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STRONGLY NONLINEAR PARABOLIC EQUATIONS
WITH NATURAL GROWTH TERMS AND L1 DATA

IN ORLICZ SPACES

A. Elmahi and D. Meskine

Abstract: We prove compactness and approximation results in inhomogeneous

Orlicz–Sobolev spaces and look at, as an application, the Cauchy–Dirichlet problem

u′ + A(u) + g(x, t, u,∇u) = f ∈ L1. We also give a trace result allowing to deduce the

continuity of the solutions with respect to time.

1 – Introduction

Let Ω be a bounded open subset of RN and let Q be the cylinder Ω×(0, T )

with some given T > 0 and let

A(u) = −div
(

a(x, t, u,∇u)
)

be a Leray–Lions operator defined on Lp(0, T ;W 1,p(Ω)).

Dall’aglio–Orsina [9] and Porretta [19] proved the existence of solutions for

the following Cauchy–Dirichlet problem























∂u

∂t
+A(u) + g(x, t, u,∇u) = f in Q,

u(x, t) = 0 on ∂Ω×(0, T ),

u(x, 0) = u0(x) in Ω ,

(1)
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where g is a nonlinearity with the following “natural” growth condition (of order

p):

|g(x, t, s, ξ)| ≤ b(|s|)
(

c(x, t) + |ξ|p
)

and which satisfies the classical sign condition g(x, t, s, ξ)s ≥ 0. The right hand

side f is assumed to belong to L1(Q). This result generalizes analogous one of

Boccardo–Gallouet [4]. See also [5] and [6] for related topics. In all of these

results, the function a is supposed to satisfy a polynomial growth condition with

respect to u and ∇u.

When trying to relax this restriction on a (for example, if a has exponential or

logarithmic growth with respect to ∇u) we are led to replace Lp(0, T ;W 1,p(Ω))

with an inhomogeneous Sobolev spaceW 1,xLM (Q) built from an Orlicz space LM

instead of Lp where the N-function M which defines LM is related to the actual

growth of a. The solvability of (1) in this setting is only proved in the variational

case i.e. where f belongs to the Orlicz space W−1,xEM (Q), see Donaldson [8]

for g ≡ 0 and Robert [20] for g ≡ g(x, t, u) when A is monotone, t2 ¿ M(t)

and M satisfies a ∆2 condition and also Elmahi [11] for g = g(x, t, u,∇u) when

M satisfies a ∆′ condition and M(t) ¿ tN/(N−1) and finally the recent work

Elmahi–Meskine [13] for the general case.

It is our purpose in this paper to prove, in the case where f belongs to L1(Q),

the existence of solutions for parabolic problems of the form (1) in the setting of

Orlicz spaces by using a classical approximating method. Thus, and in order to

study the behaviour of the approximate solutions we call upon compactness tools,

so that, we first establish (in section 3) L1 compactness results nearly similar to

those of Simon [21] and Boccardo–Murat [6] and Elmahi [10].

Next, and when going to the limit in approximating problems, we have to reg-

ularize an arbitrary test function by smooth ones with converging distributional

time derivatives. This becomes possible thanks to the approximate theorem 3

which is slightly different from theorems 3 and 4 of [15] and will be also applied

to get a trace result giving the continuity of such test functions with respect to

time.

The plan of the paper is as follows: in Section 2 we recall some preliminaries

concerning Orlicz–Sobolev spaces while in Section 3 we prove the compactness

results in inhomogeneous Orlicz–Sobolev spaces.

Section 4 will be devoted to approximation results which allow us to overcome

the difficulties which arise on time derivatives while in Section 5, we look at, as

an application of all previous results, the solvability, in the framework of entropy

solutions, of strongly nonlinear parabolic initial-boundary value problems of the
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form (1), whose simplest model is the following























∂u

∂t
− div

(

a(x, t, u)
m(|∇u|)

|∇u|
∇u

)

+ g(x, t, u)m(|∇u|) |∇u| = f in Q,

u(x, t) = 0 on ∂Ω×(0, T ) ,

u(x, 0) = u0(x) in Ω ,

where 0 < α ≤ a(x, t, s) ≤ β and where m is any continuous function on [0,+∞)

which strictly increases from 0 to +∞.

Note that, our existence result generalizes analogous ones of [9] and [19] (take

indeedm(t) = tp−1, with p > 1). Moreover, and contrary to [9] and [19], the proof

is achieved without extending the initial problem or assuming the positiveness of

either the data f or the initial condition u0.

2 – Preliminaries

2.1. Let M : R+→ R+ be an N-function, i.e. M is continuous, convex, with

M(t) > 0 for t > 0, M(t)/t→ 0 as t→ 0 and M(t)/t→∞ as t→∞.

Equivalently, M admits the representation: M(t) =
∫ t
0 m(τ)dτ where m :

R+→ R+ is non-decreasing, right continuous, with m(0) = 0, m(t) > 0 for t > 0

and m(t)→∞ as t→∞.

The N-function M conjugate to M is defined by M(t) =
∫ t
0 m(τ)dτ , where

m : R+ → R+ is given by m(t) = sup{s : m(s) ≤ t} (see [1], [16] and [17]).

We will extend these N-functions into even functions on all R.

The N-function M is said to satisfy a ∆2 condition if, for some k > 0:

M(2t) ≤ kM(t) ∀ t ≥ 0 .(2)

when (2) holds only for t ≥ some t0 > 0 thenM is said to satisfy the ∆2 condition

near infinity.

2.2. Let Ω be an open subset of RN . The Orlicz class LM (Ω) (resp. the Orlicz

space LM (Ω)) is defined as the set of (equivalence classes of) real-valued measur-

able functions u on Ω such that
∫

ΩM(u(x))dx<+∞ (resp.
∫

ΩM(u(x)/λ)dx<+∞

for some λ > 0).
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LM (Ω) is a Banach space under the norm:

‖u‖M,Ω = inf

{

λ > 0 :

∫

Ω
M

(

u(x)

λ

)

dx ≤ 1

}

and LM (Ω) is a convex subset of LM (Ω).

The closure in LM (Ω) of the set of bounded measurable functions with com-

pact support in Ω is denoted by EM (Ω). The equality EM (Ω) = LM (Ω) holds

if and only if M satisfies the ∆2 condition, for all t or for t large according to

whether Ω has infinite measure or not.

The dual of EM (Ω) can be identified with LM (Ω) by means of the pairing
∫

Ω u(x) v(x) dx, and the dual norm on LM (Ω) is equivalent to ‖.‖M,Ω.

The space LM (Ω) is reflexive if and only if M and M satisfy the ∆2 condition

(near infinity only if Ω has finite measure).

Two N-functions M and P are said to be equivalent (resp. near infinity),

if there exist reals numbers k1, k2 > 0 such that P (k2t) ≤ M(t) ≤ P (k2t) for all

t ≥ 0 (resp. for all t ≥ some t0 > 0).

P¿M means that P grows essentially less rapidly thanM , i.e. for each ε > 0,

P (t)/(M(ε t))→ 0 as t→∞. This is the case if and only if M−1(t)/P−1(t)→ 0

as t→∞, therefore, we have the following continuous imbedding LM (Ω)⊂EP (Ω)

when Ω has finite measure.

2.3. We now turn to the Orlicz–Sobolev spaces. W 1LM (Ω) (resp.W 1EM (Ω))

is the space of all functions u such that u and its distributional derivatives up to

order 1 lie in LM (Ω) (resp. EM (Ω)). It is a Banach space under the norm:

‖u‖1,M,Ω =
∑

|α|≤1

‖Dαu‖M,Ω .

Thus W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of the product

of (N+1) copies of LM (Ω). Denoting this product by ΠLM , we will use the weak

topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ).

The space W 1
0EM (Ω) is defined as the (norm) closure of the Schwartz space

D(Ω) in W 1EM (Ω) and the space W 1
0LM (Ω) as the σ(ΠLM ,ΠEM ) closure of

D(Ω) in W 1LM (Ω).

We say that un converges to u for the modular convergence in W 1LM (Ω) if

for some λ > 0,
∫

ΩM((Dαun− D
αu)/λ)dx → 0 for all |α| ≤ 1. This implies

convergence for σ(ΠLM ,ΠLM ). Note that, if un → u in LM (Ω) for the modular

convergence and vn → v in LM (Ω) for the modular convergence, we have
∫

Ω
unvn dx →

∫

Ω
uv dx as n→∞ .(3)
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Indeed, let λ > 0 and µ > 0 such that

∫

Ω
M

(

un − u

λ

)

dx → 0 and

∫

Ω
M

(

vn − v

µ

)

dx → 0

and, since unvn − uv = (un − u) (vn − v) + unv + uvn − 2uv, we obtain

1

λµ

∣

∣

∣

∣

∫

Ω
(unvn − uv) dx

∣

∣

∣

∣

≤

≤

∫

Ω
M

(

un − u

λ

)

dx +

∫

Ω
M

(

vn − v

µ

)

dx +
1

λµ

∣

∣

∣

∣

∫

Ω
(unv + uvn − 2uv) dx

∣

∣

∣

∣

therefore, by letting n→∞ in the last side, we get the result.

IfM satisfies the ∆2 condition (near infinity only when Ω has finite measure),

then modular convergence coincides with norm convergence.

2.4. Let W−1LM (Ω) (resp. W−1EM (Ω)) denote the space of distributions

on Ω which can be written as sums of derivatives of order ≤ 1 of functions in

LM (Ω) (resp. EM (Ω)). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space D(Ω) is dense in

W 1
0LM (Ω) for the modular convergence and thus for the topology σ(ΠLM ,ΠLM )

(cf. [14], [15]). Consequently, the action of a distribution T in W−1LM (Ω) on an

element u of W 1
0LM (Ω) is well defined, it will be denoted by 〈T, u〉.

2.5. Let Ω be a bounded open subset of RN , T > 0 and set Q = Ω×]0, T [.

Let M be an N-function. For each α ∈ NN , denote by Dα
x the distributional

derivative on Q of order α with respect to the variable x ∈ RN . The inhomoge-

neous Orlicz–Sobolev spaces of order 1 are defined as follows

W 1,xLM (Q) =
{

u ∈ LM (Q) : Dα
xu ∈ LM (Q), ∀ |α| ≤ 1

}

and

W 1,xEM (Q) =
{

u ∈ EM (Q) : Dα
xu ∈ EM (Q), ∀ |α| ≤ 1

}

.

The latter space is a subspace of the former. Both are Banach spaces under the

norm

‖u‖ =
∑

|α|≤1

‖Dα
xu‖M,Q .

We can easily show that they form a complementary system when Ω sat-

isfies the segment property. These spaces are considered as subspaces of the

product space ΠLM (Q) which has (N +1) copies. We shall also consider the

weak topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ). If u ∈ W 1,xLM (Q) then
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the function: t 7−→ u(t) = u(., t) is defined on (0, T ) with values in W 1LM (Ω).

