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EXTENDED COMPOSITION OPERATORS
IN WEIGHTED SPACES

L. Oubbi

Abstract: Let X and Y be Hausdorff completely regular spaces and βX the Stone-

Čech compactification of X. For locally convex spaces E and F consisting of continuous

functions respectively on X and Y and whose topologies are generated by seminorms

that are weighted analogues of the suprimum norm, we give necessary and sufficient

conditions for a linear mapping T : E → F to be an extended composition operator.

This means that there exists some map ϕ : Y → βX so that T (f) = Cϕ(f) (:= f̃ ◦ϕ),

f ∈ E. Here f̃ stands for the Stone extension of f . We also characterize those maps ϕ

for which Cϕ satisfies one of the following conditions: 1) Cϕ is continuous; 2) Cϕ maps

some 0-neighbourhood into a bounded set; 3) Cϕ maps some 0-neighbourhood into an

equicontinuous, a compact or a weakly compact set; 4) Cϕ maps any bounded set into

an equicontinuous, a compact or a weakly compact set.

1 – Introduction and preliminaries

Let X be a Hausdorff completely regular space and K the real or complex field.

Denote by F(X) (resp. B(X), C(X)) the algebra of all K-valued (resp. bounded

K-valued, continuous K-valued) functions on X and put Cb(X) :=C(X)∩B(X).

We will say that u ∈ F(X) vanishes at infinity if, for every ε > 0, some compact

K⊂X exists with |u(x)| < ε for all x /∈ K. The set of all f ∈ C(X) vanishing at

infinity is denoted by C0(X). A Nachbin family on X is any collection V of non

negative upper semicontinuous (in short u.s.c.) real functions such that:

1) for every x ∈ X, there exists some v ∈ V with v(x) 6= 0, and

2) for every v1, v2 ∈ V and λ > 0, there exists v ∈ V so that λ vi ≤ v, i=1, 2.
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The weighted spaces associated with V are:

CV (X) :=

{
f ∈ C(X) : sup

t∈X
v(t) |f(t)| < +∞, ∀ v ∈ V

}

and

CV0(X) :=

{
f ∈ C(X) : fv vanishes at infinity for every v ∈ V

}
.

These spaces are supplied with the weighted topology τV generated by the semi-

norms

f 7→ |f |v := sup
t∈X

v(t) |f(t)|, v∈V .

The most used Nachbin families on X are:

Z :=
{
non negative constant functions

}
,

K :=
{
positive multiples of characteristic functions of compact subsets of X

}
,

S+0 :=
{
non negative u.s.c. functions on X vanishing at infinity

}
,

F :=
{
positive multiples of characteristic functions of finite subsets of X

}
.

The corresponding weighted spaces are respectively CZ(X) = Cb(X) and

CZ0(X)=C0(X) with the uniform convergence topology σ, CK(X)=CK0(X)=

C(X) with the compact open topology τc, CS+0 (X) = C(S+0 )0(X) = Cb(X) with

the strict topology β and CF (X)=CF0(X)=C(X) with the pointwise conver-

gence one τs. For further details concerning the weighted spaces, see [1] and [9].

In this paper we deal with extended composition operators from arbitrary

subspaces E of a weighted space CV (X) into another weighted space CU(Y ).

Historically, the composition operators on Hilbert spaces L2(X), X = R, Z or

[0, 1], appeared originally in the work [3] of B.O. Koopmann in connection with

classical mechanics. A survey on such operators on spaces of type L2 and H2 was

given by E.A. Nordgren [7]. Then the composition operators were generalized in

several directions. In [2] H. Kamowitz gave a characterization of compact com-

position operators on the algebra C(X) for X compact. While R.K. Singh and

W.H. Summers studied in [12] the composition operators on general weighted

spaces of type CV (X) and CV0(X). There, composition operators were charac-

terized among the linear mappings T from CV (X) or CV0(X) into itself. It was

also given necessary and sufficient conditions on ϕ : X→X so that Cϕ : f 7→ f◦ϕ

maps continuously CV (X) or CV0(X) into itself. In [4] the authors consider the
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special weighted space CK(X), but allow T to land in CK(Y ) for some other

Hausdorff completely regular space Y . They then gave necessary and sufficient

conditions on ϕ : Y →X under which the composition operator Cϕ : f 7→ f ◦ ϕ

is locally (weakly) compact, i.e. Cϕ maps every bounded subset of CK(X) into

a (weakly) compact subset of CK(Y ). Here, we not only consider composition

operators T : E → CU(Y ) from a general subspace E of CV (X) into a general

weighted space CU(Y ), but also we allow the map ϕ to take values outside of

X, namely in the Stone-Čech compactification βX of X. In this way we recover,

even in case E = CU(Y ), operators which fail to be composition ones in the

classical sense (see Example 2.2). We then characterize those (continuous) linear

operators which turn out to be extended composition ones. Moreover, we provide

necessary and sufficient conditions on ϕ : Y → βX so that the induced extended

composition operator Cϕ satisfies one of the following conditions:

1. Cϕ is continuous,

2. Cϕ maps some 0-neighbourhood into a bounded set,

3. Cϕ maps some 0-neighbourhood into an equicontinuous, a compact or a

weakly compact set, or

4. Cϕ maps any bounded set into an equicontinuous, a compact or a weakly

compact set.

