + aoyq 24 + azs 125 -+ Ogﬁ(t), a5 = 1/d6 7& 0. If t*= t(l + t7C),
from (16) dividing by 32 ¢ we get the curve ¢3 + a1 ¢ + azs + t(...) = 0. Then

(49) X? + a1sX +ags € K[X]

has 3 distinct roots w7, w7 # 0, j = 1,2,3in K. The curve intersects {t = 0} in the
3 points (0, wy), where we have (;(t) = wj+o1(t) and hence t3(t) = t+w] 8409 (t).
The corresponding parametrizations of A, are

3 _ _ g'(t) 2 7 2
(50)  Apy(t) = (hiin (1), fiag(t) = g + 82 (1417 (1)) ga(t) -
10 G5 (¢)
It follows \,;(t) = (t, w/l/z, + 09(t)). Since F,-Tm()\,;) = 1, A, is as in (32).
_ ~ J
Let P, ;= X,;(0) = (0, w,l_,z), and P,; = A, (0) = (0,d3) (e; =1); then

J

Proposition 4.9. In case 4, (n = 4, m = 4), if (a,b) = £(p), p € R, then
¢*((a,b)) and A(,p) are as in (36), A, is defined in (22), (50), (32) and A, is as
in 4.4. A, intersects F, in P,1, ..., P,9, P, , j = 1,2,3.

If H = ¢(P,;)l"/2, then ¢3(H) has 2 infinitely near singular points above
a(p(p)), since 1/<.u;./2 are the roots of Q, ((33)).

There are (—1)-curves of type (2,1) <= P,; = P,; <= dy = 1/wj;
hence 0 < n, 51y < 3. There are no (—1)-curves of type (3). The singularities
in A, p) are, except nodes, the n, 51y points P,; = ]—T’m € Im(Ape;) NIm (:\p,j);
the 9 cusps Py, € Im(\; ) (figure 3). w

Case III. Suppose (a,b) = oo = (0,1); by 4.1, £*(c0) = €1+ ... +e1a +V,
g2(€i) = 0, gh(e;) # 0. We know ¢*(00) = E42Fy+Fe, +...4+Fc,,, ¥.(E) =4 Lo,
Y (Fy) = Lo and hence oo - (F) = 6 Lo + ¢(Fe,) + ... + ¢¥(Fey,), ¥|r and ¢| 5,
injective. It follows that in the plane oo the lines ¢ (Fe,), i = 1,...,12, intersect
the line Lo in 12 distinct points Ay; let v~ 1(A4;) = {4;, Af}, A, = ENF,,
Ar e Fy, Af # Fy N E, A distinct (E is a section of IF).

For 1 < i < j < 12 the lines ¥(F,,) and ¥ (F,,) in oo are different from
Lo, hence ¢(F.,) N ¢(Fe,) = {Bi;}, Bij ¢ Lo. Let v~'(Bij) = {Bi;, B;;},
Bij€F,.,—E, B, €F, —E.

For i, j, k distinct, ¥(Fe,) N1p(Fe,) Np(Fe, ) = 0, otherwise the corresponding
plane would meet the cubic A in V, a(p(e;)), a(p(e;)), a(p(ex)).

In conclusion A ﬂFej = {Aj}U{Bi,j}i<jU{B;':k}j<k7 A NFy = {A:}izlmm,
Moo NE = {A;}i=1..12. In particular, #(Aoc NFe;) = #(Aco NFy) = 12.
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Since A - f = 12 ((4.2)), it follows that A is smooth, transversal to F.,, Fy.

Moreover, A-e = 12. To prove this, note that ANE = Ao NE = {A;}i=1.12,
since in the preceding cases I, IT we had A, ) C Uy, hence Aap)NE = 0. Tt suffices
therefore to show that the intersections A; are transversal. The parametrization of
A near A; comes from 1 (4;) = ¥y1(AF). By (11) we have (¢, ug) = (t* +uoro,
upfa, 1, uog2) and Yyi(tv,v1) = (virve, fua(L+tho1), rv, gva(1+thv1)).
We obtain a 2 x 4 matrix [P!, P?, P3, P4] whose rank must be 1. Looking at
the 2 x 2 minors [P, P3] and [P?, P3|, we get

t TV r
51)  L'ttv) | 0 )= ™" ), Lty =] V00 [0
(51) (ttv) ( U1 fvi (ttv) rvo fo 4 fva
Looking at [P2, P4, from 14 it follows &(t) = £(ty). But oo is not a branch
point for &, so the last equation has solution t = t(ty) € K[[ty]], t(0) = ¢,

