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ON THE KÄHLER ANGLES OF SUBMANIFOLDS
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To the memory of Giorgio Valli

Abstract: We prove that under certain conditions on the mean curvature and

on the Kähler angles, a compact submanifold M of real dimension 2n, immersed into

a Kähler–Einstein manifold N of complex dimension 2n, must be either a complex or

a Lagrangian submanifold of N , or have constant Kähler angle, depending on n = 1,

n = 2, or n ≥ 3, and the sign of the scalar curvature of N . These results generalize

to non-minimal submanifolds some known results for minimal submanifolds. Our main

tool is a Bochner-type technique involving a formula on the Laplacian of a symmetric

function on the Kähler angles and the Weitzenböck formula for the Kähler form of N

restricted to M .

1 – Introduction

Let (N, J, g) be a Kähler–Einstein manifold of complex dimension 2n, complex

structure J , Riemannian metric g, and F : M 2n→ N2n be an immersed subman-

ifold M of real dimension 2n. We denote by ω(X,Y ) = g(JX, Y ) the Kähler

form and by R the scalar curvature of N , that is, the Ricci tensor of N is given

by Ricci =Rg. The cosine of the Kähler angles {θα}1≤α≤n are the eigenvalues

of F ∗ω. If the eigenvalues are all equal to 0 (resp. 1), F is a Lagrangian (resp.

complex) submanifold. A natural question is to ask if N allows submanifolds

with arbitrary given Kähler angles and mean curvature. An answer is that, the

Kähler angles and the second fundamental form of F , and the Ricci tensor of N

are interrelated. Conditions on some of these geometric objects have implications
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for the other ones. There are obstructions to the existence of minimal Lagrangian

submanifolds in a general Kähler manifold, but these obstructions do not occur

in a Kähler–Einstein manifold, where such submanifolds exist with abundance

([Br]). This is the reason we choose Kähler–Einstein manifolds as ambient spaces.

An example how the sign of the scalar curvature of N determines the Kähler an-

gles is the fact that if F is a totally geodesic immersion and N is not Ricci-flat,

then either F has a complex direction, or F is Lagrangian ([S-V,1]). A relation

among the θα, ∇dF , and R can be described through a formula on the Lapla-

cian of a locally Lipschitz map κ, symmetric on the Kähler angles of F , where

the Ricci tensor of N and some components of the second fundamental form of

F appear. Such kind of formula was used for minimal immersions in [W,1] for

n = 1, and in [S-V,1,2] for n ≥ 2.

A natural condition for n ≥ 2 is to impose equality on the Kähler angles.

Products of surfaces immersed with the same constant Kähler angle θ into Kähler–

Einstein surfaces of the same scalar curvature R, give submanifolds immersed

with constant equal Kähler angle θ into a Kähler–Einstein manifold of scalar cur-

vature R. The slant submanifolds introduced and exhaustively studied by B-Y

Chen (see e.g. [Che,1,2], [Che-M], [Che-T,1,2]) are submanifolds with constant

and equal Kähler angles. Examples are given in complex spaces form, some of

them via Hopf’s fibration [Che-T,1,2]. A minimal 4-dimensional submanifold of

a Calabi–Yau manifold of complex dimension 4, calibrated by a Cayley calibra-

tion, also called Cayley submanifold, is just the same as a minimal submanifold

with equal Kähler angles ([G]). Existence theory of such submanifolds in C4, with

given inicial boundary data, is guaranteed by the theory of calibrations of Harvey

and Lawson [H-L].

Submanifolds with equal Kähler angles have a role in 4 and 8 dimensional

gauge theories. For example, each of such Cayley submanifolds in C4 carries a

21-dimensional family of (anti)-self-dual SU(2) Yang–Mills fields [H-L]. Recen-

tely, Tian [T] proved that blow-up loci of complex anti-self-dual instantons on

Calabi–Yau 4-folds are Cayley cycles, which are, except for a set of 4-dimensional

Hausdorff measure zero, a countable union of C1 4-dimensional Cayley subman-

ifolds.

If N is an hyper-Kähler manifold of complex dimension 4 and hyper-Kähler

structure (Jx)x∈S2 , any submanifold of real dimension 4 that is Jx-complex for

some x ∈ S2, is a minimal submanifold with equal Kähler angles of each (N, Jy, g)

([S-V,2]), and the common Kähler angle is given by cos θ(p) = ‖(JyX)>‖, where
X is any unit vector of TpM . A proof of this assertion is simply to remark that, if

{X, JxX,Y, JxY } is an o.n. basis of TpM , then the matrix of the Kähler form ωy
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w.r.t. Jy, restricted to this basis, is just a multiple of a matrix in R4 that repre-

sents an orthogonal complex structure of R4, i.e. of the type aI+ bJ + cK, where

I, J,K defines the usual hyper-Kähler structure of R4, and a2 + b2 + c2 = 1. The

square of this multiple is given by 〈x, y〉2+〈JyX,Y 〉2+〈Jx×yX,Y 〉2 = ‖(JyX)>‖2.
This example suggests us a way to build examples of (local) submanifolds

with equal Kähler angles. Let (N, I, g) be a Kähler manifold of complex di-

mension 4, and U ⊂ N an open set where an orthornormal frame of the form

{X1, IX1, X2, IX2, Y1, IY1, Y2, IY2} is defined. If for each p ∈ U , we identify TpN

with R4×R4, through this frame, we are defining a family of local g-orthogonal

almost complex structures Jx = ai× i + bj× j + ck× k, for x = (a, b, c) ∈ S2,

where i, j, k denotes de canonical hyper-Kähler structure of R4. Then any almost

Jx-complex 4-dimensional submanifold M is a submanifold with equal Kähler

angles of the Kähler manifold (N, I, g). It may not be minimal, because Jx may

not be a Kähler structure, or not even integrable.

Such a condition on the Kähler angles, turns out to be more restrictive for

submanifolds of non Ricci-flat manifolds, or if M is closed, that is, compact and

orientable. A combination of the formula of 4κ for minimal immersions with

equal Kähler angles, with the Weitzenböck formula for F ∗ω, lead us in [S-V,2] to

the conclusion that the Kähler angle must be constant, and in general it is either

0 or π
2 . Namely, we have:

Theorem 1.1. Let F : M2n → N2n be a minimal immersion with equal

Kähler angles.

(i) ([W,1]) If n = 1, M is closed, R < 0, and F has no complex points,

then F is Lagrangian.