Henceforth, unless the contrary is stated, all subspaces of CV (X) in consider-

ation will be supplied with the topology induced by τV . For every such subspace

E and every v ∈ V , we will denote by Bv(E) the set {f ∈ E : |f |v ≤ 1} and by

coz(E) the set of all elements of X at which at least one f ∈ E does not vanish;

here E may be any subset of C(X). We will also consider the following sets:

F(E) :=
{
x ∈ βX : f̃(x) 6=∞, for every f ∈ E

}
,

M∗(E) :=
{
x ∈ F(E) : f̃(x) 6= 0 for some f ∈ E

}
,

M+(E) :=
{
x ∈M∗(E) : δx, the evaluation at x,

is bounded on bounded subsets of E
}

.

If v ∈ V is given, using Lemma 9 of [8], one can extend v by upper semicontinuity

to M∗(E) by putting

ṽ(t) := inf
{
w(t); w : M∗(E)→ R+ u.s.c. and w|X≥ v

}
.
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This extension is minimal and verifies, for every f ∈ E,

|f |v = sup
t∈M∗(E)

ṽ(t) |f̃(t)| .

Denote by Ṽ the collection of all ṽ, when v runs over V , and consider the set

M(E) :=
{
x ∈M∗(E) : ṽ(x) 6= 0 for some v ∈ V

}
.

Whenever E is either a (complex) selfadjoint algebra and a Cb(X)-module, the

sets M∗(E), M+(E) and M(E) are nothing but the algebraic, the bounded and

the continuous characters (i.e. non zero multiplicative functionals) on E respec-

tively [8]. They may differ from each other as shows the following example: let

X be the real line, C+0 (X) the set of all R+-valued continuous functions on X

vanishing at infinity and δ the continuous function defined on X by δ(x)=1 for

x∈N, δ(x)=0 for x≤ 1/2 or n + 1/2n ≤ x ≤ n + 1 − 1/2(n+1) for some n∈N
and δ piecewise linear. For every v∈C+0 (X), put uv := max(v, δ) and consider the

Nachbin family U := {λuv : v ∈ C+0 (X), λ>0}. We then have CU(X) = Cb(X)

algebraically and the topology τU is stronger than β but coarser then σ. It is

clear that every x ∈ NβX
defines a continuous character on CU(X) while the eval-

uation at every point of {n− 1/2n, n ∈ N}βX\R defines a discontinuous one.

Hence M(E) 6= M∗(E). To get a case where the three sets are all different, take

the product of the foregoing example and Cb(R) with the compact open topology.

This is a subalgebra of CV (Y ), where Y is the disjoint union of R and R, and V

the product U×K (see [8]).

One may think that E can be considered as a topological subspace of

CU(M∗(E)) for some Nachbin family U on M ∗(E), and then some of our re-

sults derive from known ones. This is not true, since otherwise every character

of E should be continuous.

In all what follows, X and Y will stand for Hausdorff completely regular

spaces, V and U Nachbin families respectively on X and Y and E a vector

subspace of C(X). For a linear map T : E → CU(Y ), set YT,E := coz(T (E)) and

Ta := Ra ◦ T , where Ra : CU(Y )→ CUa(YT,E) denotes the restriction map and

Ua the relative Nachbin family induced by U on YT,E . Whenever YT,E coincides

with the whole of Y we say that T (E) is essential.
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2 – Extended composition operators

In this section we define the extended composition operators, give examples,

characterize the maps ϕ : Y → βX so that Cϕ : E → CU(Y ) is a continuous

extended composition operator and exhibit among the linear mappings T : E →

CU(Y ) those which are extended composition operators.

Definition 1. A linear map T from E into F(Y ) is called an extended

composition operator (in short e.c.o.) if there exists a map ϕ from Y into βX

such that, for every f ∈ E, T (f) = f̃ ◦ ϕ. We will then write T = Cϕ.

Notice that ϕ must map Y into F(E), since f̃ ◦ ϕ is a (finite) function. For

such a map, let us denote by Ya, Yb and Yc respectively the sets ϕ−1(M∗(E)),

ϕ−1(M+(E)) and ϕ−1(M(E)); and by ϕa, ϕb and ϕc the restriction of ϕ to Ya,

Yb and Yc respectively. Actually Ya is nothing but coz(Cϕ(E)) = YCϕ,E .

Examples 2.

1. Every composition operator (i.e. induced by a map ϕ : Y →X) is an e.c.o..

2. Consider X = Y = {0} ∪ [1,∞) with the relative topology induced by R,

V = U = Z and E = CV0(X) (= C0(X) with the topology of the uniform

norm). If p ∈ βX\X is fixed, then put

T (f)(t) =

{
f(t) , t ∈ [1,∞),

f̃(p) , t = 0 .

Then T is a continuous linear map from E into CU(Y ) and T (fg) =

T (f)T (g) for every f, g ∈ E. If we set ϕ(t) = t for t 6= 0 and ϕ(0) = p,

we get that T = Cϕ and then T is an extended composition operator.

