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LINES ON DEL PEZZO SURFACES
WITH K2

S = 1 IN CHARACTERISTIC 2 IN THE SMOOTH CASE

P. Cragnolini and P.A. Oliverio

Abstract: In the case when the branch divisor of the antibicanonical map is smooth,

we prove the existence in characteristic 2 of 240 (−1)-curves on a smooth projective

surface with q = 0, K2
S = 1, |−KS | ample and containing an irreducible reduced curve,

concluding in this case the proof of Castelnuovo’s criterion of rationality.

1 – Introduction

In this paper we prove the following theorem:

Theorem 1.1. Let S be a smooth, projective surface over an algebraically

closed field K of characteristic 2. Assume that:
(i) q(S) = 0;

(ii) −KS is ample;

(iii) K2
S = 1.

Then the anti bicanonical map φ2 = φ|−2KS | is a 2 : 1 morphism whose image is

a quadric cone Q ⊂ P3. Suppose moreover that the branch divisor A ⊂ Q of φ2
is smooth. Then S contains 240 (−1)-curves.
More precisely, there are 120 distinct planes H in P3 not passing through

the vertex V of the cone Q such that φ∗2(H) = Γ1 + Γ2 where Γ1, Γ2 are two

(−1)-curves such that Γ1 · Γ2 = 3. Every (−1)-curve arises in this way.
Call a pair {Γ1,Γ2} of (−1)-curves of type (1, 1, 1), (2, 1), (3) if Γ1∩Γ2 contains

3 points, respectively 2, respectively 1 point (cf. 2.3) and denote n(1,1,1), n(2,1),

n(3) the number of such pairs. Then the possible values of n(1,1,1), n(2,1), n(3) are

shown in (72) and table 1.
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Since the surface S can’t be minimal, Theorem 1.1 gives together with the

results proved in [10], [11] a proof in positive characteristic of Castelnuovo’s

rationality criterion q = P2 = 0 for a smooth algebraic surface in all cases but

K2
S = 1, Char(K) = 2 and the branch divisor of φ2 is not smooth (cf. 2.5 (iv)).

Indeed, (see [5]) a minimal surface S for which q = P2 = 0 is either rational or

else

(1) Pic(S) = Z[−KS ],

(2) |−KS | contains an irreducible reduced curve,

(3) K2
S > 0.

We are left to exclude the second possibility, which is done in [10] in the case

K2
S ≥ 2 and in [11] and Theorem 1.1 in the case K2

S = 1 when CharK 6= 2 or the

branch divisor A of φ2 is smooth.

Our proof uses elementary methods and is based on the fact that the

(−1)-curves in S occur as the pull-back φ∗2(H) having at least 3 singular points

of planes H ⊂ P3 (see 2.2).

There exists a Segre–Hirzebruch F10 surface F over A ∼= P1 and a morphism

ψ : F→ P3∨ with the property that the planes throughQ ∈ A such that their pull-

back is singular above Q are parametrized up to a purely inseparable extension

of degree 2 by the image ψ(FQ) of the fiber of F over Q (see (7)). Then the pairs

of (−1)-curves correspond to the triple points of ψ(F), hence to triples of nodes

of the double curve Λ of ψ.

To prove the irreducibility of Λ and count the number of nodes, we determine

the contribution to its arithmetic genus of the other singularities, and this requires

heavy computer calculations. On the other side, we find all the (−1)-curves on

the given surface and not just prove the existence of one and get information on

their type and configuration.

To perform the computations in section 6 we used CoCoA, a Gröbner-basis

based symbolic system (by A. Capani, G. Niesi, L. Robbiano, Dept. of Mathe-

matics, University of Genova) running on a unix machine.

The rationality criterion is proved or sketched in [1], [2], [3], [4], [6], [8], [9].

Notations and conventions

If C is a curve, pa(C) = h1(C,OC) is its arithmetic genus. If S is a smooth

surface, q(S) = h1(S,OS), KS is a canonical divisor and P2(S) = h0(S, 2KS).

A (−1)-curve in S is an irreducible curve Γ s.t. Γ2 = ΓKS = −1.
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Char (K) is its characteristic of the field K. Fd is the Segre–Hirzebruch surface

P(OP1 ⊕ OP1(d)). Pn∨ is the projective space of the hyperplanes of Pn. TQQ is

the tangent space of the hypersurface Q at Q ∈ Q.
K[[t]] is the ring of formal power series, (t) is its maximal ideal and K[[t]]∗ =

{ξ ∈ K[[t]] : ξ(0) 6= 0}; on(t) ∈ (tn). By a formal neighborhood of a point P on

a curve C we mean the finite set of local parametrizations of C by power series

centered at P ; each parametrization corresponds to a branch of C through P .

If f is a polynomial, fX = ∂f
∂X ; if ξ(t) ∈ K[[t]] then ξ′(t) = dξ

dt .

M(n,m,S) is the vector space of m × n matrices with entries in a ring S;
if M ∈ M(n,m,K), SR(M) is the subspace of Km generated by its rows.

If CharK = 2 and N = (ni,j) ∈M(n,m,K), then N [2] = (n2i,j), N
[ 1
2
] = (
√
ni,j).

W⊥ is the orthogonal of the subspace W of Kn with respect to the standard

bilinear symmetric form tX ·Y . #A is the number of elements of a finite set A.

Im f is the image of the function f .

2 – The anticanonical model of S

Let S be a smooth, projective surface defined over an algebraically closed

field K of characteristic 2 satisfying the hypothesis (i), (ii), (iii) of Theorem 1.1.

Remark that (i), (ii), (iii) imply that every divisor in the linear system |−KS |
is irreducible and reduced, and |−KS | has projective dimension equal to 1, as

shown in [11]. The following facts up to 2.3 are based on [7] and proved in [11].

If S=K[X0, X1,W,Z] is graded by degX0= degX1=1, degW =2, degZ=3,

and R =
⊕

n≥0Rn, Rn = H0(S,−nKS), is the anticanonical ring of S, there ex-

ists a surjective graded K-algebra homomorphism S → R mapping X0, X1,W,Z

to x0, x1 ∈ R1, w ∈ R2, z ∈ R3. An isomorphism S/(σ) ∼= R is induced, where

σ = Z2+Z a(X0, X1,W ) + b(X0, X1,W ), and σ, a, b are homogeneous of degree

6, 3, 6 respectively.

η ∼=

Π

∼=

S P(1, 1, 2, 3)

↓

P(1, 1, 2)

Σ

Q
↓

P3

φ2 π

j

↪→

←−

−→
↘ ↘

↙
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If Σ = ProjR ⊂ P(1, 1, 2, 3) = ProjS is the anticanonical model of S, then

η : S → Σ, η = (x0, x1, w, z), is an isomorphism, as −KS is ample.

The map j : P(1, 1, 2) → P3, j(x0, x1, w) = (x20, x0x1, x
2
1, w), induces an iso-

morphism between P(1, 1, 2) and the quadric cone Q = {T0T2 − T 21 = 0} in P3,
and the antibicanonical map φ2 : S→P3, φ2 =(x20, x0x1, x

2
1, w), factors through

Q. The projection Π: P(1, 1, 2, 3)→ P(1, 1, 2) sending (x0, x1, w, z) to (x0, x1, w)

induces π : Σ → P(1, 1, 2), which corresponds to the antibicanonical map after

the identifications S ∼= Σ and P(1, 1, 2) ∼= Q, which we shall assume from now

on. It follows that φ2 is 2 : 1 onto Q.
In conclusion, Σ is the 2 : 1 covering of P(1, 1, 2) defined by

σ = Z2 + Z a(X0, X1,W ) + b(X0, X1,W ) = 0 .(1)

Remark 2.1. Let V = (0, 0, 0, 1) be the vertex of the quadric cone Q. Then
(i) if E ∈ |−KS | then φ2(E) is a line in Q passing through the vertex V ;
(ii) if Γ ⊂ S is a (−1)-curve, then φ2|Γ : Γ → φ2(Γ) is 1 : 1 and φ2(Γ) is

a smooth conic in Q, the intersection of Q with a plane H in P3 s.t.
V 6∈ H;

(iii) pa(A∗) = pa(A
∗) = 4.

Key-lemma 2.2. Let H be a plane in P3, H 63 V ; then the divisor φ∗2(H)

has a (−1)-curve as component ⇐⇒ it has (at least) 3 (maybe infinitely near)

singular points. If this happens, φ∗2(H) = Γ1 + Γ2 where Γi are (−1)-curves for
i = 1, 2 and Γ1 · Γ2 = 3. Every (−1)-curve in S arises in this way.

Remark 2.3. If Γ1,Γ2 is as in 2.2 then Γ1 +Γ2 is smooth outside the rami-

fication and singular in Γ1∩Γ2, hence 1 ≤ #(Γ1∩Γ2) ≤ 3 and Γ1∩Γ2 = A∗∩Γi.
We call Γ1,Γ2 a pair of (−1)-curves of type (1, 1, 1), respectively (2, 1), respec-

tively (3) if #(Γ1 ∩ Γ2) is 3, 2, 1.

Let a = α3+α1W, b = β6+ β4W + β2W
2+ β0W

3, where αi, βi ∈ K[X0, X1]i.

Remark 2.4. The non-singularity of Σ implies:

(i) β0 6= 0;

(ii) a 6= 0.

Proof: The non-singularity of Σ in P(1, 1, 2, 3) is equivalent to
{

σ = σX0 = σX1 = σW = σZ = 0
}

= ∅ .
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(i) If β0 = 0 then Σ is singular in π−1(0, 0, 1).

(ii) Otherwise, σ = z2 + b.

We want to show that ∅ 6= {bX0 = bX1 = bW = 0}. The last set is equal to

{β24 β22Xi
+β4 β

2
4Xi

+β26Xi
= 0, W 2=β4}i=1,2. The first equation has 10 solutions

in P1; if for i = 0 we have a solution (a0, a1) ∈ P1 with a1 6= 0, then Euler’s The-

orem on homogeneous functions, gives the relation X0 bX0 +X1 bX1 = 0 and we

are done. The same if for i=1 we have a solution (a0, a1) with a0 6=0. We are left

with the case β24 β
2
2X0

+ β4 β
2
4X0

+ β26X0=X
10
1 and β24 β

2
2X1

+ β4 β
2
4X1

+ β26X1=X
10
0 .

Multiplying the first by X2
0 , the second by X2

1 , summing up, using Euler’s re-

lation X0 βdX0 + X1 βdX1 = 0 for d even and the fact that CharK = 2, we get

0 = X2
0 X

10
1 +X2

1 X
10
0 as polynomials, excluded.

It follows that π has A = {a = 0} as branch divisor and A∗ = π−1(A) as

ramification divisor; then A = j(A) and A∗ = η−1(A∗) are the branch divisor

and the ramification divisor of φ2. The vertex V = (0, 0, 0, 1) of the quadric cone

Q is an isolated branch point, since S is smooth.

Remark 2.5. We have:

(i) pa(A
∗) = pa(A) = 4;

(ii) V ∈ A ⊂ Q and degA = 3, V being the vertex of the cone Q;
(iii) A is smooth ⇐⇒ {α3 = α1 = 0} = ∅ in P1;
(iv) the following cases may occur:

(1) if A is smooth, then it is a twisted cubic curve in P3;
if A is not smooth then it decomposes into:

(2) a smooth conic and a line;

(3) three distinct lines;

(4) a double line and a line;

(5) a triple line.

Proof:

(i) holds because φ2|A∗ : A∗ → A is purely inseparable and by 2.1 (iii).

(ii) The fact that the vertex V of the cone Q lies in A follows from (iv);

moreover A∗ ∈ |−2KΣ| so degA · deg φ2 = A∗ · (−2KΣ) = 6.

(iii) ⇒ If {α3 = α1 = 0} 6= ∅, we may choose projective coordinates s.t.

a=X0W+X0 q, q∈K[X0, X1]2. Then (aX0 , aX1 , aW )=(0, 0, 0) in (X0, X1,W )=

(0, 1, q(0, 1)).
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⇐ If α1 and α2 have no common roots, we may assume projective coor-

dinates s.t. α1 = X0, α3 = mX3
1 +X0 q, m ∈ K − {0}, q as before. Then if

(aX0 , aX1 , aW ) = (0, 0, 0), we get X0 = 0, X1 = 0, q = 0, W = 0, excluded.

(iv) (0, 0, 1) ∈ A implies V = j((0, 0, 1)) ∈ A. Suppose A smooth; we may

assume α1 = X0 and after W 7→ n−1W + q, q as before, X1 7→ nX1 for suitable

n ∈ K− {0}, we get a = X0W +X3
1 . Then

α : P1 → P3 α(x0, x1) = (x30, x
2
0x1, x0x

2
1, x

3
1)(2)

is an isomorphism and A = α(P1) is a twisted cubic curve.

If A is not smooth, we get in the same way for a the normal forms WX0,

X1(X1 +X0) (X1 + pX0), p ∈ K− {0, 1}, X2
1 (X1 +X0), X

3
1 , which correspond

to cases (2), (3), (4), (5).

