
PORTUGALIAE MATHEMATICA

Vol. 62 Fasc. 2 – 2005

Nova Série

HELMHOLTZ’S VORTICITY TRANSPORT EQUATION
WITH PARTIAL DISCRETIZATION IN BOUNDED

3-DIMENSIONAL DOMAINS

Reimund Rautmann and Vsevolod Solonnikov

Recommended by J.F. Rodrigues

Abstract: We prove the existence of a unique classical solution w to the initial

value problem of Helmholtz’s vorticity transport equation with partial discretization in a

smoothly bounded 3-dimensional domain for each bounded interval of time. The solution

w depends continuously on its initial value and, in addition, fulfills a discretized form of

Cauchy’s vorticity equation.

1 – Introduction

Let (v, p) denote any smooth solution of the initial boundary value problem

of Euler’s equation

∂

∂t
v + v · ∇v +∇p = 0 , ∇ · v = 0 , (t, x) ∈ (0, a]×Ω ,(1.1)

v(0, x) = v0(x) , x ∈ Ω ,

n(x) · v(t, x) = 0 , (t, x) ∈ [0, a]×∂Ω ,(1.2)

at times t ∈ J = [0, a] in a bounded connected open set Ω ⊂ R3 with C2+α-smooth

boundary ∂Ω = S. We write n(x) for the exterior normal of S in x ∈ S. The

boundary S may be composed of several connected components, S = S0∪· · ·∪Sh,
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where S0 being an exterior boundary and S1, ..., Sh are inside S0, outside one

another, so that Ω = Ω0\(Ω1∪ · · · ∪ Ωh), ∂Ωk = Sk for k = 0, ..., h.

In the following, we consider domains Ω ⊂ R3 which have the topological

type of a ball B with m solid handles, m ≥ 0, inside of B a number h of smaller

balls Ωk being cut out. Such a domain is characterized (a) by the presence of

a homotopy basis of m simply closed smooth curves li ⊂ Ω which inside Ω nei-

ther can be continuously deformed into each other nor can be continuously con-

tracted into a single point, and (b) by the fact that making m cuts along smooth

surfaces Σi ⊂ Ω we can transform the domain Ω into a simply connected one.

In each such m+1-times connected domain Ω with C2+α-boundary ∂Ω = S

there exist preciselym linearly independent “Neumann vector fields” ui∈C
1+α(Ω)

satisfying the conditions

rotui(x) = 0, divui(x) = 0 in Ω , ui · n = 0 on S ,

ui having the fluxes ∫

Σk

ui · ndS = δik

across Σk, or the circulations
∫

lk

ui · dl = δik ,

i, k = 1, ...,m, respectively. Here n = n(x) denotes a unit normal vector in

x ∈ Σk, l = l(x) a tangential vector of lk with any prescribed orientation, see

[9, 11, 25].

Taking rot of (1.1), for the vorticity w = rot v we get Helmholtz’s vorticity

equation
∂

∂t
w + v · ∇w = w · ∇v , (t, x) ∈ (0, a]×Ω .(1.3)

For smooth v fulfilling (1.2), the particles’ pathlines

x(t) = X(t, s, x̂) ∈ Ω(1.4)

calculated from the initial value problem

d

dt
x = v(t, x), t ∈ J , x(s) = x̂ ∈ Ω ,(1.5)

are unique and exist globally in J×J×Ω, [16]. Thus for fixed s = 0, we get the

representation

ŵ(t, x̂) = w
(
t, X(t, 0, x̂)

)
(1.6)
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of w in dependence on the “Lagrangean” (or “material”) coordinates x̂ ∈ Ω.

The solution of (1.3) is expressed in Cauchy’s vorticity equation

ŵ(t, x̂) = ŵ0(x̂) · (∇X)(t, 0, x̂) ,(1.7)

[22] (cp. Remark 7.2 below), where X has to be calculated from (1.5) in depen-

dence on v.

On the other side, for all t ∈ J, by definition of w the vector function v = v(t, ·)

is solution of the boundary value problem

rot v = w, ∇ · v = 0 in Ω , n(x) · v(t, x) = 0, x ∈ S ,(1.8)

∫

lk

v · dl = γk , k = 1, ...,m ,(1.9)

with arbitrarily given γk ∈ R.
It is well known that problem (1.8), (1.9) admits a unique solution for arbitrary

divergence free w satisfying natural compatibility conditions

∫

Sk

w · ndS = 0 , k = 0, ..., h ,(1.10)

and that the solution satisfies coercive estimates in Hölder and Sobolev norms

[2, 4, 9, 11, 23, 25]. In [19] we have proved

Theorem 1.1. For arbitrary bounded continuous, weakly divergence free w

satisfying (1.10) and prescribed γk ∈ R, k = 1, ...,m, the solution of problem

(1.8), (1.9) has the form

v(x) = −rotA(x) +∇φ(x) +
m∑

k=1

(γk+λk)uk , λk = −

∫

lk

(rotA) · dl ,(1.11)

