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DECAY OF SOLUTIONS OF
SOME NONLINEAR EQUATIONS

MOHAMMED AASSILA

Abstract: For a class of scalar partial differential equations that incorporate con-
vection, diffusion, and possibly dispersion in one space and one time dimension, the
stability of solutions is investigated.

1 — Introduction

The topic of this paper is the class of equations

(1.1) Ut — QUzz + B Ugga +’Yummt+(g(U))m =0, z€eR, t>0
where subscripts denote partial derivatives. The case g(u) = “72 and v = 0 is

typical and has received much attention. If o« > 0, 8 = 0, this is known as
Burgers equation. If « = 0, 8 > 0, this is essentially the Korteweg—de-Vries
equation. The case a > 0, 8 > 0 is thus refereed to as KdV-Burgers equation;
it also has beer+11 studied extensively as has been the case of general g. The
uP

s} and v = 1, 8 = 0 where p > 1 is an integer is refereed to
as the Rosenau—Burgers equation. Indeed, if &« = 0 then we have the Rosenau

case g(u) =

equation proposed by Rosenau [8] for treating the dynamics of dense discrette
systems in order to overcome the shortenings by the KdV equation, since the
KdV equation describes unidimensional propagation of waves, but wave-wave
and wave-wall interactions cannot be treated by it. Such a model were studied
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by Park [9] and Chung and Ha [3] for the global existence of the solution to
the IBVP. Equation (1.1) with a > 0,y = 1, 3 = 0 is called the Rosenau—
Burgers equation and somehow corresponds to the KdV-Burgers equation and the
Benjamin-Bona—-Mahoney—Burgers equation, but it is given neither by Rosenau
nor by Burgers. The Rosenau equation with the dissipative term —augy,;, or say,
the Rosenau-Burgers equation arises in some natural phenomena as for example,
in bore propagation and in water waves.

In section 2 of this paper, we study the problem (1.1) with 5 =1,v=0:
(El) ut_aumm‘i'u:pmm‘i‘(g(u))xz 0, reR, t>0

where a¢ > 0 and g is a C?-class function. We give a general criterion for the
existence of traveling wave solutions of the form u(x,t) = ¢(z — ct).

In section 3, we study the asymptotic behaviour of the solution for the Rosenau—
Burgers equation (problem (1.1) with 8 =0, = 1):

(E ) t Tz rrrrt Pl t

u(z,0) =ug(r) -0 as x— +oo,

where a > 0 and p > 1 is an integer.
The problem (E2) was studied by Mei [7]. He proved that if / uo(z) dz # 0
R

then

Cc
d Moo €< ———, Vt>0.
and[u(®) <

(Bl < g

And, if [ uo(x) dz =0, then

c
1+t

C
lu@)llz < =5 and [lu()]e <

Vt>0.
T (141)3/4 ’ .

Hence, it is proved in [7] that 0 is the asymptotic state of the solution u(x,t) for
the Rosenau-Burgers equation. In this paper, we prove that the solution of the
wPt1
P+l
for the Rosenau—Burgers equation. Furthermore, we prove that the convergence

nonlinear parabolic equation u; — g, + ( ) = 0 is a better asymptotic profile
x

to this asymptotic profile is faster than the convergence to 0 proved in [7].

Before ending this section, we state and prove a general technical lemma which
will be needed later.
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Lemma 1.1.
(i) Ifa>0,b> 0, then we have for all t > 0

. (1 + t)~ min(ab) if max(a,b) > 1,
/0 (14t—s)"2(1+5)"%ds < c(1 4 )~ min(@d) Jog(2 4 ) if max(a,b) = 1,
c(l +t)l-ab if max(a,b) <1.

(ii) Let 0 <a <b withb>1. Let f: (0,00) — R be bounded on [1,00) and
integrable on (0,1). Then we have for all t > 0

/Otf(t—s) (1+t—5)"%1+5)"ds < ct™@.