From now on we make the assumption of Theorem 1.1 that A ∼= A is smooth.

We choose coordinates (x0, x1, w) on P(1, 1, 2) so that a = X0W +X3
1 and A =

α(P1) is the twisted cubic curve defined by (2).

We shall identify A to P1 by α and choose on A the canonical coordinates

X = (x0, x1) of P1, so that V = (0, 1).

3 – The surface F and the map ψ : F→ P3∨

To apply 2.2, we look for hyperplanes H in P3 for which H 63 V and φ∗2(H)

has at least 3 singular points.

Let H = {h0T0 + h1T1 + h2T2 + h3T3 = 0}, h3 6= 0. Consider H ∈ P3∨ and

choose on P3∨ the dual coordinates; then H = (h0, h1, h2, h3) and

φ∗2(H) :

{

Z2 + aZ + b = 0 ,

h0X
2
0 + h1X0X1 + h2X

2
2 + h3W = 0 .

For Q′ = (x0, x1, w) ∈ A− {(0, 0, 1)}, Q = j(Q′) = (x20, x0x1, x
2
1, w) ∈ A− {V },

consider

FQ =
{

H ∈ P3∨ | H 3 Q, ∃Q∗ ∈ φ−12 (Q) s.t. φ∗2(H) is singular in Q∗
}

.

The singularity of φ∗2(H) at Q∗ can be expressed by

rank

(

aX0Z + bX0 aX1Z + bX1 aWZ + bW a

h1X1 h1X0 h3 0

)

(Q′) ≤ 1 .(3)
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As h3 6= 0, if Q 6∈ A then FQ = ∅, while if Q ∈ A− {V }

FQ 6= ∅ ⇐⇒ (h3 fX0 + h1X1 fW )(Q) = (h3 fX1 + h1X0 fW )(Q) = 0 .

Let

M =







X2
0 X0X1 X2

1 W
0 X1 σW 0 σX0
0 X0 σW 0 σX1






∈ M(3, 4,S) .(4)

Euler’s Theorem applied to σ gives X0 σX0 + X1 σX1 = 0. The smoothness of

A implies rankM(Q′) = 2 if Q′ ∈ A − {(0, 0, 1)}, rankM((0, 0, 1)) = 1. Let

SR(M(Q′)) be the subspace of K4 generated by the rows of M(Q′), and denote

by ⊥ the orthogonality in K4 with respect to 〈X,Y 〉 = tX · Y .

Remark 3.1. For all Q ∈ A−{V }, L(Q) = P(SR(M(Q′)) is a line in P3 and
Q ∈ L(Q) ⊂ TQQ, where TQQ is the tangent plane to Q in Q. Moreover

FQ = P
(

SR(M(Q′))⊥
)

=
{

H ∈ P3∨ | H ⊃ L(Q)
}

⊂ P3∨(5)

is a line in P3∨ which represents the net of the planes in P3 containing L(Q).

To determine FQ, remark that x0 6= 0 for Q′ ∈ A − {(0, 0, 1)}, so we can

multiply by X0 the equations to modify degrees. Looking at the rows of M , we

define the following matrix

N =









X2
1 X

4
0 0 X6

0 0

0 X1 σX0 X0 σX0 +WσW X2
1 σW

X1 σX1 +WσW X0 σX1 0 X2
0 σW









.

Remark 3.2. N ∈M(3, 4,S6) and the following properties hold:
(i) rankN(Q′) = 2 ∀Q′ ∈ A;
(ii) SR(N(Q′)) = SR(M(Q′))⊥ ∀Q′ ∈ A− {(0, 0, 1)}.

Proof: Using Euler’s relation we get SR(N) ⊂ SR(M)⊥; moreover we have

rankN(Q′) ≥ 2 if Q′ ∈ A− {(0, 0, 1)}, rankM((0, 0, 1)) = 2.

Using the relation X0W = X3
1 on A and remarking that W has exponent

at most 3, we can eliminate W multiplying by X3
0 . On A we have Z =

√
b, so

taking the square we eliminate Z. Thus let Ñ = X6
0 N

[2], where N [2] is the matrix
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obtained taking the square of each entry of N . Then

Ñ =







ν0
ν1
ν2






=







R2 0 R1 0
0 F1 R0 G1
R0 F2 0 G2






,(6)

R0 = X8
0 σ

2
X0 +X6

0 W
2 σ2W = β20 X

18
1 +X0 S , S ∈ K[X0, X1]17 ,

R1 = X18
0 , R2 = X14

0 X4
1 ,

F1 = X6
0 X

2
1 σ

2
X0 = X4

0 X
4
1 σ

2
X1 , F2 = X8

0 σ
2
X1 ,

G1 = X6
0 X

4
1 σ

2
W , G2 = X10

0 σ2W .

Remark 3.3. The following properties are consequences of 3.2.

(i) Ñ ∈M(3, 4,K[X0, X1]18);

(ii) R0 ν0 +R1 ν1 +R2 ν2 = 0 and for all X = (x0, x1) ∈ P1 ∼= A we have:

(1) rank Ñ(X) = 2, rank (R0, R1, R2)(X) = 1;

(2) x0 6= 0 =⇒ ν0(X), ν2(X) are independent;

(3) X = V = (0, 1) =⇒ ν1(V ), ν2(V ) are independent.

(iii) SR(Ñ(Q)) = SR(M
[2](Q′))⊥, ∀Q = j(Q′) ∈ A− {V }.

The Kernel of the surjective linear map K3→ SR(Ñ), Y 7→ y0ν0+y1ν1+y2ν2,

where Y = (Y0, Y1, Y2), is spanned by the relations (R0, R1, R2).

Let V = P1X× K3
Y

π→ P1 be the trivial vector bundle with fiber K3 and let

K = {(X,Y ) ∈ V | Y ∈ 〈(R0, R1, R2)(X)〉} be the sub bundle generated by the

relations. Define

F = P(V/K) p→ P1 ∼= A ∼= A
to be the associated P1-bundle and denote by FX = p−1(X) its fiber. Let

ψ : F→ P3∨ ψ(X,Y ) = y0 ν0(X) + y1 ν1(X) + y2 ν2(X) .

Let ( )[2] : Pn → Pn be the purely inseparable morphism (xi) 7→ (x2i ) and ( )[
1
2
]

be the inverse bijection.

Remark 3.4. From 3.3 it follows

(i) ψ is a morphism and for all X = Q = j(Q′) ∈ A the restriction map

ψ|FQ : FQ → P3∨ is linear, so that ψ(FQ) = PSR(Ñ(Q)) is a line in P3∨.
Moreover, if Q 6= V then

ψ(FQ)[
1
2
] = P

(

SR(M(Q′))⊥
)

= FQ .(7)
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(ii) For H ∈ FQ, we have H ⊃ L(Q) 3 Q and degA = 3, so ψ is finite,

#ψ−1(H) ≤ 3 for all H ∈ ψ(F), and ψ(F) is a surface.

We have determined FQ, the planes H for which φ∗2(H) is singular over Q;

by 2.2 the (−1)-curves on S correspond to FQ1 ∩ FQ2 ∩ FQ3 , hence to the triple

points of the surface ψ(F). The proof of Theorem 1.1 reduces therefore to show

that the surface ψ(F)− {h3=0} contains 120 triple points.

We need normal forms for Fi,Gi up to coordinate change in P(1, 1, 2, 3). The
projective transformations PGL(2,K) of P1(x0,x1) send any 3 distinct points to

any 3 distinct points; since we are in case (1) of 2.5 (iv) as in that proof we may

fix 1 of the 3 points and get a = X0W +X3
1 .

After X0 7→ β
1/3
0 X0 and W 7→ W/β

1/3
0 , we may assume β0 = 1. Denote

by the square of a polynomial. Then Z 7→ Z + γ1(X0, X1)(W ) + γ1(X0, X1),

γi ∈ K[X0, X1]i, gives b 7→ b + a γ1W + a γ3 + = W 3 + (β2 + X0 γ1)W
2 +

(β4 +X0 γ3 +X3
1 γ1)W + β6 +X3

1 γ3 + . Choose γ1 so that (β2 +X0 γ1)W
2 =

cX2
1 W

2 = and γ3 so that β4 +X0 γ3 +X3
1 γ1 = c3X

4
1 .

Hence a = X0W +X3
1 and b = W 3 + c3X

4
1 W +X0X1H

2 + L2, where H =

c0X
2
0 + c1X0X1 + c2X

2
1 and L = d0X

3
0 + d1X

2
0X1 + d2X0X

2
1 + d3X

3
1 + d4WX1,

with ci, dj ∈ K, (c0, d0) 6= (0, 0) because Σ is smooth above (1, 0, 0).

Setting t = X1/X0 it follows

F1 = t4F2 ,

G1 = t4G2 ,

R0 = X18
1 + c23X

4
0X

14
1 +X8

0X
2
1H

4 ,

F2 = X5
0X

13
1 + c3X

7
0X

11
1 +X9

0X
5
1H

2 +X8
0X

4
1L

2 +X10
0 H

4 ,

G2 = X6
0X

12
1 +X9

0X
9
1 + c23X

10
0 X

8
1 + c3X

11
0 X

7
1 +X13

0 X1H
2 +X12

0 L
2 .

(8)

The P1-bundle F is a Segre–Hirzebruch surface Fd = P(OP1 ⊕ OP1(d)).

We want to find generators of PicF and determine d.

For i = 1, 2 and j = 0, 1, 2 let rj = Rj(1, t), fi = Fi(1, t), gi = Gi(1, t);

tV = 1/t = X0/X1, rV,j = Rj(tV , 1), fV,i = Fi(tV , 1), gV,i = Gi(tV , 1). Then

r0 = (t9 + c3 t
7 + t h2)2 = t2 g4 , r1 = 1 , r2 = t4 ,

f2 = t13 + c3 t
11 + t5 h2 + t4 l2 + h4 ,

g2 = t12 + t9 + c23 t
8 + c3 t

7 + t h2 + l2 ,

(9)
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where h = c0 + c1t+ c2t
2, l = d0 + d1t+ d2t

2 + d3t
3 + d4t

4. It follows

g′2 =
d

dt
g2(t) = g2 ,

g = c0 + c1 t+ c2 t
2 +
√
c3 t

3 + t4 ,

t4g2 + f2 = g4 .

(10)

Proposition 3.5. For Q ∈ A− {V }, the line L(Q) defined in 3.1 verifies

(i) L(Q) is the tangent to A in Q ⇐⇒ g(Q) = 0 ⇐⇒ g′2(Q) = 0;

(ii) L(Q) 3 V ⇐⇒ g2(Q) = 0.

From the geometry of the twisted cubic A and (10) it follows {g2 = g′2 = 0} =

{f2=g2=0} = ∅, i.e. g2 has 12 distinct roots in K.

Proof:

(i) The line L(Q) = P(SR(M(Q′)) is tangent to A = α(P1) in Q ⇐⇒
α′(t) = (0, 1, 0, t2) ∈ SR(M). But x0 6= 0, so the condition is equivalent to the

fact that the 2 vectors (1, X1σW , X0 σW ) and (t2, σX0 , σX1) are dependent, which

is equivalent — by Euler’s relation and by (X0 σW , σX1) 6= (0, 0) (smoothness

of A) — to σX1 + t2X0 σW = 0 and to X8
0 (σ

2
X1

+ t4X2
0 σ

2
W ) = 0 and finally to

t4g2 + f2 = g4 = 0.

(ii) V = (0, 0, 0, 1) ∈ (SR(M(Q′)) ⇐⇒ the first 3 columns of M have rank 1

⇐⇒ fW = 0 ⇐⇒ g2(Q) = 0.

Let U = {(x0, x1) ∈ P1 | x0 6= 0}, UV = {(x0, x1) ∈ P1 | R0(x0, x1) 6= 0}.
By 3.3 (ii) it follows that {U,UV } is an open cover of P1, UV 3 V , and that

ν0(X), ν2(X) are independent for X ∈ U , ν1(X), ν2(X) are independent for

X∈ UV . Local affine coordinates on V/K are

on π−1(U) t = x1/x0 and y0, y2, where yi = yi|U ;

on π−1(UV ) tV = x0/x1 and yV,1, yV,2, where yV,i = yi|UV .

Let F = Ũ ∪ ŨV , where Ũ= p−1(U) = Ũ0∪ Ũ2, ŨV = p−1(UV ) = ŨV,1∪ ŨV,2

Ũ0 =
{

(X,Y ) ∈ Ũ | Y0 6= 0
}

,

Ũ2 =
{

(X,Y ) ∈ Ũ | Y2 6= 0
}

,



LINES ON DEL PEZZO SURFACES 69

ŨV,1 =
{

(X,Y ) ∈ ŨV | YV,1 6= 0
}

,

ŨV,2 =
{

(X,Y ) ∈ ŨV | YV,2 6= 0
}

.