If, further, u ∈ W 1,xEM (Q) then u(., t) is a W 1EM (Ω)-valued and is strongly

measurable. Furthermore the following continuous imbedding holds: W 1,xEM (Q)

⊂ L1(0, T ;W 1EM (Ω)). The space W 1,xLM (Q) is not in general separable, if

u ∈ W 1,xLM (Q), we can not conclude that the function u(t) is measurable from

(0, T ) into W 1LM (Ω). However, the scalar function t 7−→ ‖Dα
xu(t)‖M,Ω is in

L1(0, T ) for all |α| ≤ 1.

2.6. The space W 1,x
0 EM (Q) is defined as the (norm) closure in W 1,xEM (Q)

of D(Q). We can easily show as in [15] (see the proof of theorem 3 below) that

when Ω has the segment property then each element u of the closure of D(Q) with

respect to the weak ∗ topology σ(ΠLM ,ΠEM ) is limit, in W 1,xLM (Q), of some

sequence (un) ⊂ D(Q) for the modular convergence i.e. there exists λ > 0 such

that, for all |α| ≤ 1,
∫

QM((Dα
xun−D

α
xu)/λ)dx dt→ 0 when n→∞, this implies

that (un) converges to u in W 1,xLM (Q) for the weak topology σ(ΠLM ,ΠLM ).

Consequently, D(Q)
σ(ΠLM ,ΠE

M
)
= D(Q)

σ(ΠLM ,ΠL
M
)
, this space will be denoted

by W 1,x
0 LM (Q). Furthermore, W 1,x

0 EM (Q) =W 1,x
0 LM (Q) ∩ΠEM .

Poincaré’s inequality also holds in W 1,x
0 LM (Q) and then there is a constant

C > 0 such that for all u ∈W 1,x
0 LM (Q) one has

∑

|α|≤1

‖Dα
xu‖M,Q ≤ C

∑

|α|=1

‖Dα
xu‖M,Q ,

thus both sides of the last inequality are equivalent norms on W 1,x
0 LM (Q).

We have then the following complementary system





W 1,x
0 LM (Q) F

W 1,x
0 EM (Q) F0



 ,

F being the dual space of W 1,x
0 EM (Q). It is also, up to an isomorphism,

the quotient of ΠLM by the polar set W 1,x
0 EM (Q)⊥, and will be denoted by

F = W−1,xLM (Q) and it is shown that W−1,xLM (Q) = {f =
∑

|α|≤1D
α
xfα :

fα ∈ LM (Q)}. This space will be equipped with the usual quotient norm:

‖f‖ = inf
∑

|α|≤1

‖fα‖M,Q

where the inf is taken over all possible decompositions f=
∑

|α|≤1D
α
xfα, fα∈LM (Q).

The space F0 is then given by F0 = {f =
∑

|α|≤1D
α
xfα : fα ∈ EM (Q)} and is

denoted by F0 =W−1,xEM (Q).
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3 – Compactness results

In this section, we shall prove some compactness theorems in inhomogeneous

Orlicz–Sobolev spaces which will be applied to study the behaviour of the ap-

proximating solutions for parabolic problems. These results, which are nearly

similar to those of Simon [21], Boccardo–Murat [6] and Elmahi [10], give only L1

(and not LM ) compactness for sets in W 1,xLM (Q). They are, however, sufficient

for applications to solve parabolic problems in Orlicz spaces of variational type

or with L1 data.

For each h > 0, define the usual translated τhf of the function f by τhf(t) =

f(t+ h). If f is defined on [0, T ] then τhf is defined on [−h, T − h].

First of all, recall the following compactness result proved by Simon [21].

Theorem 1. See [21]. Let B be a Banach space and let T > 0 be a fixed

real number. If F ⊂ L1(0, T ;B) is such that

{∫ t2

t1
f(t) dt

}

f
is relatively compact in B, for all 0 < t1 < t2 < T .(4)

‖τhf − f‖L1(0,T ;B) → 0 uniformly in f ∈ F, when h→ 0 .(5)

Then F is relatively compact in L1(0, T ;B).

Next, we prove the following lemma, which it can be seen as a “Orlicz” version

of the well known interpolation inequality related to the space Lp(0, T ;W 1,p
0 (Ω)).

Lemma 1. LetM be an N-function. Let Y be a Banach space such that the

following continuous imbedding holds: L1(Ω) ⊂ Y . Then, for all ε > 0 and all

λ > 0, there is Cε > 0 such that for all u ∈W 1,x
0 LM (Q), with |∇u|/λ ∈ LM (Q),

‖u‖L1(Q) ≤ ε λ

(

∫

Q
M

(

|∇u|

λ

)

dx dt + T

)

+ Cε‖u‖L1(0,T ;Y ) .

Proof: Since W 1
0LM (Ω) ⊂ L1(Ω) with compact imbedding, see [1], then, for

all ε > 0, there is Cε > 0 such that for all v ∈W 1
0LM (Ω):

‖v‖L1(Ω) ≤ ε‖∇v‖LM (Ω) + Cε‖v‖Y .(6)
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Indeed, if the above assertion holds false, there is ε0 > 0 and vn ∈W
1
0LM (Ω)

such that

‖vn‖L1(Ω) ≥ ε0‖∇vn‖LM (Ω) + n‖vn‖Y .

This gives, by setting wn = vn/‖∇vn‖LM (Ω):

‖wn‖L1(Ω) ≥ ε0 + n‖wn‖Y , ‖∇wn‖LM (Ω) = 1 .

Since (wn) is bounded in W 1
0LM (Ω) then for a subsequence,

wn ⇀ w in W 1
0LM (Ω) for σ(ΠLM ,ΠEM ) and strongly in L1(Ω) .

Thus ‖wn‖L1(Ω) is bounded and ‖wn‖Y → 0 as n→∞. We deduce that wn → 0

in Y and that w = 0 implying that ε0 ≤ ‖wn‖L1(Ω) → 0, a contradiction.

Using v = u(t) in (6) for all u ∈ W 1,x
0 LM (Q) with |∇u|/λ ∈ LM (Q) and a.e.

t in (0, T ), we have

‖u(t)‖L1(Ω) ≤ ε‖∇u(t)‖LM (Ω) + Cε‖u(t)‖Y .

Since
∫

QM(|∇u(x, t)|/λ)dx dt <∞ we have thanks to Fubini’s theorem,

∫

Ω
M

(

|∇u(x, t)|

λ

)

dx < ∞ for a.e. t in (0, T )

and then

‖∇u(t)‖LM (Ω) ≤ λ

(

∫

Ω
M

(

|∇u(x, t)|

λ

)

dx + 1

)

which implies that

‖u(t)‖L1(Ω) ≤ ε λ

(

∫

Ω
M

(

|∇u(x, t)|

λ

)

dx + 1

)

+ Cε‖u(t)‖Y .

Integrating this over (0, T ) yields

‖u‖L1(Q) ≤ ε λ

(

∫

Q
M

(

|∇u(x, t)|

λ

)

dx dt + T

)

+ Cε

∫ T

0
‖u(t)‖Y dt

and finally

‖u‖L1(Q) ≤ ε λ

(

∫

Q
M

(

|∇u|

λ

)

dx dt + T

)

+ Cε‖u‖L1(0,T ;Y ) .
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We also prove the following lemma which allows us to enlarge the space Y

whenever necessary.

Lemma 2. Let Y be a Banach space such that L1(Ω) ⊂ Y with continuous

imbedding.

If F is bounded in W 1,x
0 LM (Q) and is relatively compact in L1(0, T ;Y ) then

F is relatively compact in L1(Q) (and also in EP (Q) for all N-function P ¿M).

Proof: Let ε > 0 be given. Let C > 0 be such that
∫

QM(|∇f |/C)dx dt ≤ 1

for all f ∈ F .

By the previous lemma, there exists Cε > 0 such that, for all u ∈W 1,x
0 LM (Q)

with |∇u|/(2C) ∈ LM (Q),

‖u(t)‖L1(Q) ≤
2 εC

4C(1 + T )

(

∫

Q
M

(

|∇u|

2C

)

dx dt + T

)

+ Cε‖u‖L1(0,T ;Y ) .

Moreover, there exists a finite sequence (fi) in F satisfying:

∀ f ∈ F, ∃ fi such that ‖f − fi‖L1(0,T ;Y ) ≤
ε

2Cε

so that

‖f − fi‖L1(Q) ≤
ε

2(1+T )

(

∫

Q
M

(

|∇f −∇fi|

2C

)

dx dt + T

)

+ Cε‖f − fi‖L1(0,T ;Y )

≤ ε

and hence F is relatively compact in L1(Q).

Since P ¿M then by using Vitali’s theorem, it is easy to see that F

is relatively compact in EP (Q).

Lemma 3. (See [21]). Let B be a Banach space.

If f ∈ D′(]0, T [;B) is such that ∂f
∂t ∈ L

1(0, T ;B) then f ∈ C(]0, T [, B) and

for all h > 0

‖τhf − f‖L1(0,T ;B) ≤ h

∥

∥

∥

∥

∂f

∂t

∥

∥

∥

∥

L1(0,T ;B)
.

Remark 1. By lemma 4, if F ⊂ L1(0, T ;B) is such that
{

∂f
∂t : f ∈ F

}

is

bounded in L1(0, T ;B) then

‖τhf − f‖L1(0,T ;B) → 0 as h→ 0 uniformly with respect to f ∈ F .
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Lemma 4. (See [8]). The following continuous imbedding hold: W 1,x
0 EM (Q)

⊂ L1(0, T ;W 1
0EM (Ω)) and W−1,xEM (Q) ⊂ L1(0, T ;W−1EM (Ω)).

We shall now apply the previous results to prove some compactness theorems

in inhomogeneous Orlicz–Sobolev spaces.

Theorem 2. Let M be an N-function. If F is bounded in W 1,x
0 LM (Q) and

{

∂f
∂t : f ∈ F

}

is bounded in W−1,xLM (Q) then F is relatively compact in L1(Q).

Proof: Let P and R be N-functions such that P ¿ M and R ¿ M near

infinity.

For all 0 < t1 < t2 < T and all f ∈ F, we have

∥

∥

∥

∥

∫ t2

t1
f(t) dt

∥

∥

∥

∥

W 1
0
EP (Ω)

≤

∫ T

0
‖f(t)‖W 1

0
EP (Ω)

dt

≤ C1‖f‖W 1,x
0

EP (Q)
≤ C2‖f‖W 1,x

0
LM (Q)

≤ C

where we have used the following continuous imbedding

W 1,x
0 LM (Q) ⊂ W 1,x

0 EP (Q) ⊂ L1(0, T ;W 1
0EP (Ω)) .

Since the imbedding W 1
0EP (Ω) ⊂ L

1(Ω) is compact we deduce that
(

∫ t2
t1
f(t) dt

)

f∈F
is relatively compact in L1(Ω) and in W−1,1(Ω) as well.