4 14
t'(0) # 0. Solving (51), we get ug = fy1 M—J‘%M. From (8), (10) we see
) \% ’
rvo = 1+ o4(tv), fv1 = tv + o3(tv) and fa(e;) # 0, since ga(e;) = 0. Hence

ug = ty + 02(ty ), the required transversality in A;. We proved:

Proposition 4.10. A, is smooth and A - e = 12. In particular, there are no
nodes in Ay, (figure 6). m

*
o NN AN ST Al
114: : : : Al
*
Bijl B
~ I, A
F,| F.,| F,| R,
E\/’\ N A A Al

5 — The proof of Theorem 1.1

In this section we use the local analysis of A carried out in cases I, II, III in
section 4 to prove 1.1, leaving the calculations to the next section.

Proposition 5.1. The arithmetic genus of A is p,(A) = 781.
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Moreover, the following possibilities occur with respect to the decomposition
into irreducible components A = >~ A; of A. The exponent denotes the arithmetic
genus of the component and the latin lower case letters denote the corresponding
classes in PicF.

(d1) A = A™! is irreducible and | = 12e + 132f;

(d2) A =AP+ AL and I3 =10e + 110f, Iy = 2e + 22f;

(d3) A=A + A and I} =8e+88f, Iy =4de+44f;

(d4) A=A + AL+ ALY and 1) =8e + 88f, I3 =l = 2¢e + 22f;

(d5) A=A+ AL and I} =1y =6¢e+66f;

(d6) A=Al +AS? AL and I3 =6e+66f, lo =4e+44f, I3 =2e+22f;
(A7) A=A AL+ AL+ AL and I} =6e+66f, lo =13 =14 = 2e+22f;
(d8) A=AY+ AP+ A and Iy =1y =13 =4e+44f;

(d9) A=AP+A?+ AL+ AL and [y =1y =4de+44f, I3 =1, = 2e+22f.

Proof: If we call e, f, I, k the classes of F, Fx, A, K in PicF, from
3.6, 4.2, 4.10 it follows [ -e = [ - f = 12, hence | = 12e + 132 f. Moreover
—2=e’+e-k=f>+fkand k=—12f —2e. It follows p,(l) =1+ 3 (1> +1-k) =781,

The map ¢: A — A is generically 2:1. Call 1~\j the irreducible components
of A for which A; 2L ¥(A;) = Aj and A}, A} the components for which A}, Eak
(ML) = Ay and AY 1L p(A)) = A,

Given (a,b) € ®—(£(R)U{o0}), we define in the following way the symmetric
13 x 13 matrix I; = (i,s) with entries in {0, 1}, having 0’s on the main diagonal.
Let £*(a,b) =e1 + ...+ e13; for 1 <r, s <13, r # s, there is a unique P,s € F,_
s.t. ¥(Prs) € Y(F,,) Np(Fe,). Then i,s =1 < Prg € A;.

Moreover we define the skew-symmetric 13 x 13 matrix I = (i,s) with entries
in {0,1, -1} by: is =1 < Prg € Aj.. Then (1)-(6) hold:

(1) A, -Fx = A} -Fx, because A} - Fx equals the number of 1’s in each row
of I, A}-Fx equals the number of —1’s in each row and >, irs = 0.

(2) A~j -Fx is even, because this number equals the number of entries = 1 in
each row of I;, the number of rows is odd and }_, i, is even.

If (a,b) € &(R), ie. £(a,b) = mp+e1 + ...+ e13—, we may define the
matrices I; and Ij, as well, imposing the further condition that the first m rows,
and hence the first m columns are equal. Call IJ’-,I,’€ € M,,(K), respectively

jzj’-’, Il € My3—m(K), the submatrices of fj and I, formed by the first m rows and
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columns, the last 13 — m rows and columns. Let
Ij = I "By I = li =By :
B; I ]’-’ B, I
= ecause this matrix 1s both symmetric and skew-symmetric.
3) I.=0,b hi ix is both sy i d sk v i

Let {/N\j}lgjgt be the components /N\j meeting at least one singularity P; .,
which means Bj # 0 — see figures 3, 4, 5. Then

(4) If l~j is the class of 1~\j, then lNJf > m for 1 < j < t, because the
singularities P; . have intersection m with Fx.