It is shown in [12] that T is not a composition operator (example 3.6).

3. Set X = Y = R, U =K and V the system of those weights of the form

max(v, sin), v ∈ S+0 . Put then T : CV (R) → CK(R) assigning to any f

the constant function with value f̃(t0); t0 being a cluster point in β R of

the set {2nπ + π
2 , n ∈ N}. Then T is a continuous e.c.o. induced by the

constant map ϕ(t) = t0.

4. The same example as in 3. with t0 a cluster point of the set {2nπ, n ∈ N}.
Here T is bounded but not continuous.

5. Take X = Y = R, E = C0(E) and T : E→F(R) defined by T (f) = f on

R+ and 0 elsewhere. Then T is an e.c.o. induced by the map ϕ : R → β R
defined by ϕ(t) = t for t > 0 and ϕ(t) = p for some p ∈ β R \R elsewhere.

Here the range of T is not contained in C(Y ).
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We now give a characterization of continuous composition operators between

weighted spaces. To avoid trivialities, we will assume that Ya 6= ∅ in the following

result.

Theorem 3. Let E ⊂ CV (X) be a Cb(X)-module and ϕ : Y→ F(E) a map.

If Cϕ(E) ⊂ C(Y ), then Ya is open and ϕa is continuous. Moreover the following

are equivalent:

1. Cϕ maps continuously E into CU(Y ).

2. Cϕ(E) ⊂ C(Y ) and Ua ≤ Ṽ ◦ ϕa on Ya.

Proof: Let t0 ∈ Ya and Ω a neighbourhood of ϕ(t0) in βX. There is

some f ∈ E and g ∈ C(βX) with f̃(ϕ(t0)) = 1, g(ϕ(t0)) = 1, 0 ≤ g ≤ 1 and

supp(g) ⊂ Ω. Put h = fg, we still denote the restriction of g to X by g. Then

h ∈ E and one has: h̃(ϕ(t0)) = f̃g(ϕ(t0)) = 1. But h̃ ◦ ϕ is continuous. Hence

G := {y ∈ Y : 1
2 < |h̃ ◦ ϕ(y)| < 3

2} is open and contains t0. But G ⊂ Ya and

ϕ(G) ⊂ Ω, hence Ya is open and ϕa continuous.

For the equivalence of 1. and 2., notice that ϕa is continuous in both cases.

1.⇒ 2.: Fix y0 ∈ Ya. There exists some g ∈ E with g̃(ϕ(y0)) = 1. The

continuity of Cϕ gives

∀u ∈ U, ∃ v ∈ V : |f̃ ◦ ϕ|u ≤ |f |v, f ∈ E .

In particular

u(y0) |f̃(ϕ(y0))| ≤ sup
t∈X

v(t) |f(t)| , f ∈ E .

For every n ∈ N, consider an open subset Ωn,1 of βX such that Ωn,1 ∩M∗(E) =

{x∈M∗(E) : ṽ(x) < ṽ(ϕ(y0)) + 1/n} and put Ωn :=Ωn,1 ∩ {x∈βX: 1 − 1/n <

|g̃(x)| < 1 + 1/n}. Then Ωn is a neighbourhood of ϕ(y0) in βX. Choose fn ∈

C(βX) with 0≤fn≤1, fn(ϕ(y0))=1 and supp fn⊂ Ωn. Since hn := gfn belongs

to E, one has

u(y0) |h̃n(ϕ(y0))| ≤ sup
t∈X

v(t) |hn(t)| , n ∈ N ,

or

u(y0)
∣∣∣g̃n(ϕ(y0)) fn(ϕ(y0))

∣∣∣ ≤ sup
t∈Ωn

ṽ(t) |hn(t)| , n ∈ N .

Whence

u(y0) ≤
[
ṽ(ϕ(y0)) + 1/n

]
(1 + 1/n) .

Passing to the limit, we get u(y0) ≤ ṽ ◦ ϕ(y0).
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2.⇒ 1.: Assume that Ua ≤ Ṽ ◦ϕa. Then for every u ∈ U , there is some v ∈ V

such that u ≤ ṽ ◦ ϕ on Ya. Hence, for every f ∈ E, f̃ ◦ ϕ is continuous and one

has

|f̃ ◦ ϕ|u = sup
y∈Y

u(y) |f̃(ϕ(y))|

= sup
y∈Ya

u(y) |f̃(ϕ(y))|

≤ sup
y∈Ya

ṽ(ϕ(y)) |f̃(ϕ(y))| ≤ |f |v .

This gives at once f̃ ◦ ϕ ∈ CU(Y ) and the continuity of Cϕ.

Remark 4.

1. Example 5 above shows that, for a given ϕ : Y → F(E), the inclusion

Cϕ(E) ⊂ C(Y ) need not hold although Ya is open and ϕa continuous.

2. A consequence of the condition 2 of Theorem 3 is that, in order Cϕ to

be continuous, ϕ must map Ya into M(E). Hence Yc = Ya and ϕc = ϕa.

Furthermore the implication 2.⇒ 1. holds although E fails to be a

Cb(X)-module.