(ii) ([S-V,2], [G]) If n = 2 and R 6= 0, then F is either a complex or a

Lagrangian submanifold.

(iii) ([S-V,2]) If n ≥ 3, M is closed, and R < 0, then F is either a complex

or a Lagrangian submanifold.

(iv) ([S-V,2]) If n ≥ 3, M is closed, R = 0, then the common Kähler angle

must be constant.

If n = 2 and R = 0 we cannot conclude the Kähler angle is constant.

It is easy to find examples of minimal immersions with constant and non-constant

equal Kähler angle, for the case of M not compact and N the Euclidean space.

Namely, the most simple family of submanifolds with constant equal Kähler
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angle of C2n can be given by the vector subspaces defined by a linear map

F : R2n→ C2n ≡ (R2n×R2n, J0), F (X) = (X, aJωX), where a is any real num-

ber and Jω is a g0-orthogonal complex structure of R2n, and where g0 is the

Euclidean metric and J0(X,Y ) = (−Y,X). These are totally geodesic sub-

manifolds with constant equal Kähler angle cos θ = 2|a|
1+a2 , and F ∗ω(X,Y ) =

cos θ F ∗g0 (±JωX,Y ), with F ∗g0 a Jω-hermitian euclidean metric. In ([D-S])

we have the following example of non-constant Kähler angle well away from 0.

The graph of the anti-i-holomorphic map f : R4 → R4 given by f(x, y, z, w) =

(u, v,−u,−v), where

u(x, y, z, w) = φ(x+ z) ξ′(y + w) ,

v(x, y, z, w) = −φ′(x+ z) ξ(y + w) ,

φ(t) = sin t , ξ(t) = sinh t ,

defines a complete minimal submanifold of C4 with equal Kähler angles satisfying

cos θ =
2
√

cos2(x+ z) + sinh2(y + w)

1 + 4
(

cos2(x+ z) + sinh2(y + w)
) .

This graph has no complex points, for 0 ≤ cos θ ≤ 1
2
, and the set of Lagrangian

points is a infinite discrete union of disjoint 2-planes,

L =
⋃

−∞≤k≤+∞

spanR

{

(1, 0,−1, 0), (0, 1, 0,−1)
}

+
(

0, 0, ( 1
2
+ k)π, 0

)

.

In this paper we present a formula for 4κ, but now not assuming minimality

of F , obtaining some extra terms involving the mean curvature H of F . We will

see that the above conclusions still hold for F not minimal, but under certain

weaker condition on the mean curvature of F . These conclusions show how rigid

Kähler–Einstein manifolds are with respect to the Kähler angles and the mean

curvature of a submanifold, leading to some non-existence of certain types of

submanifolds, depending on the sign of the scalar curvature R of N and on the

dimension n.

We summarize the main results of this paper:

Theorem 1.2. Assume n = 2, and M is closed, N is non Ricci-flat, and

F : M → N is an immersion with equal Kähler angles, θα = θ ∀α. If

RF ∗ω
(

(JH)>,∇ sin2 θ
)

≤ 0(1.1)
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then F is either a complex or a Lagrangian submanifold. This is the case when

F has constant Kähler angle.

Corollary 1.1. Let n = 2, R < 0, and F : M→N be a closed submanifold

with parallel mean curvature and equal Kähler angles. If ‖H‖2 ≥ −R
8 sin2 θ,

then F is either a complex or a Lagrangian submanifold.

Theorem 1.3. Assume M is closed, n ≥ 3, and F : M→N is an immersion

with equal Kähler angles.

(A) If R < 0, and if δF ∗ω((JH)>) ≥ 0, then F is either complex or La-

grangian.

(B) If R = 0, and if δF ∗ω((JH)>) ≥ 0, then the Kähler angle is constant.

(C) If F has constant Kähler angle and R 6= 0, then F is either complex or

Lagrangian.

In case n = 1 we obtain:

Proposition 1.1. If M is a closed surface and N is a non Ricci-flat

Kähler–Einstein surface, then any immersion F : M→N either has complex or

Lagrangian points. In particular, if F has constant Kähler angle, then F is either

a complex or a Lagrangian submanifold.

This generalizes a result in [M-U], for compact surfaces immersed with con-

stant Kähler angle (and so orientable, if not Lagrangian) into CP2.

For M not necessarily compact we have the following proposition:

Proposition 1.2. If F : M→N is an immersion with constant equal Kähler

angle θ and with parallel mean curvature, that is, ∇⊥H = 0, then:

(1) If R = 0, F is either Lagrangian or minimal.

(2) If R > 0, F is either Lagrangian or complex.

(3) If R < 0, F is either Lagrangian, or ‖H‖2 = − sin2 θ
4n R.

(4) If H = 0, then R = 0 or F is either Lagrangian or complex.

Note that (4) of the above proposition is an improvement of Theorem 1.3

of [S-V,2], for, compactness is not required now. We also observe that from

Corollary 1.1, if n = 2 and M were closed, that later case of (3) implies as well

F to be complex or Lagrangian. Compactness of M is a much more restrictive
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condition. In [K-Z] it is shown that, if n = 1 and N is a complex space form

of constant holomorphic sectional curvature 4ρ and M is a surface of non-zero

parallel mean curvature and constant Kähler angle, then either F is Lagrangian

and M is flat, or sin θ=−
√

8
9 , ρ=−3

4‖H‖2 and M has constant Gauss curvature

K=−‖H‖22 . These values of θ and ρ (R = 6ρ) are according to our relation in (3)

of Proposition 1.2. In [Che,2] and [Che-T,2] it is shown explicitly all possible

examples of such (non-compact) surfaces of the 2-dimensional complex hyperbolic

spaces. In [K-Z] it is also shown all examples of surfaces immersed into CH2 with

non-zero parallel mean curvature and non-constant Kähler angle. In case (1), if

F is not minimal, then (JH)> defines a global nonzero parallel vector field on M

(see Proposition 3.6 of section 3).

Theorem 1.4. Let F be a closed surface immersed with parallel mean

curvature into a non Ricci-flat Kähler–Einstein surface. If F has no complex

points and if F ∗ω
VolM

≥ 0 (or ≤ 0) on all M , then F is Lagrangian. If F has no

Lagrangian points, then F is minimal.

