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CERTAIN ALGEBRAIC SURFACES
WITH NON-REDUCED MODULI SPACE

K. Konno

Abstract: We show that all the even canonical surfaces in a certain area of the zone

of existence have non-reduced Kuranishi space. In particular, for a given irregularity,

the existence of surfaces of general type with non-reduced moduli space is shown.

0 – Introduction

In the study of surfaces of general type, the structure of moduli spaces is one
of the main objects. Unlike the case of curves, the moduli space happens to be
non-reduced. Indeed, Catanese [C] showed that some weighted projective hyper-
surfaces have non-reduced moduli, unifying the previously known examples due
to Horikawa [Ho1] and Miranda [M] (see also [Ho2]). We found another kind of
examples along the lines K2= 3 pg − 6, q=0 [K1] and K

2= 3 pg + 1, q=1 [K2],
which are even and canonical. Here we call a non-singular projective surface S

– an even surface if KS is divisible by 2 in the Picard group,
– a canonical surface if the canonical map is birational onto its image.

The purpose of the present article is to extend and unify the latter examples
by showing that all the even canonical surfaces in a certain area of the zone of
the existence have non-reduced moduli. Namely, we shall show the following:

Theorem. Let S be an even canonical surface with

3χ(OS) + 10
(
q(S)− 1

)
< K2

S <
16

5

(
χ(OS) + 3

(
q(S)− 1

))
.

Suppose further

(1) pq(S) ≥ 12 when q(S) = 0,

(2) pg(S) ≥ 13 (q(S)− 1) when q(S) > 0.

Then the Kuranishi space of S is not reduced.
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Similarly as in [K1] and [K2], the proof is an easy application of the well-known
result of Burns–Wahl [BW], which roughly says that (−2)-curves are obstruction
for the Kuranishi space to be smooth. So our task is reduced to showing the
existence of a (−2)-curve. In §3, we will construct explicit examples which satisfy
the requirements in Theorem. In particular, it will show the existence of surfaces
with non-reduced moduli and with given irregularity, which seems to be a new
result. Appendix will be devoted to describing a certain type of degenerate fibres
in pencils of non-hyperelliptic curves of genus 3 appeared in our example.

1 – Even surfaces with a fibration

A non-singular projective surface S is called an even surface if there exists a
line bundle L, which will be called a semi-canonical bundle, satisfying KS = 2L.
Then S is automatically minimal and L is nef if S is of general type.
Let S be an even surface of general type, and assume that we have a fibration

f : S → B over a non-singular projective curve B of genus b. We denote by
F a general fibre of f and put g = g(F ). Note that we have g ≥ 2, since S
is of general type. By [Ha], f∗OS(L) is locally free. Since KS = 2L, we have

(R1f∗OS(L))
∨ ' f∗OS(L)⊗ω

⊗(−1)
B by the relative duality theorem. Hence, using

Leray spectral sequence, we get

χ(L) = 2χ(f∗L)− length(R
1f∗L)tor ,

where (R1f∗L)tor denotes the torsion part of R
1f∗L. We want to know when

R1f∗L is locally free.
Put Ft := f

∗t and Lt = L|Ft for t ∈ B. From the usual multiplication map

H0(Ft, Lt)⊗H0(Ft, Lt) → H0(Ft, 2Lt) ' H0(Ft,KFt) ,

and Hopf’s Lemma, we know that g = h0(KFt) ≥ 2h0(Ft, Lt) − 1, that is,
h0(Ft, Lt) ≤ (g + 1)/2 for all t ∈ B. furthermore, since Lt is a theta charac-
teristic, we can apply a remarkable theorem of Sorger [S] to see that h0(Ft, Lt) is
constant modulo 2. Therefore, we get:

Lemma 1.1. In the above situation, if h0(S,L) 6= 0 and g ≤ 4, then
h0(Ft, Lt) (hence also h

1(Ft, Lt)) is constant. In particular, if K2
S < 8χ(OS) and

g ≤ 4, then χ(L) = 2χ(f∗L).