On the other hand
{

∂f
∂t : f ∈ F

}

is bounded in W−1,xLM (Q) and in

L1(0, T ;W−1,1(Ω)) as well, since

W−1,xLM (Q) ⊂ W−1,xER(Q) ⊂ L1(0, T ;W−1ER(Ω)) ⊂ L1(0, T ;W−1,1(Ω)) ,

with continuous imbedding.

By Remark 1, we deduce that ‖τhf−f‖L1(0,T ;W−1,1(Ω)) → 0 uniformly in f ∈ F

when h→ 0 and by using theorem 1, F is relatively compact in L1(0, T ;W−1,1(Ω)).

Since L1(Ω) ⊂ W−1,1(Ω) with continuous imbedding we can apply lemma 2

to conclude that F is relatively compact in L1(Q).
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Corollary 1. Let M be an N-function.

Let (un) be a sequence of W
1,xLM (Q) such that

un ⇀ u weakly in W 1,xLM (Q) for σ(ΠLM ,ΠEM )

and
∂un
∂t

= hn + kn in D′(Q)

with (hn) bounded in W−1,xLM (Q) and (kn) bounded in the space M(Q) of

measures on Q.

Then un → u strongly in L1loc(Q).

If further un ∈W
1,x
0 LM (Q) then un → u strongly in L1(Q).

Proof: It is easily adapted from that given in [6] by using Theorem 2 and

Remark 1 instead of lemma 8 of [21].

4 – Approximation and time mollification

In this section, Ω is an open subset of RN with the segment property and

I is a subinterval of R (both possibly unbounded) and Q = Ω×I.

Definition 1. We say that un→ u in W−1,xLM (Q)+L1(Q) for the modular

convergence if we can write

un =
∑

|α|≤1

Dα
xu

α
n + u0n and u =

∑

|α|≤1

Dα
xu

α + u0

with uαn → uα in LM (Q) for the modular convergence ∀ |α| ≤ 1 and u0n → u0

strongly in L1(Q).

This implies, in particular, that un → u inW−1,xLM (Q)+L1(Q) for the weak

topology σ(ΠLM + L1,ΠLM ∩ L
∞) in the sense that 〈un, v〉 → 〈u, v〉 for all v ∈

W 1,x
0 LM (Q)∩L∞(Q) where here and throughout the paper 〈 , 〉 means for either

the pairing between W 1,x
0 LM (Q) and W−1,xLM (Q), or between W 1,x

0 LM (Q) ∩

L∞(Q) and W−1,xLM (Q) + L1(Q); indeed,

〈un, v〉 =
∑

|α|≤1

(−1)|α|
∫

Q
uαnD

α
xv dx dt +

∫

Q
u0nv dx dt
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and since for all |α| ≤ 1, uαn → uα in LM (Q) for the modular convergence, and

so for σ(LM , LM ), we have

∑

|α|≤1

(−1)|α|
∫

Q
uαnD

α
xv dx dt +

∫

Q
u0nv dx dt →

→
∑

|α|≤1

(−1)|α|
∫

Q
uαDα

xv dx dt +

∫

Q
u0v dx dt = 〈u, v〉 .

Moreover, if vn → v in W 1,x
0 LM (Q) for the modular convergence and weakly*

in L∞(Q), we have 〈un, vn〉 → 〈u, v〉 as n→∞, see (3).

We shall prove the following approximation theorem which plays a fundamen-

tal role when proving the existence of solutions for parabolic problems.

Theorem 3. If u ∈ W 1,xLM (Q) ∩ L1(Q) (resp. W 1,x
0 LM (Q) ∩ L1(Q)) and

∂u/∂t ∈ W−1,xLM (Q) + L1(Q) then there exists a sequence (vj) in D(Q) (resp.

D(I,D(Ω))) such that

vj → u in W 1,xLM (Q) and
∂vj
∂t
→

∂u

∂t
in W−1,xLM (Q) + L1(Q)

for the modular convergence.

Proof: Let u ∈W 1,xLM (Q)∩L1(Q) such that ∂u/∂t ∈W−1,xLM (Q)+L1(Q)

and let ε > 0 be given. Writing ∂u/∂t =
∑

|α|≤1D
α
xu

α + u0, where uα ∈ LM (Q)

for all |α| ≤ 1 and u0 ∈ L1(Q), we will show that there exists λ > 0 (depending

only on u and N) and there exists v ∈ D(Q) for which we can write ∂v/∂t =
∑

|α|≤1D
α
xv

α + v0 with vα, v0 ∈ D(Q) such that

∫

Q
M

(

Dα
xv −D

α
xu

λ

)

dx dt ≤ ε ,

∫

Q
M

(

vα − uα

λ

)

dx dt ≤ ε(7)

∀ |α| ≤ 1 and ‖v0 − u0‖L1(Q) ≤ ε .

We will process as in [15] (see the proofs of Theorem 3 and Theorem 4). Since

the approximation of u and Dα
xu can be obtained in the same way, we will only

show that the approximation also holds for the time derivative. Thus, we consider

ϕ ∈ D(RN+1) with 0 ≤ ϕ ≤ 1, ϕ = 1 for |(x, t)| ≤ 1 and ϕ = 0 for |(x, t)| ≥ 2.

Let ϕr(x, t) = ϕ((x, t)/r) and let ur = ϕru.
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On the one hand, we have

∂ur
∂t

= ϕr





∑

|α|≤1

Dα
xu

α + u0



+
1

r

∂ϕ

∂t

(

(x, t)

r

)

u

=
∑

|α|≤1

Dα
x (ϕru

α) +



−
1

r

∑

|α|=1

Dα
xϕ

(

(x, t)

r

)

uα



+

[

1

r

∂ϕ

∂t

(

(x, t)

r

)

u+ ϕru
0
]

:= u1r + u2r + u3r .

When r →∞, we have, by Lemma 5 of [15], u1r →
∑

|α|≤1D
α
xu

α in W−1,xLM (Q)

for the modular convergence and, by direct examination, u2r → 0 strongly in

LM (Q) and u3r → u0 strongly in L1(Q). Hence, we can choose λ > 0 (namely

such that Dα
xu/λ ∈ LM (Q) and uα/λ ∈ LM (Q) for all |α| ≤ 1) and r > 0 such

that
∫

Q
M
(

(Dα
xur −D

α
xu)/λ

)

dx dt ≤ ε ∀ |α| ≤ 1 ,

∫

Q
M(u2r/λ) dx dt ≤ ε

‖u3r − u
0‖L1(Q) ≤ ε and

∫

Q
M
(

(ϕru
α − uα)/λ

)

dx dt ≤ ε ∀ |α| ≤ 1 .(8)

On the other hand, let ψi be a C∞ partition of unity on Q subordinate to a

covering {Ui} of Q satisfying the properties of lemma 7 of [15] and consider the

translated function (ψivr)ti defined by (ψivr)ti(x, t) = (ψivr)((x, t) + tiyi) where

yi is the vector associated to Ui by the segment property. Let ρσ be a mollifier

sequence in RN+1, that is, ρσ ∈ D(RN+1), ρσ(x, t) = 0 for |(x, t)| ≥ σ, ρσ ≥ 0

and
∫

RN+1 ρσ = 1. Extending ur outside Q by zero, we see that ψiur vanishes

identically for all i ≥ some ir. As in [15], we define

v =
ir
∑

i=1

(ψiur)ti ∗ ρσi ∈ D(Q) .

Clearly, we have

∂v

∂t
=

ir
∑

i=1

(ψiu
1
r)ti∗ρσi +

ir
∑

i=1

(ψiu
2
r)ti∗ρσi +

ir
∑

i=1

(ψiu
3
r)ti∗ρσi +

ir
∑

i=1

(

∂ψi

∂t
ur

)

ti

∗ ρσi

and since

ir
∑

i=1

(ψiu
1
r)ti∗ρσi =

ir
∑

i=1



ψi

∑

|α|≤1

Dα
x (ϕru

α)





ti

∗ ρσi =
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=
ir
∑

i=1





∑

|α|≤1

Dα
x (ψiϕru

α)





ti

∗ ρσi −
ir
∑

i=1





∑

|α|=1

(Dα
xψi)ϕru

α





ti

∗ ρσi

=
∑

|α|≤1

(

ir
∑

i=1

(

Dα
x (ψiϕru

α)
)

ti
∗ ρσi

)

−
ir
∑

i=1





∑

|α|=1

(Dα
xψi)ϕru

α





ti

∗ ρσi

we deduce that
∂v

∂t
=
∑

|α|≤1

Dα
xv

α + v2 + v3

where, as it can be easily seen

vα =
ir
∑

i=1

(ψiϕru
α)ti ∗ ρσi ∀ |α| ≤ 1 ,

v2 =
ir
∑

i=1

(ψiu
2
r)ti ∗ ρσi −

ir
∑

i=1





∑

|α|=1

Dα
x (ψi)ϕru

α





ti

∗ ρσi

v3 =
ir
∑

i=1

(ψiu
3
r)ti ∗ ρσi +

ir
∑

i=1

(

∂ψi

∂t
ur

)

ti

∗ ρσi .

Now, for each i = 1, ..., ir, we can choose (see lemma 5 of [15]) 0 < ti < 1 and

ρσi = ρi such that

∫

Q
M

((

ir
∑

i=1

(ψiD
α
xur)ti∗ρi −D

α
xur

)

/λ

)

dx dt ≤ ε ∀ |α| ≤ 1 ,

∫

Q
M
(

(v2 − u2r)/λ
)

dx dt ≤ ε,

(9)
‖v3 − u3r‖L1(Q) ≤ ε ,
∫

Q
M

((

ir
∑

i=1

(ψiϕru
α)ti ∗ ρi − ϕru

α

)

/λ

)

dx dt ≤ ε ∀ |α| ≤ 1 .

Combining (8) and (9), we get the result.

The case where u ∈ W 1,x
0 LM (Q) ∩ L1(Q) can be handled similarly without

essential difficulty as it is mentioned in the proof of theorem 4 of [15].

Remark 2. The assumption u ∈ L1(Q) in theorem 3 is needed only when Q

has infinite measure, since else, we have LM (Q) ⊂ L1(Q) and so W 1,xLM (Q) ∩

L1(Q) =W 1,xLM (Q).
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Remark 3. If, in the statement of theorem 3 above, one takes I = R,

we have that D(Ω×R) is dense in {u ∈ W 1,x
0 LM (Ω×R) ∩ L1(Ω×R) : ∂u/∂t ∈

W−1,xLM (Ω×R) + L1(Ω×R)} for the modular convergence. This trivially fol-

lows from the fact that D(R,D(Ω)) ≡ D(Ω×R).

A first application of theorem 3 is the following trace result (see [19], Theorem

1.1, for the case of ordinary Sobolev spaces).

Lemma 5. Let a < b ∈ R and Ω be a bounded open subset of RN with the

segment property. Then

{

u ∈W 1,x
0 LM (Ω×(a, b)) : ∂u/∂t ∈W−1,xLM (Ω×(a, b)) + L1(Ω×(a, b))

}

⊂

⊂ C([a, b], L1(Ω)) .