2 – Some formulas on the Kähler angles

On M we take the induced metric gM =F ∗g, that we also denote by 〈, 〉.
We denote by ∇both Levi–Civita connections of M and N , and by ∇XdF (Y ) =

∇dF (X,Y ) the second fundamental form of F , a symmetric tensor on M with

values on the normal bundle NM = (dF (TM))⊥ of F . The mean curvature of

F is given by H = 1
2n trace∇dF . At each point p ∈ M , let {Xα, Yα}1≤α≤n be a

gM -orthonormal basis of eigenvectors of F ∗ω. On that basis, F ∗ω is a 2n×2n
block matrix

F ∗ω =
⊕

0≤α≤n

[

0 − cos θα
cos θα 0

]

,

where cos θ1 ≥ cos θ2 ≥ . . . ≥ cos θn ≥ 0, are the corresponding eigenvalues

ordered in decreasing way. The angles {θα}1≤α≤n are the Kähler angles of F

at p. We identify the two form F ∗ω with the skew-symmetric operator of TpM ,

(F ∗ω)] : TpM → TpM , using the musical isomorphism with respect to gM ,

that is, gM ((F ∗ω)](X), Y ) = F ∗ω(X,Y ), and we take its polar decomposition,

(F ∗ω)] = |(F ∗ω)]| Jω, where Jω : TpM → TpM is a partial isometry with the

same kernel Kω as of F ∗w, and where |(F ∗ω)]| =
√

−(F ∗ω)]2. On K⊥ω , the

orthogonal complement of Kω in TpM , Jω : K⊥ω → K⊥ω defines a gM -orthogonal
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complex structure. On a open set without complex directions, that is cos θα < 1

∀α, we consider the locally Lipschitz map

κ =
∑

1≤α≤n

log

(

1 + cos θα
1− cos θα

)

.

For each 0 ≤ k ≤ n, this map is smooth on the largest open set Ω0
2k, where

F ∗ω has constant rank 2k. On a neighbourhood of a point p0 ∈ Ω0
2k, we may

take {Xα, Yα}1≤α≤n a smooth local gM -orthonormal frame ofM , with Yα = JωXα

for α ≤ k, and where {Xα, Yα}α≥k+1 is any gM -orthonormal frame of Kω.

Moreover, we may assume that this frame diagonalizes F ∗ω at p0. Following

the computations of the appendix in [S-V,2], without requiring now minimal-

ity, we see that the components of the mean curvature of F appear three times

in the formula for 4κ. Namely, when we compute (5.9) and (5.10) of [S-V,2],

we get respectively, the extra terms ig(n2∇µH, JdF (µ̄)) and −ig(n2 ∇̄µH, JdF (µ)),

and when we sum
∑

β −RM (µ, β̄, β, µ̄)−RM (µ̄, β̄, β, µ) we obtain the extra

term ng(H,∇µdF (µ̄)). Then, we have to add in the final expression for
∑

β Hess g̃µµ̄(β, β̄) of Lemma 5.4 of [S-V,2] the expression
∑

β ig(
n
2∇µH, JdF (µ̄))−

ig(n2 ∇̄µH, JdF (µ)) + cos θµ ng(H,∇µdF (µ̄)). Introducing these extra terms in

the term
∑

β,µ
32

sin2 θµ
Hess g̃µµ̄(β, β̄) of (5.7) of [S-V,2], we obtain our more gen-

eral formula for 4κ:

Proposition 2.1. For any immersion F , at a point p0 on a open set where

F ∗ω has constant rank 2k and no complex directions, we have

4κ = 4 i
∑

β

RicciN (JdF (β), dF (β̄))

+
∑

β,µ

32

sin2 θµ
Im

(

RN
(

dF (β), dF (µ), dF (β̄), JdF (µ̄)+i cos θµdF (µ̄)
))

−
∑

β,µ,ρ

64(cos θµ+ cos θρ)

sin2 θµ sin2 θρ
Re
(

g(∇βdF (µ), JdF (ρ̄)) g(∇̄βdF (ρ), JdF (µ̄))
)

(2.1)

+
∑

β,µ,ρ

32(cos θρ−cos θµ)

sin2 θµ sin2 θρ

(

|g(∇βdF (µ), JdF (ρ))|2+|g(∇̄βdF (µ), JdF (ρ))|2
)

+
∑

β,µ,ρ

32(cos θµ+ cos θρ)

sin2 θµ

(

|〈∇βµ, ρ〉|2 + |〈∇̄βµ, ρ〉|2
)

+
∑

µ

8n

sin2 θµ

(

ig(∇µH,JdF (µ̄))− ig(∇̄µH,JdF (µ)) + 2 cos θµg(H,∇µdF (µ̄))

)

where “α” = Zα = Xα−iYα
2 and “ᾱ” = Zα.
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Projecting JH on dF (TM), we define a vector field (JH)> on M , and we

denote by ((JH)>)[ the corresponding 1-form, ((JH)>)[(X) = gM ((JH)>, X) =

g(JH, dF (X)). If F is a Lagrangian immersion, the above formula on 4κ leads

to a well-known result:

Corollary 2.1. ([W,2]) If F is a Lagrangian immersion, then ((JH)>)[ is

a closed 1-form on M .

A proof of this corollary will be given in section 3. The formula (2.1) is

considerably simplified when F is an immersion with equal Kähler angles.

Now we recall the Weitzenböck formula for F ∗ω, that we used in [S-V,2]

1

2
4‖F ∗ω‖2 = −〈4F ∗ω, F ∗ω〉+ ‖∇F ∗ω‖2 + 〈SF ∗ω, F ∗ω〉 ,(2.2)

where 〈, 〉 denotes the Hilbert–Schmidt inner product for 2-forms, and S is the

Ricci operator of
∧2 T ∗M , and 4 = dδ + δd is the the Laplacian operator on

forms. F ∗ω is a closed 2-form. If it is also co-closed, that is δF ∗ω = 0, then it is

harmonic. If M is compact,
∫

M
〈4F ∗ω, F ∗ω〉VolM =

∫

M
‖δF ∗ω‖2 VolM .(2.3)

We will use this formula when F has equal Kähler angles.