Proof: It remains to show the last assertion. By the Riemann–Roch theorem
and the Serre duality, we have

χ(L) = 2h0(L)− h1(L) = −
L2

2
+ χ(OS)

since KS = 2L. Hence, if K
2
S < 8χ(OS), then h

0(L) > 0. If S has a fibration
f : S → B of genus g ≤ 4, then R1f∗L is locally free, since h

1(Lt) is constant.
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Lemma 1.2. Let S be an even surface with a fibration f : S → B of genus

g ≥ 2. Let F be a fibre and let F = D1+D2 be any decomposition with D1 > 0,

D2 > 0. Then D
2
i (i = 1, 2) and D1D2 are even integers.

In particular, if f has no multiple fibres, then every fibre of f is numerically

2-connected, and the natural sheaf homomorphism f ∗f∗ ωS/B→ωS/B is surjective.

Proof: For any divisor D on S, we know that KSD+D
2 is an even integer.

Since KS = 2L, we see that D
2 must be even.

Let F be a fibre of f and let F = D1+D2 be a decomposition as above. Then

we have 0 = FD1 = D2
1 + D1D2. Since D

2
1 is even, so is D1D2. Assume that

F is not a multiple fibre. Then it is at least numerically 1-connected. But, as

we have seen above, we cannot have D1D2 = 1 for any effective decomposition

F = D1 +D2. Hence F is numerically 2-connected. Then it is well-known (see

e.g. [CF]) that KF is generated by its global sections. Hence the last assertion

follows.

2 – Proof of the main result

Let S be an even surface of general type, L a semi-canonical bundle and

f : S → B a non-hyperelliptic fibration of genus 3. Then it is known that the

numerical characters of S satisfy

K2
S ≥ 3χ(OS) + 10 (b− 1) ,

see e.g. [K2], [CC], [R]. We assume that h0(S,L) > 0. Recall that this is auto-

matically satisfied when K2
S < 8χ(OS). Since LF = 2 and F is non-hyperelliptic,

we have h0(F,L) = 1. It follows that the rational map induced from |L| factors

through B and that L := f∗OS(L) is a line bundle. We have an effective divisor

Z such that L = f∗L+Z. Let Zv be the maximal subdivisor of Z with ZvF = 0,

and put Zh = Z − Zv. Since LF = 2, there are three possibilities for Zh:

(i) Zh = 2G with G irreducible, GF = 1;

(ii) Zh = G1 +G2 with Gi irreducible, G1 6= G2, GiF = 1;

(iii) Zh is irreducible.

Recall that we have

degL = −
L2

4
+
χ(OS)

2
+ b− 1 .

from the proof of Lemma 1.1.

Lemma 2.1. If K2
S<(16/5) (χ(OS) + 3 (b−1)), then Zh must be of type (i).
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Proof: Suppose that (ii) or (iii) is the case. Since each irreducible component

of Zh has multiplicity one, it is easy to see thatKS/B+Z is nef (see [K3, Part III]).

Hence we have (KS/B + Z)Z ≥ 0, which is equivalent to K2
S ≥ (16/5) (χ(OS) +

3 (b− 1)).

Lemma 2.2. Assume that Zh is of type (i). If Zv = 0, then K
2
S = 3χ(OS)+

10 (b− 1).

Proof: Write Z = Zh = 2G as in (i). Since G is a section of f , we get

2 b− 2 = G(KS +G) = 5G2 + 2deg(L) .

On the other hand, since Z = 2G, we have

4G2 = Z2 = (L− f∗L)2 = L2 − 4 deg(L) .

Eliminating G2, we get

5L2 = 12deg(L) + 8 (b− 1) ,

which is equivalent to K2
S = 3χ(OS) + 10 (b− 1).

Lemma 2.3. Assume that Zh is of type (i). then Zv consists of (−2)-curves

In particular, Zv = 0 if KS is ample.

Proof: Since G is a section, f cannot have multiple fibres. Hence any fibre

F is numerically 2-connected by Lemma 1.2. Let s be a non-zero element in

H0(F,L), and let F1 be the maximal subdivisor of F on which s vanishes identi-

cally. Put F2 = F − F1. then s can be regarded as an element in H
0(F2, L− F1)

which does not vanish identically on any components of F2. In particular, we

must have (L − F1)F2 ≥ 0, or LF2 ≥ F1F2. If F1 6= 0, then F1F2 ≥ 2 by the

numerical 2-connectedness of F . Therefore, LF2 ≥ 2. On the other hand, we

have LF2 ≤ LF = 2. These together imply LF1 = 0, which in turn means that

F1 consists of (−2)-curves since KS = 2L.

