PORTUGALIAE MATHEMATICA Vol. 59, No. 3, pp. 315-323 (2002) |
|
Stability and Continuous Dependence of Solutions of One-Phase Stefan Problems for Semilinear Parabolic EquationsPhilippe SoupletDépartement de Mathématiques, Université de Picardie,INSSET, 02109 St-Quentin -- FRANCE and Laboratoire de Mathémati\-ques Appliquées, UMR CNRS 7641, Université de Versailles, 45 avenue des Etats-Unis, 78035 Versailles -- FRANCE E-mail: souplet@math.uvsq.fr Abstract: We consider a one-phase Stefan problem for the heat equation with a superlinear reaction term and we prove the stability of fastly decaying global solutions. Also, we establish a result of continuous dependence of local solutions up to the maximum existence time, needed for the stability proof. Keywords: nonlinear reaction-diffusion equation; free boundary condition; Stefan problem; global existence; stability; continuous dependence. Classification (MSC2000): 35K55, 35R35, 80A22, 35B35, 35B40. Full text of the article:
Electronic version published on: 9 Feb 2006. This page was last modified: 27 Nov 2007.
© 2002 Sociedade Portuguesa de Matemática
|