A(x) =

∫

Ω
E(x− y)w(y) dy −

∫

S
E(x− y)n(y)ϕ(y) dSy := A1 +A2 ,

where E(z) = − 1
4π|z| is a fundamental solution of the Laplace equation, and

ϕ(x), φ(x) are solution to the following exterior and interior Neumann problems:

∆ϕ(x) = 0, x ∈ R3\Ω ,
∂ϕ

∂n
|S = w · n|S ,(1.12)

∆φ(x) = 0, x ∈ Ω ,
∂φ

∂n
|S = n · rotA|S .(1.13)
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The necessary compatibility conditions for the boundary data in (1.12), (1.13)

follow from (1.10) and from the Stokes formula
∫

Sk

n · rotAdS = 0 , k = 0, .., h .(1.14)

Notations: In the following, besides the norm |f |0 = supx∈Ω |f(x)| in C
0(Ω),

the Hölder seminorms [f ]α = supx,y∈Ω
x6=y

|f(y)−f(x)|
|y−x|α , and norms |f |α = |f |0 + [f ]α

of the Hölder spaces Cα(Ω) ⊂ C0(Ω), 0 < α < 1, we will decisively use the semi-

norms

[f ]` = sup
x,y∈Ω
x6=y

|f(y)− f(x)|

`(|y − x|)
(1.15)

with the function

`(r) =





0, r = 0

−rln(r), r ∈ (0, e−1)

r, r ≥ e−1.

By means of the latter we define the subspace C`(Ω) = {f ∈ C0(Ω) | [f ]` <∞}.

Following [8], the requirement [f ]` <∞ is refered to as quasi-Lipschitz condition

for f . Below the mark Ω will be omitted, if no confusion is possible. Finally by

C`
ν we will denote the subspace of all vector functions f ∈ C`, f : Ω→ R3 having

normal component zero on S.

We do no longer require w = rot v. In [19] we also have proved

Theorem 1.2. For abritrary w ∈ C0(Ω) and arbitrarily fixed γk ∈ R,
k = 1, ...,m, the function v represented by (1.11), with (1.13) and

(1.12a)

∆ϕ(x) = 0, x ∈ R3\Ω ,
∂ϕ

∂n
|S = b(x) ,

b(x) = n(x) · w(x)− |Sk|
−1 ·

∫

Sk

n · w dS , x ∈ Sk ,

satisfies

|v|0 + [v]` ≤ c |w|0(1.16)

with some constant c independent of w. Consequently for each t ∈ J, the formula

(1.11), (1.12a), (1.13) together define a bounded linear map

K : C0→ C`
ν , v(t, ·) = Kw(t, ·) ,(1.17)

[19, Remark 3.5, Theorem 6.2.]
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Here the compatibility conditions (1.10) are unnecessary since we do not

require w = rot v.

However, for the fixpoint equation for w resulting from the system of the four

equations (1.17) (here with (1.12) instead of (1.12a)), (1.4), (1.6), (1.7) together,

as well as for Euler’s initial boundary value problem (1.1), (1.2), the existence of a

global unique solution remains an open problem until now. In 2 space dimensions,

quasi-Lipschitz conditions have essentially been used in [7], [8], [28] for proving

global existence of solutions to the nonstationary Euler equations. In 3 space

dimensions, a lot of work has been done on solutions to (1.1), (1.2) which exist

locally in time and on blow-up criteria, cp. [13, 14, 15] and the citations there.

Therefore at least with regard to numerical approaches it seems to be remarkable

that a discretization of the right hand side in (1.3) leads to initial value problems

for approximations to w, which are globally solvable in a unique way.

We will prove

Theorem 1.3. Let the prescribed initial value w0 be one times continuously

differentiable, the vector valued function Z(x) = x+ εw0(x) for x ∈ Ω taking its

values in Ω, where ε 6= 0 denotes a constant. Then the initial value problem

∂

∂t
w + v · ∇w =

1

ε

{
v
(
t, x+ εw(t, x)

)
− v(t, x)

}
, (t, x) ∈ J×Ω ,(1.18)

w(0, x) = w0(x) ,

with v = Kw from (1.17) (the function v being somehow continuously extended

to J×R3), has a unique global solution w ∈ C1(J×Ω). The function w can be

approximated by iteration of a contracting map T and depends continuously on

w0.

The construction of the map T is similar as in [17], where the Cauchy problem

of (1.18) in R3 without boundary condition (1.2) for the velocity field v has been

solved, the initial value w0 having compact support. The fulfilling of (1.2) requires

the new potential theoretical tools developed in [19].
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Proof of Theorem 1.3:

2 – Notations

In order to prove Theorem 1.3 we have to consider (vector valued) functions

on J×Ω which may have different smoothness properties with respect to t and x.

Therefore, denoting by ∂p
x, p = (p1, p2, p3), an arbitrary x-derivative of order

|p| = p1 + p2 + p3, pj = 0, 1, 2, ..., we introduce the linear spaces C0,k of all

(vector valued) functions f for which all derivatives ∂p
xf exist and are contin-

uous on J×Ω, 0 ≤ |p| ≤ k. C0,k+α is the subspace of C0,k of all functions f

which together with all of their derivatives ∂p
xf, 0 ≤ |p| ≤ k, are uniformly Hölder

continuous in x ∈ Ω with exponent α ∈ (0, 1). As usual, by Ck = Ck(A) or

Ck+α = Ck+α(A) we denote the class of all functions f which together with all of

their partial derivatives of all orders j ≤ k = 0, 1, 2, ... are continuous or uniformly

Hölder continuous with exponent α, respectively, on their domain of definition A.