It is known that if T is a continuous unital algebra morphism from CK(X)

into CK(Y ), then there is a continuous map ϕ from Y into X such that T = Cϕ

(see [5]). Actually the condition unital is not redundant for T to be induced

by a map ϕ. The multiplication by the characteristic function of a closed and

open subset of a disconnected space X provides a continuous algebra morphism

from CK(X) into itself. But such a morphism is not induced by any self map

ϕ : X→X. The following lemma yields an extended version of the result of [5].

Here we drop the continuity condition and take general subspaces of C(X).

Lemma 5. Let E be a selfadjoint subalgebra of C(X) which is also a

Cb(X)-module and T a linear map from E into C(Y ). Assume in addition that

either M∗(E) 6= F(E) or T (E) essential. Then T is an e.c.o. if and only if it is

an algebra morphism.

Proof: The necessity is trivial in both cases. For the sufficiency, assume first

that some x0 ∈ F(E)\M∗(E) exists and let y ∈ Y be given. If y /∈ YT,E , then set

ϕ(y) = x0. Otherwise δy ◦ T is a character of E and by Corollary 14 of [8], there

is a (unique) x ∈ M∗(E) such that δy ◦ T = δx. Put then ϕ(y) = x and obtain

T (f)(y) = f̃(ϕ(y)) for every y ∈ Y and f ∈ E. Now, if T (E) is essential, then

YT,E = Y and we argue as above.
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If none of the conditions M ∗(E) 6= F(E) and T (E) is essential is fulfilled,

then T may fail to be an e.c.o.. The example given in Remark 4 yields such a

situation.

Despite its algebraic aspect, Lemma 5 provides, as an application, a charac-

terization of continuous extended composition operators between some weighted

spaces. This includes in particular Theorem 3.3 and Theorem 3.4 of [12]. More-

over our proof does not utilize the approximation theory as in [12]. In the fol-

lowing, let us write Eb to mean E ∩B(X).

Proposition 6. Let E ⊂ CV (X) be a vector space, T : E→CU(Y ) a linear

mapping and F ⊂ E an algebra which is either selfadjoint and a Cb(X)-module.

1. Suppose that YT,F = YT,E . If M∗(F ) ⊂ F(E) or T continuous and

M(F ) ⊂ F(E), then Ta is an e.c.o. if and only if T (fg) = T (f)T (g)

for every f ∈ E, g ∈ F with fg ∈ F . If in addition M ∗(E) 6= F(E), the

conclusion still holds for T instead of Ta.

2. If T is continuous and F dense in E, then Ta is an e.c.o. if and only if

T (fg) = T (f)T (g) for every f, g ∈ F .

Proof: It is clear that if Ta or T is an e.c.o., then T (fg) = T (f)T (g) even for

every f, g ∈ E. For the converse, by Lemma 5, there exists ϕ1 : YT,F → M∗(F )

such that T (f)(y) = f̃ ◦ ϕ1(y) for every y ∈ YT,F and f ∈ F .

1. If f ∈ E and y ∈ YT,E are given, then there exists g ∈ F such that

g̃(ϕ1(y)) = 1. Choose h ∈ C(βX) such that h(ϕ1(y)) = 1, 0 ≤ h ≤ 1 and

supph ⊂ {x ∈ βX : |f̃(x) − f̃(ϕ1(y))| < 1}. The function fh g belongs to F

and since ϕ1(y)∈F(E), we get T (fhg)(y)= f̃hg(ϕ1(y))= f̃(ϕ1(y)) on one hand,

and T (fhg)(y) = T (f)(y)T (hg)(y) = T (f)(y) on the other hand. Since y is

arbitrary in YT,F = YT,E , Ta(f) = f̃◦ϕ1. Now, if T is assumed to be continuous,

then the map ϕ1 takes its values in M(F ) and we only need that the latter be

contained in F(E). Furthermore if M ∗(E) 6= F(E), we extend ϕ1 to the whole of

Y by putting ϕ(y) = x0 for a fixed x0 ∈ F(E)\M∗(E) and every y /∈ YT,E . This

gives T = Cϕ.

2. Since F is dense in E, M(F ) = M(E). Moreover the continuity of T yields

YT,F = YT,E . To conclude using 1., we only need to show that T (fg) = T (f)T (g)

for every f ∈ E, g ∈ F with fg ∈ F . Let then f ∈ E, g ∈ F be so that fg ∈ F

and y∈YT,E . There exists a net (fi)i∈I ⊂F converging to f in E and some h∈

C(βX) with h(ϕ1(y))=1, 0≤h≤1 and supph⊂
{
x∈βX : max

(
|f̃(x)−f̃(ϕ1(y))|,

|g̃(x)− g̃(ϕ1(y))|
)
< 1

}
. The function fhg belongs to F and hg ∈ F is bounded

so that (fihg)i∈I converges to fhg in E. Hence lim
i

T (fihg)=T (fhg). In parti-
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cular lim
i

T (fihg)(y) = T (fhg)(y). But T (fihg) = T (fi)T (hg) for every i ∈ I.

Then T (fhg)(y) = lim
i

T (fi)(y)T (hg)(y). The continuity of T again gives

T (fhg)(y) = T (f)(y)T (hg)(y) = T (f)(y)T (g)(y). Since y is arbitrary in YT,E ,

we get T (f)T (g) = T (fg).