Proof:

(i) We give a brief outline of the proof. Let
—b

I _/000(1+s)—a(1+yt—s) ,

where a > 0, b > 0 and max(a, b) > 1.
Assuming ¢ >0, as is no essential loss of generality, since evidently

I(—t) < I(t), we may write
et t e8]
L
0 et t

where 0 < ¢ < 1, and ¢ is held fixed. Now

/OEt < /Ogt(lJrs)_a (t(l —5))_bds = o(t™) /Ost(1+s)_“ ds

In case a > 1, this expression is o(t 7). In case a = 1, it is o(logt - t~°), which is
o(t™*) since b > 1. In case a < 1, it is

o) | etds = ot o) = ot )

since 1 4+ min(a,b) < a + b by virtue of the assumption that max(a,b) > 1, this
is in turn o(t~ ™in(ab)),

Similarly,

t t -b

/ < o(t_“)/ (11t =) ds = o(t™) o)
5 t

t €
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if b1, and so is o(t~™(%1)), In case b =1, the integral is o(t~*)o(logt) = o(t~?)
since in this case a > 1. If b > 1,

/too < o(t™) /too(l + |t — s|>_bds ,

which is o(t!7%7?). Finally, if b < 1,

/too < o(t™") /too(l + |t — SD_“ — o(t™").

(ii) We have
/Otf(t—s)(1+t—s)_a(1+s)_bds <
g/ot(1+t—s)_“(1+s)_bds —I—/Olf(s)(l+s)_“(1+t—s)_bds
< /Ot(l +t—8) " (1+s)ds + c(1+1t)°
Now,
/()t(1+t—s)_“(1+s)_bd =
_/ bt s) (14 ) ds+/ bt ) (14 s)ds .

If a,b > 1, we get

/ot(l +t—5)"%1+s)"bds < b—% (1+;)—a+ (a= 1)<1 * ;>_b < el

Ifa<1<b, weget

[asi-gmarre < (e D v ammaep (0 L)

IA
~

Ifa=1<b, we get

/t(l—i-t—s)“(l—l—s)bds < L(14-3)_1—# lo (1—1-2) (1+£>_b
0 = - 2 & 2 2

IA
Q
—~
—_
+
~
~—
|
=
u
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2 — Existence of traveling wave solutions

Consider the equation
(El) ut_auacac+ux;vx+(g(u))x: 0, rzeR, t>0

where a > 0 and ¢ is a C?-class function.
Under certain conditions, the equation admits monotone traveling wave solu-
tions u(z,t) = ¢(x—ct) with speed ¢ that connect the end states ¢ = lirin o(r).
T— =00

Such a wave profile must satisfy the third order ordinary differential equation

—c¢’+g(¢)’+¢”’—a¢”:0.

An example is g(z) = 2z(z — 1) (b — x) with b > 2, which has the wave profile
o(z) = H% for the parameter a = 2b — 1 and the speed ¢ = 0. General profiles
(non necessarily monotone) have been constructed in [1, 5]. It is known that

monotone profiles exist for g(u) = Q;ﬁ: and a > 2 ,/pc. More generally, we have
the following criterion:

Theorem 2.1. Let g € C? be a strictly convex function. A monotone wave
profile ¢ for (E1) exists if and only if:

_ 9(94) —9(9-)
(2.1) c = b —o.
(2.2) o> 2g0 ) —c,
(2.3) b < 6.

The profile must therefore be monotonically decreasing.
Proof:
(=) Clearly we have
—cp+g(p) +¢" —ag¢’ = constant

and hence —cé_ + g(¢p_) = —cp4+ + g(¢+) which implies (2.1).
Now, set ¥(z) = ¢— — ¢p(—2) and

(2.4) f(r) = g(¢-) —cr—glo-—r).

Then, f is concave, and —a)’ —¢)” = f(1)) which is the equation for a wave profile
¥ of the Fisher-Kolmogorov—Petrovskii-Piskunov (F-KPP) equation vy — vz, =
f(v) that travels to the right with speed « and has limits ¢ =¢_ — ¢4, 1= 0.
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Thanks to [4], we know that such a monotone wave profile for concave f exists
if and only if a > 2,/f(0) = 21/¢'(¢—) — c. In this case, 1)_ > 1), and therefore
¢_ > ¢, since f is positive between 1_ and 4. Thus (2.2)—(2.3) are true.

(«<=) Define f asin (2.4), then by known results about the F-KPP equation,
there exists a unique decreasing wave profile ¢ with (0) = % that moves
to the right with speed a. Then, ¢(z) = ¢_ — (—2) is a monotone wave profile
for (E1) with ¢(+00) = ¢+. n

3 — Asymptotic profile of Rosenau—Burgers equation

Consider the Rosenau—Burgers equation in the form

p+1

ut_auasx“‘uxx:pxt"'( ) =0, zeR, t>0,
x

(E2)

u(z,0) =up(r) -0 as x— oo,

where « is any given constant, p > 1 is integer.
Consider the following scalings to the variables

t T
t— =, -, u—w-;l/pu,
€ 3
where ¢ < 1, then we obtain from (E2)
(31) Ut — A Ugpy + 84 Ugprrt + uP Uy = 0.