Remark. In the appendix, we shall show the existence of a particular de-

generate fibre which contributes to the Castelnuovo–Horikawa index and which

is of hyperelliptic type. Let F be such a hyperelliptic fibre. Note that F is

not irreducible, because, otherwise, G ∩ F would be a Weierstrass point while

KF = 2L|F and h
0(F,Z) = 1. Then F necessarily contains a part of Zv, that is,

a (−2)-curve.

Summing up, we get:
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Proposition 2.4. Let S be an even surface of general type with a non-

hyperelliptic genus 3 fibration f : S → B. If the numerical characters of S

satisfy

3χ(OS) + 10 (b− 1) < K2
S <

16

5

(
χ(OS) + 3 (b− 1)

)
,

then KS cannot be ample.

Now, we show our main result, i.e. Theorem in Introduction.

Proof of Theorem: From the structure theorem of even canonical surfaces

with small K2 [K3, Parts I and III], we know that S has a non-hyperelliptic fi-

bration of genus 3, f : S → B, over a curve B of genus q(S), under the numerical

hypothesis of Theorem. Such f is obtained as the Albanese map when S is irreg-

ular, and as the semi-canonical map when S is regular. Then, by Proposition 2.4,

KS is non-ample, or equivalently, there exists a (−2)-curve on S.

Note that being an even surface does not depend on the complex structure but

on the topology of the underlying differentiable manifold, since it is equivalent

to the vanishing of the second Stiefel–Whitney class. Hence any deformation of

S is again an even surface. Also, since the condition that the canonical map is

birational onto the image is an open condition, any small deformation of S is

again a canonical surface.

Let M be the Kuranishi space of S, and let {St}, t ∈ M , be the Kuranishi

family. We remark that f can be naturally extended to the family: {ft : St → Bt}.

From the above observation, we see that every St is an even canonical surface

and it has a (−2)-curve contained in a fibre of ft. Let ΘS denote the tangent

sheaf of S. Then H1(S,ΘS) can be identified with the Zariski tangent space of

M at S. recall that Burns–Wahl’s theorem [BW] implies that a general vector

in H1(S,ΘS) kills every (−2)-curve on S. Since every nearby St must have a

(−2)-curve, we see that h1(ΘS) is strictly greater than dimC M , implying that
M is singular at S. Since the same is true around any nearby St, we conclude

that M is everywhere singular, that is, non-reduced.

3 – Examples

In this section, we construct even canonical surfaces as in Theorem.

We take positive integers m, n and ε satisfying:

(3.1) m− 3n+ 2 ε+ 1 ≥ 0 , ε < 2n , m+ 3 ε < 8n .
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Let B be a hyperelliptic curve of genus b :=m − 3n + 2 ε + 1, and let Ξ be a

g1
2 on B. [Since B can be expressed as a branched double covering of P1 when

b ≤ 1, we regard B as a hyperelliptic curve by abuse of terminology]. Choose

a point P with 2P ∈ |Ξ| and let Ξ′ be [ε/2] Ξ + (ε − 2 [ε/2])P , where [x] means

the integer part of a real number x. Then 2Ξ′ = εΞ. We take a general section

τ ∈ H0(B,Ξ′) and assume that the divisor (τ) consists of ε distinct points.

Put

L0 = (m+ 2n+ ε) Ξ , L1 = (m− n+ ε) Ξ + Ξ′ , L2 = (m− 2n+ 2 ε) Ξ

and consider the P2-bundle π : PB(L0 ⊕ L1 ⊕ L2)→ B. Let H be a tautological

divisor with π∗O(H) = L0⊕L1⊕L2. Then we can find sections Xi of [H−π
∗Li],

0 ≤ i ≤ 2, such that (X0, X1, X2) forms a system of homogeneous coordinates on

any fibre of π, where [D] means the line bundle associated to a divisor D. Let

w be the fibre coordinate of the line bundle W = [2H − π∗(2L1 + Ξ
′)] over the

P2-bundle.