Remark 7.

1. If F happens to be contained in CV0(X), then Fb is automatically dense

in F . On the other hand, if T (E) is essential, then T = Ta. In particular

Theorem 3.3 and Theorem 3.4 of [12] are obtained by taking respectively

in 2. of the proposition above E = CV0(X) and F = CV0(X)∩Cb(X) and

in 1. E = CV (X) and F = CV0(X) ∩ Cb(X). Recall that in [12] CV0(X)

is assumed to be essential and that M(CV0(X)) always is contained in X.

2. An algebra morphism T : CK(X)→ CK(Y ) need not be an e.c.o.. How-

ever, there is some open subset YT of Y and a continuous map ϕa : YT→X

such that Ta= Cϕa . Moreover, in the light of Theorem 3, T is continuous

if and only if for every compact K⊂ Y, ϕa(K ∩ YT ) is relatively compact

in X.

3. If E ⊂ CV (X) is a vector space such that Eb is dense in E, then Eb is even

large in E and M+(E)=M+(Eb). Indeed if B is a bounded set of E and

A :={Λn(f), f ∈B, n∈N}, then A is bounded in Eb and B ⊂ A. Here for

every f ∈B and n ∈ N, Λn(f) denotes the bounded function defined by

Λn(f)(x)=f(x) if |f(x)|≤n and Λn(f)(x) = n
f(x)

|f(x)|
otherwise. Now let

x ∈M+(E) be given. We have to show that δx does not vanish identically

on Eb. If f ∈E is such that δx(f)= 1 and (xi)i is a net in X converging

to x, then assuming with no loss of generality that |f(xi)|≤2 for every i,

we have δx(Λ2(f)) = lim
i
Λ2(f)(xi) = lim

i
f(xi) = δx(f) = 1. Hence

M+(E) ⊂ M+(Eb). Next, assume that x ∈ M+(Eb) and B is a bounded

set of E. Consider the set A as above. There exists some M > 0 so that

| ˜Λn(f)(x)| < M . We claim that |f̃(x)| ≤ M . If not, there will exist a

neighbourhood O of x with |f̃(t)| > M for every t ∈ O. Hence, for n > M

and t ∈ X∩ O, we have |Λn(f)(t)| > M . This leads to the contradiction

| ˜Λn(f)(x)| ≥M .

Now, if Cϕ has to land in a (smaller) subspace of CU(Y ) instead of the whole

space CU(Y ), the behaviour of ϕ turns out to be affected. To see this, we need

the following lemma containing analogous of Lemma 3.1 of [11] and Lemma 2,

p. 69 of [6].
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Lemma 8. Let E ⊂ CV (X) be a vector subspace which is a Cb(X)-module.

If K is a compact subset of M ∗(E) and C a closed one such that K∩C = ∅, then

1. There exists an open subset Ω of M ∗(E) such that K⊂ Ω and, for every

v ∈ V, ṽ is bounded on Ω.

2. There exists f ∈ E with f̃ = 1 on K and f̃ = 0 on C.

Proof: 1. Let x ∈ M∗(E) and fx ∈ E be so that f̃x(x) = 1. Put Ωx :=

{|f̃x| > 1/2}. By compacity, there exist x1, ..., xn such that K⊂ Ω :=
⋃n

i=1Ωxi
.

Then Ω is the required open set.

2. We first associate with every g ∈ C(X), a positive bounded and continuous

function Γ(g) defined on X by Γ(g)(x) := |g(x)| if |g(x)|≤1 and Γ(g)(x) :=
1

|g(x)|
otherwise. Now let x ∈ M ∗(E)\C and g ∈ E so that g̃(x) = 1 and consider

gx ∈ C(βX) with gx(x) = 1, 0≤gx≤1 and gx= 0 identically on C. The function

kx := ggx belongs to E and so does hx := kx kx Γ(k
2
x). Moreover 0 ≤ hx ≤ 1,

h̃x(x) = 1 and hx vanishes identically on C. Now, by compacity of K, there exist

hx1
, hx2

, ..., hxm in E such that K⊂
⋃m

i=1{hxi
>1/2}. The function h :=

∑m
n=1 hxn

belongs to E and satisfies h(t)>1/2 for every t ∈ K. Now f := 2hΓ(2h) enjoys

the required conditions.

For a non negative function u on Y and ε > 0, set Nu := {y∈Y : u(y) > 0}

and N(u, ε) := {y∈Y : u(y) ≥ ε}. Consider next as in [8] the following algebras:

C` U(0)(Y ) :=
{
f ∈ CU(0)(Y ) : ∀u ∈ U, ∃u′ ∈ U with |f |u ≤ u′

}
,

CAU(0)(Y ) :=
{
f ∈ CU(0)(Y ) : f is bounded on each Nu, u∈U

}
,

CuAU(0)(Y ) := CU(0)(Y ) ∩ Cb(Y ) .

The proof of the following proposition is easy and then omitted:

Proposition 9. Let ϕ : Y → F(E) be a map such that Cϕ maps continuously

E into CU(Y ). Then

1. Cϕ(E) ⊂ C` U(Y ) if and only if for every f ∈ E and u ∈ U , there exists

u′ ∈ U such that |Cϕ(f)| ≤ u′/u on Nu.