Affine coordinates are

on Ũ0 (t, u0) where u0 = y2/y0 ,

on Ũ2 (t, u2) where u2 = y0/y2 ,

on ŨV,1 (tV , v1) where v1 = yV,2/yV,1 ,

on ŨV,2 (tV , v2) where v2 = yV,1/yV,2 .

Let ψŨ , ψŨV , ψi, ψV,i, be the restrictions of ψ to Ũ , ŨV , Ũi, ŨV,i.

By (6), we have ν0 = (t4, 0, 1, 0), ν2 = (r0, f2, 0, g2), νV,1= (0, fV,1, rV,0, gV,1),

νV,2 = (rV,0, fV,2, 0, gV,2). It follows

ψŨ = Y0 ν0 + Y2 ν2 , ψŨV = YV,1 νV,1 + YV,2 νV,2 ,

ψ0 = ν0 + u0 ν2 = (t4+ u0r0, u0f2, 1, u0g2) ,

ψ2 = u2 ν0 + ν2 = (t4u2 + r0, f2, u2, g2) ,

ψV,1 = νV,1 + v1 νV,2 = (v1 rV,0, fV,1+ v1fV,2, rV,0, gV,1+ v1gV,2) ,

ψV,2 = v2 νV,1 + νV,2 = (rV,0, v2fV,1+ fV,2, v2rV,0, v2gV,1+ gV,2) .

(11)

We define on F the divisors D, E, FX = p−1(X) for X ∈ P1.
Remarking that R0 6= 0 in UV

D = ψ∗{h2=0} = {Y0X18
0 + Y1R0 = 0}

=
{

(Ũ , Y0X
18
0 ), (ŨV , YV,1R0 = 0)

}

=
{

(Ũ0, 1), (Ũ2, u2), (ŨV,1, 1), (ŨV,2, v2)
}

,

E =
{

(Ũ , Y2), (ŨV , X
4
1YV,1+X

4
0YV,2)

}

=
{

(Ũ0, u0), (Ũ2, 1), (ŨV,1, 1+t
4
V v1), (ŨV,2, v2+t

4
V )
}

.

Proposition 3.6. D, E, FX are irreducible, smooth, rational divisors on F.
If we denote their classes in PicF respectively by d, e, f and by h∨ the class

of a hyperplane H∨ in P3∨, then

f2 = 0 , d · f = e · f = 1 , d · e = 4 ,

ψ∗(h∨) = d = e+ 14 f , d2 = 18 , e2 = −10 .
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Hence F is a Segre–Hirzebruch surface F10. Moreover, for all (a, b) ∈ P1

ψ∗{a h1 + b h3 = 0} = E + {a f2(t) + b g2(t) = 0}|Ũ + r FV(12)

where r = 1⇔ a 6= 0 and r = 2⇔ a = 0.

In particular, ψ∗{h3 = 0} = E + {g2(t) = 0}|Ũ + 2FV , according to 3.5 and
the fact that {h3 = 0} = {H∨∈ P3∨ | H∨3 V }.

Proof: E is a divisor since 1
y2
(x41 yV,1 + x40 yV,2) = t4 6= 0 in Ũ ∩ ŨV .

The other assertions follow from the local definition of D, E and the fact that

ψ∗(h∨) = e+ 14 f , which is a consequence of (12).

The proof of 12 goes as follows: ψ∗{ah1 + bh3 = 0} = {a(Y1F1 + Y2F2) +

b(Y1G1 + Y2G2) = 0} = {(Ũ , Y2(aF2 + bG2)), (ŨV , (YV,1+ t4V Y2) (aF1 + bG1))},
((6), (8)). The value of r follows from aF1+ bG1 = aX0X

17
1 + bX2

0X
16
1 +X3

0 (. . .)

and FV = {X0 = 0}.

Corollary 3.7. Let L0 be the line {h1 = h3 = 0} ⊂ P3∨.

(i) ψ(E) and ψ(FX), for all X ∈ P1, are lines in P3∨;

(ii) ψ(E) = ψ(FV ) = L0 and ψ(FX) 6= L0, for all X ∈ U ;
(iii) ψ|E : E → L0 is a purely inseparable morphism of degree 4;

(iv) degψ(F) = 18 and ψ : F→ ψ(F) is a birational morphism.

Proof:

(iii) E|Ũ0 = {Y2=0} and ψ(E ∩ Ũ0) = Y0 ν0 = Y0(t
4, 0, 1, 0).

The second assertion of (ii) follows from the injectivity of ψ|E .
(iv) degψ(F) divides d2 = 18 and degψ(F) ≥ 12, because by 3.5 (ii), 3.6 and

(i), (ii) above ψ(F) ∩ {h3 = 0} contains the distinct lines ψ(Fci), i = 1 . . . 12,

where ci are the distinct roots of g2.

Remark 3.8. The critical set {rank dψ < 2} of ψ is E ∪ ⋃{ρ∈U |g(ρ)=0} Fρ.
From 3.4 (ii) it follows that the singularities of ψ(F) are

Sing(ψ(F)) = L0 ∪
⋃

g(ρ)=0

ψ(Fρ) ∪ {double points} ∪ {triple points} .(13)

Proof: By 3.4 (i), the critical set is {(x, y) ∈ F | ∂ψ
∂x (x, y) = 0}. In Ũ

by (11) we have ∂ψŨ/∂t = Y2(0, t
4g′2, 0, g

′
2), while in FV = {tV = 0} ⊂ ŨV ,

∂ψŨV /∂tV = (YV,1 + t4V YV,2) (0, f
′
V,1, 0, g

′
V,1) and f

′
V,1= 1 for tV = 0.



LINES ON DEL PEZZO SURFACES 71

4 – The map ξ and the double curve Λ ⊂ F

The map ψ can be better understood through the following definition. For

every t ∈ U ⊂ P1, the lines ψ(Ft) and L0 = ψ(E) in P3∨ are distinct by 3.7

and intersect in ψ(E ∩ Ft), hence span a plane ξ(t) = 〈ψ(Ft), L0〉 ∈ Φ, where

Φ = {H∨⊂ P3∨ | H∨⊃ L0} = {ah1+ bh3 = 0 | (a, b) ∈ P1} is the pencil of planes
containing L0. A morphism ξ : P1 → Φ is defined, and we have

F −→ P3∨ −→ P3∨( )[
1
2
]ψ

↓ p
P1 −→ξ Φ∼=P1←−α

∼=
A⊃Q⊃P3

↓φ2

S

Remark 4.1. Choose on the pencil Φ the projective coordinates for which

{ah1 + bh3 = 0} = (a, b), and let ∞ = (0, 1) ∈ Φ. Then

(i) ξ∗(∞) = c1 + . . .+ c12 + V , where ci are the distinct roots of g2.

Hence ξ is separable, ξ(V ) = ∞, deg ξ = 13 and ∞ is not a branch

point.

(ii) In the affine coordinate b/a on Φ− {∞}, for t ∈ U , tV ∈ UV we have

ξ(t) =
f2
g2

= t4 +
g4

g2
, ξ(tV ) =

fV,1
gV,1

, ξ′(t) =
g6

g22
.(14)

(iii) The critical {dξ = 0} set of ξ is R = {ρ ∈ U | g(ρ) = 0} = {ρ1 . . . ρd},
where ρi are the distinct roots of g and 1 ≤ d ≤ 4 ((10)). The ramifi-

cation of ξ at ρi is 6ni, where ni is the multiplicity of the root ρi. The

branch locus of ξ is ξ(R} = {ρ41 . . . ρ4d} ⊂ Φ−{∞}; it follows that ξ|R is
injective.

(iv) Up to the identification P1 ∼= A, the singular set of A∗ = φ−12 (A) is

φ−12 (R) and the contribution of φ−12 (ρi) to pa(A
∗) is ni; A

∗ is rational.

Proof: By (12) ψ∗{ah1 + bh3 = 0} = E + FV + F(a,b), where F(a,b) =

{af2(t) + b g2(t) = 0}|Ũ + (n− 1)FV =
∑

i ri FXi
,
∑

i ri = 13. The relation

t4g2 + f2 = g4 in (10) and 3.5 (ii) imply that f2, g2 have no common roots, so

{F(a,b)}(a,b)∈P1 is a pencil without fixed component and F(a,b) = p∗ ξ∗(a, b). The

case a=0 proves (i), while looking at F(a,b)|Ũ , F(a,b)|ŨV we get (ii); (10) gives ξ′.

(iii) As∞ is not a branch point, R ⊂ U ∩{g2 6= 0}, so R = {ξ′= g6/g22 = 0}.
The other assertions follow from deg g = 4, and the relation (10).
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(iv) A local computation shows that A∗ is singular in π−1(Q) ⇐⇒ L(Q) is

tangent to A in Q; then we use 3.5 (i). If A2 is a copy of A and φ′ : A2 → A is the

K-linear Frobenius map, π−1 ◦ φ′2 is a normalization of A∗, hence the assertion

on ni. A
∗ is rational since pa(A

∗) = 4 = deg g =
∑

ni (2.5 (i)).

To understand ψ(F), let H∨ = (a, b) ∈ Φ, a plane in P3∨ containing L0.

If H∨ 6∈ ξ(R), i.e. (a, b) 6= (1, ρ4i ), then ψ∗(H∨) = E + FV + F(a,b), where

F(a,b) = Fe1 + . . . + Fe13 , {e1, . . . , e13} = ξ−1(a, b). The scheme intersection

between H∨ and ψ(F) is H∨ · ψ(F) = ψ∗ ψ
∗(H∨) = 5L0 + ψ(Fe1) + . . .+ ψ(Fe13)

because of 3.7 (ii), 3.4 (i). The 13 lines ψ(Fei) are all distinct and intersect L0 in

different points, since ψ|E is injective. One of the ψ(Fei) is L0 ⇐⇒ H∨ =∞⇐⇒
a = 0.

If H∨= (1, ρ4) ∈ ξ(R), H∨·ψ(F) = 5L0+mψ(Fρ)+ψ(Fe1)+ . . .+ψ(Fe13−m).

From 3.8, we see that ψ(F) is singular along L0 and the d lines ψ(F(1,ρ)). The
other singularities in H∨ arise from the intersections of the lines ψ(Fei); there are
( 13−m

2

)

double points and triple points. Varying H∨∈ Φ, the double points

describe by transversality a curve ∆ in ψ(F), which is the closure of
⋃

e6=e∗∈P1
ξ(e)=ξ(e∗)=H∨∈Φ

ψ(Fe) ∩ ψ(Fe∗)

and the triple points are its nodes. Let Λ = ψ∗(∆) be the so-called double curve

of ψ. The restriction ψ : Λ→ ∆ is a 2 : 1 morphism.

To count the nodes of Λ, we need local parametrizations. If (a, b) ∈ Φ and

e ∈ ξ−1(a, b), let Λe be a formal neighborhood of Λ∩Fe, by which we mean a set

of parametrizations of Λ at its points. Let Λ(a,b) =
⋃

e∈ξ−1(a,b) Λe; we study Λ(a,b)
in the cases (a, b) ∈ Φ− (ξ(R) ∪ {∞}), (a, b) ∈ ξ(R), (a, b) =∞.

Case I. Suppose (a, b) ∈ Φ − (ξ(R) ∪ {∞}); then ξ−1(a, b) = {e1 . . . e13} ⊂
U ∩{g2 6= 0, g 6= 0}. Let e, e∗ ∈ ξ−1(a, b), e 6= e∗; then ψ(Fe) and ψ(Fe∗) lie in the

plane (a, b) ∈ Φ and must intersect outside L0, so ψ
−1(ψ(Fe)∩ψ(Fe∗)) = {P, P ∗},

where P ∈ Fe−E, P ∗ ∈ Fe∗−E, hence P, P ∗ ∈ Ũ2.
Therefore we look for power series solutions of the equation

{

ψ2(t, u2) = ψ2(t
∗, u∗2)

t 6= t∗
(15)

with (t, u2) centered at P , (t∗, u∗2) centered at P ∗.

As g(e), g(e∗), g2(e), g2(e
∗) are all 6= 0, by (11) we have

ψ2(t, u2) =

(

u2 t
4 + t2 g(t)4

g2(t)
, ξ(t) ,

u2
g2(t)

)

.
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It follows that (15) is equivalent to the 2 conditions

{

ξ(t) = ξ(t∗)

t 6= t∗
(16)

L(t, t∗)

(

u2
u∗2

)

= B(t, t∗)(17)

where

L =







g2(t
∗) g2(t)

t4

g2(t)

t∗4

g2(t∗)






, B =







0

t2 g4(t)

g2(t)
+
t∗2 g4(t∗)

g2(t∗)






.(18)

If detL = (t+ t∗)4 is invertible, every solution of (16) gives a unique solution of

(17). We are assuming that (a, b) 6∈ ξ(R) is not a branch point, so there exists a

power series t∗(t) ∈ K[[t− e]] such that

ξ(t∗(t)) = ξ(t) , t∗(e) = e∗ ,
dt∗

dt
(e) 6= 0 .(19)

As t+ t∗(t) ∈ K[[t− e]]∗, (17) has solutions u2(t), u∗2(t) ∈ K[[t− e]]. Let

λ(t) = (t, u2(t)) , λ∗(t) = (t∗(t), u∗2(t)) .(20)

Then λ, λ∗ are parametrizations of Λ at P = (e, u2(e)), P
∗ = (e∗, u∗2(e)) and if

ψ(P ) = ψ(P ∗) is not a triple point there are no other branches through these

points, hence Λ is smooth, horizontal in neighborhoods of P , P ∗. Using (10), we

can compute the explicit solution of (17)

u2(t) =
g4(t)

(t+ t∗)2
+ t∗2 g2(t) , u′2(t) = t∗2 g2(t) .(21)

Remark that the situation is symmetric in t, t∗, i.e. t∗∗ = t.