We will write C0,0ν , or C0,`ν , or C0,`ν,M for the subclass of C0,0 = C0(J×Ω) of all

vector valued functions f ∈ C0,0 having zero normal component on S or which in

addition uniformly in t ∈ J fulfill the quasi-Lipschitz condition [f(t, ·)]` < ∞ or

[f(t, ·)]` ≤ M , respectively. Moreover we set C0,1+γ
ν = C0,0ν ∩ C0,1+γ , γ ∈ [0, 1).

Since each f ∈ C0,1+γ is uniformly Lipschitz continuous in x ∈ Ω, we find

C0,1+γ
ν ⊂ C0,`ν . The norms needed below are

|f |0 = sup
t∈J

|f(t, ·)|0 , [f ]α = sup
t∈J

[f(t, ·)]α , [f(t, ·)]1 = |∇f(t, ·)|0 and

|f |k =
k∑

j=0

∑

|p|=j

|∂pxf |0 , |f |k+α = |f |k +
∑

|p|=k

[∂pxf ]α .

By C0,k+γ
M we will denote the ball of radius M in C0,k+γ , and we will write

C0,k+γ
ν,M = C0,0ν ∩ C0,k+γ

M , γ ∈ [0, 1).

From the estimates (1.16) of v = Kw above for each t ∈ J, and from the

estimates in Proposition 3.1 below we see that proving continuity of v = v(t, ·) or

of ∇v(t, ·) with respect to t requires continuity of |w(t, ·)|0 or, for some α ∈ (0, 1),

of |w(t, ·)|α in t, respectively, which will be ensured by the following

Remark 2.1.

(a) Since J = [0, a] and Ω ⊂ R3 are compact, for any continuous function

f : J×Ω→ Rn the function F (t) = supx∈Ω |f(t, x)| is (uniformly) contin-

uous.
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(b) In case f ∈ C0,α, for any α′ ∈ (0, α) the Hölder quotients

Hα′f(t, x, y) =





|f(t, y)− f(t, x)|

|y − x|α′
for x 6= y ,

0 for x = y

are continuous in (t, x, y)∈J×Ω×Ω. Therefore by (a) (with Ω×Ω instead

of Ω) the Hölder seminorm [f(t, ·)]α′ = sup(x,y)∈Ω×ΩHα′f(t, x, y) is

(uniformly) continuous for each fixed α′ ∈ (0, α).

3 – Construction of the velocity v from the approximate vorticity w

Proposition 3.1. The linear map in (1.17), K : w → v = Kw defined by

equations (1.11), (1.12a), (1.13) in Theorem 1.2 has the following properties:

(i) K: C0,0 → C0,0ν is a bounded linear operator.

(ii) For all w∈C0,0M we have Kw∈C0,`ν,cM with constant c independent of w.

(iii) For all w ∈ C0,αM we have Kw ∈ C0,1+α
ν,cM .

Proof: As shown in [19] , the linear map K from Theorem 1.2 is well defined

for each w(t, ·) ∈ C0(Ω), K being bounded with respect to the norm | · |0, and

(Kw)(t, ·) fulfilling the quasi-Lipschitz condition [(Kw)(t, ·)]` ≤ c|w(t, ·)|0 as well

as having zero normal component in x ∈ S. From this, recalling the continuity of

|w(t, ·)|0, we see (i) and (ii).

From the well known regularity theorems and Hölder norm estimates of

potential theory [5, 21], assuming w ∈ C0,α, thus w(t, ·) ∈ Cα(Ω), we conclude

ϕ(t, ·) ∈ C1+α(R3\Ω) for the solution ϕ(t, ·) of the exterior Neumann boundary

value problem (1.12a), consequently we find A2(t, ·) ∈ C2+α(Ω) for the single

layer A2(t, ·) having the density ϕ on S, and we get A1(t, ·) ∈ C2+α(Ω) for the

Newton potential A1 in (1.11) with density w(t, ·). Therefore the solution φ(t, ·)

of the interior Neumann boundary value problem (1.13) with boundary value

n · rot(A1+A2) on S fulfills φ(t, ·) ∈ C2+α(Ω), too. The related Hölder estimates

include |Kw(t, ·)|1+α ≤ c · |w(t, ·)|α which shows the boundedness of the linear

operator K : Cα(Ω) → C1+α(Ω). Recalling Remark 2.1 (b), from the continuity

in t ∈ J of the Hölder norm |w|(t, ·)|α′ for α
′ ∈ (0, α) we find the continuity of

(∇Kw)(t, x), thus Kw ∈ C0·,1+α
ν,cM .
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4 – Particles’ paths following v

Proposition 4.1. Assume v ∈ C0,`ν . Then

(i) the initial value problem

d

dt
x = v(t, x), x(s) = xs ∈ Ω, t, s ∈ J(4.1)

has a unique global solution x(t) = X(t, s, xs) being continuous on

J×J×Ω. We will write L : C0,`ν → C0(J×J×Ω) for the map defined

by Lv = X.