Proof: Let u ∈W 1,x
0 LM (Ω×(a, b)) such that ∂u/∂t ∈W−1,xLM (Ω×(a, b))+

L1(Ω×(a, b)). After two consecutive reflections first with respect to t = b and

then with respect to t = a:

û(x, t) = u(x, t)χ(a,b) + u(x, 2b− t)χ(b,2b−a) on Ω×(a, 2b− a)

and

ũ(x, t) = û(x, t)χ(a,2b−a) + û(x, 2a− t)χ(3a−2b,a) on Ω×(3a− 2b, 2b− a) ,

we get a function ũ ∈W 1,x
0 LM (Ω×(3a−2b, 2b−a)) with ∂ũ/∂t ∈W−1,xLM (Ω×

(3a− 2b, 2b−a))+L1(Ω×(3a− 2b, 2b−a)). Now, by letting a function η ∈ D(R)

with η = 1 on [a, b] and supp η ⊂ (3a − 2b, 2b − a), we set u = ηũ; therefore,

by standard arguments (see [7], Lemme IV and Remarque 10 p. 158), we have:

u=u on Ω×(a, b), u∈W 1,x
0 LM (Ω×R)∩L1(Ω×R) and ∂u/∂t ∈W−1,xLM (Ω×R)+

L1(Ω×R).

Let now vj the sequence given by theorem 3 corresponding to u, that is,

vj → u in W 1,x
0 LM (Ω×R)

and
∂vj
∂t
→

∂u

∂t
in W−1,xLM (Ω×R) + L1(Ω×R)

for the modular convergence.
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Throughout this paper, we denote Tk the usual truncation at height k defined

on R by Tk(s) = min(k,max(s,−k)) and Sk(s) =
∫ s
0 Tk(t) dt its primitive. We

have,
∫

Ω
S1(vi−vj)(τ) dx =

∫

Ω

∫ τ

−∞
T1(vi−vj)

(

∂vi
∂t
−
∂vj
∂t

)

dx dt → 0 as i, j →∞ ,

from which, by following [19], one deduces that vj is a Cauchy sequence in

C(R, L1(Ω)) and hence u ∈ C(R, L1(Ω)). Consequently, u ∈ C([a, b], L1(Ω)).

In order to deal with the time derivative, we introduce a time mollification of

a function u ∈ LM (Q). Thus we define, for all µ > 0 and all (x, t) ∈ Q

uµ(x, t) = µ

∫ t

−∞
ũ(x, s) exp

(

µ(s− t)
)

ds(10)

where ũ(x, s) = u(x, s)χ(0,T )(s) is the zero extension of u.

Throughout the paper the index µ always indicates this mollification.

Proposition 1. If u ∈ LM (Q) then uµ is measurable in Q and ∂uµ/∂t =

µ(u− uµ) and if u ∈ LM (Q) then
∫

Q
M(uµ) dx dt ≤

∫

Q
M(u) dx dt .

Proof: Since (x, t, s) 7−→ u(x, s) exp(µ(s − t)) is measurable in Ω×[0, T ]×

[0, T ], we deduce that uµ is measurable by Fubini’s theorem. By Jensen’s integral

inequality we have, since
∫ 0
−∞ µ exp(µs) ds = 1,

M

(∫ t

−∞
µ ũ(x, s) exp

(

µ(s− t)
)

ds

)

= M

(∫ 0

−∞
µ exp(µs) ũ(x, s+ t) ds

)

≤

∫ 0

−∞
µ exp(µs)M(ũ(x, s+ t)) ds

which implies
∫

Q
M(uµ(x, t)) dx dt ≤

∫

Ω×R

(∫ 0

−∞
µ exp(µs)M(ũ(x, s+ t)) ds

)

dx dt

≤

∫ 0

−∞
µ exp(µs)

(∫

Ω×R
M(ũ(x, s+ t)) dx dt

)

ds

≤

∫ 0

−∞
µ exp(µs)

(∫

Q
M(u(x, t)) dx dt

)

ds

=

∫

Q
M(u) dx dt .
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Furthermore

∂uµ
∂t

= lim
θ→0

1

θ
(e−µθ − 1)uµ(x, t) + lim

θ→0

1

θ

∫ t+θ

t
u(x, s) eµ(s−(t+θ)) ds

= −µuµ + µu .

Proposition 2.

1) If u ∈ LM (Q) then uµ → u as µ → +∞ in LM (Q) for the modular

convergence.

2) If u ∈ W 1,xLM (Q) then uµ → u as µ → +∞ in W 1,xLM (Q) for the

modular convergence.

Proof: 1) Let (ϕk) ⊂ D(Q) such that ϕk → u in LM (Q) for the modular

convergence. Let λ > 0 large enough such that

u

λ
∈ LM (Q) and

∫

Q
M

(

ϕk − u

λ

)

dx dt → 0 as k →∞ .

For a.e. (x, t) ∈ Q we have

|(ϕk)µ(x, t)− ϕk(x, t)| =
1

µ

∣

∣

∣

∣

∂ϕk

∂t
(x, t)

∣

∣

∣

∣

≤
1

µ

∥

∥

∥

∥

∂ϕk

∂t

∥

∥

∥

∥

∞
.

On the other hand
∫

Q
M

(

uµ− u

3λ

)

dx dt ≤
1

3

∫

Q
M

(

uµ− (ϕk)µ
λ

)

dx dt +
1

3

∫

Q
M

(

(ϕk)µ− ϕk

λ

)

dx dt

+
1

3

∫

Q
M

(

ϕk − u

λ

)

dx dt

≤
1

3

∫

Q
M

(

(ϕk − u)µ
λ

)

dx dt +
1

3

∫

Q
M

(

(ϕk)µ − ϕk

λ

)

dx dt

+
1

3

∫

Q
M

(

ϕk − u

λ

)

dx dt .

This implies that
∫

Q
M

(

uµ − u

3λ

)

dx dt ≤
2

3

∫

Q
M

(

ϕk − u

λ

)

dx dt +
1

3
M

(

1

µλ

∥

∥

∥

∥

∂ϕk

∂t

∥

∥

∥

∥

∞

)

meas(Q) .

Let ε > 0. There exists k such that
∫

Q
M

(

ϕk − u

λ

)

dx dt ≤ ε
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and there exists µ0 such that

M

(

1

µλ

∥

∥

∥

∥

∂ϕk

∂t

∥

∥

∥

∥

∞

)

meas(Q) ≤ ε for all µ ≥ µ0 .

Hence
∫

Q
M

(

uµ − u

3λ

)

dx dt ≤ ε for all µ ≥ µ0 .

2) Since ∀α, |α| ≤ 1, we have Dα
x (uµ) = (Dα

xu)µ , consequently, the first part

above applied on each Dα
xu, gives the result.

Remark 4. If u ∈ EM (Q), we can choose λ arbitrary small since D(Q) is

(norm) dense in EM (Q). Thus, for all λ > 0

∫

Q
M

(

uµ − u

λ

)

dx dt → 0 as µ→ +∞

and uµ→ u strongly in EM (Q). Idem for W 1,xEM (Q).

Proposition 3. If un → u in W 1,xLM (Q) strongly (resp. for the modular

convergence) then (un)µ → uµ in W 1,xLM (Q) strongly (resp. for the modular

convergence).

Proof: For all λ > 0 (resp. for some λ > 0),

∫

Q
M

(

Dα
x ((un)µ)−D

α
x (uµ)

λ

)

dx dt ≤

∫

Q
M

(

Dα
x (un)−D

α
x (u)

λ

)

dx dt → 0

as n→∞ ,

then (un)µ → uµ in W 1,xLM (Q) strongly (resp. for the modular convergence).

5 – Existence theorem

Let Ω be a bounded open subset of RN (N ≥ 2) with the segment property,

T > 0 and set Q = Ω×(0, T ). Let M be an N-function.

Consider a second order partial differential operatorA : D(A)⊂W 1,xLM (Q)→

W−1,xLM (Q) in divergence form

A(u) = −div a(x, t, u,∇u)
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where a : Ω×[0, T ]×R×RN → RN is a Carathéodory function satisfying for a.e.

(x, t) ∈ Ω×[0, T ] and all s ∈ R, ξ 6= ξ∗ ∈ RN :

|a(x, t, s, ξ)| ≤ β(|s|)
(

c1(x, t) +M
−1
M(γ|ξ|)

)

(11)

[

a(x, t, s, ξ)− a(x, t, s, ξ∗)
]

[ξ − ξ∗] > 0(12)

a(x, t, s, ξ)ξ ≥ αM(|ξ|)(13)

where c1(x, t) ∈ EM (Q), c1≥ 0; β : [0,+∞) → [0,+∞) a continuous and non-

decreasing function; α, γ > 0.

Note that, (13) written for ξ = εζ, ε > 0, and the fact that a is a Carathéodory

function, imply that

a(x, t, s, 0) = 0 for almost every (x, t) ∈ Q and every s ∈ R .

Let g : Ω×[0, T ]×R×RN → R be a Carathéodory function satisfying for a.e.

(x, t) ∈ Ω×(0, T ) and for all s ∈ R, ξ ∈ RN :

|g(x, t, s, ξ)| ≤ b(|s|)
(

c2(x, t) +M(|ξ|)
)

(14)

g(x, t, s, ξ)s ≥ 0(15)

where c2(x, t) ∈ L
1(Q) and b : R+→ R+ is a continuous and nondecreasing

function. Furthermore let

f ∈ L1(Q) .(16)

Throughout this paper 〈 , 〉means for either the pairing betweenW 1,x
0 LM (Q)∩

L∞(Q) andW−1,xLM (Q)+L1(Q) or betweenW 1,x
0 LM (Q) andW−1,xLM (Q) and

Qτ = Ω×(0, τ) for τ ∈ [0, T ].

Consider, then, the following parabolic initial-boundary value problem:



























∂u

∂t
+A(u) + g(x, t, u,∇u) = f in Q

u(x, t) = 0 on ∂Ω×(0, T )

u(x, 0) = u0(x) in Ω

(17)

where u0 is a given function in L1(Ω).

Let us now precise in which sense the problem (17) will be solved. Thus, we

state, as in [19], the following
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Definition 2. A measurable function u : Ω×(0, T )→ R is called entropy so-

lution of (17) if u belongs to L∞(0, T ;L1(Ω)), Tk(u) belongs toD(A)∩W 1,x
0 LM (Q)

for every k > 0, Sk(u(., t)) belongs to L
1(Ω) for every t ∈ [0, T ] and every k > 0,

g(x, t, u,∇u) is in L1(Q) and u satisfies:

∫

Ω
Sk(u− v)(τ) dx +

〈

∂v

∂t
, Tk(u−v)

〉

Qτ

+

∫

Qτ

a(x, t, u,∇u)∇Tk(u− v) dx dt +

+

∫

Qτ

g(x, t, u,∇u)Tk(u− v) dx dt ≤(18)

≤

∫

Qτ

f Tk(u− v) dx dt +

∫

Ω
Sk(u0 − v(0)) dx

for every τ ∈ [0, T ], k > 0, and for all v in W 1,x
0 LM (Q)∩L∞(Q) such that ∂v/∂t

belongs toW−1,xLM (Q)+L1(Q) (recall that Tk is the usual truncation at height

k defined on R by Tk(s) = min(k,max(s,−k)) and that Sk(s) =
∫ s
0 Tk(t)dt is its

primitive vanishing on 0).