2. Cϕ(E) ⊂ CAU(Y ) if and only if for every u ∈ U , ϕ(Nu) is E-bounding

(i.e. E ⊂ B(ϕ(Nu))).

3. Cϕ(E) ⊂ CuAU(Y ) if and only if ϕ(Y ) is E-bounding.
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For the corresponding subspaces of CV0(X), combine Proposition 9 and Propo-

sition 10 below.

Proposition 10. Let ϕ : Y → F(E) be such that Cϕ maps E continuously

in CU(Y ). Consider the following assertions.

1. Cϕ(E) ⊂ CU0(Y ).

2. ∀u ∈ U, ε > 0 and K ⊂M∗(E) compact, ϕ−1(K) ∩ N(u, ε) is relatively

compact in Y .

3. ∀u ∈ U, ε > 0 and v ∈ V such that u ≤ ṽ ◦ ϕ on Ya, ϕ−1(K) ∩N(u, ε)

is relatively compact whenever K is a compact subset of N(v, ε).

Then 1.⇒ 2.⇒ 3. If in addition E ⊂ CV0(X), then also 3.⇒ 1.

Proof: In order to show the implication 1.⇒ 2., let u ∈ U, ε > 0 and K a

compact subset of M ∗(E) be given. By Lemma 8, we may find f ∈ E such that

0 ≤ f ≤ 1 and f̃|K=1. By assumption, the set Y1 := {y∈Y : u(y) |f̃◦ ϕ(y)| ≥ ε}

is compact. Since ϕ−1(K) ∩ N(u, ε) is contained in Y1, it is relatively compact.

The assertion 3. derives obviously from 2. Now assume that E ⊂ CV0(X) and

consider f ∈ E, u ∈ U and ε > 0. Set Y1 := {y ∈ Y :: u(y) |f̃ ◦ ϕ(y)| ≥ ε}. If

v ∈ V is such that u ≤ ṽ ◦ ϕ on Ya, then Y1 ⊂ {y ∈ Y : ϕ(y) ∈ {|f | v ≥ ε}}.

But f ∈ CV0(X), then K := {|f | v ≥ ε} is compact and K ⊂ N(v, ε/M), where

M := sup{|f(t)|; t∈K}. By 3., ϕ−1(K) ∩N(u, ε/M) is relatively compact. The

proof is achieved since Y1 is contained in ϕ−1(K) ∩N(u, ε/M).

The following proposition gives a further algebraic characterization of ex-

tended composition operators. To show it, we need an additional notation. For

Y1⊂ Y , set ∆Y1
:= {δy, y∈Y1} and let ∆ denote the set {δx, x∈M∗(E)}.

Proposition 11. Let E ⊂ C(X) be a Cb(X)-module and T : E→C(Y ) a

linear map. If T is an e.c.o., then T ∗(∆Ya) ⊂ ∆. Conversely if T ∗(∆YT,E
) ⊂ ∆

(with F(E) 6= M∗(E) in case YT,E 6= Y ), then T = Cϕ for some ϕ : Y → F(E).

Proof: If T =Cϕ for some ϕ : Y → F(E), f ∈ E and y ∈ Ya, then T ∗(δy)(f) =

δy ◦ T (f) = T (f)(y) = f̃(ϕ(y)) = δϕ(y)(f). Since y ∈ Ya and f ∈ E were

arbitrary, the necessity follows. For the sufficiency, let y ∈ YT,E and x ∈ βX

satisfy T ∗(δy) = δx. The compacity of βX combined with the fact that E is a

Cb(X)-module shows that x is uniquely determined. Put then ϕ(y) = x. For

eventual y /∈ YT,E , put ϕ(y) = x0, x0 being a (also eventual) fixed point of

F(E)\M∗(E). We then have T = Cϕ.
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3 – Compact extended composition operators

This section deals with the conditions on ϕ so that Cϕ becomes strongly

bounded, (locally) equicontinuous, (locally) weakly compact or (locally) compact.

Let S : A→ B be a linear mapping from a locally convex space A into an-

other B. Recall that S is said to be (weakly) compact (resp. locally (weakly)

compact) if it maps some 0-neighbourhood (resp. every bounded set) in A into a

relatively (weakly) compact subset of B. S is strongly bounded if it maps some

0-neighbourhood in A into a bounded subset of B. If B consists of continuous

functions on a topological space Z, then S is equicontinuous (resp. locally equicon-

tinuous) if the image under S of some 0-neighbourhood (resp. of any bounded

set) in A is equicontinuous on Z.

Proposition 1. Let ϕ : Y → F(E) be a mapping such that Cϕ(E) ⊂ C(Y ).

1. If Cϕ(E) ⊂ CU(Y ), then Cϕ is strongly bounded if and only if there is

some v ∈ V such that Ua ≤ {λ ṽ ◦ ϕa : λ > 0}.

2. If ϕa = ϕ, then the following assertions are equivalent:

i. Cϕ is equicontinuous.

ii. Cϕ is locally equicontinuous.

iii. ϕ is locally constant.