Let S′ be a surface defined by the following equation in the total space of W :

(3.2) τ w = Φ1 , w2 = X0Φ2 ,

where Φ1 and Φ2 are general sections of [2H− 2π
∗L1] and [3H− 3π

∗L2], respec-

tively. Note that we can write Φi’s as

Φ1 = X0(φ0X0 + φ1X1 + φ2X2) + a1X
2
1 , Φ2 = a2X

2
2 + · · ·

with non-zero constants a1, a2 and, general sections φ0, φ1 and φ2 of 2L0 − 2L1,

L0−L1 and L0+L2− 2L1, respectively. Then it is easy to see that S
′ is smooth

except at points given by τ = w = X0 = X1 = 0.

Claim 3.1. These singular points are rational double points of type A1.

Proof: Let t be a local parameter around a zero of τ . The second equation

in (3.2) shows that X0 ≡ w2 modulo unit functions locally. Hence if we put

x = X1/X2, w = w (modulo unit functions), then the first equation in (3.2) gives

us a local analytic equation of the form

(3.3) t w = w2 + x2 .

Therefore, it is a rational double point of type A1.

We let S be the minimal resolution of S ′. Then S has (−2)-curves Ei,

1 ≤ i ≤ ε. It remains to show that S is indeed an even canonical surface.
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It is not so difficult to see that a canonical divisor of S ′ is induced from

(X0) + (m − 2n + ε)π∗ Ξ. Since Ξ is divisible by two from our choice of Ξ, it

suffices to see that so is the pull-back Z̃ of (X0). For this purpose, note that S can

be regarded as the minimal resolution of the surface defined in PB(L0⊕L1⊕L2)

by

Φ2
1 = τ2X0Φ2 ,

the equation obtained by eliminating w from (3.2). This surface contains the

section B defined by X0 = X1 = 0, and, near a generic point of B, X0 = 0

defines 4B. Therefore, we see that Z̃ is of the form

Z̃ = 4G+ (divisor supported on
⋃
Ei) ,

where G is the proper transform on S of B.

E

2 G′

-
2 : 1

(−1)-curve

{w = 0}

-
blow up s

{w = t}

{w = 0}

Figure 1

Claim 3.2. The above “correction term” is 2
∑ε

i=1Ei.

Proof: The easiest way to see this is as follows: Regard (3.3) as a double

covering of the (t, w)-plane with branch locus {t w − w2 = 0}. Then, in its

canonical (even) resolution, one easily see that the pull-back of {w = 0} is of the

form E + 2G′, where E is the exceptional (−2)-curve and G′ is the ramification

divisor over {w = 0} (see Figure 1). Since the divisor (w2) corresponds to (X0)

locally, we conclude that Z̃ is of the form Z̃ = 4G+ 2
∑ε

i=1Ei.

Hence S is an even surface with a semi-canonical bundle L = [2G+
∑ε

i=1Ei+

(m + 2n + ε)F ], where F is the fibre over P of the induced natural fibration

f : S → B. It may be clear that S is a canonical surface, since f∗ ωS ' L0 ⊕

L1 ⊕ L2. Furthermore, the numerical invariants of S can be easily computed by
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the standard method as




χ(OS) = 2m+ 10n+ ε ,

q(S) = m− 3n+ 2 ε+ 1 ,

K2
S = 3χ(OS) + 10

(
q(S)− 1

)
+ ε .

Remark. The result may not be extended beyond the line K2 = (16/5) (χ+

3 (q−1)), since we can construct, as above, an even canonical surface with ample

K on this line.

4 – Appendix

The contents here may be well-known to the experts. But we include it

mainly for two reasons. The first is to show singular fibres in our examples in

§3 are natural ones. The second is to supplement important preprints [Ho3] and

[R] both of which may never appear in a journal. Our consideration goes along

a line in [R], the use of the relative canonical algebra originated from [CC].

Let f : S → B be a relatively minimal, non-hyperelliptic fibration of genus 3,

ωS/B the relative dualizing sheaf as usual. Then the multiplication map

Sym2(f∗ ωS/B)→ f∗(ω
⊗2
S/B) is injective and generically surjective with cokernel a

torsion sheaf T on B. For any P ∈ Supp(T ), we put Ind(f−1P ) := length(T )P
and call it the Castelnuovo–Horikawa index of f−1P . Then we have

K2
S/B = 3deg(f∗ ωS/B) +

∑

P∈Supp(T )

Ind(f−1P ) .

See [CC], [R] (or [K2]) for detail.