(5) If Iy is the class of A}, then le -f= l~j -e and [y - f =l - e. This follows
from (1) and the local analysis in case III. By (1), lj is also the class of
AL

(6) U - f > m, because by (3) all A}, A} must contain at least one Py,

— 1If case 1117 occurs, there exists (a,b) € £(R) for which m = 7. Since
l-f=12, (1) and (6) imply that there are no A}, A}. Moreover t = 1 by (4) and
I1-ec{810,12} by (2). By (5) I; € {8e+88f, 10e + 110f, 12 + 132f}, and
we may have (d1), (d2), (d3), (d4).

— If case II1g occurs, there exists (a,b) € {(R) for which m = 6. If there
are components A}, A}, by (6) there are 2 of them of class 6 e + 66, so in each
row of I; we must have six 1’s and six —1’s, excluded by (3). If there are only
components A;, by (4) 1<t<2. If t=1 then we may have (d1), (d2), (d3), (d4),
(d6), (d7). If t=2 then necessarily we would have (d5), but then the 7x6 matrix
B would have 1 row (suppose the first) formed by 0’s and all the 6 other rows
formed by 1’s, so I " would have the first row and column (apart from the main
diagonal) formed by 1’s, and the last rows of I; would have at least seven 1,

excluded.

— If for all (a,b) € £(R) only 111y, 112, I13, 114 occur, always m = 4 and as
before we have the following cases. If there are components A}, A} then by (6)
there are 2 of them of class 4e + 44f, and we may have (d8) or (d9). If there
are only components INX]-, then 1 < ¢ < 3 and we may have (d1), (d2) for t = 1;
(d5), (d6) for t =2; (d8) fort =3. m

If A, is an irreducible component of A, let v,: N, — A, be its normalization,
g% = Da(Ny), lx the class of Ay in PicF, d, = I, - f. The Riemann-Hurwitz
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Theorem applied to p o vy : Ny il p1 gives g, = —dx + 1 + %deg R!, where
R,=Ygen, 7o - @ is the ramification divisor in N.

Call respectively o7 .., 0y, 0, contribution to the arithmetic genus of A, of
the singularities P}, € A7 . ((24)), Pp« € Ap; ((40)), P, € Ap; ((43)), which
are contained in A,. Remark that 5,;7* depends on the number b, ,, 1 < b, < 2,
of parametrizations ), ; centered at P, which belong to A,.

Corollary 5.2. A is irreducible if following conditions are satisfied.
0pe;, 29  Incases 1y, 1g, 17,

dpx =3 in case lg, if Z)py* =1,

)

)

) 0px > 18  in case lg, if by =2,
55) 05e, > 18 in case 2,

) 05e; =27 incase 3,

)

0pe, = 36 Incased,

Proof: We must exclude cases (d2)—(d9) in 5.1.

— (d2), (d3), (d4). Consider A}l in (d2) or (d4). If (a,b) € £&(R), as
Iy - f =2, A3' does not contain any singularity P}, (I = 0). If case 1115 does
not occur, it follows from the local analysis of A that povs has no ramification and
is 2:1, which contradicts Hurwitz’s formula. Thus case II 1§ must occur twice or
four times, since r;,l(Pp7*) =1, as we see from t;(¢) in (39). It can’t occur four
times, because of (53) and p,(A3!) = 11. If it occurs twice, then go = p,(N2) = 0
and A3! must have 11— 2 -3 = 5 nodes by (53), excluded because the number of
nodes is divisible by 3. The same for A§? in (d3): if 1116 does not occur, we have
4 situations II 17, no ramification, excluded by Hurwitz. So Il 14 must occur 4
times, deg R’ = 8, A$? must contain both 5\,)71, 5\;,72 at ]—:’p,* i.e. ny s = 2. But the 4
singularities P, . give to p,(A$?) by (54) a contribution > 418 = 72, impossible.