Note that, all the terms in (18) make sense since Tk(u−v) belongs toW
1,x
0 LM (Q)

∩L∞(Q). Moreover Lemma 5 implies that v ∈ C([0, T ], L1(Ω)) and then the first

and last terms are well defined.

We shall prove the following existence theorem:

Theorem 4. Assume that (11)–(16) hold true. Then the problem (17) ad-

mits at least one entropy solution u ∈ C([0, T ], L1(Ω)) satisfying u(x, 0) = u0(x)

for a.e. x ∈ Ω.

Proof of Theorem 4: We divide the proof in four steps.

Step 1: A priori estimates.

Let (fn) be a sequence of smooth functions such that fn → f in L1(Q) and

let (u0n) be a sequence in L2(Ω) such that u0n → u0 in L1(Ω).

Consider the sequence of approximate problems:







un ∈ D(A) ∩W 1,x
0 LM (Q) ∩ C([0, T ], L2(Ω)), un(x, 0) = u0n

∂un/∂t− div
(

a(x, t, Tn(un),∇un)
)

+ gn(x, t, un,∇un) = fn
(19)

where gn(x, t, s, ξ) = Tn(g(x, t, s, ξ)).
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Note that gn(x, t, s, ξ)s≥0, |gn(x, t, s, ξ)| ≤ |g(x, t, s, ξ)| and |gn(x, t, s, ξ)|≤n.

Since gn is bounded for any fixed n>0, then, by Theorem 1 of [12], there exists

at least one solution un of (19).

Note also that 〈u′n, v〉 is defined in the sense of distributions. Since fn −

A(un)− gn is in W−1,xLM (Q) we can extend 〈u′n, v〉 to all v ∈W 1,x
0 LM (Q).

Using in (19) the test function Tk(un)χ(0,τ), we get, for every τ ∈ (0, T )

∫

Ω
Sk(un(τ)) dx +

∫

Qτ

a
(

x, t, Tk(un),∇Tk(un)
)

∇Tk(un) dx dt ≤ c1k(20)

where here and below ci denote positive constants not depending on n and k.

On the other hand, thanks to Lemma 5.7 of [14], there exists two positive

constants δ, λ such that

∫

Q
M(v) dx dt ≤ δ

∫

Q
M(λ|∇v|) dx dt for all v ∈W 1,x

0 LM (Q) .(21)

Taking v = Tk(un)/λ in (21) and using (20) with (13), give

α

∫

Q
M

(

Tk(un)

λ

)

dx dt ≤ c2 k

which implies that

meas
{

(x, t) ∈ Q : |un| > k
}

≤
c3 k

M(k/λ)

so that

lim
k→∞

(

meas
{

(x, t) ∈ Q : |un| > k
})

= 0 uniformly with respect to n .(22)

Consider now for θ, ε > 0 a function ρεθ ∈ C
1(R) such that

ρεθ(s) = 0 if |s| ≤ θ ,

ρεθ(s) = sign(s) if |s| ≥ θ + ε ,

(ρεθ)
′(s) ≥ 0 ∀ s ∈ R

then, by using ρεθ(un) as a test function in (19) and following [19], we can see

that
∫

{|un|>θ}
|gn(x, t, un,∇un)| dx dt ≤

∫

{|un|>θ}
|fn| dx dt +

∫

{|u0n|>θ}
|u0n| dx dt(23)
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and so by letting θ → 0 and using Fatou’s lemma, we deduce that gn(x, t, un,∇un)

is a bounded sequence in L1(Q).

Moreover, we have from (20) that Tk(un) is bounded in W 1,x
0 LM (Q) for every

k > 0. Take a C2(R), and nondecreasing function ζk such that ζk(s) = s for

|s| ≤ k/2 and ζk(s) = k sign(s) for |s| ≥ k. Multiplying the approximating

equation by ζ ′k(un), we get

∂

∂t
(ζk(un))− div

(

a(x, t, un,∇un) ζ
′
k(un)

)

+ a(x, t, un,∇un) ζ
′′
k (un)

+ gn(x, t, un,∇un) ζ
′
k(un) = fn ζ

′
k(un) ,

in the sense of distributions. This implies, thanks to (20) and the fact that ζ ′k has

compact support, that ζk(un) is bounded inW 1,x
0 LM (Q) while its time derivative

∂
∂t(ζk(un)) is bounded in W−1,xLM (Q) + L1(Q), hence Corollary 1 allows us to

conclude that ζk(un) is compact in L1(Q). Therefore, following [19], we can see

that there exists a measurable function u in L∞(0, T ;L1(Ω)) such that for every

k > 0 and a subsequence, not relabeled,

Tk(un)→ Tk(u) weakly in W 1,x
0 LM (Q) for σ(ΠLM ,ΠEM ) ,(24)

strongly in L1(Q) and a.e. in Q .

To prove that a(x, t, Tk(un),∇Tk(un)) is a bounded sequence in (LM (Q))N .

Let ϕ ∈ (EM (Q))N with ‖ϕ‖M,Q = 1. In view of (12), we have

∫

Q

[

a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un), ϕ)
]

[∇Tk(un)− ϕ] dx dt ≥ 0

which gives

∫

Q
a(x, t, Tk(un),∇Tk(un))ϕ dx dt ≤

∫

Q
a(x, t, Tk(un),∇Tk(un))∇Tk(un) dx dt

−

∫

Q
a(x, t, Tk(un), ϕ) [∇Tk(un)− ϕ] dx dt .

On the one hand, by (20), we have
∫

Q a(x, t, Tk(un),∇Tk(un))∇Tk(un) dx dt ≤ C,

where here and below C denotes a positive constant not depending on n. On the

other hand, using (11), we see that

M

(

| a(x, t, Tk(un), ϕ) |

2β(k)

)

≤ M(c1(x, t)) +M(γ|ϕ|)
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and hence a(x, t, Tk(un), ϕ) is bounded in (LM (Q))N , implying that, since

Tk(un) is bounded in W 1,x
0 LM (Q)

∣

∣

∣

∣

∫

Q
a(x, t, Tk(un), ϕ) [∇Tk(un)− ϕ] dx dt

∣

∣

∣

∣

≤ C

and so, by using the dual norm, a(x, t, Tk(un),∇Tk(un)) is a bounded sequence

in (LM (Q))N .

Thus, up to subsequences

a(x, t, Tk(un),∇Tk(un)) ⇀ hk in (LM (Q))N for σ(ΠLM ,ΠEM ) ,(25)

for some hk ∈ (LM (Q))N .

Step 2: Almost everywhere convergence of the gradients.

Fix k > 0 and let ϕ(s) = s eδ s2 , δ > 0. It is well known that when δ ≥
(

b(k)
2α

)2

one has

ϕ′(s)−
b(k)

α
|ϕ(s)| ≥

1

2
for all s ∈ R .(26)

Let vj ∈ D(Q) be a sequence such that

vj → Tk(u) in W 1,x
0 LM (Q) for the modular convergence(27)

and let ψi ∈ D(Ω) be a sequence which converges strongly to u0 in L1(Ω).

Set ωi
µ,j = Tk(vj)µ+e

−µtTk(ψi) where Tk(vj)µ is the mollification with respect

to time of Tk(vj), see (10). Note that ωi
µ,j is a smooth function having the

following properties:























































∂

∂t
(ωi

µ,j) = µ(Tk(vj)− ω
i
µ,j) , ωi

µ,j(0) = Tk(ψi) , |ωi
µ,j | ≤ k ,

ωi
µ,j → Tk(u)µ + e−µt Tk(ψi) in W 1,x

0 LM (Q)

for the modular convergence as j →∞ ,

Tk(u)µ + e−µtTk(ψi)→ Tk(u) in W 1,x
0 LM (Q)

for the modular convergence as µ→∞ .
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Let now the function ρm defined on R by

ρm(s) =



















1 if |s| ≤ m,

m+ 1− |s| if m ≤ |s| ≤ m+ 1 ,

0 if |s| ≥ m+ 1 ,

where m > k. Let θµ,in,j = Tk(un)− ω
i
µ,j and zµ,in,j,m = ϕ(θµ,in,j)ρm(un).

Using in (19) the test function zµ,in,j,m, we get (u′n denotes the distributional

time derivative of un),

〈u′n, z
µ,i
n,j,m〉 +

∫

Q
a(x, t, un,∇un) [∇Tk(un)−∇ω

i
µ,j ]ϕ

′(θµ,in,j) ρm(un) dx dt

+

∫

Q
a(x, t, un,∇un)ϕ(θ

µ,i
n,j) ρ

′
m(un) dx dt

+

∫

Q
gn(x, t, un,∇un) z

µ,i
n,j,m dx dt =

∫

Q
fn z

µ,i
n,j,m dx dt

which implies, since gn(x, t, un,∇un)ϕ(Tk(un)− ω
i
µ,j) ρm(un) ≥ 0 on {|un|>k}:

〈u′n, z
µ,i
n,j,m〉 +

∫

Q
a(x, t, un,∇un) [∇Tk(un)−∇ω

i
µ,j ]ϕ

′(θµ,in,j) ρm(un) dx dt

+

∫

Q
a(x, t, un,∇un)ϕ(θ

µ,i
n,j) ρ

′
m(un) dx dt

(28)

+

∫

{|un|≤k}
gn(x, t, un,∇un)ϕ(Tk(un)−ω

i
µ,j) ρm(un) dx dt ≤

≤

∫

Q
fn z

µ,i
n,j,m dx dt .

In the sequel and throughout the paper, we will omit for simplicity the de-

pendence on x and t in the function a(x, t, s, ξ) and denote ε(n, j, µ, i, s,m) all

quantities (possibly different) such that

lim
m→∞

lim
s→∞

lim
i→∞

lim
µ→∞

lim
j→∞

lim
n→∞

ε(n, j, µ, i, s,m) = 0

and this will be the order in which the parameters we use will tend to infinity,

that is, first n, then j, µ, i, s and finally m. Similarly we will write only ε(n), or

ε(n, j), ... to mean that the limits are made only on the specified parameters.
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We will deal with each term of (28). First of all, observe that

∫

Q
fn ϕ(Tk(un)− ω

i
µ,j) ρm(un) dx dt = ε(n, j, µ)(29)

since ϕ(Tk(un) − ωi
µ,j) ρm(un) ⇀ ϕ(Tk(u) − ωi

µ,j) ρm(u) weakly * in L∞(Q)

as n → ∞, ϕ(Tk(u) − ωi
µ,j) ρm(u) ⇀ ϕ(Tk(u) − Tk(u)µ + e−µtTk(ψi)) ρm(u)

weakly * in L∞(Q) as j→∞ and finally ϕ(Tk(u)−Tk(u)µ+e
−µtTk(ψi))ρm(u)⇀ 0

weakly * in L∞(Q) as µ→∞.