For € < 1, neglecting the small term e%u,,44¢ leads to the asymptotic state equa-
tion of the Rosenau-Burgers equation (E2) as follows

U — AlUge +uPuy, = 0.

The solution of this parabolic equation should be a better asymptotic profile of
equation (E2).
Concerning the parabolic equation

Vg — AUz + VP v, = 0,
(3.2)

v(z,0) =vo(x) =0 as z— +oo

we have the following result:
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Theorem 3.1 ([10, 11]). Suppose that vo(z) € H*(R) N L*(R). Then, there
exists a positive constant oy such that if ||vo||r1 + ||vol| g2 < do, then the problem
(3.2) has a unique global solution v(z,t) with

v € C(Ry, H*(R)N LY(R)) N L*(R,, H'(R))

and

_(tlg—1

(33)  3e(®)lze = 01) (loolle + llooll=) (146755, 1<g<oo.

Furthermore, if vg € L'(R) N H(R), then
(34) 0du(®)z = OQ) (luollpr + llvolls) A +H77F, 5=0,1,2,3,4.

The main result in this section is the following:

Theorem 3.2. Suppose that

wo(a) = [ (woly) — () dy € WHIR)

—0o0
and
vo(z) € LY(R) N HO(R) .
Let o := ||lvg|| 11 + ||vol| s, then there exists a positive constant dg such that if

HonW?,,l +« § (50 s

then the Cauchy problem (E2) has a unique global solution wu(x,t) with
u(z,t) —v(z,t) € (R, HY(R)) and satisfies

(i) ifp=1, for any n > 0 we have

(3.5) (u = 0)(t)l|2 < e(L+8)~5+
(3.6) (u = 0)a(B)ll g2 < e(1 46717,
(3.7) (w— o))z < e(1+8)75H .

(ii) If p > 2, then we have

(3.8) (u—v) @)l < (14177,
(3.9) (u—v)a (B2 < e(1+8)77,
(3.10) (u—v) (@)l < c(1+8)7".
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As a corollary, we obtain

Corollary 3.3. Under the hypotheses of theorem 3.2, we have for 2 < q < oo
the decay rates
7
c(1+8) 5 0t if p=1,

3.11 u—=v)(t)l[Le < .
(3.11) ¢ NG {c(1+t)_1+2_q ifp>2.

The result in the corollary follows from the interpolation inequality
q—2 2

Ifllze < 1fllp% 1fllfes 2<g<oo.

The rest of the paper is devoted to the proof of theorem 3.2.
From (E2) and (3.2), we have

up-i-l vp+1
(312) (u_v)t_a(u_v):mi_uwzxa:t""<p+1_p_’_l)x_O-

Since v(too,t) = 0, and we expect u(£oo,t) = 0, uzy(£oo,t) = 0, then after
integrating (3.12) over R, we get

(3.13) % /R(u(x,t) v t))dz = 0.

Integration of (3.13) over [0, ¢] and thanks to the assumptions we get

(3.14) /R(u(:n,t) - v(:):,t)) dx = /R<u0(:n) - ’Ug(x)) dr = 0.

Thus we have

p+1 p+1) 77

Wet — O Wygr + Wegraat — Vegzat + < -

where we set

(3.15) w(z,t) = /I (u(y, t) —v(y, t)) dy

—00

that is wy(x,t) = u(z,t) — v(z, t).
The integration over (—oo, z] with respect to z of the above equation yields

Wt — X Wgg + Wrggat = Hp(w) )
(3.16)

w(0,x) = wo(z) ,
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where

1
- - p+1 p+1
Hy(w) 1= Vpgat P ((v + wy) v )
1 ¢ J +1
= VUgzxat +1 z%)(p—l—l)vng ]7 p>1
We have
1 p
|Hp(w)| < |vgget] + ——

J >|szup+1—j
p+1 s (p—i—l
‘a:va(w” < |vzgaat| + |WE Wil

1 & j o » L
a1+ () e e - e e |
j=1

Taking the Fourier transform of (3.16), we get

ag? /(E

1+ ¢

i
sz
which admits as solution

=

~—

w =

t H/_\
W, 1) = e O g (e) +/ o—a©)(t—s) Hp
0

(w)(€, 5)
11l ds
where we set a(§) := 1“_54.