3 – Immersions with equal Kähler angles

In this section we recall some formulas for immersions with equal Kähler

angles. F is said to have equal Kähler angles, if all the angles are equal, θα= θ ∀α.
In this case, (F ∗ω)] = cos θJω, and Jω is a smooth almost complex structure away

from the set of Lagrangian points L = {p ∈M : cos θ(p) = 0}. Let L0 denote the

largest open set of L, C = {p ∈M : cos θ(p) = 1} the set of complex points, and

C0 its largest open set. Recall that cos2 θ is smooth on all M , while cos θ is only

locally Lipschitz on M , but smooth on L0 ∪ (M∼L). For immersions with equal

Kähler angles, any local frame of the form {Xα, Yα = JωXα}1≤α≤n diagonalizes

F ∗ω on the whole set where it is defined. We use the letters α, β, µ, . . . to range

on the set {1, . . . , n} and the letters j, k, . . . to range on {1, . . . , 2n}. As in the

previous section, we denote by “α” = Zα = Xα−iYα
2 and “ᾱ” = Zα = Xα+iYα

2 ,

defining local frames on the complexifyied tangent space of M .

On tensors and forms we use the Hilbert–Schmidt inner product. We denote

by δ the divergence operator on (vector valued) forms, and by divM the divergence
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operator on vector fields over M . The (1, 1)-part of ∇dF with respect to Jω,

is given by (∇dF )(1,1)(X,Y ) = 1
2
(∇dF (X,Y ) + ∇dF (JωX, JωY )). This tensor

is defined away from Lagrangian points, and it vanish on C0, for, on that set,

F is a complex submanifold of N , and Jω is the induced complex structure.

Proposition 3.1. ([S-V,2]) On (M∼L) ∪ L0,

‖F ∗ω‖2 = n cos2 θ

‖∇F ∗ω‖2 = n‖∇ cos θ‖2 + 1

2
cos2 θ‖∇Jω‖2

δ(F ∗ω)] = (δF ∗ω)] = (n− 2) Jω(∇ cos θ)

‖δF ∗ω‖2 = (n− 2)2 ‖∇ cos θ‖2

cos θδJω = (n− 1) Jω(∇ cos θ)

and on (M∼ (L ∪ C)) ∪ L0 ∪ C0,

(1− n)∇ sin2 θ =

= 16 cos θ Re

(

i
∑

β,µ

(

g(∇̄µdF (µ), JdF (β))− g(∇̄µdF (β), JdF (µ))
)

β̄

)

.

In particular, for n 6= 2, Jω(∇ cos θ), ‖∇ cos θ‖2, cos2 θ‖∇Jω‖2, and cos θ δJω can

be smoothly extended to all M . Furthermore, for n ≥ 2, there is a constant

C > 0 such that on M , ‖∇ sin2 θ‖2 ≤ C cos2 θ sin2 θ ‖(∇dF )(1,1)‖2.

The estimate on ‖∇ sin2 θ‖2 given above follows from the expression on

(1 − n)∇ sin2 θ and the following explanation. From Schwarz inequality,

|g(∇XdF (Y ), JdF (Z))| = |g(∇XdF (Y ),Φ(Z))| ≤ ‖∇XdF (Y )‖ ‖Φ(Z)‖, where

Φ(Z) = (JdF (Z))⊥, and ( )⊥ denotes the orthogonal projection onto the nor-

mal bundle. But (cf. [S-V,2]) JdF (Z) = Φ(Z) + dF ((F ∗ω)](Z)). An elementary

computation shows that

‖Φ(Z)‖2 = g
(

JdF (Z)−dF ((F ∗ω)](Z)), JdF (Z)−dF ((F ∗ω)](Z))
)

= sin2 θ ‖Z‖2 .

Obviously the formula on ∇ sin2 θ as well the estimate on ‖∇ sin2 θ‖2, are still

valid on all complex and Lagrangian points, since those points are critical points

for sin2 θ, and at complex points JdF (TM) ⊂ dF (TM). Also

Corollary 3.1. If n = 2, F ∗ω is an harmonic 2-form. If n 6= 2, F ∗ω is

co-closed iff θ is constant. For any n ≥ 2, if (M∼L, Jω, gM ) is Kähler, then θ is

constant and F ∗ω is parallel.
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Following chapter 4 of [S-V,2] and using the new expression for 4κ of

Proposition 2.1, with the extra terms involving the mean curvature H, and noting

that now both (4.4) and (4.7) + (4.5) of [S-V,2] have extra terms involving H,

we obtain:

Proposition 3.2. Away from complex and Lagrangian points,

4κ =

= cos θ

(

−2nR+
32

sin2 θ

∑

β,µ

RM (β, µ, β̄, µ̄) +
1

sin2 θ
‖∇Jω‖2+8(n−1)

sin4 θ
‖∇ cos θ‖2

)

− 16n

sin4 θ
cos θ

∑

β

d cos θ
(

ig(H, JdF (β))β̄ − ig(H, JdF (β̄))β
)

+
8n

sin2 θ

∑

µ

(

ig(∇µH, JdF (µ̄))− ig(∇̄µH, JdF (µ))
)

.

Let us denote by ∇⊥ the usual connection in the normal bundle, and denote

by (JH)> the vector field of M given by

gM ((JH)>, X) = g(JH, dF (X)) ∀X ∈ TM .

Lemma 3.1. ∀X,Y ∈ TpM ,

(i) g(∇XH, JdF (Y )) = −〈∇X(JH)>, Y 〉 − g(H, J∇XdF (Y )) (on M)

= −g(H,∇XdF ((F ∗ω)](Y ))) + g(∇⊥
X H, JdF (Y )) (on M)

(ii) ( 1
2
Jω((JH)>) =

∑

β

ig(H, JdF (β))β̄ − ig(H, JdF (β̄))β (on M∼L)

(iii)
∑

µ

2 ig(∇µH,JdF (µ̄))− 2 ig(∇̄µH,JdF (µ)) =

=
∑

µ

4 Im〈∇µ(JH)>, µ̄〉 = −
∑

µ

2 id((JH)>)[(µ, µ̄) (on M)

= −2n cos θ‖H‖2 − 4
∑

µ

Im
(

g(∇⊥
µ H, JdF (µ̄))

)

(on M)

= − divM
(

Jω((JH)>)
)

+ 〈(JH)>, δJω〉 (on M∼L).

(iv) divM ((JH)>) =
∑

µ

−4Re
(

g(∇⊥
µ H, JdF (µ̄))

)

(on M).
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Proof: Assume that ∇Y (p) = 0. Then we have at the point p

g(∇XH, JdF (Y )) = d
(

g(H, JdF (Y ))
)

(X)− g(H,∇X(JdF (Y )))

= −d〈(JH)>, Y 〉(X)− g(H, J∇XdF (Y ))

= −〈∇X(JH)>, Y 〉 − g(H, J∇XdF (Y )) .