— (d5). Necessarily m =4, t =2 and only 1114, 112, II3, 114 may occur.
Call n1; the number of nodes of A%75, ng2 the number of nodes of A%75;
From (52), (55), (56), (57) we have g1 + g2 + n11 + ng2 + 324 < 350. Let
ni2 = (6e+66f)(6e+66f) =432 be the number of nodes of A generated by the
intersections of A} and A3™. We have 4 kinds of triple points of A = Ay + Ao,
Ay = P(AI), Ay = (AL™): (1,1,2) with 2 branches of A; and 1 of Ag, (1,2,2)
with 1 branch of A; and 2 of Ag, (1,1,1) with 3 branches of A;, (2,2,2) with
3 branches of Ay; let a, b, ¢, d be respectively the number of such points. Then we
must have ny 1+n12 =a+3c+b+3d < 26 and ny 2= 2a+2b = 432, impossible.
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— (d6). If we have 4 situations 1114, as ¢ = 1 all the 28 points Pri,pER,
i =1,...,7 must belong to A17; from (52) we see 2 i 0pe; = 634 =252 > 175,

impossible. If we have at most 3 situations Il 1g, as II17 can’t occur, from

(52)—(57) we see >, ;05 ,. > 63 -3 +81 =270 > 175 + 69 + 11, impossible.

— (d7), (d8), (d9). AsIIl; can’t occur, (52)—(57) imply 3=, ;07 .. > 252,
but in these cases >, pa(A;) < 208, impossible.

In the next section we shall check (52)—(57), proving the irreducibility of A,
which we assume from now. Let v: N — A be its normalization, g = p,(N).
Consider pov: N 2Pl and let R = 2 gen T @ the ramification divisor. Hur-
witz’s formula gives g = —11 + % deg R'. Let R = >_per Tp p be the ramification
divisor of &, so that R = Supp R (4.1 (iii)). Let R’ = Supp R'. It follows from the
local analysis that R’ C U,cr v (Ag(p))- For p € R, let 7/, = 2 Qer-1(Ag(p) O

so that deg R' = 3 e 7

Remark 5.3. For p € R the following hold

97, in cases 14, 2, 3, 4
/o ! / .
T, = Try+ ro, T g, in case 1g
67p in case 1y

6 in cases 14, lg, 17
12 in case 2

18 in case 3

24 in case 4 .

where {Q1,Q2} = v~'(P,.). Moreover r,=

Proof: If A(t) = (a(t),b(t)) parametrizes one branch of A at P, then powv

is defined at the corresponding point of v~1(P) by a(t). If Ag(py is of type 14, 2,
3, 4 then it follows from the local analysis and (22), (31), (46), (48), (50) that
l/*l(P;’i) consists of one point @ ; and the differential of a(t) vanishes only at
5 hence R|a, =71, Q0 g+ ... +7,0Q; 9. By (22) at Q};, if we denote by
¢|. the power series defined by £ at ¢ we have a(t) = t*(t) = (¢|¢,)"'o (¢],) and
€le, is an isomorphism, so that r:m» = r, and hence 7“;) = 9r,. The cases 1 and

17 are analogous. The second assertion follows from 4.1 (iii). m

We prove 1.1. The exact sequence 0 — Op — v, Oy — D — 0 of v gives
pa(A) = h*(Op) = k(D) + g, hence 781 = h%(D) — 11 + § deg R/, so that

1
(58) 792 = (D) + 3 >
PER
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In 5.3 we computed r;. The support of the sheaf D is the singular set Sing A of A,
hence h%(D) = Y- peging 4 0P, where §p = dimgDp.

As in 4.3, 4.5 let n(y 11y, n(2,1), (3) be the number of pairs of (—1)-curves of
type (1,1,1), (2,1), (3). We proved the following facts about Sing A:

(1) A contains no singular points, by 4.10;

(2) U(ap)cd—(e(R)u{oc}) Aap) has only nodes as singularities by 4.2. Each
pair of (—1)-curves of type (1,1,1) corresponds to 3 nodes and 1 triple
point of A;

(3) If (a,b) € {(R), A(qp) may contain nodes (4.4-4.9). The number of these
nodes and those in Ag_(¢(r)ufoo}) (4-2) I8 311,11

The other singularities in A, ) are:
(4) Py ;; their number is 9 in cases 14, 2, 3, 4, is 7 in case 1g, is 6 in case 17;