The inverse Fourier transform of the above resultant equation yields
t ~

wle,t) = 5o [ e an(e) de
(3.18) -

L 11 er aeri—s) Hp(@)(E,9)

— i€z ,—a(§)(t—s) P ) ded
+27T/0-/—ooe e 11 éd Eds .
The differentiation with respect to = of (3.18) gives

Ouiet) = o [ (€ e e O 3y (6) de

T J—o00

o L T
L ey gige e -s) Hp(W)(E )

2 /0/—00(15) o e 14 ¢t £ds .
Now, we define the solution spaces as follows, for any positive integer p > 1 and
given § > 0:

Sg =

{we CRy H*®)) | Ap(w) <5},

397
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where

0<t<oo

1
Ai(w) = sup { Jw(t)]| 2 + (1+f)1_”|lwm(t)|p},

Ap(w) = sup 2: 1) w2, p>2.

Rewriting (3.18) as the operational form w = Sw, we need to prove that S is a
contraction mapping from Sg into Sg where & > 0 is a positive constant.
We have

Theorem 3.4. Under the hypotheses of theorem 3.2, there exists a positive
constant 61 such that if

|lwollws: + o < 61

then Cauchy problem (3.16) has a unique global solution w(z,t) € C(R ., H*(R)).
Furthermore, we have the following estimates:

(i) Ifp =1, then for any n > 0 we have

1

(3.20) Z(1+t)

=0

Jw(t)llgz + (1) lwe ()2 < e flwollws+a) .

(ii) If p > 2, then we have

2

(3.21) > (14t

J=0

w(t)2 < e(llwollwsr +a) -

Since u(x,t) —v(z,t) = wy(x,t), once we prove theorem 3.1, then theorem 3.2
can be easily proved. Hence, we prove theorem 3.1 in the rest of the paper.
We need to this end two lemmas and two well-known estimates quoted from [7]:

00 J p—ca(é)t it
(3.22) /m (1J|i4§(1+ i de < e(1+0)~5, j=0,1,2,34,

(3.23) ’ :

1 1
T

(i) ¢ e (@) ds| < cllwolsrns (14874
. ,

for 7 =0,1,2.
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Lemma 3.5. Let wi(x,t), wa(x,t) € Sg, then we have

sup| F(w1)(€:5) — Fa(w2) € 9)] < el +8) Arlwn —wz) (14 9)7H7,

o —

2g£ Hp(uq)(é-’S) ; m)(&, S)’ < C(a + 6)pAp(w1 - w?) (]- + S)_% ; p > 2 3
2161115{3‘5’ ’m)(éus) - m)(ﬁ,s)‘ < c(a _|_5) Al(wl _ w2) (1 n S)_%+77 7

sup €] A (w1) € 5) = Hyluwz)(6,9)] < cla+ 0P Ap(uwn—uwz) (14)7%, p=2.

Lemma 3.6. Let w(z,t) €8], then
i) if p=1

[ [ ey e e FWES) 4
0

ds <
27 ) 14 ¢l 5=

L2
< clat(@+0?) 1+ 5

J=0,1,

ds <
L2
< c(a—l— (a+5)2) (14t)~ 47,

L% 2 gigr —a()(t-s) Hl( )(E, 5)
QW[ (i€) - i

[

(ii) if p > 2, then we have

e > e —aerems) Hp)(E, s)
J otk ,—a(§)(t—s) ZZPAT/AS 2) <
/0 27T/—oo(l§) e~Te vz d§ st <
L

2j+1

< clat(@+oP)(1+H)75, j=01,2.

Proof of Theorem 3.1: Rewriting (3.18) in the form w = Sw, we need
to prove that there exists a positive constant d; such that the operator S is a
contraction mapping from Sgl into Sgl.

We claim that S maps SS into itself. Indeed, for any wi(z,t) € Sg and
denoting w = Sw; we will prove that w € Sg for some small § > 0. Thanks to
lemma 3.6, for any positive integer p there exists a constant c¢; such that

Ap(w) < er ([[wollwsr + o+ (a+0)P*) .
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— 11 1 5
Let n = max{2+21’+ ,a}, and choose dy < =, then for [vollys: < 72,

a§5—2 and 6 < d9 we have

ncy
) ) ) pHl
Ay(w) < ¢ (—2+—2+(—2+52> )

ncy ncy ncy
2 4 2Pt 6.
PN Rkl (RS
ncy

Hence S': Sg — Sg for some small § < 4.
Now, let us prove that S is a contraction in Sg. Suppose that w1 (x,t), wa(z,t) €
Sg (6 < 62), then we have by (3.18): for j =0,1,2 and p > 1
H,(w1)(& 5) = Hy(w2) (€. 5)
1 el déds .