Proof: 1. We have just to show the necessity. If Cϕ(Bv(E)) is bounded for

some v ∈ V , then for every u ∈ U , there is M > 0 with u(t) |f̃ ◦ ϕ(t)| ≤ M for

every t ∈ Y and f ∈ Bv(E). Fix y0 in Ya. If ṽ(ϕ(y0)) = 0, consider, for every

n ∈ N, fn ∈ Bv(E) such that f̃n(ϕ(y0)) = n and apply to fn the inequality above

to get that u(y0) = 0. Now if ṽ(ϕ(y0)) 6= 0, the same inequality applied to any

fn ∈ Bv(E) such that f̃n(ϕ(y0)) = 1/(ṽ(ϕ(y0))+1/n) gives u(y0) ≤M ṽ◦ϕ(y0),

see Lemma 9 of [8].

2. It is clear that i.⇒ ii. In order to deduce iii. from ii., assume that ϕ is

not constant on any neighbourhood of some y0 ∈ Y . Fix a neighbourhood Ω of

ϕ(y0) in M∗(E) such that for every v ∈ V, ṽ is bounded on Ω. Then for every

neighbourhood G of y0, there is some yG ∈ G∩ϕ−1(Ω) such that ϕ(yG) 6= ϕ(y0).

Take fG ∈ E with 0 ≤ fG ≤ 1, f̃G(ϕ(yG)) = 1, f̃G(ϕ(y0)) = 0 and supp f̃G ⊂ Ω.

The set {fG, G a neighbourhood of y0} is bounded in E and then Cϕ(B) is

equicontinuous on Y . But the equality |f̃G(ϕ(yG)) − f̃G(ϕ(y0))| = 1 for every

G contradicts the convergence of yG to y0. The implication iii.⇒ i. derives from

the fact that if ϕ is locally constant, then Cϕ(Bv(E)) is equicontinuous for every

v ∈ V .
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Notice that an equicontinuous operator need not be even bounded on bounded

sets as shows the following example: Take X = Y = R, V = K, U = Z or K

and ϕ(t) = x0 for a given x0 ∈ βR\R and every t ∈ Y . By Proposition 1, Cϕ

is equicontinuous from E :=Cb(R) into CU(Y ). However if B := {fn : n ∈ N},
where fn(x) = min(|x|, n) for every x ∈ R, then B is bounded in E while Cϕ(B) is

not bounded in CU(Y ). This example shows that Theorem A of [2] is extendible

neither to Schmets algebras CP(X) (even for compact X) nor to weighted spaces

in the present sense. Actually the necessary and sufficient condition for Cϕ in

Theorem A to be locally compact turns out to be here equivalent to the equicon-

tinuity of Cϕ. In order to get the local compacity, we need some more conditions.

We will say that a subset X1 of a topological space X satisfies the sequences

cluster point property (SCPP ) if every (infinite) sequence of X1 has a cluster

point in X. Every relatively countably compact subspace of X has (SCPP ).

In particular every relatively compact and every relatively sequentially compact

subset of X has (SCPP ).

Proposition 2. Assume that ϕ(Y ) ⊂M ∗(E). If Cϕ : E → CU(Y ) is locally

weakly compact, then for every subset K of Y satisfying (SCPP), ϕ(K) is finite.

Proof: Assume that K ⊂ Y satisfies (SCPP ) and ϕ(K) is infinite. Let

(xn)n = (ϕ(yn))n be a sequence of pairewise disctinct points of ϕ(K). By as-

sumption on K, there is some y ∈ Y such that y ∈ {yn, n ≥ m} for every m.

The continuity of ϕ gives x := ϕ(y) ∈ {xn, n ≥ m} for every m. Let G be a

neighbourhood in M∗(E) of x := ϕ(y) such that, for every v ∈ V , ṽ is bounded

on G. We assume, with no loss of generality, that x 6= xn, n ∈ N. We can then

find fn ∈ E with 0 ≤ fn ≤ 1, f̃n(x) = 1, f̃n(xk) = 0, for k ≤ n and f̃n vanishes

outside of G. Then the set B := {fn : n ∈ N} is bounded in E and hence Cϕ(B)

is relatively weakly compact. If g is a (weakly) cluster point of Cϕ(B), then

g ∈ {f̃n◦ ϕ, n ≥ m}
σ(CU(Y ),CU(Y )′)

, m ∈ N. Therefore g(t) ∈ {f̃n◦ ϕ(t), n ≥ m}

for every m ∈ N and t ∈ Y . Whereby g(y) = 1 and g(ym) = 0 for every m. This

is in contradiction with y ∈ {yn, n ≥ m}.

In the following, if A is a subset of M ∗(E), we will denote by EA the locally

convex space obtained by endowing E with the topology of pointwise convergence

on A. In case A = M∗(E), M+(E) or M(E), we will write Es∗ , Es+ or Es. We

then get

Lemma 3. Let A ⊂ F(E) and ϕ : Y → F(E) be given. If Cϕ : EA → CU(Y )

is continuous, then ϕ(Nu ∩ Ya) is a finite subset of A for every u ∈ U . The

converse is true provided U ⊂ B(Y ) (or Cϕ : E → CU(Y ) continuous).
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Proof: For every u ∈ U , there is some finite set S ⊂ A and some M > 0

such that

u(t) |f̃ ◦ ϕ(t)| ≤ M sup
s∈S

|f̃(s)| , t ∈ Y and f ∈ E .