On the other hand, from JdF (Y ) = dF ((F ∗ω)](Y )) + (JdF (Y ))⊥, we get the

second equality of (i). For p ∈M∼L, since Jωβ = iβ, and Jωβ̄ = −iβ̄,
∑

β

ig(H, JdF (β))β̄ − ig(H, JdF (β̄))β =

=
∑

β

g(H, JdF (Jωβ))β̄ + g(H, JdF (Jωβ̄))β

=
∑

β

−g(JH, dF (Jωβ))β̄ − g(JH, dF (Jωβ̄))β

=
∑

β

−〈(JH)>, Jωβ〉β̄ − 〈(JH)>, Jωβ̄〉β

=
∑

β

〈Jω((JH)>), β〉β̄ + 〈Jω((JH)>), β̄〉β

= 1
2
Jω((JH)>) ,

and (ii) is proved. From the first equality of (i),

∑

µ

ig(∇µH, JdF (µ̄))− ig(∇̄µH, JdF (µ)) =

=
∑

µ

−i〈∇µ(JH)>, µ̄〉+ i〈∇̄µ(JH)>, µ〉 =
∑

µ

2 Im
(

〈∇µ(JH)>, µ̄〉
)

=
∑

µ

−id((JH)>)[(µ, µ̄) .

On the other hand, from second equality of (i)

∑

µ

g(∇µH, JdF (µ̄)) =
∑

µ

−g(H,∇µdF (cos θJω(µ̄))) + g(∇⊥
µ H, JdF (µ̄))

=
ni

2
cos θ g(H,H) +

∑

µ

g(∇⊥
µ H, JdF (µ̄)) .

Hence

∑

µ

ig(∇µH, JdF (µ̄))− ig(∇̄µH, JdF (µ)) =

= −n cos θ‖H‖2 −
∑

µ

2 Im
(

g(∇⊥
µ H, JdF (µ̄))

)

.
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Similarly, from divM ((JH)>) =
∑

µ 2〈∇µ(JH)>, µ̄〉+ 2〈∇̄µ(JH)>, µ〉 and (i)

we get (iv).

Finally, using the symmetry of ∇dF and that 〈∇ZJω(X), Y 〉 = −〈∇ZJω(Y ), X〉
(cf. [S-V,2])
∑

µ

ig(∇µH, JdF (µ̄))− ig(∇̄µH, JdF (µ)) =

=
∑

µ

〈∇µ(JH)>, Jω(µ̄)〉+ 〈∇̄µ(JH)>, Jω(µ)〉

=
∑

µ

−〈Jω(∇µ(JH)>), µ̄〉 − 〈Jω(∇̄µ(JH)>), µ〉

=
∑

µ

−
〈

∇µ(Jω(JH)>)−∇µJω((JH)>), µ̄
〉

−
〈

∇̄µ(Jω(JH)>)−∇̄µJω((JH)>), µ
〉

= − 1
2
divM (Jω(JH)>) +

∑

µ

〈∇µJω((JH)>), µ̄〉+ 〈∇̄µJω((JH)>), µ〉

= − 1
2
divM (Jω(JH)>) +

∑

µ

−〈(JH)>,∇µJω(µ̄)〉 − 〈(JH)>, ∇̄µJω(µ)〉

= − 1
2
div(Jω(JH)>) + 〈(JH)>, 1

2
δJω〉 .

Using div(fX) = f div(X) + df(X), with f= 1
sin2 θ

, and X = Jω((JH)>),

and that 2 cos θd cos θ = d cos2 θ = −d sin2 θ, we obtain applying Lemma 3.1 to

Proposition 3.2

Proposition 3.3. Away from complex and Lagrangian points

4κ =

= cos θ

(

−2nR+
32

sin2 θ

∑

β,µ

RM (β, µ, β̄, µ̄) +
1

sin2 θ
‖∇Jω‖2 + 8(n−1)

sin4 θ
‖∇ cos θ‖2

)

− divM

(

Jω

(

4n(JH)>

sin2 θ

)

)

+ gM

(

δJω,
4n(JH)>

sin2 θ

)

.

If n = 1 then (M,Jω, g) is a Kähler manifold (away from Lagrangian points),

and so, δJω = ∇Jω = 0. Obviously the curvature term on M in the expression of

4κ vanishes. Then, 4κ reduces to:

Corollary 3.2. If n = 1, away from complex and Lagrangian points

4κ = −2R cos θ − 4 divM

(

Jω

(

(JH)>

sin2 θ

)

)

.(3.1)



ON THE KÄHLER ANGLES OF SUBMANIFOLDS 227

Now we compute 4 cos2 θ from 4κ of Proposition 3.3 and applying Proposi-

tion 3.1, following step by step the proof of Proposition 4.2 of [S-V, 2]. Recall

that, if F has equal Kähler angles at p, then, at p (cf. [S-V,2])

〈SF ∗ω, F ∗ω〉 = 16 cos2 θ
∑

ρ,µ

RM (ρ, µ, ρ̄, µ̄) ,

where SF ∗ω is the Ricci operator applied to F ∗ω, appearing in the Weitzenböck

formula (2.2). If (M,Jω, gM ) is Kähler in a neighbourhood of p, then

〈SF ∗ω, F ∗ω〉 = 0 at p.

Proposition 3.4. Away from complex and Lagrangian points:

n4 cos2 θ = − 2n sin2 θ cos2 θR + 2 〈SF ∗ω, F ∗ω〉 + 2 ‖∇F ∗ω‖2

+ 4(n−2) ‖∇ | sin θ| ‖2 − 4n divgM ((F ∗ω)]((JH)>))(3.2)

−
4n
(

2 + (n−4) sin2 θ
)

sin2 θ
〈∇ cos θ, Jω((JH)>)〉 .

The last term (3.2) can be written, for n = 2 as

(3.2) = 8F ∗ω((JH)>,∇ log sin2 θ)(3.3)

and for n ≥ 3,

(3.2) =
4n
(

2 + (n−4) sin2 θ
)

sin2 θ(n− 2)
δF ∗ω((JH)>) .(3.4)

The expressions in (3.3) and (3.4) come from Proposition 3.1 and the fact

that (F ∗ω)] = cos θJω.