. 1 t oo o
8 (Sw—Sws) = — / / (i) et —a(O)(t=2)
2w JoJ -0
We estimate the term [[Sw; — Swsl|r2: we have

[

1 [o° . —a(§)(t—=s) , _—_ .
Gy /_Ooelﬁa: 61—1—754 (Hp(w1)(f, s) — Hp(wg)(g, s)) dg

Si(a=

t J— . o p—al®)(t-s) \2
§/0 ?elug Hp(wl)(§> 5) — Hp(w2)(fa3)‘ </OO 6(1_'_784)2615> ds .

ds =
L2

Hy(w1) (€, 5) — Hy(ws) (€, s>\2d5)2 s

Using (3.22), lemma 1.1 and lemma 3.5, we obtain

t oo —a(§)(t—s) — —
< el 8) Ar(wr —w) [ (145) 0 (14t 9)hds
0
< cla+68) Ap(wy —wy) (1 + )~ o<p<1/2,
t oo —a(§)(t—s) — —
/0 % [m i 61—|—7§’4 (Hp(wl)(f, s) — Hp(wg)(g,s)) d¢ . ds <

t , )
< cla+0)PAp(wy — wg)/ (1+ s)*% (14+t—s) 4ds
0

< clo+ )P Ay(wy —wy) (14873, p>2.
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That is, we obtain

[Swy — Swa| 2 <

N

cla+6)Aj(wy —we) (1 4+1)~0/4m  0<n<1/2, for p=1,
<
for p>2.

cla+0)PA,(wi —we) (14+1)”

Similarly, by using (3.22), lemma 1.1 and lemma 3.5, we have the estimates for
102 (Swy — Sws) |2 and [|0?(Swy — Sws)]|2 as follows:

102 (Sw1 = Swa)| 12 <
cla+06)Aj(wy —w) (14+1)"GM41  0<n<1/2, for p=1,
= {c(a+5)pAp(w1 —wy) (14+1)71, for p>2,
and
107 (Swy — Swa)l| 2 <
cla+6)Ar(wy —wo) (1 +8)~0=M  0<n<1/2, for p=1,
= { cla+6)PA,(w —ws) (1+ t)fg , for p>2.
Hence, we deduce that, for some constant c:

Ap(Swi — Swa) < ci(a+0)PA, (w1 —ws) .

Let n = max{l,Q} and choose § < §3 < %

Cc1

we deduce that

-, then for a < §3 and Ap(w2) < d3

Ap(Swy — Swa) < Ap(wr —wa) ,

that is S Sg — Sg is a contraction for small § < 3.

Finally, let §; < min {2, d3}, then we have proved that S is a contraction from
Sgl to Sgl, and consequently by Banach’s fixed point theorem, S has a unique
fixed point in Sgl, and then we have the existence of a unique global solution. m

Proof of Lemma 3.5: For p =1, we have

sup| 1 (wn) (€, ) = Hi(w2) (& 5)| <
£eR

IN

[o(s)l[ L2 [[(wiz — waz) ()]l 2

45 M+ w2) (922 N (ne — w2e)(5) 12
(3.24)

IN

c(a(l ™ S)ﬁ +0(1+ 3)7%“}) A (wy —w2) (1+ s)f%m

N

cla+6) A (w; —ws) (1 + 3)71“7 ,
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and

sup €] [H(w1)(€:5) — Fa(w)(€:9)] <
< [t @) Higlws)w,5)|da

< vz ()l 22 w1z — waz)(8)llz2 + [[v(s)ll 22 [[(Wize — w2aa)(8) || 2

Fwra ()22 | (wise —waa) ()22 + w2a() |z | (wrz = w2e)(5)22
(3.25) 3 3
< C{ (Oé(l + 8)_Z + 5(1 + S)_1+n> Al(wl — u)Q) (1 + 5)_Z+77