(5) the singularity ]E’p,* in case 1. There are n, 3y, 0 < n, 3) < 1, pairs of
(—1)-curves of type (3) associated to this singularity and

(59) n,m =1« di+d3+c3=0;
(6) the singularity ]5,, in case 17. There are n, 3y, 0 < n,3) < 1, pairs of
(—1)-curves of type (3) associated to this singularity and
(60) ny@ =1 < d3+c3=0;
(7) the n,(21), 0 <y, 21y < 3, singularities P,; = P, ; in cases 14, 2, 3, 4:
do=c3/e; incasely — see 4.3 (vi)
do=c3/w; in case 2

61 P,i=P,; <
(61) X 0,3 dy = C%/Wj in case 3

do =1/w;  in case 4 ;
(8) the n, (21), 0 <np, 21y < 1, singularity P,; = P, in case 1g
(62) Pp,i = F)p — dy = d% .
The proof of 1.1 amounts to show
(63) n(l,l,l) + ’I’L(271) + TL(3) =120 .

For p e R, let 6, = ZPGSngAmAg(p) dp, so that ho(D) = 3n¢ 1,1y + > per Op-
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As 1) = 3 per Mpy(2,1) and 13y = 3 ) 1y, (3), Dy (58) we are left to show

1
Z <5p + 5 ’l";) — 37”Lp7(271) — 3Tlp’(3)> = 792 — 360 = 432 .
PER

Corollary 5.4. By 4.1 (iii), to prove Theorem 1.1 it suffices check (52)-(57)
and show that for every p € R we have

108 in cases 14, 1g, 17
216 in case 2
324 in case 3
432 in case 4

1
(64) dp+ o

570 = 3T (21) = 3Np(3) =

where 1, is computed in 5.3.

6 — The computations

In this section we check (52)~(57), proving the irreducibility of A, and (64),
finishing the proof of 1.1. As in 5.2, we set (5 = 5p* 5p* =0p (5 =0p
The meaning of 5.4 is that although the number of dlfferent global conﬁguratlons
is high, we are left to consider only 6 cases, because in some sense each singu-
larity of the ramification divisor A* of ¢ (see 4.1, (iv)) gives an independent
contribution to the number of (—1)-curves on the surface S.

Case 14. We have 7, = 54 by 5.3, n(3y = 0. Then (64) is 0, —3n,, (2,1) = 81.
Remark 6.1. To satisfy the conditions of 5.4 in case 14 it suffices to prove

9 l'fdo#c%/Ej

10 ifdy= e, 2 Hdo=cifej thendp, =2,
- J

(65) 1) 58,@:{

where by (25) we may assume p = 0, ¢; = 1; dy = c}/e; is the condition that
Po; = Py ((61)); €; are the roots of (30).

Proof: If Py; # ]507j then ng o) = 0, dp = ?:1 6., = 81 and (64) holds.
Each time that Py; = P(),j, do grows by dp, ;+ 10 —9 = 3 and ng (21) grows by 1
hence (64) holds in any case. Moreover (52) is satisfied. m

Proof of (65) 1): The parametrization A . (t) centered at Py, is given in
(22), where t*(t) € K[[t]] is the solution of £(t*(t)) = £(¢), t*(0) = 1 and as in
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(26), £(t) = Yyciciy ait’ + 012, 012 € (t'?). Solving recursively, we get

(66) (1) = 1+ (92(1)/9(1)?) D ajt' + onalt)

4<i<11

where af = a; for i # 8 and a} = ag + a2 (1 + ¢? + c3 + d? + d3). Then by (23)
us(t) = g2(1) [1 + '+ (14aq) t° + (1 + g2(1) af + a6) t® + ar t“’} + 010(t) .

Denote by ~ equality up to an affine coordinate change. We have

(0) AGe;=(t"(t),u5(t)) ~ (po, qo) where pg = asgttagtS+art’+aitS+agt’+o10,
qo =t* +[1 + aq] t® + [1 + g2(1) a3 + ag] t® + a7t? + 01.
The initial contribution to &g ., is dg =4 -3/2 = 6.