Remark 1. Let ω⊥ = ω|NM be the restriction of the Kähler form ω to the

normal vector bundle NM , and ω⊥ = |ω⊥|J⊥ be its polar decomposition, when

we identify it with a skew-symmetric operator on the normal bundle, using the

musical isomorphism. Let cosσ1 ≥ cosσ2 ≥ . . . ≥ cosσn ≥ 0 be the eigenvalues

of ω⊥. The σα are the Kähler angles of NM . If {Uα, Vα} is an orthonormal basis

of eigenvectors of ω⊥ at p, then ω⊥ =
∑

β cosσβ U
β
∗ ∧ V β

∗ . For each p, CD(F ) =
⊕

α: cos θα=1 span{Xα, Yα} defines the vector subspace of complex directions, or

equivalently, the largest J-complex vector subspace contained in TpM . Similarly

we define CD(NM), the largest J-complex subspace of NM at p. Then

F ∗ω = ω|CD(F ) +
∑

cos θα<1

cos θαX
α
∗ ∧ Y α

∗ ,

ω⊥ = ω|CD(NM) +
∑

cosσα<1

cosσα U
α
∗ ∧ V α

∗ .
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We define the following morphisms between vector bundles of the same dimension

2n, where ( )> and ( )⊥ denote the orthogonal projection onto TM and NM

respectively,

Φ: TM → NM Ξ: NM → TM

X → (JdF (X))⊥ U → (JU)> .

Then Φ−1(0) = CD(F ), Ξ−1(0) = CD(NM). Note that ∀X,Y ∈ TM and

∀U, V ∈ NM

(JdF (X))> = dF ((F ∗ω)](X)) (JU)⊥ = ω⊥(U) ,

Φ(X) = JdF (X)− dF ((F ∗ω)](X)) Ξ(U) = JU − ω⊥(U) .

A simple computation shows that, if cos θα 6= 1, we may take Uα = Φ( Yα
sin θα

),

and Vα= Φ( Xα

sin θα
). Moreover, CD(NM) = CD(F )⊥ ∩ NM and dimCD(F ) =

dimCD(NM). Then ω⊥ and F ∗ω have the same eigenvalues, that is NM

and F have the same Kähler angles. We also define LD(F ) = KerF ∗ω = Kω,

LD(NM) = Kerω⊥ the vector subspaces of Lagrangian directions of F and NM

respectively. Then we have J(LD(F )) = LD(NM). Furthermore, J⊥ ◦Φ =

−Φ◦Jω, Jω◦Ξ = −Ξ◦J⊥, −Ξ◦Φ = IdTM+((F ∗ω)])2, −Φ◦Ξ = IdNM+(ω⊥)2.

Considering the Hilbert–Schmidt norms, ‖Φ‖2 = ‖Ξ‖2 = 2
∑

α sin
2 θα. If F has

equal Kähler angles, −Ξ ◦ Φ = sin2 θ IdTM , −Φ ◦ Ξ = sin2 θ IdNM , and

g(Φ(X),Φ(Y )) = sin2 θ〈X,Y 〉 〈Ξ(U),Ξ(V )〉 = sin2 θ g(U, V ) .

If F has equal Kähler angles, since NM and F have the same Kähler angles, we

see that, at a point p ∈ M such that H 6= 0, (JH)>= 0 iff p is a complex point

of F . We also note that, from lemma 3.1 (iv), if F has parallel mean curvature,

then (JH)> is divergence-free, or equivalentely, ((JH)>)[ is co-closed.

In [S-V,2] we have defined non-negative isotropic scalar curvature, as a less

restrictive condition than non-negative isotropic sectional curvature of [Mi-Mo].

If such curvature condition on M holds, then
∑

ρ,µR
M (ρ, µ, ρ̄, µ̄) ≥ 0, where

{ρ, ρ̄}1≤ρ≤n is the complex basis of T c
pM defined by a basis of eigenvectors of

F ∗ω. Hence, if F has equal Kähler angles 〈SF ∗ω, F ∗ω〉 ≥ 0. A simple application

of the Weitzenböck formula (2.2) shows in next proposition, that such curvature

condition on M , implies the angle must be constant. No minimality is required.

Proposition 3.5. ([S-V,2]) Let F be a non-Lagrangian immersion with

equal Kähler angles of a compact orientable M with non-negative isotropic scalar

curvature into a Kähler manifold N . If n = 2, 3 or 4, then θ is constant and
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(M,Jω, gM ) is a Kähler manifold. For any n ≥ 1 and θ constant, F ∗ω is parallel,

that is, (M,Jω, gM ) is a Kähler manifold.

Finally, before we prove Corollary 2.1, we state a more general proposition.

Let F : M→N be an immersion with equal Kähler angles, and let M ′={p∈M :

H= 0} be the set of minimal points of F . On M∼ C a 1-form is defined

σ =
2n

sin2 θ
((JH)>)[ +

δF ∗ω

sin2 θ
.

Following the proof of [G], but now neither requiring n = 2 nor δF ∗ω = 0, we

obtain
σ(X) = − trace 1

sin2 θ
g(∇dF (·, X), JdF (·))

dσ(X,Y ) = RicciN (JdF (X), dF (Y )) = RF ∗ω(X,Y ) .

We note that this form σ is well known (see e.g. [Br], [Che-M], [W,2]). Now we

have:

Proposition 3.6. If n = 2, or if n ≥ 2 and θ is constant, then σ =
2n

sin2 θ
((JH)>)[ and does not vanish on M∼ (M ′ ∪ C). Moreover, if R = 0, then

dσ = 0. Thus, if θ is constant 6= 0, σ ∈ H1(M,R), and in particular, if F has

non-zero parallel mean curvature, and R = 0, then F is Lagrangian and σ is a

non-zero parallel 1-form on M .

For any immersion with constant equal Kähler angles, the following equalities

hold

R cos θ sin2 θ =
∑

β

2d((JH)>)[(Xβ , Yβ)

= −4n cos θ‖H‖2 −
∑

µ

8 Im
(

g(∇⊥
µ H, JdF (µ̄))

)

,

where {Xα, Yα} is any basis of eigenvectors of F ∗ω.