(a4 5)7F + 001+ )77 Ay (wn — o) (1 + s)_1+’7}

< cla+8) Ay (wy —ws) (14 )17

For p > 2, we have

P .
< /°° 1 S ‘vjwpﬂ—j _ ijp-&-l—j‘ dr

= %{ (pi1> o +:Z:§)(pil> (p=5) ajép_j}A”(wl_wz) ()

Nl

< cla+0)PAp(wi—we) (14 s)”
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and

sup €| (w01)(&, 5) — Hy(w2)(&,5)| <
£eER
< /_OO

< |wreant, — waent,)s)

O Hp(wi)(z, 5) — Op Hp(w2)(z, s)‘ dx

Il

1 () e o
o}

122 A - 1
p+1j1<p+1> {]H”J o) vale) (g ()
Ll}'

Ll

+ Hyp(s)(wlmg — U)Zx:r)(s)’

Ll

(15 07 () (uhy wras — wh, w2 ()|

Since

p—1

. —1—3

< iz ($)ll2 [ (wie = waa($)l22 D llwia(s)ll72 wae(s) 72"
=0
+ [[w2z ()12 | (Wize — w2ea) ()]l 2

< cdPAp(wr —wy) (p+ 1) (1 +5) 72

and

uT HUP(S) (Wiga —’w2m)(3)‘

L( p >{pHv”1(s)vx(s) (wlx_w%c)(s)‘

} <
p+1 \p+1 =
= C{papAp(wl —wy) (1+35)""F +aP Ap(wy —w2) (1+ 5)_1%2}

< coP(p+1) Ap(wy — wa) (1 +5)72



404 MOHAMMED AASSILA

and

<
L -

B
S50

=1

1>]aj 1+s)” %_1Ap(w1 — ws)

.
I .
<.

3p_

X (145)75 Y o7 9(14) 5

%

1 p—1 . 4 A
-2 J . . _
< cAp(wr — wa) (145) ﬁ;(p+l)j(p—j+l)aﬂép j

Il
o

and
1 ! , . 4

—q J p—J R 2 <
i1 & (o) 01D Pt o — o e, <

p—1 . )
& ] . i iy
< — 1-— J(1
_p+1;<p+1>(p+ j)ad(1+4s)2
P Ap(wy — ws) (14 5) "t
+ 6P Ay (wy — -2 Sl (W
p(wr —wa) (1 +35)""(1+s)"" 4 (p—7)

1 p—1 . ‘ ‘
-2 § : J N2 _
< cAp(wr —w2)(1 + ) p+l 4= <p+1) (p+1—75)*ad P77,

we obtain that
sup [€] |, (wn) (&, 5) = Hp(wa) (£, 5)| <
£ER
< e Ap(wr —ws) (14 8)2{ (p+1) + aP(p+1)
1 p—1 . ‘ ‘ o . ‘ o
(3.27)  + pil Z((p]+1> jp+1—j)aloP™7 + (pr) (p+1—75)*alsP 3)}
cla+ 6)PAy(wy —we) (14 5)72

Thanks to (3.24)—(3.27), we deduce the result of lemma 3.5. u
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Proof of Lemma 3.6: Since for f € H' we have

1 1
11l < V21 F1Z2 - el 2o
we easily deduce that
(i) for p=1,
1 1
(3.28) @)l < V2IlwE)]| 22 [wa(b)l|Z2 < V2001 +1H)72
’ 1 1
lwa(®)llze < V2 lwe()]| 22 [waw(B)l|Z2 < V26(1+1)75H

(ii) for p>2:
0 lw®llze < V3 [w®)l| 2 [wa(®)|Z < V26(1+8)F
lws(®)llz < V3 wp(t)]|22 [waa(®)] 22 < V(1 +1)71 .

Thanks to (3.17) we have

—

sup [T (0)(€.5)] < [ [Hy(w)(ws)|da
EER %)

> 1 J i pHl—j
< 3 JwP+1=i 1\ g
= /—oo |Uxxxt| + p+1 = <p_|_1> ’U Wy ‘ €z

1 _
< lossat(@)lar + =7 (5] I (o) sl

1 Pz j ) I
1 3 (1) ol a2 s (s)
j=1

Now, because of (3.28)-(3.29) we have

sup \H/I(\w)(ﬁ,sﬂ < c{a(l—i—s)g + 62 (14-5)"3/2=2m) 4 a5(1+s)(1”)}
£eER

(3.30) < c{a +(a+ 5)2} (14s)"@ |

by choosing 7 such that 0 < n < 1/2, and

—

sup [H,(w)(€.)] < c{a(1+s)-3 + (;fu) o? §(1+5)""F

p—1 . i
(3.31) + Z (pj—l) ol 5p+1—j(1+3)_2p 21+1}
=

< clat(atdpt}(i+s)72,  p>2,
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2p—j+1 pt1

where for p > 2, weused (1+s)7" 2 < (1+4+s)” 2
we have

< (1+ s)_%. Similarly,

—

sup [§] [Hp(w) (€, 5)| <
£eR
< vezaet (s) | L1 + wa(s)H];l lwe(8)|| 2 |wza (s)]] L2