(ii) X(t, s, ·) : Ω→Ω being topological, X−1(t, s, ·)=X(s, t, ·), X(s, s, ·)= id.

v ∈ C0,1ν includes X ∈ C1 = C1(J×J×Ω).

(iii) Ω and ∂Ω are flow invariant for (4.1).

(iv) In case v ∈ C0,`ν,M the estimate

[X(t, s, ·)]α ≤ max{eD, 1} with α = e−Ma(4.2)

holds,D denoting the diameter of Ω. In case v having normal component

zero on ∂Ω, v ∈ C0,1 or v ∈ C0,1+α, we have

|∇X(t, s, ·)|0 ≤ c · ec|∇v|0|t−s|(4.3)

or additionally

[∇X(t, s·)]α ≤ c[∇v]α |t− s| e
c|∇v|0|t−s| ,(4.4)

respectively.

(v) In case v[m] ∈ C
0,1
ν , |∇v[m]|0 ≤ M, m = 1, 2, the solutions X[m] of (4.1)

with v = v[m], respectively, fulfil∣∣∣X[2](t, s, ·)−X[1](t, s, ·)
∣∣∣
0
≤(4.5)

≤ c ecM |t−s|

∣∣∣∣
∫ t

s
e−cM |t′−s|

∣∣∣v[2](t′, ·)− v[1](t′, ·)
∣∣∣
0
dt′
∣∣∣∣ ,

each constant c above being independent of v, v[m].

Proof: Statements (i), (iii) have been proved in [16], for general results

concerning flow invariance cp. [1], [20].

(ii) is well known in differential equation theory, cp. [3]. In a slightly dif-

ferent formulation, the estimates (iv) and (v) have been proved in [8], [18].

For completeness we give the proofs in the Appendix Section 7 below.
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5 – Construction of the approximate vorticity from the particles’ paths:

A discretized form of Cauchy’s vorticity equation

Proposition 5.1.

(i) For any given v ∈ C0,1ν , each solution w ∈ C1 of (1.18) in Theorem 1.3

with initial value w0 ∈ C
1(Ω) fulfilling

Z(x) = x+ εw0(x) ∈ Ω for all x ∈ Ω ,(5.1)

has the representation

w(t, x) =
1

ε

{
X(t, 0, Z(·))−X(t, 0, ·)

}
◦X(0, t, x) = HX(5.2)

for all (t, x) ∈ J×Ω, X = Lv denoting the solution of (4.1).

(ii) Conversely in case w0∈C
1(Ω) fulfilling (5.1), v=Kw ∈ C0,1ν , the function

w = HX in (5.2) belongs to C1 and solves (1.18).

Proof: Recalling Proposition 4.1, the representation of w in Lagrange coor-

dinates x̂, ŵ(t, x̂) = w(t,X(t, 0, x̂)), is well defined. Because of

(
∂

∂t
ŵ(t, ·)

)
◦X−1(t, 0, x) =

∂

∂t
w + v · ∇w ,(5.3)

initial value problem (1.18) is equivalent to

∂

∂t
ŵ =

1

ε

{
v(t,X+εw(t,X))− v(t,X)

}
or(5.4)

∂

∂t
{X + εŵ} = v(t,X+ εŵ) , t ∈ [0, a], with(5.5)

X + εŵ = x̂+ εw0(x̂) , t = 0 ,

where v(t,X) = ∂
∂t
X, X = X(t, 0, x̂).

Equation (5.5) represents the initial value problem (4.1) with direction field v

for the function X+ εŵ having the initial value x̂ + εw0(x̂) ∈ Ω. Thus recalling

again Proposition 4.1 we find

(X + εŵ)(t, x̂) = X(t, 0, x̂+ εw0(x̂)) or

ŵ(t, x̂) =
1

ε

{
X(t, 0, Z(x̂))−X(t, 0, x̂)

}
,(5.6)

which shows (5.2) because of x̂ = X(0, t, x).
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Finally, recalling Propositions 3.1 (iii), 4.1 (ii), our requirement in (ii) gives

w = HX ∈ C1(J×Ω) in (5.2), the latter equation being equivalent to (5.6).

Differentiating with respect to t and using the representation above of ∂
∂t
ŵ(t, x̂)

with x̂ = X−1(t, 0, x), we get (1.18).

Corollary 5.2. Under the assumptions of Proposition 5.1 we have

x+ εw(t, x) ∈ Ω for all x ∈ Ω.

Proof: From (5.2) recalling x = X(t, 0, x̂) and (1.6) we find X + εŵ =

X + X(t, 0, Z(x̂)) − X = X(t, 0, Z(x̂)) ∈ Ω because of (5.1) and Proposition

4.1 (ii).