On the one hand, from (19) one deduces that un ∈W
1,x
0 LM (Q) and ∂un/∂t ∈

W−1,x(Q)+L1(Q) and then by theorem 3 there exists a smooth function unσ such

that, as σ → 0+, unσ → un inW 1,x
0 LM (Q) and ∂unσ/∂t→ ∂un/∂t inW

−1,x(Q)+

L1(Q) for the modular convergence, so that, ϕ(Tk(unσ)− ω
i
µ,j)ρm(unσ)→ zµ,in,j,m

inW 1,x
0 LM (Q) for the modular convergence and weakly * in L∞(Q). This implies

〈u′n, z
µ,i
n,j,m〉 = lim

σ→0+

∫

Q
u′nσ ϕ(Tk(unσ)− ω

i
µ,j) ρm(unσ) dx dt

= lim
σ→0+

∫

Q
[(Rm(unσ))

′]ϕ(Tk(unσ)− ω
i
µ,j) dx dt

where Rm(s) =
∫ s
0 ρm(η) dη. Hence

〈u′n, z
µ,i
n,j,m〉 = lim

σ→0+

[

∫

Q
(Rm(unσ)− Tk(unσ))

′ ϕ(Tk(unσ)− ω
i
µ,j) dx dt

+

∫

Q
(Tk(unσ))

′ ϕ(Tk(unσ)− ω
i
µ,j) dx dt

]

= lim
σ→0+

{

[∫

Ω
(Rm(unσ)− Tk(unσ))ϕ(Tk(unσ)− ω

i
µ,j) dx

]T

0

−

∫

Q
(Rm(unσ)−Tk(unσ))ϕ

′(Tk(unσ)−ω
i
µ,j) (Tk(unσ)−ω

i
µ,j)

′ dx dt

+

∫

Q
(Tk(unσ))

′ ϕ(Tk(unσ)− ω
i
µ,j) dx dt

}

= lim
σ→0+

{

I1(σ) + I2(σ) + I3(σ)

}

.

Observe that for |s| ≤ k we have Rm(s) = Tk(s) = s and for |s| > k we have

|Rm(s)| ≥ |Tk(s)| and, since both Rm(s) and Tk(s) have the same sign of s,
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we deduce that sign(s) (Rm(s)−Tk(s)) ≥ 0. Consequently

I1(σ) =

[

∫

{|unσ |>k}
(Rm(unσ)− Tk(unσ))ϕ(Tk(unσ)− ω

i
µ,j) dx

]T

0

≥ −

∫

{|unσ(0)|>k}
(Rm(unσ(0))− Tk(unσ(0)))ϕ(Tk(unσ)(0)− ω

i
µ,j(0)) dx

and so, by letting σ → 0+ in the last integral, we get

lim sup
σ→0+

I1(σ) ≥ −

∫

{|u0n|≥k}
(Rm(u0n)− Tk(u0n))ϕ(Tk(u0n)− Tk(ψi)) dx .

Letting n→∞, the right hand side of the above inequality clearly tends to

−

∫

{|u0|≥k}
(Rm(u0)− Tk(u0))ϕ(Tk(u0)− Tk(ψi)) dx

which obviously goes to 0 as i→∞. We deduce then that

lim sup
σ→0+

I1(σ) ≥ ε(n, i) .

About I2(σ), we have, since (Rm(unσ)− Tk(unσ)) (Tk(unσ))
′ = 0

I2(σ) =

∫

{|unσ |>k}
(Rm(unσ)−Tk(unσ))ϕ

′(Tk(unσ)−ω
i
µ,j) (ω

i
µ,j)

′ dx dt

= µ

∫

{|unσ |>k}
(Rm(unσ)−Tk(unσ))ϕ

′(Tk(unσ)−ω
i
µ,j) (Tk(vj)− ω

i
µ,j) dx dt

≥ µ

∫

{|unσ |>k}
(Rm(unσ)−Tk(unσ))ϕ

′(Tk(unσ)−ω
i
µ,j) (Tk(vj)−Tk(unσ)) dx dt

by using the fact that ϕ′≥0 and that (Rm(unσ)−Tk(unσ))(Tk(unσ)−ω
i
µ,j)χ{|unσ |>k}

≥ 0 and so, by letting σ → 0+ in the last integral

lim sup
σ→0+

I2(σ) ≥

≥ µ

∫

{|un|≥k}
(Rm(un)− Tk(un))ϕ

′(Tk(un)− ω
i
µ,j) (Tk(vj)− Tk(un)) dx dt
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and since, as it can be easily seen, the last integral is of the form ε(n, j) we deduce

that

lim sup
σ→0+

I2(σ) ≥ ε(n, j) .

For what concerns I3(σ), one has

I3(σ) =

∫

Q
(Tk(unσ)− ω

i
µ,j)

′ ϕ(Tk(unσ)− ω
i
µ,j) dx dt

+

∫

Q
(ωi

µ,j)
′ ϕ(Tk(unσ)− ω

i
µ,j) dx dt

and then, by setting Φ(s) =
∫ s
0 ϕ(η) dη and integrating by parts

I3(σ) =

[ ∫

Ω
Φ(Tk(unσ)− ω

i
µ,j) dx

]T

0

+ µ

∫

Q
(Tk(vj)− ω

i
µ,j)ϕ(Tk(unσ)− ω

i
µ,j) dx dt

which implies, since Φ ≥ 0 and (Tk(unσ)− ω
i
µ,j)ϕ(Tk(unσ)− ω

i
µ,j) ≥ 0

I3(σ) ≥ −

∫

Ω
Φ
(

Tk(unσ(0))− Tk(ψi)
)

dx

+ µ

∫

Q
(Tk(vj)− Tk(unσ))ϕ(Tk(unσ)− ω

i
µ,j) dx dt ,

so that

lim sup
σ→0+

I3(σ) ≥ −

∫

Ω
Φ
(

Tk(u0n)− Tk(ψi)
)

dx

+ µ

∫

Q
(Tk(vj)− Tk(un))ϕ(Tk(un)− ω

i
µ,j) dx dt

and by letting n→∞ in the last side, we obtain

lim sup
σ→0+

I3(σ) ≥ −

∫

Ω
Φ(Tk(u0)− Tk(ψi)

)

dx

+ µ

∫

Q
(Tk(vj)− Tk(u))ϕ(Tk(u)− ω

i
µ,j) dx dt + ε(n) .

Since the first integral of the last side is of the form ε(i) while the second one

is of the form ε(j) we deduce that

lim sup
σ→0+

I3(σ) ≥ ε(n, j, i) .
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Combining these estimates, we conclude that
〈

u′n, ϕ(Tk(un)− ω
i
µ,j) ρm(un)

〉

≥ ε(n, j, i) .(30)

On the other hand, the second term of the left hand side of (28) reads as
∫

Q
a(un,∇un) [∇Tk(un)−∇ω

i
µ,j ]ϕ

′(Tk(un)− ω
i
µ,j) ρm(un) dx dt =

=

∫

{|un|≤k}
a(un,∇un) [∇Tk(un)−∇ω

i
µ,j ]ϕ

′(Tk(un)− ω
i
µ,j) ρm(un) dx dt

+

∫

{|un|>k}
a(un,∇un) [∇Tk(un)−∇ω

i
µ,j ]ϕ

′(Tk(un)− ω
i
µ,j) ρm(un) dx dt

=

∫

Q
a(Tk(un),∇Tk(un)) [∇Tk(un)−∇ω

i
µ,j ]ϕ

′(Tk(un)− ω
i
µ,j) dx dt

+

∫

{|un|>k}
a(un,∇un) [∇Tk(un)−∇ω

i
µ,j ]ϕ

′(Tk(un)− ω
i
µ,j) ρm(un) dx dt

where we have used the fact that, since m > k, ρm(un) = 1 on {|un| ≤ k}.

Setting for s > 0, Qs = {(x, t) ∈ Q : |∇Tk(u)| ≤ s} and Qs
j = {(x, t) ∈ Q :

|∇Tk(vj)| ≤ s} and denoting by χs and χs
j the characteristic functions of Qs

and Qs
j respectively, we deduce that

∫

Q
a(un,∇un) [∇Tk(un)−∇ω

i
µ,j ]ϕ

′(Tk(un)− ω
i
µ,j) ρm(un) dx dt =

=

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)
]

[∇Tk(un)−∇Tk(vj)χ
s
j ]

× ϕ′(Tk(un)− ω
i
µ,j) dx dt

+

∫

Q
a(Tk(un),∇Tk(vj)χ

s
j) [∇Tk(un)−∇Tk(vj)χ

s
j ]ϕ

′(Tk(un)− ω
i
µ,j) dx dt

+

∫

Q
a(Tk(un),∇Tk(un))∇Tk(vj)χ

s
j ϕ

′(Tk(un)− ω
i
µ,j) dx dt

−

∫

Q
a(un,∇un)∇ω

i
µ,j ϕ

′(Tk(un)− ω
i
µ,j) ρm(un) dx dt

:= J1 + J2 + J3 + J4 .

We shall go to the limit as n, j, µ and s→∞ in the last three integrals of the

last side. Starting with J2, we have by letting n→∞

J2 =

∫

Q
a(Tk(u),∇Tk(vj)χ

s
j) [∇Tk(u)−∇Tk(vj)χ

s
j ]ϕ

′(Tk(u)− ω
i
µ,j) ρm(u) dx dt

+ ε(n)
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since a(Tk(un),∇Tk(vj)χ
s
j) → a(Tk(u),∇Tk(vj)χ

s
j) strongly in (EM (Q))N by

using (11) and Lebesgue theorem while ∇Tk(un)⇀∇Tk(u) weakly in (LM (Q))N

by (25).

Letting j→∞ in the first term of the right hand side of the above equality,

one has, since a(Tk(u),∇Tk(vj)χ
s
j) → a(Tk(u),∇Tk(u)χ

s) strongly in (EM (Q))N

by using (11), (27) and Lebesgue theorem while ∇Tk(vj)χ
s
j → ∇Tk(u)χ

s strongly

in (LM (Q))N ,

J2 = ε(n, j) .

About J3(n, j, µ, s), we have by letting n→∞ and using (25)

J3 =

∫

Q
hk∇Tk(vj)χ

s
j ϕ

′(Tk(u)− ω
i
µ,j) ρm(u) dx dt + ε(n)

which gives by letting j→∞, thanks to (27) (recall that ρm(u) = 1 on {|u| ≤ k})

J3 =

∫

Q
hk∇Tk(u)χ

s ϕ′
(

Tk(u)− Tk(u)µ + e−µt Tk(ψi)
)

dx dt + ε(n, j)

implying that, by letting µ→∞, J3 =
∫

Q hk∇Tk(u)χ
s dx dt+ ε(n, j, µ), and thus

J3 =

∫

Q
hk∇Tk(u) dx dt + ε(n, j, µ, s) .