Proof of Proposition 3.6 and Corollary 2.1: We start by proving Corol-

lary 2.1. For a Lagrangian immersion, the formula on 4κ (valid on Ω0
0), reduces

to
0 = 4κ
=
∑

µ,β

32 Im

(

RN
(

dF (β), dF (µ), dF (β̄), JdF (µ̄)
)

)

−
∑

µ

16n Im
(

g(∇µH, JdF (µ̄))
)

.
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Applying Codazzi equation to the curvature term and noting that JdF (TM) is

the orthogonal complement of dF (TM), and that
∑

β ∇µ∇dF (β, β̄) = n
2 ∇⊥

µ H,

we get

0 =
∑

β,µ

Im

(

g
(

∇β∇dF (µ, β̄), JdF (µ̄)
)

)

.(3.5)

Note that, since F is Lagrangian, we can choose arbitrarily the orthonormal

frame Xα, Yα. Then we may assume they have zero covariant derivative at a

given point p. Since F is a Lagrangian immersion g(∇dF (β, µ̄), JdF (µ)) =

g(∇dF (µ̄, µ), JdF (β)) (see e.g. [S-V,2]). Taking the derivative of this equality

at the point p in the direction β̄ we obtain

g
(

∇̄β∇dF (β, µ̄), JdF (µ)
)

+ g
(

∇dF (β, µ̄), J∇dF (β̄, µ)
)

=

= g
(

∇̄β∇dF (µ̄, µ), JdF (β)
)

+ g
(

∇dF (µ̄, µ), J∇dF (β̄, β)
)

.

Taking the summation on µ, β and the imaginary part, we obtain from (3.5)

∑

β

Im
(

g(∇̄βH, JdF (β))
)

=
∑

β

Im
(

g(∇⊥
β̄ H, JdF (β))

)

= 0 .

From Lemma 3.1 we conclude,

1

2
i
∑

β

d((JH)>)[(Xβ , Yβ) = −
∑

β

d((JH)>)[(β̄, β)

=
∑

β

−2i Im gM (∇̄β(JH)>, β) = 0 .

From the arbitrarity of the orthonormal frame, we may interchange X1 by −X1,

obtaining d((JH)>)[(X1, Y1) = 0. Hence d((JH)>)[ = 0.

Now we prove Proposition 3.6. The first part is an immediate conclusion

from the expressions for σ, dσ, and the fact that, under the above assumptions,

δF ∗ω = 0 (see Corollary 3.1), besides the considerations on the zeroes of (JH)>

in the previous remark. The conclusion that F is Lagrangian and σ is parallel,

under the assumption of non-zero parallel mean curvature and R = 0, comes from

the equalities stated in the proposition, which we prove now, and from Lemma 4.1

of next section. It is obviously true if cos θ = 1, that is for complex immersions,

and it is true for cos θ = 0, as we have seen above. Now, if cos θ is constant and

different from 0 or 1, from Proposition 3.3,
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0 = 4κ = cos θ

(

−2nR+
32

sin2 θ

∑

β,µ

RM (β, µ, β̄, µ̄) +
1

sin2 θ
‖∇Jω‖2

)

− 4n

sin2 θ
divM

(

Jω((JH)>)
)

+
4n

sin2 θ
g(δJω, (JH)>) .

Since F ∗ω is harmonic (see Corollary 3.1), Weitzenböck formula (2.2) with θ

constant reduces to

16 cos2 θ
∑

β,µ

RM (β, µ, β̄, µ̄) = 〈SF ∗ω, F ∗ω〉 = −‖∇F ∗ω‖2 = −1

2
cos2 θ‖∇Jω‖2 .

Thus, from lemma 3.1

1

2
R cos θ sin2 θ = − divM

(

Jω((JH)>)
)

+ gM (δJω, (JH)>)

= −2n cos θ ‖H‖2 − 4
∑

µ

Im
(

g(∇⊥
µ H, JdF (µ̄))

)

.

4 – Proofs of the main results

Proof of Proposition 1.1: Assume C ∪ L = ∅. Then the formula in

Corollary 3.2 is valid on all M with all maps involved smooth everywhere.

By applying Stokes we get
∫

M R cos θVolM = 0, where cos θ > 0, which is impos-

sible if R 6= 0.

Proof of Proposition 1.2: Follows immediately from Proposition 3.6.

Proof of Theorem 1.4: In case n = 1, F ∗ω is a multiple of the volume

element ofM , that is F ∗ω = cos θ̃VolM . This θ̃ is the genuine definition of Kähler

angle given by Chern and Wolfson [Ch-W]. Our is just cos θ= | cos θ̃|. While cos θ̃

is smooth on all M , cos θ may not be C1 at Lagrangian points. But we see

that the formula (3.1) is also valid on M ∼ L ∪ C replacing cos θ by cos θ̃ and

the corresponding replacement of κ by κ̃, and sin2 θ by sin2 θ̃ and Jω by JM ,

the natural gM -orthogonal complex structure on M , defining a Kähler structure.

We denote this new formula by (3.1)′. Note that on M∼L, Jω= ±JM , the sign

being + or − according to the sign of cos θ̃. Hence a change of the sign of cos θ̃

will give a change of sign on κ̃ and on Jω (w.r.t. JM ). The formula (3.1)′ is in

fact also valid on L0. To see this we use the following lemma, as an immediate

consequence of Lemma 3.1 (i):
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Lemma 4.1. If F : M2n → N2n is a submanifold with parallel mean curva-

ture, then (JH)> is a parallel vector field along L, that is ∇(JH)>(p) = 0 ∀p ∈ L.

Now it follows that divM (JM ((JH)>)) = 0 on L. (In fact we do not need the

assumption of parallel mean curvature to prove this equality on L0.) Hence, the

formula (3.1)′ on 4κ̃ is valid on L0, that is, at interior Lagrangian points. If we

assume C = ∅, then (3.1)′ is valid over allM , because now κ̃, cos θ̃, JM , and sin2 θ̃

are smooth everywhere and L∼L0 is a set of Lagrangian points with no interior.

Integrating and using Stokes, 2R
∫

M cos θ̃ = 0. Hence if cos θ̃ is non-negative

or non-positive everywhere, and if R 6= 0, then F is Lagrangian. If F has no

Lagrangian points, from Lemma 3.1 (iii), since δJω = 0,

divM
(

Jω(JH)>
)

= 2 cos θ ‖H‖2

is valid on M . Integration leads to H = 0.