It remains to see what happens near the points of Λ which are inverse images

of triple points of ∆. Let P ∈ Fe, P ∗ ∈ Fe∗ , P ¦ ∈ Fe¦ , e, e∗, e¦ ∈ ξ−1(a, b),
e, e∗,e¦ distinct s.t. ψ(P ) = ψ(P ∗) = ψ(P ¦) is a triple point in the plane (a, b),

intersection of the distinct lines ψ(Fe), ψ(Fe∗), ψ(Fe¦). Then P, P ∗, P ¦ 6∈ E,

hence P, P ∗, P ¦ ∈ Ũ0, and as before we get 2 parametrizations for Λ near P :

λP,P ∗(t) = (t, u2P,P ∗(t)) relative to (P, P ∗) and λP,P ¦(t) = (t, u2P,P ¦(t)) relative

to (P, P ¦).
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By (21), u′2P,P ∗(e) + u′2P,P ¦(e) = (e∗ + e¦)2 g2(e) 6= 0 because e∗ 6= e¦ and

g(e) 6= 0, hence there are 2 smooth branches of Λ through P with different

tangents. In conclusion, Λ has a node in P and, by symmetry, in P ∗, P ¦.

If H = ψ(P )[1/2] = ψ(P ∗)[1/2] = ψ(P ¦)[1/2], then by 2.2 φ∗2(H) = Γ1 + Γ2 and

Γ1,Γ2 is a pair of (−1)-curves of type (1,1,1) (see 2.3), i.e. having 3 distinct

intersection above α(p(e)), α(p(e∗)), α(p(e¦)) (figures 1 and 2).

Fig. 1 : Λ(a,b) for (a, b) ∈ Φ−(ξ(R) ∪ {∞}).

Fig. 2 : Nodes of Λ(a,b) for (a, b) ∈ Φ−(ξ(R) ∪ {∞}).

Remark 4.2. ΛΦ−(ξ(R)∪{∞}) =
⋃

(a,b)∈Φ−(ξ(R)∪{∞}) Λ(a,b) has only nodes as

singularities, is contained in Ũ2 and the number of nodes in ΛΦ−(ξ(R)∪{∞}) equals

3 times the number of triple points of ψ(F) in
⋃

H∨∈Φ−(ξ(R)∪{∞})H
∨.

Each triple point corresponds to 1 pair of (−1)-curves of type (1,1,1).
If λ denotes the class of Λ in PicF, then λ · f = 12.
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Proof: If e ∈ ξ−1(Φ − (R ∪ {∞})), ξ−1(a, b) = {e, e1, . . . , e12}, Λ is

parametrized at its intersection with Fe by λe,ei(t) as above. So Fe intersects

ΛΦ−(ξ(R)∪{∞}) transversally in 12 points and λ · f = 12.

Case II. Suppose (a, b)=ξ(ρ), ρ∈R. Then ξ∗((a, b)) = mρ+e1+. . .+e13−m,

and ej 6∈ R by 4.1 (iii), m ≥ 2. Let e ∈ {e1, . . . , e13−m}. Since e is not a

ramification point and ξ(ρ) = ξ(e), there exists t∗(t) ∈ K[[t − ρ]] such that

ξ(t∗(t)) = ξ(t), t∗(ρ) = e. Let n be the multiplicity of the root ρ of g (4.1). Then

the vanishing order of t∗
′
at ρ is 6n and equals the vanishing order of ξ ′ at ρ. The

corresponding solutions of (15) are the parametrizations

λρ,e = (t, u2(t)) , λ∗ρ,e = (t∗(t), u∗2(t))(22)

of Λ, where u2 is defined by 21 and

u∗2(t) =
g4(t∗(t))

(t+ t∗)2
+ t2 g2(t

∗(t)) , u∗
′

2 (t) = t2 g2(t∗(t)) t∗
′

(t) .(23)

It follows that λ′(ρ) = (1, u′2(ρ)) 6= (0, 0), i.e. that branch of Λ is smooth at

(ρ, u2(ρ)), while λ
∗′(ρ) = (0, 0), i.e. Λ is singular at (e, u∗2(ρ)).

Since (a, b) ·ψ(F) = 5L0+mψ(Fρ) +ψ(Fe1) + . . .+ψ(Fe13−m), Fe intersects
Λ in 13−m points; 12−m of them are not necessarily distinct, correspond to

ψ(Fe) ∩ ψ(Fei), ei ∈ {e1, . . . , e13−m} − {e}, and lie in the smooth, transversal to

Fe parametrizations λe,ei of Λe. The last is singular, different from the previous

ones by 3.5 and 2.5, corresponds to ψ(Fe)∩ψ(Fρ) and lies in λ∗ρ,e. Thus Fe ·Λ =

12 −m + Fe · Im (λ∗) = 12 because Fe · Im (λ∗) = m, the vanishing order at e of

ξ(t). As λ · f = 12, we have determined all Λe, consisting of the 12−m smooth

curves λe,ei and the singular curve λ∗ρ,e

Λe = {λe,ei}ei∈{e1,...,e13−m}−{e} ∪ {λ∗ρ,e}(24)

λe,ei may intersect λe,ej in Fe forming a node iff ψ(Fe), ψ(Fei), ψ(Fej ) intersect

in a triple point, as in case I; λ∗ρ,e does not intersect λe,ei .

To study Λρ, remark that ψ(Fρ) intersects ψ(Fei) in 13−m distinct points:

if H [2] ∈ ψ(Fρ) ∩ ψ(Fei) ∩ ψ(Fej ), then H ·A ≥ 4 by 3.5, excluded by 2.5. These

intersections lie in the 13 − m parametrizations λρ,ei , transversal to Fρ. Since

Fρ · Λ = 12, further parametrizations of Λρ giving m − 1 intersections with Fρ
must be found, arising from the self intersections of mψ(Fρ).

We need m and the power series of ξ at ρ. Remark that to find the normal

forms we have fixed 1 of 3 points in P1. We may thus assume (see 4.1)

ρ = 0 , e = 1 , c0 = 0 , g2(0) = d0 6= 0 , ξ(ρ) = 0 , f2(1) = 0 .(25)
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By (9), (10), (14) it follows that

g2 = d20 + d21 t
2 + c21 t

3 + d22 t
4 + c22 t

5 + d23 t
6 + c3 t

7

+ (c3 + d4)
2 t8 + t9 + t12 ,

g = c1 t+ c2 t
2 +
√
c3 t

3 + t4 ,

ξ(t) = t4 + g4/g2 = a4 t
4 + a6 t

6 + a7 t
7 +

∑

i≥8

ai t
i ,

(26)

hence m ∈ {4, 6, 7} if n = 1, as

a4 = 1 +
c41
d20
, a6 =

c41 d
2
1

d40
, a7 =

c61
d40

.(27)

Case II splits as follows, n being the multiplicity of the root ρ of g.

II 14. n = 1, m = 4 hence c1 6= 0, d0+ c21 6= 0, a4 6= 0. We look for solutions

of (16) with t close to t∗. Set t∗= t (1+ζ); then (16) becomes







ξ(t) = ξ
(

t (1 + ζ)
)

ζ 6= 0 .
(28)

Substituting and dividing by t4 ζ, we get an affine curve C in the plane (t, ζ)

a4 ζ
3 + a6 t

2 ζ + a7 t
3 + a7 t

3 ζ + o5(t, ζ) = 0 , o5(t, ζ) ∈ (t, ζ)5 .(29)

C has in (0, 0) a triple point with tangents ζ = εj t, j = 1, 2, 3, εj roots of

a4X
3 + a6X + a7 ∈ K[X] .(30)

Since a7 6= 0 and there is no X2, it follows that εj 6= 0 and that the εj are distinct;

so (0, 0) is an ordinary triple point with branches t 7→ (t, ζj(t)), ζj(0) = 0,

ζ ′j(0) = εj . We get 3 solutions of (16), t∗j (t) = t (1+ ζj(t)) ∈ K[[t]]. The

corresponding parametrizations of Λρ are given by (17), (18), (20), (21)

λ̃ρ,j(t) = (t, ũ2j(t)) , ũ2j(t) =
g4(t)

t2 ζj(t)2
+ t2

(

1 + ζj(t)
)2
g2(t) .(31)

Hence λ̃ρ,j(t) are transversal to Fρ and P̃ρ,j = λ̃ρ,j(0) = (0, c41/ε
2
j ), λ̃

′
ρ,j(0)=(1, 0).

As Fρ · Im(λ̃ρ,j) = 1, we have found the 3 missing intersections, and

Λρ = {λρ,ei}i=1...9 ∪ {λ̃ρ,j}j=1,2,3 .(32)
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All λρ,ei , λ̃ρ,j are smooth, transversal to Fρ and their intersections with Fρ are

respectively Pρ,i = λρ,ei(0), which are distinct by 3.5, 2.5, and P̃ρ,j , which are

distinct since εj are distinct. It may be Pρ,i = P̃ρ,j = P . Consider in this case

the plane H = ψ(P )[
1
2
]. We already know that φ∗2(H) has 1 singular point above

α(p(ρ)) and 1 above α(p(ei)); it may have 2 above α(p(ρ)).

Remark 4.3. Let P ∈FQ, Q∈U and H=ψ(P )[1/2] a plane containing L(Q).

By 3.4, φ∗2(H) has at least 1 singular point above α(Q).

Let I = I(H,A;Q) be the intersection multiplicity of H, A at α(Q). Then

(i) I ≥ 1 and I ≥ 2 ⇐⇒ P ∈ E ∪ ⋃ρ∈R Fρ = {dψ=0} ∩ Ũ ;
(ii) I = 3 ⇐⇒ P ∈ D ∩ Fρ, ρ ∈ R ⇐⇒ P = (ρ, u2) ∈ Ũ2 with u2 = 0.

Let P = (0, u2) ∈ Fρ ∩ Ũ2.
(iii) φ∗2(H) has 2 infinitely near singular points above α(Q) ⇐⇒

⇐⇒ u2 is a root of

X3 + d41X
2 + d40(d

4
0 + c81) ∈ K[X] ;(33)

(iv) φ∗2(H) has 3 infinitely near singular points above α(Q) ⇐⇒ we have










u2 = 0

d0 + c21 = 0

d1 + d22 + c42 = 0 ;

(34)

(v) the 3 distinct points P̃ρ,j are exactly the points of Fρ∩ Ũ s.t. φ∗2(H) has

2 infinitely near singular points above α(Q);

(vi) assuming (25), P̃ρ,j = Pρ,i = P ⇐⇒ εj = c21/d0 ⇐⇒ if H = ψ(P )[
1
2
]

then φ∗2(H) = Γ1 + Γ2 with Γi having intersection 2 above α(p(ρ)) and

1 above α(p(ei)), i.e. Γ1,Γ2 is a pair of (−1)-curves of type (2,1) (2.3).

Proof:

(i) follows from 3.5, 3.8.

(ii) If I = 3, we must be in case (i) and P 6∈ E, since otherwise H 3 V

by 3.6 and V ∈ A, V 6= α(Q), degA = 3. So P ∈ Fρ ∩ Ũ2, we may assume

ρ = 0 and in the coordinates (t, u2) of Ũ2 P = (0, a). Then L(Q) is tangent to A

at α(Q), and the pencil of planes containing L(Q) is isomorphic to A sending a

plane to its third intersection with A. So there is exactly 1 plane H s.t. I = 3,

i.e. H ∩ (A− {α(Q)}) = ∅. And if P ∈ D, i.e. a = 0, then ψ(P ) = (h0, h1, 0, h3),

so α(t) = (1, t, t2, t3) 6∈ H for t 6= 0.
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(iii) Let P = (0, u2) ∈ Fρ ∩ Ũ2; then H = ψ2(P )
[1/2] = (0, 0,

√
u2, d0). In

the affine chart of P(1, 1, 2, 3) containing π−1(α(Q)) with coordinates z = Z/X3
0 ,

w =W/X2
0 , t = X1/X0, φ∗2(H) is defined by

{

z2 + (w + t3) z + b = 0 ,
√
u2 t

2 + d0w = 0 .
(35)

Substituting w = d−10
√
u2 t

2 in the first equation, after z + d0 7→ z we get

z2 +A t2z + t3z +B t2 + C t3 +D t4 + E t5 + F t6 = 0

where A =
√
u2/d0, B = d21 +

√
u2, C = d0 + c21, D = d22, E = c22. Blowing up at

(t, z) = (0, 0), which is singular as expected, the strict transform lies in z = t v;

after v 7→ v+
√
B, we get v2+A t v+(A

√
B+C) t+t2 v+(

√
B+D) t2+Et3+Ft4=0.