For what concerns J4 we can write, since ρm(un) = 0 on {|un| > m+1}

J4 = −

∫

Q
a(Tm+1(un),∇Tm+1(un))∇ω

i
µ,j ϕ

′(Tk(un)− ω
i
µ,j) ρm(un) dx dt

= −

∫

{|un|≤k}
a(Tk(un),∇Tk(un))∇ω

i
µ,j ϕ

′(Tk(un)− ω
i
µ,j) ρm(un) dx dt

−

∫

{k<|un|≤m+1}
a(Tm+1(un),∇Tm+1(un))∇ω

i
µ,j ϕ

′(Tk(un)−ω
i
µ,j) ρm(un) dx dt

and, as above, by letting n→∞

J4 = −

∫

{|u|≤k}
hk∇ω

i
µ,j ϕ

′(Tk(u)− ω
i
µ,j) dx dt

−

∫

{k≤|u|≤m+1}
hm+1∇ω

i
µ,j ϕ

′(Tk(u)− ω
i
µ,j) ρm(u) dx dt + ε(n)



172 A. ELMAHI and D. MESKINE

which implies that, by letting j →∞

J4 = −

∫

{|u|≤k}
hk
[

∇Tk(u)µ−e
−µt∇Tk(ψi)

]

ϕ′
(

Tk(u)−Tk(u)µ−e
−µtTk(ψi)

)

dx dt

+ ε(n, j)

−

∫

{k≤|u|≤m+1}
hm+1

[

∇Tk(u)µ − e
−µt∇Tk(ψi)

]

× ϕ′
(

Tk(u)− Tk(u)µ − e
−µtTk(ψi)

)

ρm(u) dx dt

so that, by letting µ→∞

J4 = −

∫

Q
hk∇Tk(u) dx dt + ε(n, j, µ) .

We conclude then that
∫

Q
a(un,∇un) [∇Tk(un)−∇ω

i
µ,j ]ϕ

′(Tk(un)− ω
i
µ,j) ρm(un) dx dt =

=

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)
]

[∇Tk(un)−∇Tk(vj)χ
s
j ](31)

× ϕ′(Tk(un)− ω
i
µ,j) dx dt + ε(n, j, µ, s) .

To deal with the third term of the left hand side of (28), observe that
∣

∣

∣

∣

∫

Q
a(x, t, un,∇un)ϕ(θ

µ,i
n,j) ρ

′
m(un) dx dt

∣

∣

∣

∣

≤

≤ ϕ(2k)

∫

{m≤|un|≤m+1}
a(un,∇un)∇un dx dt .

On the other hand, using θm(un) as a test function in (19) where θm(s) =

T1(s− Tm(s)), we get

〈u′n, θm(un)〉 +

∫

Q
a(un,∇un)∇unθ

′
m(un) dx dt +

∫

Q
g(un,∇un) θm(un) dx dt =

=

∫

Q
fn θm(un) dx dt

which gives, by setting Θm(s) =
∫ s
0 θm(η) dη (observe that θm(s)s ≥ 0)

[ ∫

Ω
Θm(un(t)) dx

]T

0
+

∫

{m≤|un|≤m+1}
a(un,∇un)∇un dx dt ≤

∫

{|un|≥m}
|fn| dx dt

and since Θm ≥ 0, we deduce that
∫

{m≤|un|≤m+1}
a(un,∇un)∇un dx dt ≤

∫

Ω
Θm(u0n) dx +

∫

{|un|≥m}
|fn| dx dt .
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Since, as it can be easily seen, each integral of the right hand side is of the form

ε(n,m) we obtain

∣

∣

∣

∣

∫

Q
a(x, t, un,∇un)ϕ(θ

µ,i
n,j) ρ

′
m(un) dx dt

∣

∣

∣

∣

≤ ε(n,m) .(32)

We now turn to the fourth term of the left hand side of (28). We can write

∣

∣

∣

∣

∣

∫

{|un|≤k}
gn(x, t, un,∇un)ϕ(Tk(un)− ω

i
µ,j) ρm(un) dx dt

∣

∣

∣

∣

∣

≤

≤ b(k)

∫

Q
c2(x, t) |ϕ(Tk(un)− ω

i
µ,j)| dx dt(33)

+
b(k)

α

∫

Q
a(Tk(un),∇Tk(un))∇Tk(un) |ϕ(Tk(un)− ω

i
µ,j)| dx dt .

Since c2(x, t) belongs to L
1(Q) it is easy to see that

b(k)

∫

Q
c2(x, t) |ϕ(Tk(un)− ω

i
µ,j)| dx dt = ε(n, j, µ) .

On the other hand, the second term of the right hand side of (33) reads as

b(k)

α

∫

Q
a(Tk(un),∇Tk(un))∇Tk(un) |ϕ(Tk(un)− ω

i
µ,j)| dx dt =

=
b(k)

α

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)
]

[∇Tk(un)−∇Tk(vj)χ
s
j ]

× |ϕ(Tk(un)− ω
i
µ,j)| dx dt

+
b(k)

α

∫

Q
a(Tk(un),∇Tk(vj)χ

s
j) [∇Tk(un)−∇Tk(vj)χ

s
j ] |ϕ(Tk(un)−ω

i
µ,j)| dx dt

+
b(k)

α

∫

Q
a(Tk(un),∇Tk(un))∇Tk(vj)χ

s
j |ϕ(Tk(un)− ω

i
µ,j)| dx dt

and, as above, by letting first n then j, µ and finally s go to infinity, we can easily

see that each one of last two integrals is of the form ε(n, j, µ). This implies that

∣

∣

∣

∣

∣

∫

{|un|≤k}
gn(x, t, un,∇un)ϕ(Tk(un)− ω

i
µ,j) ρm(un) dx dt

∣

∣

∣

∣

∣

≤

≤
b(k)

α

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)
]

(34)

× [∇Tk(un)−∇Tk(vj)χ
s
j ] |ϕ(Tk(un)−ω

i
µ,j)| dx dt + ε(n, j, µ) .
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Combining (28), (29), (30), (31), (32) and (34) we get

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)
]

× [∇Tk(un)−∇Tk(vj)χ
s
j ]

[

ϕ′(Tk(un)−ω
i
µ,j)−

b(k)

α
|ϕ(Tk(un)−ω

i
µ,j)|

]

dx dt ≤

≤ ε(n, j, µ, i, s,m)

and so, thanks to (26)

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)
]

[∇Tk(un)−∇Tk(vj)χ
s
j ] dx dt ≤

≤ ε(n, j, µ, i, s,m) .(35)

On the other hand, we have

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χ
s)
]

[∇Tk(un)−∇Tk(u)χ
s] dx dt −

−

∫

Q

[

a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(vj)χ
s
j)
]

[∇Tk(un)−∇Tk(vj)χ
s
j ] dx dt =

=

∫

Q
a(Tk(un),∇Tk(un)) [∇Tk(vj)χ

s
j −∇Tk(u)χ

s] dx dt

−

∫

Q
a(Tk(un),∇Tk(u)χ

s) [∇Tk(un)−∇Tk(u)χ
s] dx dt

+

∫

Q
a(Tk(un),∇Tk(vj)χ

s
j) [∇Tk(un)−∇Tk(vj)χ

s
j ] dx dt

and, as it can be easily seen, each integral of the right hand side is of the form

ε(n, j, s) implying that

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χ
s)
]

[∇Tk(un)−∇Tk(u)χ
s] dx dt =

=

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)
]

(36)

× [∇Tk(un)−∇Tk(vj)χ
s
j ] dx dt + ε(n, j, s) .

For r ≤ s, we have

0 ≤

∫

Qr

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))
]

[∇Tk(un)−∇Tk(u)] dx dt

≤

∫

Qs

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))
]

[∇Tk(un)−∇Tk(u)] dx dt =
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=

∫

Qs

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χ
s)
]

[∇Tk(un)−∇Tk(u)χ
s] dx dt

≤

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χ
s)
]

[∇Tk(un)−∇Tk(u)χ
s] dx dt

=

∫

Q

[

a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)
]

[∇Tk(un)−∇Tk(vj)χ
s
j ] dx dt

+ ε(n, j, s)

≤ ε(n, j, µ, i, s,m)

hence by passing to the limit sup over n, we get

0 ≤ lim sup
n→∞

∫

Qr

[

a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(u))
]

[∇Tk(un)−∇Tk(u)] dx dt

≤ lim
n→∞

ε(n, j, µ, i, s,m)

in which we can let successively j, µ, i, s and m go to infinity, to obtain
∫

Qr

[

a(Tk(un),∇Tk(un))−a(Tk(un),∇Tk(u))
]

[∇Tk(un)−∇Tk(u)] dx dt → 0

as n→∞

and thus, as in the elliptic case (see [3]), there exists a subsequence also denoted

by un such that

∇un → ∇u a.e. in Q .(37)

We deduce then that,

a(x, t, Tk(un),∇Tk(un)) ⇀ a(x, t, Tk(u),∇Tk(u))

weakly in (LM (Q))N for σ(ΠLM ,ΠEM ) for every k > 0 .
(38)

Step 3: Modular convergence of the truncations and equi-integrability of the

nonlinearities.

Thanks to (35) and (36), we can write
∫

Q
a(Tk(un),∇Tk(un))∇Tk(un) dx dt ≤

≤

∫

Q
a(Tk(un),∇Tk(un))∇Tk(u)χ

s dx dt

+

∫

Q
a(Tk(un),∇Tk(u)χ

s) [∇Tk(un)−∇Tk(u)χ
s] dx dt

+ ε(n, j, µ, i, s,m)
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and then

lim sup
n→∞

∫

Q
a(Tk(un),∇Tk(un))∇Tk(un) dx dt ≤

≤

∫

Q
a(Tk(u),∇Tk(u))∇Tk(u)χ

s dx dt + lim
n→∞

ε(n, j, µ, i, s,m)

in which we can pass to the limit as j, µ, i, s,m→∞ to obtain

lim sup
n→∞

∫

Q
a(Tk(un),∇Tk(un))∇Tk(un) dx dt ≤

∫

Q
a(Tk(u),∇Tk(u))∇Tk(u) dx dt .

On the other hand, Fatou’s lemma implies

∫

Q
a(Tk(u),∇Tk(u))∇Tk(u) dx dt ≤ lim inf

n→∞

∫

Q
a(Tk(un),∇Tk(un))∇Tk(un) dx dt

and thus, as n→∞

a(Tk(un),∇Tk(un))∇Tk(un) → a(Tk(u),∇Tk(u))∇Tk(u) in L1(Q)(39)

implying by using (13) and Vitali’s theorem that

∇Tk(un)→ ∇Tk(u) in (LM (Q))N for the modular convergence .