Remark 5.3. Due to the smoothness we have required for ∂Ω, each vec-

tor valued function v ∈ C0,1+α
ν,M (J×Ω) can be extended to ṽ ∈ C0,1+α

c·M (J×R3).
The uniform Lipschitz continuity of ṽ ensures the existence of the unique global

solution X̃ of (4.1) with ṽ instead of v and xs ∈ R3. Rewriting (5.4) and recalling

x = X̃(t, 0, x̂) ∈ Ω if x̂ ∈ Ω we see

∂

∂t
ŵ =

1

ε

∫ ε

0

∂

∂σ
ṽ(t, X̃+ σw(t, X̃))d σ = w(t, X̃) · (∇v)(t, X̃) + E ,(5.7)

where

|E| =

∣∣∣∣∣
1

ε

∫ ε

0
w(t, X̃) ·

{
(∇ṽ) (t, X̃+ σw(t, X̃))− (∇v)(t, X̃)

}
dσ

∣∣∣∣∣

≤ [∇ṽ]α · |w|
1+α
0 · |ε|α .

(5.8)

Because of (5.3) and X̃|J×J×Ω = X, equation (5.7) and the latter inequality

show that in the special case where the semi-norms in question of ṽ and w are

bounded independently of |ε|, a solution w of (1.18) solves Helmholtz’s vorticity

equation (1.3) modulo c|ε|α. Moreover, in (5.2) with X̃ instead of X taking the

limit ε→ 0, we again get Cauchy’s vorticity equation (1.7).

We will further on write D for the diameter of Ω.

Proposition 5.4. Assume

(a) X ∈ L(C0,`ν,M ), thus X(t, s, ·) ∈ Cα(Ω) by (4.2), t, s ∈ J, and

(b) w0 ∈ C
1(Ω) with (5.1).
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Then the function HX in (5.2) is continuous on J×Ω and obeys the estimates

(i) |HX|0 ≤
D
|ε| ,

(ii) [(HX)(t, ·)]α2 ≤ 1
|ε|

{
c · (1+ |ε|[w0]1)

α · [X(t, 0, ·)]α · [X(0, t, ·)]αα+D
1−α2

}
.

Particularly X ∈ L(C0,1ν ), thus α = 1 includes (HX)(t, ·) ∈ C1(Ω).

In case

(c) Xm ∈ L(C
0,1
ν ), thus Xm(t, s, ·) ∈ C1(Ω) by (4.3), t, s ∈ J, and

(d) wm0 ∈ C
1(Ω) with Zm(x) = x+ εwm0(x) ∈ Ω if x ∈ Ω, m = 1, 2,

the Lipschitz estimate

(iii) |ε| |(HX2)(t, ·)− (HX1)(t, ·)|0 ≤

≤

{
|ε| [X1(t, 0, ·)]1 |w20 − w10|0 + 3 |X2(t, 0, ·)−X1(t, 0, ·)|0 +

+ c · [X1(t, 0, ·)]1 · [Z1]1 · |X2(0, t, ·)−X1(0, t, ·)|0
holds true.

Remark 5.5. Here and in the following we write [f ]1 = |∇f |0 for any func-

tion f ∈ C1(Ω).

Proof: From (a) and (b) recalling Proposition 4.1 (i) we see that HX in (5.2)

must be continuous, since it is composition of continuous functions. Inequality

(i) holds because of X(t, s, x) ∈ Ω for x ∈ Ω, t, s ∈ J . In order to prove (ii),

writing X ◦ Z = X(t, 0, Z), we observe that HX = 1
ε
{X ◦ Z ◦ X−1 − id} holds

because of Proposition 4.1 (ii). Thus taking

x̂m ∈ Ω , Xm = X(t, 0, x̂m) , x̂m = X−1
m = X(0, t, xm) , x1 6= x2 ,

first of all in case Z ◦X−1
2 6= Z ◦X−1

1 we see

|ε| · |HX2 −HX1| =
∣∣∣X ◦ Z ◦X−1

2 − x2 − (X ◦ Z ◦X−1
1 − x1)

∣∣∣ ≤

≤
|X◦Z◦X−1

2 −X◦Z◦X−1
1 |

|Z◦X−1
2 − Z◦X−1

1 |α
·
|Z◦X−1

2 − Z◦X−1
1 |α

|X−1
2 −X−1

1 |α
· |X−1

2 −X−1
1 |α + |x2 − x1|

≤
{
[X(t, 0, ·)]α · ([Z]1 · [X(0, t, ·)]α)

α + |x2 − x1|
1−α2

}
|x2 − x1|

α2

.
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Since the last bound obviously holds in case

Z◦X−1
2 = Z◦X−1

1 , too , noting [Z]1 = |∇(x+ εw0(x))|0 ≤ c · {1 + |ε| [w0]1} ,

we find (ii). Namely, the last statement in (ii) is obvious by Proposition 4.1 (ii).