So we have 2 infinitely near singular points at (t, z) = (0, 0) ⇐⇒ A
√
B + C = 0,

from which (iii) follows.

(iv) Suppose A
√
B+C = 0; blowing up at (t, v) = (0, 0), the strict transform

lies in v= t s and is s2+As+
√
B+D+(E+s) t+F t2 = 0. Let αi be the roots of

X2+AX+
√
B+D; after s+αi 7→ s we get s2+As+(E+αi) t+ t s+F t

2 = 0.

So we have 3 infinitely near singular points at (t, z) = (0, 0)⇐⇒ A = E+αi = 0,

which is equivalent to 34.

(v) Just check that c41/ε
2
j , j = 1, 2, 3, are roots of 33.

(vi) P̃ρ,j = (0, c41/ε
2
j ) and by (25), (20), (21) Pρ,i = (0, d20). All the assertions

follow from (iii) and (iv).

Proposition 4.4. In case 14 (n = 1, m = 4), if (a, b) = ξ(ρ), ρ ∈ R, then

ξ∗((a, b)) = 4 ρ+ e1 + . . .+ e9 , Λ(a,b) = Λρ ∪ Λe1 ∪ . . . ∪ Λe9 .(36)

Λρ is defined in (22), (31), (32) and Λei = {λei,ej}j 6=i ∪{λ∗ρ,ei} (24); Λρ intersects
Fρ in Pρ,1, . . . , Pρ,9, distinct, and P̃ρ,1, P̃ρ,2, P̃ρ,3, distinct.
There are pairs of (−1)-curves of type (2,1) ⇐⇒ Pρ,i = P̃ρ,j ⇐⇒ εj = c21/d0

(4.3 (vi)). If their number is nρ,(2,1), then 0 ≤ nρ,(2,1) ≤ 3.

The singularities in Λ(a,b) are, except nodes, the nρ,(2,1) singularities Pρ,i =

P̃ρ,j ∈ Im (λρ,ei) ∩ Im (λ̃ρ,j) and the 9 cusps P
∗
ρ,i ∈ Im(λ∗ρ,ei) (figure 3).
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Fig. 3 : Λ(a,b) of type 14, 2, 3, 4.

II 16. n = 1, m = 6 hence c1 6= 0, d1 6= 0, d0 = c21, a4 = 0, a6 6= 0, a7 6= 0.

As in II 14, we solve the first of (28). Substituting and dividing by t6 ζ, we

get the equation of an affine curve C ′ in the plane (t, ζ):

a6 ζ (1 + ζ + ζ2)2 + a7 t
[

1 + ζ (1 + ζ + ζ2)2 + ζ2 (1 + ζ + ζ2)2
]

+

+ a8 t
2 ζ7 + t3(. . .) = 0 .

(37)

Let η1, η2 be the distinct roots of 1+X+X2; C′ intersects {t = 0} in the 3 distinct

points B0 = (0, 0), B1 = (0, η1), B2 = (0, η2). The above equation becomes

a6 ζ (ζ + η1)
2 (ζ + η2)

2 + a7 t+ o3 = 0 and defines the following parametrizations

at Bj : t 7→ (t, ζ(t)), ζ(t) = a7
a6
t + o2(t) ∈ K[[t]], o2(t) ∈ (t)2 for j = 0 and

ζ 7→ (tj(ζ), ζ), tj(ζ) = ηj
a6
a7

(ζ + ηj)
2 + o3 (ζ + ηj) ∈ K[[ζ + ηj ]] for j = 1, 2.

We get therefore 3 solutions of (16), (t, t∗(t)) and (tj(ζ), t
∗
j (ζ)), j = 1, 2, centered

at 0 the first, at ηj the second: t∗(t) = t(1 + ζ(t)), t∗j (ζ) = tj(ζ) (1 + ζ).

The corresponding parametrizations of Λρ as in (31) are

λ̃ρ(t) = (t, ũ2(t)) , ũ2(t) =
g4(t)

t2 ζ2(t)
+ t2

(

1 + ζ(t)
)2
g2(t) ,(38)

where ũ2 is defined by (21), and for j = 1, 2

λ̃ρ,j(ζ) =
(

tj(ζ), ũ2,j(ζ)
)

, ũ2,j(ζ) =
g4(tj(ζ))

t2j (ζ) ζ
2

+ t2j (ζ) (1 + ζ)2 g2(tj(ζ)) .(39)

Thus λ̃ρ(t) = (t, d41 + o1(t)), λ̃ρ,j(ζ) = (ηj
d21
c21

(ζ + ηj)
2 + o3(ζ + ηj), o5(ζ + ηj)).

As Fρ · Im(λ̃ρ) = 1, Fρ · Im(λ̃ρ,j) = 2 we found all Λρ

Λρ = {λρ,ei}i=1...7 ∪ {λ̃ρ} ∪ {λ̃ρ,j}j=1,2 .(40)
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Let P̃ρ = λ̃ρ(0) = (0, d41), P̃ρ,∗ = λ̃ρ,j(ηj) = (0, 0), Pρ,i = λρ,ei(0) = (0, d20)

(by (25), ei = 1). From 4.3 it follows

Proposition 4.5. In case 16, (n = 1, m = 6), if (a, b) = ξ(ρ), ρ ∈ R, then

ξ∗((a, b)) = 6 ρ+ e1 + . . .+ e7 , Λ(a,b) = Λρ ∪ Λe1 ∪ . . . ∪ Λe7 .(41)

Λρ is defined in (22), (38), (39), (40) and Λei is as in 4.4. Λρ intersects Fρ in the
distinct points Pρ,1, . . . , Pρ,7, P̃ρ, and in P̃ρ,∗, P̃ρ,∗ 6= P̃ρ.

H = ψ(P̃ρ,∗)
[1/2] has intersection I = 3 with A at α(p(ρ)) and φ∗2(H) has 3

infinitely near singular points above α(p(ρ)) ⇐⇒ d1 + d22 + c42 = 0.

In this case, by 2.1 φ∗2(H) is a pair of (−1)-curves having intersection multi-
plicity 3 above α(p(ρ)), i.e. a pair of type (3) (2.3). If we denote by nρ,(3) the

number of such pairs, we have therefore 0 ≤ nρ,(3) ≤ 1.

There are pairs of (−1)-curves of type (2,1) ⇐⇒ Pρ,i = P̃ρ ⇐⇒ d0 = d21;

their number is 0 ≤ nρ,(2,1) ≤ 1. The singularities in Λ(a,b) are, except nodes,

the nρ,(2,1) singularities Pρ,i = P̃ρ ∈ Im(λρ,ei)∩Im(λ̃ρ); P̃ρ,∗ ∈ Im(λ̃ρ,1)∩Im(λ̃ρ,2);

the 7 cusps P ∗ρ,i ∈ Im(λ∗ρ,ei) (see figure 4).

Fig. 4 : Λ(a,b) of type 16.

II 17. n = 1, m = 7 hence c1 6= 0, d1 = 0, d0 = c21, a4 = a6 = 0, a7 6= 0.

Substituting and dividing by t7ζ, we get a curve C ′′: a7(1+ ζ + ζ2+ ζ3+ ζ4+

ζ5 + ζ6) + t(. . .) = 0 in the plane (t, ζ).

The polynomial 1+X+X2+X3+X4+X5+X6 ∈ K[X] has 6 distinct roots

µj 6= 0, j=1 . . . 6, in K. Thus C ′′ intersects {t = 0} in the 6 points (0, µj), and

at (0, µj) we have ζj(t) = µj + o1(t) ∈ K[[t]] and hence t∗j (t) = (1 + µj) t+ o2(t).

The corresponding parametrizations of Λρ as in (31) are

λ̃ρ,j(t) = (t, ũ2,j(t)) , ũ2,j(t) =
g4(t)

t2 ζ2j (t)
+ t2 (1 + ζj(t))

2 g2(t) .(42)
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Then λ̃ρ,j(t) = (t, [
c41
µ2
j

+ (1 + µ2j ) d
2
0] t

2 + o4(t)) and Fρ · Im(λ̃ρ,j) = 1. As before

Λρ = {λρ,ei}i=1...6 ∪ {λ̃ρ,j}j=1...6 .(43)

Let P̃ρ = λ̃ρ,j(0) = (0, 0), Pρ,i = λρ,ei(0) = (0, d20) (by (25), ei = 1). Then

Proposition 4.6. In case 17 (n = 1, m = 7), if (a, b) = ξ(ρ), ρ ∈ R, then

ξ∗((a, b)) = 7ρ+ e1 + . . .+ e6 , Λ(a,b) = Λρ ∪ Λe1 ∪ . . . ∪ Λe6 .(44)

Λρ is defined in (22), (42), (43) and Λei is as in 4.4. Λρ intersects Fρ in Pρ,1, . . . ,
Pρ,6, P̃ρ. The plane H = ψ(P̃ρ)

[1/2] has intersection I = 3 with A at α(p(ρ)) and

φ∗2(H) has 3 infinitely near singular points above α(p(ρ))⇐⇒ d22+c
4
2 = 0. In this

case, φ∗2(H) = Γ1 + Γ2 is a pair of (−1)-curves of type (3); thus 0 ≤ nρ,(3) ≤ 1.

There are no pairs of (−1)-curves of type (2,1), since Pρ,i 6= P̃ρ. The singularities

in Λ(a,b) are, except nodes, P̃ρ ∈
⋂

j=1...6 Im (λ̃ρ,j) and the 6 cusps P
∗
ρ,i ∈ Im(λ∗ρ,ei)

(figure 5).

Fig. 5 : Λ(a,b) of type 17.

II 2. n = 2 hence c1 = 0, c2 6= 0, m = 4, a4 = 1, a6 = a7 = 0, a8 = c42/d
2
0 6= 0,

a9 = a11 = 0, a13 = c62/d
4
0 6= 0. Set t∗ = t (1 + t3ζ); substituting in (16) and

dividing by t16 ζ, we get the curve ζ3 + a10 ζ + a13 + t(. . .) = 0. The polynomial

X3 + a10X + a13 ∈ K[X](45)

has 3 distinct roots ωj , ωj 6= 0, j = 1, 2, 3 in K. The curve intersects {t = 0} in the

3 points (0, ωj), where we have ζj(t) = ωj+o1(t) and hence t∗j (t) = t+ωj t
4+o5(t).

The corresponding parametrizations of Λρ are

λ̃ρ,j(t) = (t, ũ2,j(t)) , ũ2,j(t) =
g4(t)

t8 ζ2j (t)
+ t2

(

1 + t3 ζj(t)
)2
g2(t) .(46)
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It follows λ̃ρ,j(t) = (t,
c42
ω2
j

+ o2(t)). Since Fρ · Im(λ̃ρ,j) = 1, Λρ is as in (32).

Let P̃ρ,j = λ̃ρ,j(0) = (0,
c42
ω2
j

), Pρ,i = λρ,ei(0) = (0, d20) (ei = 1 by (25)). Then

Proposition 4.7. In case 2 (n = 2, m = 4), if (a, b) = ξ(ρ), ρ ∈ R, then
ξ∗((a, b)) and Λ(a,b) are as in (36), Λρ is defined in (22), (46), (32) and Λei is as

in 4.4. Λρ intersects Fρ in the points Pρ,1, . . . , Pρ,9, P̃ρ,j , j = 1, 2, 3.

If H = ψ(P̃ρ,j)
[1/2], then φ∗2(H) has 2 infinitely near singular points above

α(p(ρ)), since c42/ω
2
j are the roots of the polynomial Qρ defined in (33).

There are of (−1)-curves of type (2, 1)⇐⇒ Pρ,i = P̃ρ,j ⇐⇒ d0 = c22/ωj ; hence

0 ≤ nρ,(2,1) ≤ 3. There are no (−1)-curves of type (3). The singularities in Λ(a,b)
are, except nodes, the nρ,(2,1) points Pρ,i = P̃ρ,j ∈ Im(λρ,ei)∩Im(λ̃ρ,j); the 9 cusps

P ∗ρ,i ∈ Im(λ∗ρ,ei) (figure 3).

II 3. n = 3 hence c1 = c2 = 0, c3 6= 0, m = 4, ξ(t) = t4+ a12 t
12+ a14 t

14+

a16 t
16+ a18 t

18+ a19 t
19+ a20(t), a19 = c33/d

4
0 6= 0. If t∗ = t (1 + t5 ζ), from (16)

dividing by t24 ζ, we get the curve ζ3 + a14 ζ + a19 + t(. . .) = 0. Then

X3 + a14X + a19 ∈ K[X](47)

has 3 distinct roots ω′j ∈ K, j = 1, 2, 3, ω′j 6= 0. The curve intersects {t = 0} in the

3 points (0, ω′j), where we have ζj(t) = ω′j+o1(t) and hence t∗j (t) = t+ωj t
6+o7(t).