(1) After the blow up (po/qo,q0) ~ (p1,q1) we get g1 = qo and p; = Ct> +
art® + [C + as + af + Cag + Cga(1) + asga(1) + asga(1) + asas + asagga(l) +
as92(1) Ct* + a7 + ao] t° + 06, where C = a4 + a2 + a®.

— Suppose C = 0; a7y # 0 implies 6; = 3 and (p1,q1) ~ (£ + o4, t* + 05);

(2) blowing up p2 = p1, @2 = q1/p1 we get g2 = t + 02 hence the resolution
stops and d5,, =6+ 3 = 9.

— Suppose C' # 0; then 0; = 2-1/2 =1 and we have the following sequence
(2) (p1,q1/p1) ~ (P2, q2) Where

p2 = C7lpy = 24+ Clart3 + O ]t + O ar + ag] t° + 06

g = t2 + Ctagt? + Cag + g2(1) C + a + asg2(1) C + agg2(1) + asga(1)

+ agag + a3 C1 + agagga(1)] t* + CHag + asar + a3 C 7217 + 0g ;

then o = 1.

(3) (p2,q2/p2) ~ (p3,q3) where p3 = ps and g3 = t2[1 + a4 + a2 C~2] + os.

— Suppose 1 + a4 + a% C~2 # 0; then 3 = 1;

(4) (ps3/g3,43) ~ (pa,qa) where py = t+02. The resolution ends and &5 ., = 9.

— Suppose 1 + a4 + a2C~2 = 0. We develop po, go up to o1a:

po = a4t4 + a6t6 + a7t7 + a§t8 + a9t9 + alotlo + antn + 012

go = t* + [1 4+ ag)ts + [1 4+ g2(1) a2 + ag]t® + a7t? + [1 + af + alcy + a2d?
+ a3d? + a%c?] t1%g t' + 01.

After the same sequence as before we get (4) (ps, q3/ps) ~ (p4,qs) where

ps =12+ C7lagt3 + C7HC + g2(1) C + a4C + af + ag + as92(1) C + agga(1)
+ a4g2(1) + aqag + a4a6gg(1)] tt+ C_l[cw + ag] o + 0_1[02 +agC + a1p
+ af + agg2(1) C + agaf + a + asae + a2g2(1) + asasga(1)]t5 + C~tarC
+ a1 + ag + agar + agar + agarga(1) + asarge(1) + arga(1)]t7 + os |
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qqs = 0_2[01 +C3+ a402 + 92(1) C3 + 92(1)2 C? + aﬁgg(l) Cc? + a4gg(1) C?
+ a6+ g2(1)* C + ag C + g2(1)* C° + agga(1)* C* + asga(1)* C* + ag?
+asga(1) + asga(1)? a8 + asad + as + adga(1? C + a2ga(1)? + ailgn(1)?
+ a4a2g2(1)?]t? + C73[arga(1) C3 + a7 C + aga; C? + azge(1)? C3
+a7g92(1)? C? + agarga(1) C? + agarge(1) C? + agay + asar + a7g2(1)? C
+agar C+asargz(1)? C? +asarge(1)? C? +arag® + asarga(1)? +asarga(1)?
+adar+agatar+aarge(1)? C+adarga(1)? +adarga(1)? +agaarge(1)?] 3
+o04 .

It follows 04 = 1.

(5) (pa;qa/pa) ~ (p5,q5) With g5 = azt + 02. The resolution ends, J7 ., = 10.

By (27), &5, = 10 <= C = as +aj + ag # 0 and 0} = (1 + a4)C? —
do+d2+d? +ct =0 < c2/dy is a oot of (30). m

Proof of (65) 2): By (31), 5\07]'(25) = (t,ﬂQJ(t)). Cj = Ejt + ¢j t2 + o3,
where a4e?- + agej + a7 = 0; to compute ¢;, substituting ¢; in (29), in degree 4
we get asedj + agg; +aze; = 0. It follows dy ;(t) = ¢} /€3 + [d] —|—c‘f¢?/e§] 2 + 03.
By (22), (21), (66) )\(],ei (t) = (t,UQ,i(t)), UQ’Z'(t) = d%—i—d%tQ—l—Og. As dy = C%/éj ie.
li9,7(0) = u2,i(0), we have dp,, =2 < df + c‘ﬁ;ﬁ?/e? # d?. But dy + c%qﬁj/e? =d;
= do-l—C%—i-dl =0= a4—|—ai+a6:0:0, excluded. »