For proving (iii), writing Xm = Xm(t, 0, ·), X−1
m = Xm(0, t, ·), Xm ◦ Zn =

Xm(t, 0, Zn), n = 1, 2, we find

|ε| · |HX2 −HX1| =
∣∣∣(X2 ◦Z2 −X2) ◦X−1

2 − (X1 ◦Z1 −X1) ◦X
−1
1

∣∣∣ ≤ δ1 + δ2 ,

where

δ1 =
∣∣∣
{
(X2 ◦ Z2 −X2)− (X1 ◦ Z1 −X1)

}
◦X−1

2

∣∣∣

≤ |X2 ◦ Z2 −X1 ◦ Z2|0 + |X1 ◦ Z2 −X1 ◦ Z1|0 + |X2 −X1|0 ,

δ2 =
∣∣∣(X1 ◦ Z1 −X1) ◦X−1

2 − (X1 ◦ Z1 −X1) ◦X
−1
1

∣∣∣

≤ c · [X1]1 [Z1]1 · |X
−1
2 −X−1

1 |0 + |X2 −X1|0

since |id−X1 ◦X
−1
2 |0 = |X2 −X1|0 because of Proposition 4.1 (ii). Noting

|X2 ◦Z2−X1 ◦Z2|0 ≤ |X2−X1|0 and |X1 ◦Z2−X1 ◦Z1|0 ≤ [X1]1 |ε| |w20−w10|0,

we see that the right hand side in (iii) is upper bound of δ1+δ2. The constant c > 0

depends only on the special norm we use for 3×3-matrices, c being independent

of Xm, Zm.

6 – Fixpoint equation w = Tw with the contracting map T = HLK

For solving the fixpoint equation non-locally in time, separate estimates of the

norm |w|0 (which, as we will see, determines the Hölder seminorm [Tw]α) and of

[w]α are decisive. Therefore we introduce the bounded subsets

C0,αM0,M1
=
{
f ∈ C0,α(J×Ω) | |f |0 ≤M0, [f ]α ≤M1

}
.

Combining Propositions 3.1–5.4 we find

Proposition 6.1. Assume w0 ∈ C
1(Ω) and that (5.1) holds. Then the com-

posed map T = HLK fulfills

(i) T : C0,0M →C0,βM0,M1
, where M>0 arbitrary, α=e−cMa, β=α2, M0=

D
|ε| ,

M1 =
1
|ε|

{
c(1 + |ε| [w0]1)

α · (max{eD, 1})1+α +D1−β
}
,
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(ii) T : C0,γM0,M1
→ C1 ∩ C0,βM0,M1

, where γ ∈ (0, 1) arbitrary, β = e−2cM0a,

and in case of two vector valued functions wm ∈ C
0,β
M0,M1

having the initial values

wm(0, ·) = wm0 ∈ C
1(Ω) which both fulfill (5.1), m = 1, 2, the inequality

(iii) |Tw2 − Tw1|∗ ≤ c · |w20 − w10|0 +
c1
b
|w2 − w1|∗

holds in the norm

|f |∗ = sup
t∈J

e−(b+cM)t |f(t, ·)|0(6.1)

which is equivalent to the norm |f |0 for f ∈ C0(J×Ω), with M = c(M0 +M1)

and arbitrary b ∈ (0,∞).

Proof: For any w ∈ C0,0M , Proposition 3.1 (ii) shows v = Kw ∈ C0,`ν,cM , thus

X = (Lv) ∈ C0(J×J×Ω) and [X(t, s, ·)]α ≤ max{eD, 1}, α = e−cMa by Propo-

sition 4.1 (i), (iv). Recalling Proposition 5.4 (i), (ii) we find statement (i) above.

To prove (ii) in case w ∈ C0,γM0,M1
, Proposition 3.1 (iii) gives v = Kw ∈ C0,1+γ

ν,M ,

M = c(M0 +M1), therefore we have X ∈ C1(J×J×Ω) by Proposition 4.1 (ii)

which includes Tw = HLKw ∈ C1 due to Proposition 5.1 (ii).

Finally in case wm ∈ C
0,β
M0,M1

writing the bounds for [Xm(t, s·)]1 and

|X2(t, s, ·) − X1(t, s, ·)|0, which we find from Proposition 3.1 and Proposition

4.1 (iv), (v), in the Lipschitz estimate (iii) of Proposition 5.4, with Twm = HXm,

M = c · (M0 +M1) we get

|ε| ·
∣∣∣(Tw2)(t, ·)− (Tw1)(t, ·)

∣∣∣
0
≤

≤ c |ε| ecMt |w20 − w10|0 + c
(
3 + c ecMt(1 + |ε| [w10]1)

)
ecMt

·

∫ t

0
e−cMt′ ·

∣∣∣w2(t′, ·)− w1(t′,·)
∣∣∣
0
dt′ .

Under the integral sign introducing firstly the factor ebt
′
· e−bt′ , then the norm

(6.1), by integration we get

∣∣∣(Tw2)(t, ·)− (Tw1)(t, ·)
∣∣∣
0
e−(b+cM)t ≤ c · |w20 − w10|0 +

c1
b
|w2 − w1|∗ ,

with c1=
c
|ε|(3 + c ecMa(1 + |ε| [w10]1)), for all t ∈ [0, a]. Taking sup on the left

hand side we find (iii).
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Proposition 6.2. Assume w0 ∈ C
1(Ω) fulfills (5.1). We set

M0 =
D

|ε|
, α = e−cM0a , β = α2 ,

M1 =
1

|ε|

{
c · (1 + |ε| [w0]1)

α (max{eD, 1})1+α +D1−β
}
.