1 p j . - .
2 30 () {7 1 Ta G o) s (9]
j=1

1) o) R T ol e (9]

_2p—j+2

Now, since for p > 2 we have (14 s)~®"*) < (1 + )72 and (1 +5)" " 2
2
(1+ s)’% < (1+ )72, we have

—

sup [€| [Hy(w) (&, )] < (:{04(14-3)3 + 52(14-8)72(17”) + a5(1+3)(3/277)}
EER

(3.32) < cfat (@ta)?} (s @2 0<p< g,
sup [¢] \m(f, s)| < ¢ {a(1+s)_3 + (5p+1(1+3)—(10+1)
£eR
p .
J Jgp—i+1 —pf2
(3.33) +; <p+1> add (145)" 2 }

< cfa+(atopt}(1+s) 72, p>2.

By the Parseval equality we have

/t i/meiéxwmgs)df ds =
O e R
b p—al€)(t—s) _—_
:/0 Tng(w)(578) L2d3

¢ . o o—2a(E)(t-s) \2
S/o 22£’Hp(w)(5,5)| </—de§> ds .
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Thanks to (3.30)-(3.31), lemma 1.1 and (3.22) we obtain
t
J

(3.34)

1 /oo e € 0O _—

o) ¢ Tira MwEs)d ds <

L2

< c{a+ (a+d)?} /Ot(1+s)<1"> (1+t—s)"1ds

< cfa+(a+d)?}a+) 0 o<y <

N =

ds <
L2

<c {a + (a+8)Ptt

L e et
g/_ooe T p(w)(&,s)dE

[

(3.35)

t 3 1
/ (1+5)73 (1+t—s)"% ds
0

—

< clat(atoptt}a+7r,  p>2.

Similarly, we have

01 oo emal®)t-s)
/0 %/wife%xT&Hp(w)(&s) d€ des <
</tSUPIH/(E)(€ s)| (/OO Wu(é)(t_s)dg)%ds.
“Joger ’ oo (1492

Using (3.30)—(3.31), lemma 1.1 and (3.22), we obtain
t
J

(3.36)

ds <

1 oo el
o | i e M)(,) de
L2

21 J—so 1+¢4

< c{a+(a+d)?} /Ot(1+s)<1"> (1+t—s)"1ds

N | =

< cfat(a+0)2} (140~ 0<n<

1 oo it e—a(&)(t—s) fI/_\ ;
%/_00266 T p(w)(§,s)dE

[

(3.37) < cfa+(aropti(+n7i,  p>2.
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Furthermore, we have

Lo e e @O0 = )
/o %/_w(@ € Tgﬂp(w)(é,s)dﬁ Lst —
a(¢)(t—s) o
1+§4 Hy(w)(&, ) ds

) - oo 4 )(t—s) 2
< /0 Zgﬂg(uﬂaw\ﬂp(w)(&s)!) </oo wre )

Using (3.30)-(3.33), lemma 1.1 and (3.22), we have

t 00 . —a(§)(t—s) _—__
[l [ e e S Hitwite, ) de
0 —00

ds <
o 1+ ¢t 5=

L2

< c{a+(a+6)2}/0t{(1+8)(177) +(1+5)7(3/27")}(1+t—5)*% ds

(3.38) 1
< c{oH- (a—|—6)2} (1+2)~(=m) 0<n< >
t 1 S 2 e—d(f)(t—s) —
- ; iz 7 <
/o 27 /_OO(Zg) € 1+ ¢éd Hy(w)(§, s) d§ Lst <

(3.39) = {a " (a+5)p+l}/0 {(1+8)‘% + (1+s)_2} (14+t—s)" ds

<cla+(aropti+n i, p>2.

Now, thanks to (3.34)—(3.39), the proof of lemma 3.6 is complete. u
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