The corresponding parametrizations of Λρ are

λ̃ρ,j(t) = (t, ũ2,j(t)) , ũ2,j(t) =
g4(t)

t12 ζ2j (t)
+ t2

(

1 + t5 ζj(t)
)2
g2(t) .(48)

It follows λ̃ρ,j(t) = (t,
c23
ω
′2
j

+ o2(t)), Fρ · Im(λ̃ρ,j) = 1 and Λρ is as in (32).

Let P̃ρ,j = λ̃ρ,j(0) = (0,
c23
ω
′2
j

), and Pρ,i = λρ,ei(0) = (0, d20) (ei = 1). Then

Proposition 4.8. In case 3, (n = 3, m = 4), if (a, b) = ξ(ρ), ρ ∈ R, then
ξ∗((a, b)) and Λ(a,b) are as in (36), Λρ is defined in (22), (48), (32) and Λei is as

in 4.4. Λρ intersects Fρ in Pρ,1, . . . , Pρ,9, P̃ρ,j , j = 1, 2, 3.

If H = ψ(P̃ρ,j)
[1/2], then φ∗2(H) has 2 infinitely near singular points above

α(p(ρ)), as c23/ω
′2
j are the roots of the polynomial Qρ (see (33)).

There are (−1)-curves of type (2, 1) ⇐⇒ Pρ,i = P̃ρ,j ⇐⇒ d0 = c3/ω
′
j ;

hence 0 ≤ nρ,(2,1) ≤ 3. There are no (−1)-curves of type (3). The singularities
in Λ(a,b) are, except nodes, the nρ,(2,1) points Pρ,i = P̃ρ,j ∈ Im (λρ,ei) ∩ Im (λ̃ρ,j);

the 9 cusps P ∗ρ,i ∈ Im(λ∗ρ,ei) (figure 3).
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II 4. n = 4 hence c1 = c2 = c3 = 0, m = 4, ξ(t) = t4 + a16 t
16 + a18 t

18 +

a20 t
20 + a22 t

22 + a24 t
24 + a25 t

25 + o26(t), a25 = 1/d40 6= 0. If t∗ = t(1 + t7ζ),

from (16) dividing by t32 ζ we get the curve ζ3 + a18 ζ + a25 + t(. . .) = 0. Then

X3 + a18X + a25 ∈ K[X](49)

has 3 distinct roots ω′′j , ω
′′
j 6= 0, j = 1, 2, 3 in K. The curve intersects {t = 0} in the

3 points (0, ω′′j ), where we have ζj(t) = ω′′j+o1(t) and hence t∗j (t) = t+ω′′j t
8+o9(t).

The corresponding parametrizations of Λρ are

λ̃ρ,j(t) = (t, ũ2,j(t)) , ũ2,j(t) =
g4(t)

t16 ζ2j (t)
+ t2

(

1 + t7 ζj(t)
)2
g2(t) .(50)

It follows λ̃ρ,j(t) = (t, 1
ω
′′2
j

+ o2(t)). Since Fρ · Im(λ̃ρ,j) = 1, Λρ is as in (32).

Let P̃ρ,j = λ̃ρ,j(0) = (0, 1
ω
′′2
j

), and Pρ,i = λρ,ei(0) = (0, d20) (ei = 1); then

Proposition 4.9. In case 4, (n = 4, m = 4), if (a, b) = ξ(ρ), ρ ∈ R, then
ξ∗((a, b)) and Λ(a,b) are as in (36), Λρ is defined in (22), (50), (32) and Λei is as

in 4.4. Λρ intersects Fρ in Pρ,1, . . . , Pρ,9, P̃ρ,j , j = 1, 2, 3.

If H = ψ(P̃ρ,j)
[1/2], then φ∗2(H) has 2 infinitely near singular points above

α(p(ρ)), since 1/ω
′′2
j are the roots of Qρ ((33)).

There are (−1)-curves of type (2, 1) ⇐⇒ Pρ,i = P̃ρ,j ⇐⇒ d0 = 1/ω′′j ;

hence 0 ≤ nρ,(2,1) ≤ 3. There are no (−1)-curves of type (3). The singularities
in Λ(a,b) are, except nodes, the nρ,(2,1) points Pρ,i = P̃ρ,j ∈ Im (λρ,ei) ∩ Im (λ̃ρ,j);

the 9 cusps P ∗ρ,i ∈ Im(λ∗ρ,ei) (figure 3).

Case III. Suppose (a, b) = ∞ = (0, 1); by 4.1, ξ∗(∞) = e1 + . . . + e12 + V ,

g2(ei) = 0, g′2(ei) 6= 0. We know ψ∗(∞) = E+2FV+Fe1+. . .+Fe12 , ψ∗(E) = 4L0,

ψ∗(FV ) = L0 and hence ∞ · ψ(F) = 6L0 + ψ(Fe1) + . . .+ ψ(Fe12), ψ|E and ψ|FV
injective. It follows that in the plane ∞ the lines ψ(Fei), i = 1, . . . , 12, intersect

the line L0 in 12 distinct points Ai; let ψ−1(Ai) = {Ai, A∗i }, Ai = E ∩ Fei ,
A∗i ∈ FV , A∗i 6= FV ∩ E, A∗i distinct (E is a section of F).

For 1 ≤ i < j ≤ 12 the lines ψ(Fei) and ψ(Fej ) in ∞ are different from

L0, hence ψ(Fei) ∩ ψ(Fej ) = {Bi,j}, Bi,j 6∈ L0. Let ψ−1(Bi,j) = {Bi,j , B∗i,j},
Bi,j ∈ Fei− E, B∗i,j ∈ Fej− E.

For i, j, k distinct, ψ(Fei)∩ψ(Fej )∩ψ(Fek) = ∅, otherwise the corresponding
plane would meet the cubic A in V, α(p(ei)), α(p(ej)), α(p(ek)).

In conclusion Λ∞∩Fej = {Aj}∪{Bi,j}i<j∪{B∗j,k}j<k, Λ∞∩FV = {A∗i }i=1...12,
Λ∞ ∩ E = {Ai}i=1...12. In particular, #(Λ∞ ∩ Fej ) = #(Λ∞ ∩ FV ) = 12.
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Since λ · f = 12 ((4.2)), it follows that Λ∞ is smooth, transversal to Fej , FV .
Moreover, λ · e = 12. To prove this, note that Λ∩E = Λ∞ ∩E = {Ai}i=1...12,

since in the preceding cases I, II we had Λ(a,b)⊂ Ũ2, hence Λ(a,b)∩E = ∅. It suffices

therefore to show that the intersectionsAi are transversal. The parametrization of

Λ near Ai comes from ψ0(Ai) = ψV 1(A
∗
i ). By (11) we have ψ0(t, u0) = (t4+u0r0,

u0f2, 1, u0g2) and ψV,1(tV , v1) = (v1rV,0, fV,1(1+ t4V v1), rV,0, gV,1(1+ t4V v1)).

We obtain a 2 × 4 matrix [P 1, P 2, P 3, P 4] whose rank must be 1. Looking at

the 2× 2 minors [P 1, P 3] and [P 2, P 3], we get

L′(t, tV )

(

u0
v1

)

=

(

rV,0 t
4

fV,1

)

, L′(t, tV ) =

[

rV,0 r0 rV,0
rV,0 f2 t4V fV,1

]

.(51)

Looking at [P 2, P 4], from 14 it follows ξ(t) = ξ(tV ). But ∞ is not a branch

point for ξ, so the last equation has solution t = t(tV ) ∈ K[[tV ]], t(0) = ci,

t′(0) 6= 0. Solving (51), we get u0 = fV 1
1+t4 t4

V

rV,0 f2+ t
4
V
r0 fV,1

. From (8), (10) we see

rV,0 = 1 + o4(tV ), fV 1 = tV + o3(tV ) and f2(ei) 6= 0, since g2(ei) = 0. Hence

u0 = tV + o2(tV ), the required transversality in Ai. We proved:

Proposition 4.10. Λ∞ is smooth and λ · e = 12. In particular, there are no

nodes in Λ∞ (figure 6).

Fig. 6 : Λ∞ (i < j).

5 – The proof of Theorem 1.1

In this section we use the local analysis of Λ carried out in cases I, II, III in

section 4 to prove 1.1, leaving the calculations to the next section.

Proposition 5.1. The arithmetic genus of Λ is pa(Λ) = 781.
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Moreover, the following possibilities occur with respect to the decomposition

into irreducible components Λ =
∑

Λi of Λ. The exponent denotes the arithmetic

genus of the component and the latin lower case letters denote the corresponding

classes in PicF.

(d1) Λ = Λ781 is irreducible and l = 12 e+ 132f ;

(d2) Λ = Λ5311 + Λ112 and l1 = 10 e+ 110f , l2 = 2 e+ 22f ;

(d3) Λ = Λ3291 + Λ692 and l1 = 8 e+ 88f , l2 = 4 e+ 44f ;

(d4) Λ = Λ3291 + Λ112 + Λ113 and l1 = 8 e+ 88f , l1 = l2 = 2 e+ 22f ;

(d5) Λ = Λ1751 + Λ1752 and l1 = l2 = 6 e+ 66f ;

(d6) Λ = Λ1751 +Λ692 +Λ113 and l1 = 6 e+66f , l2 = 4 e+44f , l3 = 2 e+22f ;

(d7) Λ = Λ1751 +Λ112 +Λ113 +Λ114 and l1 = 6 e+66f , l2 = l3 = l4 = 2 e+22f ;

(d8) Λ = Λ691 + Λ692 + Λ693 and l1 = l2 = l3 = 4 e+ 44f ;

(d9) Λ = Λ691 +Λ692 +Λ113 +Λ114 and l1 = l2 = 4 e+44f , l3 = l4 = 2 e+22f .

Proof: If we call e, f , l, k the classes of E, FX , Λ, KF in PicF, from

3.6, 4.2, 4.10 it follows l · e = l · f = 12, hence l = 12 e + 132 f . Moreover

−2=e2+e ·k =f2+fk and k=−12f−2 e. It follows pa(l)=1+ 1
2(l

2+ l ·k)=781.

The map ψ : Λ → ∆ is generically 2 : 1. Call Λ̃j the irreducible components

of Λ for which Λ̃j
2 : 1−→ ψ(Λ̃j) = ∆̃j and Λ′k, Λ

′′
k the components for which Λ′k

1 : 1−→
ψ(Λ′k) = ∆k and Λ′′k

1 : 1−→ ψ(Λ′′k) = ∆k.

Given (a, b) ∈ Φ−(ξ(R)∪{∞}), we define in the following way the symmetric

13× 13 matrix Ĩj = (̃irs) with entries in {0, 1}, having 0 ’s on the main diagonal.

Let ξ∗(a, b) = e1 + . . .+ e13; for 1 ≤ r, s ≤ 13, r 6= s, there is a unique Prs ∈ Fcr
s.t. ψ(Prs) ∈ ψ(Fcr) ∩ ψ(Fcs). Then ĩrs = 1 ⇔ Prs ∈ Λ̃j .

Moreover we define the skew-symmetric 13×13 matrix Ik = (irs) with entries

in {0, 1,−1} by: irs = 1 ⇔ Prs ∈ Λ′k. Then (1)–(6) hold:

(1) Λ′k ·FX = Λ′′k ·FX , because Λ′k ·FX equals the number of 1 ’s in each row

of Ik, Λ
′′
k · FX equals the number of −1 ’s in each row and

∑

rs irs = 0.

(2) Λ̃j ·FX is even, because this number equals the number of entries = 1 in

each row of Ĩj , the number of rows is odd and
∑

rs ĩrs is even.

If (a, b) ∈ ξ(R), i.e. ξ∗(a, b) = mρ + e1 + . . . + e13−m we may define the

matrices Ĩj and Ik as well, imposing the further condition that the first m rows,

and hence the first m columns are equal. Call Ĩ ′j , I
′
k ∈ Mm(K), respectively

Ĩ ′′j , I
′′
k ∈M13−m(K), the submatrices of Ĩj and Ik formed by the first m rows and
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columns, the last 13−m rows and columns. Let

Ĩj =

[

Ĩ ′j
tB̃j

B̃j Ĩ ′′j

]

, Ik =

[

I ′k − tBk

Bk I ′′k

]

.

(3) I ′k = 0, because this matrix is both symmetric and skew-symmetric.

Let {Λ̃j}1≤j≤t be the components Λ̃j meeting at least one singularity P ∗ρ,ei ,

which means B̃j 6= 0 — see figures 3, 4, 5. Then

(4) If l̃j is the class of Λ̃j , then l̃j · f ≥ m for 1 ≤ j ≤ t, because the

singularities P ∗ρ,ei have intersection m with FX .