(6.2)

Then

(i) the class Cw0
of all functions f ∈C0,βM0,M1

having the initial value f(0,·)=w0

constitutes a closed subset in C0,βM0,M1
with respect to the norm | · |∗ .

(ii) There holds TCw0
⊂ Cw0

, T being in case b > c1 a contraction of Cw0

with respect to | · |∗ .

(iii) The fixpoint equation w = Tw has a unique solution w ∈ Cw0
. The fix-

point w belongs even to C1, w being there the unique solution of the

initial value problem (1.18) with v = Kw.

(iv) In the norm | · |0, the solution w = Tw ∈ C0,0M0,M1
depends continuously

on its initial value w0 ∈ C
1(Ω), w0 fulfilling (5.1).

Proof: The norms | · |∗ and | · |0 being equivalent, the closeness of Cw0

with respect to | · |∗ in the closed bounded set C0,βM0,M1
of the Hölder space C0,β

results from the closeness of C0,0M0
with respect to | · |0, since in case of uniform

convergence |fk−f |0 → 0 in C0(J×Ω) with k →∞ any uniform Hölder estimate

[fk(t, ·)]α ≤M1 remains valid for the limit f , too.

The first statement in (ii) follows from Proposition 6.1 (i) because of

Cw0
⊂ C0,0M0

and (Tw)(0, ·) = w0 for all w ∈ Cw0
. If we take b > c1, the con-

tractivity of T on Cw0
is seen from Proposition 6.1 (iii), since there the first term

on the right hand side vanishes.

Because of (i) and (ii), the contracting mapping principle [27] ensures the

existence of a unique fixpoint w = Tw ∈ Cw0
, which can be approximated (with

respect to the norm | · |∗) by iteration of T .

For any fixpoint w = Tw ∈ Cw0
, from Proposition 3.1 (iii) and 5.1 (ii) we

see X = LKw ∈ C1(J×J×Ω), thus w ∈ C1 fulfills (1.18). Conversely for

each solution w ∈ C1 ⊂ C0,α of the initial value problem (1.18), we find v =

Kw ∈ C0,1ν from Proposition 3.1 (iii). Therefore, as stated in Proposition 5.1 (i),

w has the representation w = HX in (5.2). Thus w = Tw holds because of

v = Kw, X = Lv, and from Proposition 6.1 we find |w|0 ≤
D
|ε| = M0, conse-

quently w ∈ C0,βM0,M1
∩ Cw(0,·) = Cw0

.
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Finally, if wm= Twm ∈ C
0,β
M0,M1

with initial values wm,0 ∈ C
1 fulfilling (5.1)

are fixpoints in Cwm,0 , m = 1, 2, respectively, and if we take any b > c1, setting

q = c1
b
< 1, Proposition 6.1 (iii) becomes

|w2 − w1|∗ ≤
c

1− q
· |w20 − w10|0 ,

which shows the continuous dependence of w on its initial value even in the norm

| · |0 of C0(J×Ω).

7 – Appendix

We will prove the estimates (iv), (v) in Proposition 4.1 by the methods of dif-

ferential inequalities: Assume vm∈C
0,`
ν,M , m=1, 2 and let Xm=Xm(t, sm, xm) =

Xm(t) denote the unique solution of d
dt
x = vm(t, x), x(s) = xm ∈ Ω, t, s ∈ J.

The Dini derivative (D−
t f)(t) = lim supτ→t−0

f(t)−f(τ)
t−τ

∈ [−∞,∞] is defined for

all continuous functions f . In case of a continuously differentiable function ϕ,

the inequalitiy

D−
t |ϕ(t)| ≤

∣∣∣∣
d

dt
ϕ(t)

∣∣∣∣(7.1)

holds, [26]. Setting ϕ(t) = |X2 −X1| we get

D−
t ϕ ≤ |v2(t,X2)− v1(t,X1)| ≤ δ1 +M`(ϕ) ,(7.2)

ϕ(s1) = |X2(s2)−X1(s1)| ≤ |v2|0 · |s2 − s1|+ |x2 − x1| = δ0 ,(7.3)

with a constant δ1 ≥ |v2(t, ·)− v1(t, ·)|0.

Remark 7.1. The function `(r) obeys the inequality

0 ≤ `(r2)− `(r1) ≤ `(r2 − r1) for 0 ≤ r1 ≤ r2 .(7.4)

Namely, the statement is clear for both arguments rj ≥ 1/e as well as for r1 = 0.

In case 0 < r1 ≤ r2 < 1/e observing the strict decrease of the derivative `′(r) in

r > 0 and `(0) = 0 we find
∫ r2
r1
`′(ρ) dρ ≤

∫ r2−r1
0 `′(ρ) dρ which gives (7.4).

The function ` being Osgood function and fulfilling Wintner’s condition

[6, 26], too, because of (7.4) there is a unique global solution ψ(t) = Ψ(t− s1, δ0)

of the autonomous differential equation

d

dt
ψ = δ1 +M`(ψ) , t ∈ [s1, a], ψ(s1) = δ0 ,(7.5)
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and the well known comparison theorem gives

ϕ(t) ≤ ψ(t) = Ψ(t− s1, δ0) for s1 ≤ t ≤ a ,(7.6)

[26].