Case 1. By (5.3), (64) becomes ¢, + %(rbl—f— 7"222) —3n,,(2,1) — 31, 3) = 3T7.
Remark 6.2. To satisfy the conditions of 5.4 in case 1¢ it suffices to prove

. [ ifdy#£d? _ ,
! 50’ei:{10 itdy— @2, 2 1 do=dithendp, =2, 3)rg=rg,=2,

22 ifdy +d3+c3#0

(67)  4) if bo.=1 then b, =3, 5) 60,*—{25 ifd +d2+ch=0,

where p =0, e; = 1 ((25)); do = d} is the condition that Py; = Py. ((62)).

Proof: (52), (53), (54) follow from 1), 4), 5). It remains to check
do — 37107(271) - 37207(3) = 8. If np,(2,1) = Mo,3) = 0 then 9.7 4 22 = &85.
If dy = d?, o increases by 3 and no,(2,1) increases by 1. If dj + d+ch =0,
do increases by 3 and ng (3) increases by 1. u
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Case 17. By 4.6,5.3 n, (21) = 0 and (64) becomes §, — 3n, 3y = 90.

Remark 6.3. To satisfy the conditions of 5.4 in case 17 it suffices to prove

. < |36 ifde+c3#0
(68) D % =9, 2 50_{39 if dy+c3=0,

where p =0, ¢, =1 ((25)).

Proof: (52) follows from 1). If dy 4¢3 # 0 then no,3)= 0, if da +¢3 = 0 then
no,3) = 1 and 9 — 3ng (3) = 90 follows in both cases.

Case 2. 1, =108 by 5.3, n(3) = 0; (64) becomes 6, —3n, (21) = 162.
Remark 6.4. To satisfy the conditions of 5.4 in case 2 it suffices to prove

. 18 if dy # 3 Jw; 9 _
(69) 1) 50761'_{19 if do = 2/, | 2) if do = c3/wj then ép,, =2,

where p = 0, ¢; = 1 ((25)); do = c3/w; is the condition that Py; = Py ((61));
w; are the roots of (45).

Proof: If Py; # Poj, no1) =0, 6o =>4 0., =162 and (64) holds.
If Py; = Py, 6o grows by op,, +19 — 18 = 3 and ng o1y grows by 1; (55) is
satisfied. n

Case 3. 1), =162 by 5.3, n(3) = 0; (64) becomes 0, — 37, (1) = 243.

Remark 6.5. To satisfy the conditions of 5.4 in case 3 it suffices to prove

. )27 if dy # 3/wj o _
(70) 1) 50’ei_{28 if do = ¢/, | 2) if do = c3/w; then 6p,, =2,

where p = 0, ¢; = 1 ((25)); do = ¢3/w; is the condition that Py; = Py; ((61));
w; are the roots of (47). u
Case 4. r’p = 216 by 5.3, n(3)= 0; (64) becomes 6, — 31, (2,1)= 324

Remark 6.6. To satisfy the conditions of 5.4 in case 4 it suffices to prove

x 36 ifdg#l/wj . o ) _
(71) 1) 50’61_—{37 i do = 1/w; | 2) if dy = 1/w; then 0p,, =2,
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where p = 0, ¢; = 1 ((25)); do = 1/wj is the condition that Py; = Py ((61));
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w; are the roots of (49). u

6.5 and 6.6 are proved as 6.4. The checks of (67), (68), (69), (70), (71) are
similar to that of (65) and were done using CoCoA symbolic package on a Sun

machine. The proof of Theorem 1.1 is complete. n

To finish, table 1 shows the values of n, (3 1), n, ) and n,, which is the
multiplicity of p € R as root of g and the ¢ of the singularity ¢ L(p) of A*

(4.1(iii), (iv)). The possible values of n(y 1 1), 72,1y, n(3) are defined by

N1 = D Mp2l) s

PER

nE =D Ny,

3) »

(72) =

n(1,1,1) = 120 = ne ) —n)

Z n,=4.

PER

14 1 1y 2 3 4

Ny o) 01,23 0.1 0 |01,2,3]01,23]0,1,23
np 3 0 0,1 | 01 0 0 0
np=dy1 |1 1 1 2 3 4
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