(5) If lk is the class of Λ′k, then l̃j · f = l̃j · e and lk · f = lk · e. This follows

from (1) and the local analysis in case III. By (1), lk is also the class of

Λ′′k.

(6) lk · f ≥ m, because by (3) all Λ′k, Λ
′′
k must contain at least one P ∗ρ,ei .

— If case II 17 occurs, there exists (a, b) ∈ ξ(R) for which m = 7. Since

l · f = 12, (1) and (6) imply that there are no Λ′k, Λ
′′
k. Moreover t = 1 by (4) and

l̃1 · e ∈ {8, 10, 12} by (2). By (5) l1 ∈ {8 e+ 88f, 10 e+ 110f, 12 e+ 132f}, and

we may have (d1), (d2), (d3), (d4).

— If case II 16 occurs, there exists (a, b) ∈ ξ(R) for which m = 6. If there

are components Λ′k, Λ
′′
k, by (6) there are 2 of them of class 6 e+ 66f , so in each

row of I1 we must have six 1 ’s and six −1 ’s, excluded by (3). If there are only

components Λ̃j , by (4) 1≤ t≤2. If t=1 then we may have (d1), (d2), (d3), (d4),

(d6), (d7). If t=2 then necessarily we would have (d5), but then the 7×6 matrix

B̃1 would have 1 row (suppose the first) formed by 0 ’s and all the 6 other rows

formed by 1 ’s, so Ĩ ′′1 would have the first row and column (apart from the main

diagonal) formed by 1 ’s, and the last rows of Ĩ1 would have at least seven 1 ’s,

excluded.

— If for all (a, b) ∈ ξ(R) only II 14, II 2, II 3, II 4 occur, always m = 4 and as

before we have the following cases. If there are components Λ′k, Λ
′′
k then by (6)

there are 2 of them of class 4 e + 44f , and we may have (d8) or (d9). If there

are only components Λ̃j , then 1 ≤ t ≤ 3 and we may have (d1), (d2) for t = 1;

(d5), (d6) for t = 2; (d8) for t = 3.

If Λ? is an irreducible component of Λ, let ν? : N? → Λ? be its normalization,

g? = pa(N?), l? the class of Λ? in PicF, d? = l? · f . The Riemann–Hurwitz
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Theorem applied to p ◦ ν? : N?
d? : 1−→ P1 gives g? = −d? + 1 + 1

2 degR
′
?, where

R′?=
∑

Q∈N?
r′Q ·Q is the ramification divisor in N?.

Call respectively δ∗ρ,ei , δ̃ρ,∗, δ̃ρ contribution to the arithmetic genus of Λ? of

the singularities P ∗ρ,i ∈ λ∗ρ,ei ((24)), P̃ρ,∗ ∈ λ̃ρ,j ((40)), P̃ρ ∈ λ̃ρ,j ((43)), which

are contained in Λ?. Remark that δ̃ρ,∗ depends on the number b̃ρ,∗, 1 ≤ b̃ρ,∗ ≤ 2,

of parametrizations λ̃ρ,j centered at P̃ρ,∗ which belong to Λ?.

Corollary 5.2. Λ is irreducible if following conditions are satisfied.

δ∗ρ,ei ≥ 9 in cases 14, 16, 17 ,(52)

δ̃ρ,∗ = 3 in case 16, if b̃ρ,∗ = 1 ,(53)

δ̃ρ,∗ ≥ 18 in case 16, if b̃ρ,∗ = 2 ,(54)

δ∗ρ,ei ≥ 18 in case 2 ,(55)

δ∗ρ,ei ≥ 27 in case 3 ,(56)

δ∗ρ,ei ≥ 36 in case 4 ,(57)

Proof: We must exclude cases (d2)–(d9) in 5.1.

— (d2), (d3), (d4). Consider Λ112 in (d2) or (d4). If (a, b) ∈ ξ(R), as
l2 · f = 2, Λ112 does not contain any singularity P ∗ρ,ei (Ĩ

′′
2 = 0). If case II 16 does

not occur, it follows from the local analysis of Λ that p◦ν2 has no ramification and

is 2 : 1, which contradicts Hurwitz’s formula. Thus case II 16 must occur twice or

four times, since r′ν−1(Pρ,∗) = 1, as we see from tj(ζ) in (39). It can’t occur four

times, because of (53) and pa(Λ
11
2 ) = 11. If it occurs twice, then g2 = pa(N2) = 0

and Λ112 must have 11− 2 · 3 = 5 nodes by (53), excluded because the number of

nodes is divisible by 3. The same for Λ692 in (d3): if II 16 does not occur, we have

4 situations II 17, no ramification, excluded by Hurwitz. So II 16 must occur 4

times, degR′ = 8, Λ692 must contain both λ̃ρ,1, λ̃ρ,2 at P̃ρ,∗ i.e. ñρ,∗ = 2. But the 4

singularities P̃ρ,∗ give to pa(Λ
69
2 ) by (54) a contribution ≥ 4 · 18 = 72, impossible.

— (d5). Necessarily m= 4, t= 2 and only II 14, II 2, II 3, II 4 may occur.

Call n1,1 the number of nodes of Λ1751 , n2,2 the number of nodes of Λ1752 ;

From (52), (55), (56), (57) we have g1 + g2 + n1,1 + n2,2 + 324 ≤ 350. Let

n1,2 = (6 e+66f) (6 e+66f) = 432 be the number of nodes of Λ generated by the

intersections of Λ1751 and Λ1752 . We have 4 kinds of triple points of ∆ = ∆1 +∆2,

∆1 = ψ(Λ1751 ), ∆2 = ψ(Λ1752 ): (1, 1, 2) with 2 branches of ∆1 and 1 of ∆2, (1, 2, 2)

with 1 branch of ∆1 and 2 of ∆2, (1, 1, 1) with 3 branches of ∆1, (2, 2, 2) with

3 branches of ∆1; let a, b, c, d be respectively the number of such points. Then we

must have n1,1+n1,2 = a+3 c+b+3 d ≤ 26 and n1,2= 2 a+2 b = 432, impossible.
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— (d6). If we have 4 situations II 16, as t = 1 all the 28 points P ∗ρ,i, ρ ∈ R,
i = 1, ..., 7 must belong to Λ1751 ; from (52) we see

∑

ρ,i δ
∗
ρ,ei ≥ 63 · 4 = 252 > 175,

impossible. If we have at most 3 situations II 16, as II 17 can’t occur, from

(52)–(57) we see
∑

ρ,i δ
∗
ρ,ei ≥ 63 · 3 + 81 = 270 > 175 + 69 + 11, impossible.

— (d7), (d8), (d9). As II 17 can’t occur, (52)–(57) imply
∑

ρ,i δ
∗
ρ,ei ≥ 252,

but in these cases
∑

j pa(Λj) ≤ 208, impossible.

In the next section we shall check (52)–(57), proving the irreducibility of Λ,

which we assume from now. Let ν : N → Λ be its normalization, g = pa(N).

Consider p◦ν : N 12 : 1−→ P1 and let R′ =
∑

Q∈N r
′
QQ the ramification divisor. Hur-

witz’s formula gives g = −11 + 1
2 degR′. Let R =

∑

ρ∈R rρ ρ be the ramification

divisor of ξ, so that R = SuppR (4.1 (iii)). Let R′ = SuppR′. It follows from the

local analysis that R′⊂ ⋃ρ∈R ν−1(Λξ(ρ)). For ρ ∈ R, let r′ρ =
∑

Q∈ν−1(Λξ(ρ))
r′Q,

so that degR′ =
∑

ρ∈R r
′
ρ.

Remark 5.3. For ρ ∈ R the following hold

r′ρ =











9 rρ in cases 14, 2, 3, 4
7 rρ + r′Q1 + r′Q2 in case 16
6 rρ in case 17

where {Q1, Q2} = ν−1(P̃ρ,∗). Moreover rρ =



















6 in cases 14, 16, 17
12 in case 2
18 in case 3
24 in case 4 .

Proof: If λ(t) = (a(t), b(t)) parametrizes one branch of Λ at P , then p ◦ ν
is defined at the corresponding point of ν−1(P ) by a(t). If Λξ(ρ) is of type 14, 2,

3, 4 then it follows from the local analysis and (22), (31), (46), (48), (50) that

ν−1(P ∗ρ,i) consists of one point Q∗ρ,i and the differential of a(t) vanishes only at

Q∗ρ,i, hence R
′|Λξ(ρ) = r′ρ,1Q

∗
ρ,9 + . . . + r′ρ,9Q

∗
ρ,9. By (22) at Q∗ρ,i, if we denote by

ξ|c the power series defined by ξ at c we have a(t) = t∗(t) = (ξ|ei)−1◦ (ξ|ρ) and

ξ|ei is an isomorphism, so that r′ρ,i = rρ and hence r′ρ = 9 rρ. The cases 16 and

17 are analogous. The second assertion follows from 4.1 (iii).

We prove 1.1. The exact sequence 0 → OΛ → ν∗ON → D → 0 of ν gives

pa(Λ) = h1(OΛ) = h0(D) + g, hence 781 = h0(D)− 11 + 1
2 degR′, so that

792 = h0(D) + 1

2

∑

ρ∈R

r′ρ .(58)



LINES ON DEL PEZZO SURFACES 89

In 5.3 we computed r′ρ. The support of the sheaf D is the singular set Sing Λ of Λ,

hence h0(D) =∑

P∈Sing Λ δP , where δP = dimKDP .
As in 4.3, 4.5 let n(1,1,1), n(2,1), n(3) be the number of pairs of (−1)-curves of

type (1,1,1), (2,1), (3). We proved the following facts about Sing Λ:

(1) Λ∞ contains no singular points, by 4.10;

(2)
⋃

(a,b)∈Φ−(ξ(R)∪{∞}) Λ(a,b) has only nodes as singularities by 4.2. Each

pair of (−1)-curves of type (1, 1, 1) corresponds to 3 nodes and 1 triple

point of ∆;

(3) If (a, b) ∈ ξ(R), Λ(a,b) may contain nodes (4.4–4.9). The number of these

nodes and those in ΛΦ−(ξ(R)∪{∞}) (4.2) is 3n(1,1,1).

The other singularities in Λ(a,b) are:

(4) P ∗ρ,i; their number is 9 in cases 14, 2, 3, 4, is 7 in case 16, is 6 in case 17;

(5) the singularity P̃ρ,∗ in case 16. There are nρ,(3), 0 ≤ nρ,(3) ≤ 1, pairs of

(−1)-curves of type (3) associated to this singularity and

nρ,(3) = 1 ⇐⇒ d1 + d22 + c42 = 0 ;(59)

(6) the singularity P̃ρ in case 17. There are nρ,(3), 0 ≤ nρ,(3) ≤ 1, pairs of

(−1)-curves of type (3) associated to this singularity and

nρ,(3) = 1 ⇐⇒ d22 + c42 = 0 ;(60)

(7) the nρ,(2,1), 0 ≤ nρ,(2,1) ≤ 3, singularities Pρ,i = P̃ρ,j in cases 14, 2, 3, 4:

Pρ,i = P̃ρ,j ⇐⇒























d0 = c21/εj in case 14 — see 4.3 (vi)

d0 = c22/ωj in case 2

d0 = c23/ωj in case 3

d0 = 1/ωj in case 4 ;

(61)

(8) the nρ,(2,1), 0 ≤ nρ,(2,1) ≤ 1, singularity Pρ,i = P̃ρ in case 16

Pρ,i = P̃ρ ⇐⇒ d0 = d21 .(62)

The proof of 1.1 amounts to show

n(1,1,1) + n(2,1) + n(3) = 120 .(63)

For ρ ∈ R, let δρ =
∑

P∈Sing Λ∩Λξ(ρ)
δP , so that h0(D) = 3n(1,1,1) +

∑

ρ∈R δρ.
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As n(2,1) =
∑

ρ∈R nρ,(2,1) and n(3) =
∑

ρ∈R nρ,(3), by (58) we are left to show

∑

ρ∈R

(

δρ +
1

2
r′ρ − 3nρ,(2,1) − 3nρ,(3)

)

= 792− 360 = 432 .

Corollary 5.4. By 4.1 (iii), to prove Theorem 1.1 it suffices check (52)–(57)

and show that for every ρ ∈ R we have

δρ +
1

2
r′ρ − 3nρ,(2,1) − 3nρ,(3) =



















108 in cases 14, 16, 17
216 in case 2
324 in case 3
432 in case 4

(64)

where r′ρ is computed in 5.3.

6 – The computations

In this section we check (52)–(57), proving the irreducibility of Λ, and (64),

finishing the proof of 1.1. As in 5.2, we set δ∗ρ,ei = δP ∗
ρ,i
, δ̃ρ,∗ = δP̃ρ,∗ , δ̃ρ = δP̃ρ .