Similarly for 0 ≤ t ≤ s1 introducing the variable τ = −t firstly we get

D−
τ ϕ ≤ δ1 +M`ϕ , ϕ(−s1) = δ0 .(7.7)

Then the comparison of ϕ(τ) with the unique solution ψ(τ) = Ψ(τ + s1, δ0) of

d

dτ
ψ = δ1 +M`(ψ) , τ ∈ [−s1, 0], ψ(−s1) = δ0(7.8)

leads to

ϕ(τ) ≤ ψ(τ) = Ψ(s1− t, δ0) for 0 ≤ t = −τ ≤ s1 ,

which together with (7.6) shows

ϕ(t) ≤ Ψ(|t− s1|, δ0) for t ∈ [0, a] .(7.9)

In case δ1= 0 and under the restriction

ψ(t) ≤ e−1(7.10)

the solution of (7.5), (7.8) is

Ψ(|t− s1|, δ0) = δ
α(t)
0 with α(t) = e−M |t−s1| .(7.11)

Therefore taking s2 = s1 and α = e−Ma ≤ α(t), the restriction (7.10) surely

holds if |x2 − x1| ≤ e−α−1

, therefore from (7.11) we find |X2−X1|
|x2−x1|α

≤ 1. Otherwise,

if |x2− x1| ≥ e−α−1

, we get |X2−X1|
|x2−x1|α

≤ eD because of |X2−X1| ≤ D. This shows

the first inequality (iv).

Quite similarly we estimate [X(t, s, ·)]1 or [∇X(t, s, ·)]α in case v ∈ C0,1ν or

v ∈ C0,1+α
ν , respectively: Each derivative

(
∂

∂xj
X
)
(t, s, x) = X(j) is solution of

the differential equation

∂

∂t
X(j) = (∇v) ·X(j) , t ∈ J, X(j) = (δij), t = s, j = 1, 2, 3 ,(7.12)

where (∇v) denotes the Jacobian matrix of v(t,X). As above by means of the

comparison theorem, for the continuous functions ϕ(t) = |X(j)|, the inequality

D−
t ϕ ≤ | ∂

∂t
X(i)| ≤ c · |∇v|0 · ϕ with ϕ(s) = 1 leads to |X(i)(t, s, ·)|0 ≤ ϕ(t) ≤
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ec|∇v|0|t−s| which includes |∇X(t, s, ·)|0 ≤ c ec|∇v|0|t−s|. The constant c depends

only on the special norm we use for 3×3-matrices, c being independent ofX and v.

In case v ∈ C0,1+α
ν we consider X(j)m = ( ∂

∂xj
X)(t, s, x̂m), Xm = X(t, s, x̂m),

x̂m ∈ Ω, t, s ∈ J, m = 1, 2. For the continuous function ϕ(t) = |X(j)2 −X(j)1|,

from (7.12) we find the inequality

D−
t ϕ ≤ c · [∇v]α |∇X|

1+α
0 · |x̂2 − x̂1|

α + c |∇v|0 · ϕ ,(7.13)

which leads to the third inequality in (iv) again by means of the comparison

theorem.

Finally the proof of estimate (4.5) in Proposition 4.1 (v) results from the

observation that the right hand side in (4.5) represents the solution of (7.5) for

t ∈ [s1, a] or of (7.8) for −τ = t ∈ [0, s1], respectively, if in the right hand sides of

both equations we replace `(ψ) by ψ, the constant δ1 by the continuous function

δ1(t) = |v2(t, ·)− v1(t, ·)|0 and require δ0 = 0.

Remark 7.2. Assume the functions v ∈ C0,1ν and X ∈ C1(J×J×Ω) from

(4.1) are given. Then from (7.12) we see that (X(j)), j = 1, 2, 3, represents a fun-

damental system of the initial value problem (7.12) which is linear in X(j). Using

the identity (5.3) and the transformation X= X(t, 0, x̂) we get from Helmholtz’s

vorticity equation (1.3)

∂

∂t
ŵ = (ŵ · ∇)v ≡ (∇v) · ŵ , t ∈ J, ŵ = ŵ0 = (ŵ0j), t = 0 ,(7.14)

where ∇v = (∇v)(t,X). Thus by a well known theorem on linear systems of

ordinary differential equations, ŵ must be linear combination of the solutions

X(j) of (7.12) with the constant coefficients ŵ0j , which proves Cauchy’s vorticity

equation (1.7), [22, p. 151–152].
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einer Differenzennäherung, in: “Recent Developments in Theoretical and Experi-
mental Fluid Mechanics” (U. Müller, K.G. Roesner and B. Schmidt, Eds.), Springer
(1979), 295–308.
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[29] Yudovič, W.I. – Nonstationary flows of an ideal incompressible fluid, Zh. Vyc.

Math., 3 (1963), 1032–1066.

Reimund Rautmann and Vsevolod Solonnikov,

Institut für Mathematik der Universität Paderborn,

D 33095 Paderborn – GERMANY

E-mail: rautmann@upb.de

slk@dns.unife.it