Proof of Theorem 1.2: If n = 2, using (3.3) in the expression of 4 cos2 θ in

Proposition 3.4, we get an expression that is smooth away from complex points,

and valid at interior Lagrangian points, and hence on all M ∼ C. Then, following
the same steps in the proofs of [S-V,2] chapter 4, combining the formulae for

4 cos2 θ of Proposition 3.4 and the Weitzenböck formula (2.2), and applying

Proposition 3.1, we get, away from complex points

sin2 θ cos2 θR = −2 divM
(

(F ∗ω)]((JH)>)
)

+ 2F ∗ω
(

(JH)>,∇ log sin2 θ
)

.(4.1)

Set P = sin2 θ cos2 θR+ 2divM ((F ∗ω)]((JH)>)). This map is defined and

smooth on all M and vanishes on C0. If R > 0 (resp. R < 0), and under the as-

sumption (1.1), we have from (4.1) that P ≤ 0 (resp. ≥ 0) on M ∼ C.
Since the remaining set C ∼ C0 is a set of empty interior, then P ≤ 0 (resp.

≥ 0) is valid on all M . In fact, from Proposition 3.1, |F ∗ω((JH)>,∇ sin2 θ)| ≤√
C cos2 θ sin2 θ ‖H‖ ‖(∇dF )(1,1)‖. Since (∇dF )(1,1) vanishes on C0, and so also on

C0, we can smoothly extend to zero F ∗ω((JH)>,∇ log sin2 θ) on C0. This we can
also get from (4.1). Moreover, such equation tells us we can smoothly extend the

last term to all complex points, giving exactly the value 2 divM ((F ∗ω)]((JH)>))

at those points. Integration of P ≤ 0 (respectively ≥ 0) and applying Stokes, we

have
∫

M
sin2 θ cos2 θRVolM ≤ 0 (resp. ≥ 0)

and conclude that F is either complex or Lagrangian.
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Proof of Corollary 1.1: Instead of using Stokes on the term

divM ((F ∗ω)]((JH)>))), to make it disapear as we did in the proof of

Theorem 1.2, we develop it into

divM
(

(F ∗ω)]((JH)>))
)

= divM
(

cos θJω((JH)>))
)

= cos θ divM
(

Jω((JH)>))
)

+ d cos θ
(

Jω((JH)>))
)

,

and use Lemma 3.1 to give, away from complex and Lagrangian points,

sin2 θ cos2 θR = −2 cos θ divM
(

Jω((JH)>)
)

− 2
〈

Jω((JH)>),∇ cos θ
〉

+ 2F ∗ω
(

(JH)>,∇ log sin2 θ
)

= −8 cos2 θ‖H‖2 + 2F ∗ω
(

(JH)>,∇ log sin2 θ
)

.

Hence, away from complex and Lagrangian points

sin4 θ cos2 θR+ 8 sin2 θ cos2 θ‖H‖2 = 2F ∗ω
(

(JH)>,∇ sin2 θ
)

.

Obviously, this equality also holds at Lagrangian and complex points, for, those

points are critical points for sin2 θ. The corollary now follows immediately from

Theorem 1.2.

Proof of Theorem 1.3: If n ≥ 3 we set

P = n4 cos2 θ + 4n divM
(

(F ∗ω)]((JH)>)
)

+ 2n sin2 θ cos2 θR

− 2‖∇F ∗ω‖2 − 2〈SF ∗ω, F ∗ω〉 .

This map is defined on all M and is smooth. From Proposition (3.4) and using

(3.4), on M∼ C

P =
4n
(

2 + (n−4) sin2 θ
)

(n−2) sin2 θ
δF ∗ω((JH)>) + 4(n−2)‖∇| sin θ|‖2 .

In (A) and (B), by assumption, P ≥ 0 on M∼ C, because for n ≥ 3,

(2 + (n−4) sin2 θ) ≥ 0. But on C0, P = 0, for (M,Jω, gM ) is a complex sub-

manifold, and so, (JH)> = 0 and 〈SF ∗ω, F ∗ω〉 = 0. Thus, P ≥ 0 on all M .

Integrating P ≥ 0 on M we obtain using Stokes, Weitzenböck formula (2.2),

and (2.3)
∫

M
2nR sin2 θ cos2 θVolM ≥

∫

M
2‖δF ∗ω‖2VolM .
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Thus, if R < 0 we conclude F is either complex or Lagrangian, and if R = 0

we conclude that δF ∗ω = 0, which implies, by Corollary 3.1, that θ is constant.

This last reasoning proves (C) as well.

Remark 2. In Theorem 1.3 we can replace the condition δF ∗ω((JH)>) ≥ 0

by a weaker condition

δF ∗ω((JH)>) ≥ − (n− 2)2

4n
(

2 + (n−4) sin2 θ
) ‖∇ cos2 θ‖2

to achieve the same conclusion. This condition is sufficient to obtain P ≥ 0

in the above proof. Then we can obtain for n ≥ 3 a corollary similar to

Corollary 1.1, by requiring

4n2 cos2 θ‖H‖2 + n sin2 θ cos2 θR− (n−2)2‖∇ cos θ‖2 ≥ −2n δF ∗ω((JH)>) .
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ON THE KÄHLER ANGLES OF SUBMANIFOLDS 235

[Mi-Mo] Micallef, M.J. and Moore, J.D. – Minimal two-spheres and the topol-
ogy of manifolds with positive curvature on totally isotropic two-planes,
Annals of Math., 127 (1988), 199–227.

[M-U] Montiel, S. and Urbano, F. – A Willmore functional for compact sur-

faces of complex projective plane, preprint arXiv:math.DG/0002155
[S-V,1] Salavessa, I.M.C. and Valli, G. – Broadly-pluriminimal submanifolds

of Kähler–Einstein manifolds, Yokohama Math. J., 48 (2001), 181–191.
[S-V,2] Salavessa, I.M.C. and Valli, G. – Minimal submanifolds of Kähler–

Einstein manifolds with equal Kähler angles, Pacific J. Math., 205(1) (2002),
197–235.

[T] Tian, G. – Gauge theory and calibrated geometry, I, Annals of Math., 151
(2000), 193–268.

[W,1] Wolfson, J.G. – Minimal Surfaces in Kähler Surfaces and Ricci Curvature,
J. Diff. Geo., 29 (1989), 281–294.

[W,2] Wolfson, J.G. – Minimal Lagrangian Diffeomorphisms and the Monge–
Ampère Equation, J. Diff. Geom., 46 (1997), 335–373.

Isabel M. C. Salavessa,

Centro de F́ısica das Interacções Fundamentais, Instituto Superior Técnico,
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