The meaning of 5.4 is that although the number of different global configurations

is high, we are left to consider only 6 cases, because in some sense each singu-

larity of the ramification divisor A∗ of φ2 (see 4.1, (iv)) gives an independent

contribution to the number of (−1)-curves on the surface S.

Case 14. We have r′ρ = 54 by 5.3, n(3) = 0. Then (64) is δρ− 3nρ,(2,1) = 81.

Remark 6.1. To satisfy the conditions of 5.4 in case 14 it suffices to prove

1) δ∗0,ei=

{

9 if d0 6= c21/εj

10 if d0 = c21/εj ,
2) if d0 = c21/εj then δP0,i = 2 ,(65)

where by (25) we may assume ρ = 0, ei = 1; d0 = c21/εj is the condition that

P0,i = P̃0,j ((61)); εj are the roots of (30).

Proof: If P0,i 6= P̃0,j then n0,(2,1) = 0, δ0 =
∑9
i=1 δ

∗
0,ei

= 81 and (64) holds.

Each time that P0,i = P̃0,j , δ0 grows by δP0,i+ 10− 9 = 3 and n0,(2,1) grows by 1

hence (64) holds in any case. Moreover (52) is satisfied.

Proof of (65) 1): The parametrization λ∗0,ei(t) centered at P ∗0,ei is given in

(22), where t∗(t) ∈ K[[t]] is the solution of ξ(t∗(t)) = ξ(t), t∗(0) = 1 and as in
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(26), ξ(t) =
∑

4≤i≤11 ai t
i + o12, o12 ∈ (t12). Solving recursively, we get

t∗(t) = 1 +
(

g2(1)/g(1)
2
)

∑

4≤i≤11

a∗i t
i + o12(t)(66)

where a∗i = ai for i 6= 8 and a∗8 = a8 + a24 (1 + c21 + c3 + d21 + d23). Then by (23)

u∗2(t) = g2(1)

[

1 + t4 + (1+a4) t
6 +

(

1 + g2(1) a
2
4 + a6

)

t8 + a7 t
9
]

+ o10(t) .

Denote by ∼ equality up to an affine coordinate change. We have

(0) λ∗0,ei=(t∗(t), u∗2(t))∼(p0, q0) where p0 = a4t
4+a6t

6+a7t
7+a∗8t

8+a9t
9+o10,

q0 = t4 + [1 + a4] t
6 + [1 + g2(1) a

2
4 + a6] t

8 + a7t
9 + o10.

The initial contribution to δ∗0,ei is δ0 = 4 · 3/2 = 6.

(1) After the blow up (p0/q0, q0) ∼ (p1, q1) we get q1 = q0 and p1 = Ct2 +

a7t
3 + [C + a4 + a∗8 + Ca4 + Cg2(1) + a4g2(1) + a6g2(1) + a4a6 + a4a6g2(1) +

a4g2(1)C] t
4 + [a7 + a9] t

5 + o6, where C = a4 + a24 + a6.

— Suppose C = 0; a7 6= 0 implies δ1 = 3 and (p1, q1) ∼ (t3 + o4, t
4 + o5);

(2) blowing up p2 = p1, q2 = q1/p1 we get q2 = t + o2 hence the resolution

stops and δ∗0,ei = 6 + 3 = 9.

— Suppose C 6= 0; then δ1 = 2 · 1/2 = 1 and we have the following sequence

(2) (p1, q1/p1) ∼ (p2, q2) where

p2 = C−1p1 = t2 + C−1a7t
3 + C−1[. . .] t4 + C−1[a7 + a9] t

5 + o6 ,

q2 = t2 + C−1a7t
3 + C−1[a4 + g2(1)C + a∗8 + a4g2(1)C + a6g2(1) + a4g2(1)

+ a4a6 + a27C
−1 + a4a6g2(1)] t

4 + C−1[a9 + a4a7 + a37C
−2] t5 + o6 ;

then δ2 = 1.

(3) (p2, q2/p2) ∼ (p3, q3) where p3 = p2 and q3 = t2[1 + a4 + a27C
−2] + o3.

— Suppose 1 + a4 + a27C
−2 6= 0; then δ3 = 1;

(4) (p3/q3, q3) ∼ (p4, q4) where p4 = t+o2. The resolution ends and δ∗0,ei = 9.

— Suppose 1 + a4 + a27C
−2 = 0. We develop p0, q0 up to o12:

p0 = a4t
4 + a6t

6 + a7t
7 + a∗8t

8 + a9t
9 + a10t

10 + a11t
11 + o12

q0 = t4 + [1 + a4] t
6 + [1 + g2(1) a

2
4 + a6] t

8 + a7t
9 + [1 + a∗8 + a24c1 + a24d

2
3

+ a24d
2
1 + a24c

2
1] t

10a9 t
11 + o12.

After the same sequence as before we get (4) (p3, q3/p3) ∼ (p4, q4) where

p4 = t2 + C−1a7t
3 + C−1[C + g2(1)C + a4C + a∗8 + a4 + a4g2(1)C + a6g2(1)

+ a4g2(1) + a4a6 + a4a6g2(1)] t
4 +C−1[a7 + a9] t

5 +C−1[C2 + a6C + a10
+ a∗8 + a6g2(1)C + a4a

∗
8 + a26 + a4a6 + a26g2(1) + a4a6g2(1)] t

6 +C−1[a7C

+ a11 + a9 + a6a7 + a4a7 + a6a7g2(1) + a4a7g2(1) + a7g2(1)] t
7 + o8 ,
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q4 = C−2[C1 + C3 + a4C
2 + g2(1)C

3 + g2(1)
2 C2 + a6g2(1)C

2 + a4g2(1)C
2

+ a6 + g2(1)
2 C + a26C + g2(1)

2 C3 + a6g2(1)
2 C2 + a4g2(1)

2 C2 + a∗28
+ a6g2(1) + a4g2(1)

2 a36 + a4a
2
6 + a4 + a26g2(1)

2C + a26g2(1)
2 + a36g2(1)

2

+ a4a
2
6g2(1)

2] t2 + C−3[a7g2(1)C
3 + a7C + a4a7C

2 + a7g2(1)
2 C3

+ a7g2(1)
2 C2 + a6a7g2(1)C

2 + a4a7g2(1)C
2 + a6a7 + a4a7 + a7g2(1)

2 C

+a26a7C+a6a7g2(1)
2 C2+a4a7g2(1)

2 C2+a7a
∗2
8 +a6a7g2(1)

2+a4a7g2(1)
2

+a36a7+a4a
2
6a7+a

2
6a7g2(1)

2 C+a26a7g2(1)
2+a36a7g2(1)

2+a4a
2
6a7g2(1)

2] t3

+ o4 .

It follows δ4 = 1.

(5) (p4, q4/p4) ∼ (p5, q5) with q5 = a7t+ o2. The resolution ends, δ∗0,ei = 10.

By (27), δ∗0,ei = 10 ⇐⇒ C = a4 + a24 + a6 6= 0 and a27 = (1 + a4)C
2 ⇐⇒

d0 + d20 + d21 + c41 = 0 ⇐⇒ c21/d0 is a root of (30).

Proof of (65) 2): By (31), λ̃0,j(t) = (t, ũ2,j(t)). ζj = εj t + φj t
2 + o3,

where a4ε
3
j + a6εj + a7 = 0; to compute φj , substituting ζj in (29), in degree 4

we get a4ε
2
jφj +a6φj +a7εj = 0. It follows ũ2,j(t) = c41/ε

2
j +[d20+ c

4
1φ
2
j/ε

4
j ] t

2+ o3.

By (22), (21), (66) λ0,ei(t) = (t, u2,i(t)), u2,i(t) = d20+d
2
1t
2+o3. As d0 = c21/εj i.e.

ũ2,j(0) = u2,i(0), we have δP0,i = 2 ⇔ d20 + c41φ
2
j/ε

4
j 6= d21. But d0 + c21φj/ε

2
j = d1

⇒ d0 + c21 + d1 = 0 ⇒ a4 + a24 + a6 = C = 0, excluded.

Case 16. By (5.3), (64) becomes δρ+
1
2(r

′
Q1

+ r′Q2)− 3nρ,(2,1)− 3nρ,(3) = 87.

Remark 6.2. To satisfy the conditions of 5.4 in case 16 it suffices to prove

1) δ∗0,ei=

{

9 if d0 6= d21
10 if d0 = d21 ,

2) if d0=d
2
1 then δP0,i=2 , 3) r′Q1=r

′
Q2= 2 ,

4) if b̃0,∗=1 then δ̃0,∗=3 , 5) δ̃0,∗=

{

22 if d1 + d22 + c42 6= 0
25 if d1 + d22 + c42 = 0 ,

(67)

where ρ = 0, ei = 1 ((25)); d0 = d21 is the condition that P0,i = P̃0,∗ ((62)).

Proof: (52), (53), (54) follow from 1), 4), 5). It remains to check

δ0 − 3n0,(2,1) − 3n0,(3) = 85. If n0,(2,1) = n0,(3) = 0 then 9 · 7 + 22 = 85.

If d0 = d21, δ0 increases by 3 and n0,(2,1) increases by 1. If d1 + d22 + c42 = 0,

δ0 increases by 3 and n0,(3) increases by 1.
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Case 17. By 4.6, 5.3 nρ,(2,1) = 0 and (64) becomes δρ − 3nρ,(3) = 90.

Remark 6.3. To satisfy the conditions of 5.4 in case 17 it suffices to prove

1) δ∗0,ei = 9 , 2) δ̃0=

{

36 if d2 + c22 6= 0
39 if d2 + c22 = 0 ,

(68)

where ρ = 0, ei = 1 ((25)).

Proof: (52) follows from 1). If d2+ c
2
2 6= 0 then n0,(3)= 0, if d2+ c

2
2 = 0 then

n0,(3) = 1 and δ0 − 3n0,(3) = 90 follows in both cases.

Case 2. r′ρ = 108 by 5.3, n(3) = 0; (64) becomes δρ − 3nρ,(2,1) = 162.

Remark 6.4. To satisfy the conditions of 5.4 in case 2 it suffices to prove

1) δ∗0,ei=

{

18 if d0 6= c22/ωj
19 if d0 = c22/ωj ,

2) if d0 = c22/ωj then δP0,i = 2 ,(69)

where ρ = 0, ei = 1 ((25)); d0 = c22/ωj is the condition that P0,i = P̃0,j ((61));

ωj are the roots of (45).

Proof: If P0,i 6= P̃0,j , n0,(2,1) = 0, δ0 =
∑9
i=1 δ

∗
0,ei

= 162 and (64) holds.

If P0,i = P̃0,j , δ0 grows by δP0,i + 19 − 18 = 3 and n0,(2,1) grows by 1; (55) is

satisfied.

Case 3. r′ρ = 162 by 5.3, n(3) = 0; (64) becomes δρ − 3nρ,(2,1) = 243.

Remark 6.5. To satisfy the conditions of 5.4 in case 3 it suffices to prove

1) δ∗0,ei=

{

27 if d0 6= c23/ωj
28 if d0 = c23/ωj ,

2) if d0 = c23/ωj then δP0,i= 2 ,(70)

where ρ = 0, ei = 1 ((25)); d0 = c23/ωj is the condition that P0,i = P̃0,j ((61));

ωj are the roots of (47).

Case 4. r′ρ = 216 by 5.3, n(3)= 0; (64) becomes δρ − 3nρ,(2,1)= 324.

Remark 6.6. To satisfy the conditions of 5.4 in case 4 it suffices to prove

1) δ∗0,ei=

{

36 if d0 6= 1/ωj
37 if d0 = 1/ωj ,

2) if d0 = 1/ωj then δP0,i= 2 ,(71)
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where ρ = 0, ei = 1 ((25)); d0 = 1/ωj is the condition that P0,i = P̃0,j ((61));

ωj are the roots of (49).

6.5 and 6.6 are proved as 6.4. The checks of (67), (68), (69), (70), (71) are

similar to that of (65) and were done using CoCoA symbolic package on a Sun

machine. The proof of Theorem 1.1 is complete.

To finish, table 1 shows the values of nρ,(2,1), nρ,(3) and nρ, which is the

multiplicity of ρ ∈ R as root of g and the δ of the singularity φ−12 (ρ) of A∗

(4.1 (iii), (iv)). The possible values of n(1,1,1), n(2,1), n(3) are defined by



























































n(2,1) =
∑

ρ∈R

nρ,(2,1) ,

n(3) =
∑

ρ∈R

nρ,(3) ,

n(1,1,1) = 120− n(2,1) − n(3) ,
∑

ρ∈R

nρ = 4 .

(72)

14 16 17 2 3 4

nρ,(2,1) 0, 1, 2, 3 0, 1 0 0, 1, 2, 3 0, 1, 2, 3 0, 1, 2, 3

nρ,(3) 0 0, 1 0, 1 0 0 0

nρ = δφ−12 (ρ) 1 1 1 2 3 4

Table 1 : Possible values of nρ,(2,1), nρ,(3) for ρ ∈ R = φ2(Sing (A
∗)).
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