We fix a point P ∈ Supp(T ) and put F =f−1P . We shall describe the relative

canonical model of S around F , assuming that |KF | is free from base points.

Let E be the kernel of the evaluation map H0(KF )⊗OF → OF (KF ) so that we

have a short exact sequence of locally free sheaves on F :

(A.1) 0 → E → H0(KF )⊗OF → OF (KF ) → 0 .

It follows that rk(E) = 2,
∧2 E ' OF (−KF ) and H

0(E) = 0.

We claim that the multiplication map µm : H
0(KF ) ⊗ H0(mKF ) →

H0((m+ 1)KF ) is surjective when m ≥ 2. By tensoring (A.1) with OF (mKF ),

one sees that µm is surjective if H
1(E(mKF )) = 0. We have

H1(E(mKF ))
∨ ' H0(E∨((1−m)KF )) ' H0(E((2−m)KF )) ,
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since E∨'E(KF). Hence the surjectivity of µ2 follows from the fact thatH
0(E)=0.

Whenm≥3, we use the inclusion H0(E((2−m)KF )) ↪→H0(KF )⊗H
0((2−m)KF )

coming from (A.1) tensored withOF ((2−m)KF ). Since we haveH
0((2−m)KF )=0

for m ≥ 3, we get H0(E((2−m)KF )) = 0 and the surjectivity of µm.

Now, let {x0, x1, x2} be a basis for H
0(KF ). By the free pencil trick, one

knows that the rank of µ1 is at least 5. Since P ∈ Supp(T ) and h
0(2KF ) = 6, we

in fact have rk(µ1) = 5. This implies that there are a quadric relation A2(x) = 0

among the xi and a non-zero element y ∈ H0(2KF ) not contained in the image

of µ1. Since µ3 is surjective, y
2 can be expressed as a linear combination of the

other elements in H0(4KF ). Hence we have a non-trivial relation of the form

y2 +B2(x) y +B4(x) = 0, where the Bj(x) are homogeneous form of degree j in

the xi. It is easy to see that there are no further relations among x0, x1, x2 and

y. It follows that the canonical model Proj(
⊕
H0(mKF )) of F is defined in the

weighted projective space P(1, 1, 1, 2) by

(A.2) A2(x) = 0 , y2 +B2(x) y +B4(x) = 0

similarly as non-singular hyperelliptic curves of genus 3. But one should note

that the conic {A2(x) = 0} can be a pair of lines in the present case.

Since the canonical model of F is a weighted complete intersection of the

above type, we only need to add a parameter to the coefficients for describing

the relative canonical model X of S near F . To be more precise, let ∆ be a

sufficiently small open disc around P and t a local parameter on ∆, P = {t = 0}.

Then there exists a positive integer k such that X is defined in ∆×P(1, 1, 1, 2) by

(A.3) tk u(t) y −A2(t, x) = 0 , v(t) y2 +B2(t, x) y +B4(t, x) = 0

where u(t), v(t) are unit functions in t, and A2(t, x), Bj(t, x) are homogeneous

forms in the xi with coefficients in C{t} satisfying A2(0, x) = A2(x), B2(0, x) =

B2(x). (The presence of y in the first equation is required, because we are consid-

ering a non-hyperelliptic fibration.) From (A.3), one sees immediately that the

canonical image locally around F is given

v(t)A2(t, x)
2 + u(t)B2(t, x) t

k A2(t, x) + u(t)2B4(t, x) t
2k = 0

and can determine the Castelnuovo–Horikawa index as Ind(F ) = k. Such a

singular fibre is called of type (Ik) in [Ho3].

In view of [R], it would be interesting to consider the Morsification of singular

fibres of type (Ik). Modulo singular fibres arising from rational double points,

we see that a singular fibre of type (Ik) is morsified to k fibres of type (I1),
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because we can obtain deformations of the singular fibre germ by replacing tk by

t(t − α1) · · · (t − αk−1) in the first equation of (A.3), where (α1, ..., αk−1) moves

in a neighbourhood of the origin in Ck−1. By perturbing the other coefficients if

necessary, one may further assume that the support of each fibre of type (I1) thus

obtained is a non-singular hyperelliptic curve of genus 3, an atomic fibre in [R].

But our example in §3 implies that such a ‘smoothing’ is not necessarily available

in the global situation.
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