This is only possible if ϕ(Nu∩ Ya) ⊂ S. Otherwise, the inequality above would

not hold for any t ∈ Nu∩ Ya with ϕ(t) /∈ S and any f ∈ E such that f̃(ϕ(t)) = 1

and f̃|S = 0. For the converse if U ⊂ B(Y ) and S := ϕ(Nu∩ Ya) is a finite

subset of A, then for every f ∈ E, we have |Cϕ(f)|u ≤ ‖u‖∞ sups∈S |f̃(s)|. Now,

if Cϕ : E → CU(Y ) is continuous, for u ∈ U , there is some v ∈ V verifying

ua ≤ ṽ ◦ ϕa. If S := ϕ(Nu ∩ Ya) ⊂ A is finite, then

|f̃ ◦ ϕ|u = sup
t∈Nu∩Ya

u(t) |f̃ ◦ ϕ(t)|

≤ sup
t∈Nu∩Ya

ṽ ◦ ϕ(t) |f̃ ◦ ϕ(t)|

≤ |ṽ|S |f̃ |S .

Whence the conclusion.

The following result gives a sufficient condition under which Cϕ is locally

compact.

Proposition 4. Assume that ϕ(Y ) ⊂M+(E), CU(Y ) is quasi-complete

and either U⊂B(Y ) or Cϕ : E → CU(Y ) continuous. If ϕ(Nu) is finite for every

u ∈ U , then Cϕ : E → CU(Y ) is locally compact.

Proof: By Theorem 3, Cϕ : Es+→ CU(Y ) is continuous. Then Cϕ also is

continuous from (E, σ(E,E+)) into CU(Y ), where E+ is the bounded dual of E.

Since E and (E, σ(E,E+)) have the same bounded sets, every bounded set B

of E is precompact in (E, σ(E,E+)). Hence for every bounded subset B of E,

Cϕ(B) is compact, for it is precompact and complete.

The condition ϕ(Y ) ⊂ M+(E) is not superfluous as shows the example after

Proposition 1. Notice also that if Nu satisfies (SCPP ) for every u ∈ U , then U is

automatically contained in B(Y ). Indeed if u ∈ U is not bounded on Y , there is a

sequence (yn)n ⊂ Y such that u(yn) > max(n, u(yn−1)+1). If y is a cluster point

of {yn : n ∈ N} and G := {t ∈ Y : u(t) < u(y) + 1}, then G ∩ {yn, n ≥ m} 6= ∅

for every m ∈ N. This gives u(y) ≥ m for every m, which is a contradiction.

Combining Proposition 2, Proposition 4 and the foregoing remark, we get the

main result of this section:
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Theorem 5. Assume that ϕ(Y )⊂M+(E), CU(Y ) is quasi-complete and Nu

satisfies (SCPP ) for every u ∈ U . Then the following assertions are equivalent:

1. Cϕ is locally compact from E into CU(Y ).

2. Cϕ is locally weakly compact from E into CU(Y ).

3. For every u ∈ U, ϕ(Nu) is finite.

Next, if H ⊂ CU(Y ) and u ∈ U are given, we will say that uH vanishes

at infinity, if for every ε> 0, there exists a compact set K⊂ Y outside of which

u|f |<ε for every f ∈H. It is clear that for every bounded subset H of CU(Y ) and

every u∈U , uH vanishes at infinity whenever U fulfils the following condition:

For every u ∈ U , there exists u′ ∈ U such that for every ε > 0, there exists a

compact set K ⊂ Y with u(t) ≤ ε u′(t) for every t /∈ K. We then obtain

Theorem 6. Let Cϕ : E → CU(Y ) be an e.c.o. Assume that for every

u ∈ U and every bounded subset H of Cϕ(E), uH vanishes at infinity. Then Cϕ

is compact provided it is strongly bounded and equicontinuous. The converse is

true whenever Y is a UR-space.

Proof: Let v ∈ V be such that H := Cϕ(Bv) is either bounded and equicon-

tinuous. Then the pointwise closure H
τs of H also is either contained in CU(Y ),

(τs-) bounded and equicontinuous. By Ascoli’s theorem H
τs is compact in the

compact open topology τc. To conclude, it is sufficient to show that τV is coarser

that τc on H
τs . Let then f0 ∈ H

τs , u ∈ U and ε > 0 be given. By our as-

sumption, there exists a compact K ⊂ Y out of which u|f | < ε/2 for every

f ∈ H
τs . Set M := sup{u(t), t ∈ K} and ε′ := min(ε/M, ε/2). Then the set

{f ∈ H
τs : |f(t)− f0(t)| ≤ ε′, t ∈ K} is a τc-neighbourhood of f0 in H

τs . Since

it is contained in {f ∈ H
τs : |f − f0|u ≤ ε}, the result follows. The converse is a

consequence of Lemma 2.3 of [10].
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