We shall now prove that gn(x, t, un,∇un)→ g(x, t, u,∇u) strongly in L1(Q)

by using Vitali’s theorem. Since gn(x, t, un,∇un)→ g(x, t, u,∇u) a.e. in Q,

thanks to (24) and (37), it suffices to prove that gn(x, t, un,∇un) are uniformly

equi-integrable in Q. Let E ⊂ Q be a measurable subset of Q. We have for any

m > 0:

∫

E
|gn(x, t, un,∇un)| dx dt =

=

∫

E∩{|un|≤m}
|gn(x, t, un,∇un)| dx dt +

∫

{|un|>m}
|gn(x, t, un,∇un)| dx dt

≤
b(m)

α

∫

E
a(Tm(un),∇Tm(un))∇Tm(un) dx dt + b(m)

∫

E
c2(x, t) dx dt

+

∫

{|un|>m}
|fn| dx dt +

∫

{|u0n|>m}
|u0n| dx dt ,
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where we have used (14) and (23). Therefore, it is easy to see that there exists

η > 0 such that

|E| < η =⇒

∫

E
|gn(x, t, un,∇un)| dx dt ≤ ε, ∀n

which shows that gn(x, t, un,∇un) are uniformly equi-integrable in Q as required.

Step 4: Passage to the limit.

Let v ∈ W 1,x
0 LM (Q) ∩ L∞(Q) such that ∂v/∂t ∈ W−1,xLM (Q) + L1(Q).

There exists a prolongation v of v such that (see the proof of lemma 5)

v = v on Q , v ∈ W 1,x
0 LM (Ω×R) ∩ L1(Ω×R) ∩ L∞(Ω×R) ,

and ∂v/∂t ∈ W−1,xLM (Ω×R) + L1(Ω×R) .(40)

By Theorem 3 (see also Remark 3, Section 4), there exists a sequence (wj) ⊂

D(Ω×R) such that

wj → v in W 1,x
0 LM (Ω×R)

and(41)
∂wj

∂t
→

∂v

∂t
in W−1,xLM (Ω×R) + L1(Ω×R)

for the modular convergence and ‖wj‖∞,Q≤ (N+2) ‖v‖∞,Q.

Go back to approximate equations (19) and use Tk(un− wj)χ(0,τ) (which

belongs to W 1,x
0 LM (Q)) as a test function, one has, for every τ ∈ [0, T ]:

〈

u′n, Tk(un− wj)
〉

Qτ

+

∫

Qτ

a(Tk(un),∇Tk(un))∇Tk(un− wj) dx dt

+

∫

Qτ

gn(un,∇un)Tk(un− wj) dx dt =(42)

=

∫

Qτ

fn Tk(un− wj) dx dt ,

where k = k + C‖v‖∞,Q.

The second term of the left hand side of (42) reads as
∫

Qτ

a(Tk(un),∇Tk(un))∇Tk(un− wj) dx dt =

=

∫

Qτ∩{|un−wj |≤k}
a(Tk(un),∇Tk(un))∇un dx dt

−

∫

Qτ∩{|un−wj |≤k}
a(Tk(un),∇Tk(un))∇wj dx dt
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and, by using Fatou’s lemma in the first integral of the last side and (38) in the

second one, we deduce that

∫

Qτ

a(Tk(u),∇Tk(u))∇Tk(u− wj) dx dt ≤

≤ lim inf
n→∞

∫

Qτ

a(Tk(un),∇Tk(un))∇Tk(un− wj) dx dt .

Since Tk(un− wj)→ Tk(u− wj) weakly* in L∞(Q) as n→∞, we have

(as n→∞)

∫

Qτ

gn(un,∇un)Tk(un− wj) dx dt →

∫

Qτ

g(u,∇u)Tk(u− wj) dx dt

and
∫

Qτ

fn Tk(un− wj) dx dt →

∫

Qτ

f Tk(u− wj) dx dt .

For what concerns the first term of (42), we have, by setting Sk(s) =
∫ s
0 Tk(η) dη

〈

u′n, Tk(un− wj)
〉

Qτ

=
〈

u′n− w
′
j , Tk(un− wj)

〉

Qτ

+
〈

w′j , Tk(un− wj)
〉

Qτ

=

∫

Ω
Sk(un− wj)(τ) dx −

∫

Ω
Sk(u0n− wj(0)) dx(43)

+

∫

Qτ

∂wj

∂t
Tk(un− wj) dx dt ,

and, in order to pass to the limit (as n→∞) in (43), we will first prove that

un→ u in C([0, T ], L1(Ω)) ( implying, in particular, that u ∈ C([0, T ], L1(Ω)) ).

Let now, for every l ≥ k, ωi,l
j,µ = Tl(v

l
j)µ+ e−µtTl(ψi) and ωi,l

µ = Tl(u)µ+

e−µtTl(ψi), where v
l
j ∈ D(Q) is a sequence such that: vlj → Tl(u) in W

1,x
0 LM (Q)

for the modular convergence as j → +∞. We have for every τ ∈ (0, T ]

〈

(ωi,l
j,µ)

′, Tk(un− ω
i,l
j,µ)
〉

Qτ

= µ

∫

Qτ

(Tl(v
l
j)− ω

i,l
j,µ)Tk(un− ω

i,l
j,µ) dx dt

→ µ

∫

Qτ

(Tl(v
l
j)− ω

i,l
j,µ)Tk(u− ω

i,l
j,µ) dx dt(44)

→ µ

∫

Qτ

(Tl(u)− ω
i,l
µ )Tk(u− ω

i,l
µ ) dx dt ≥ 0

as first n and then j go to infinity, where we have used the fact that |ωi,l
µ | ≤ l

to get the positiveness of the last integral.
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On the other hand, by using (19)

〈

u′n, Tk(un− ω
i,l
j,µ)
〉

Qτ

=

∫

Qτ

a(x, t, un,∇un) [∇ω
i,l
j,µ−∇un]χ{|un−ωi,l

j,µ
|≤k}

dx dt

+

∫

Qτ

g(x, t, un,∇un)Tk(ω
i,l
j,µ−un) dx dt

+

∫

Qτ

f Tk(un− ω
i,l
j,µ) dx dt

in which we can use Fatou’s lemma and Lebesgue theorem to pass to the limit

sup first over n and then over j, µ, l, to get, for every fixed k > 0,

〈

u′n, Tk(un− ω
i,l
j,µ)
〉

Qτ

≤ ε(n, j, µ, l) not depending on τ .(45)

Therefore, by writing

∫

Ω
Sk

(

un(τ)− ω
i,l
j,µ(τ)

)

dx =

=
〈

u′n− (ωi,l
j,µ)

′, Tk(un− ω
i,l
j,µ)
〉

Qτ

+

∫

Ω
Sk(u0 − Tl(ψi)) dx

=
〈

u′n, Tk(un− ω
i,l
j,µ)
〉

Qτ

−
〈

(ωi,l
j,µ)

′, Tk(un− ω
i,l
j,µ)
〉

Qτ

+

∫

Ω
Sk(u0−Tl(ψi)) dx

and using (44) and (45), we see that, for every fixed k > 0,

∫

Ω
Sk

(

un(τ)− ω
i,l
j,µ(τ)

)

dx ≤ ε(n, j, µ, l, i) not depending on τ

which implies, by writing (recall that Sk is a convex function)

∫

Ω
Sk

[

1

2
(un(τ)− um(τ))

]

dx ≤

≤

∫

Ω
Sk

(

un(τ)− ω
i,l
j,µ(τ)

)

dx +

∫

Ω
Sk

(

um(τ)− ωi,l
j,µ(τ)

)

dx ,

that
∫

Ω
Sk

[

1

2
(un(τ)− um(τ))

]

dx ≤ ε1(n,m)

where εi(n,m) (i = 1, 2) is a term not depending on τ and which tends to 0

as n and m go to infinity.

We deduce then that (see for instance, the proof of Theorem 1.1 of [19]),

∫

Ω
|un(τ)− um(τ)| dx ≤ ε2(n,m) not depending on τ
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and thus (un) is a Cauchy sequence in C([0, T ], L1(Ω)) (the space of continuous

functions from [0, T ] into L1(Ω)) equipped with the topology of uniform conver-

gence). Since the limit of un in L1(Q) is u, we have

un→ u in C([0, T ], L1(Ω)) .

Moreover, since Sk(un− wj)(τ) ≤ k|un(τ)|+ k|wj(τ)|, we have by using

Lebesgue theorem

∫

Ω
Sk(un− wj)(τ) dx →

∫

Ω
Sk(u− wj)(τ) dx as n→∞

therefore we can pass to the limit in n in each term of the right hand side of (43)

to get

lim
n→∞

〈

u′n, Tk(un− wj)
〉

Qτ

=

=

∫

Ω
Sk(u−wj)(τ) dx −

∫

Ω
Sk(u0−wj(0)) dx +

∫

Qτ

∂wj

∂t
Tk(u−wj) dx dt ,

and thus, by passing to the limit inf over n in (42), we have

∫

Ω
Sk(u− wj)(τ) dx +

∫

Qτ

∂wj

∂t
Tk(u− wj) dx dt +

+

∫

Qτ

a(u,∇u)∇Tk(u− wj) dx dt +

∫

Qτ

g(u,∇u)Tk(u− wj) dx dt ≤(46)

≤

∫

Qτ

f Tk(u− wj) dx dt +

∫

Ω
Sk(u0 − wj(0)) dx .

To go to the limit in (46) as j →∞, observe that, thanks to (41), we have

∫

Qτ

∂wj

∂t
Tk(u− wj) dx dt →

〈

∂v

∂t
, Tk(u−v)

〉

Qτ

.

Moreover, for every τ ∈ [0, T ]

∫

Ω
S1(wi−wj)(τ) dx =

∫

Ω

∫ 0

−∞
T1(wi − wj)

(

∂wi

∂t
−
∂wj

∂t

)

dx dt → 0

as i, j →∞ ,

implying, as above, that ‖wi(τ)− wj(τ)‖L1(Ω) → 0 as i, j →∞ and so

‖wj(τ)− v(τ)‖L1(Ω) → 0 as j →∞ .
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Therefore, we can go to the limit, as j →∞, in each integral of (46), to get

∫

Ω
Sk(u− v)(τ) dx +

〈

∂v

∂t
, Tk(u− v)

〉

Qτ

+

+

∫

Qτ

a(u,∇u)∇Tk(u− v) dx dt +

∫

Qτ

g(u,∇u)Tk(u− v) dx dt ≤

≤

∫

Qτ

f Tk(u− v) dx dt +

∫

Ω
Sk(u0 − v(0)) dx ,

where for the first and last integrals, we have used the fact that Sk(u−wj)(τ) ≤

Sk(u(τ)) + k|wj(τ)|, and thus, u is an entropy solution of (17). This completes

the proof of theorem 4.

Remark 5. Assume that a satisfies (11)–(13) with β bounded from above

(i.e. β(s) ≤ some β0), and let g satisfying, in addition to (14) and (15), the

following coercivity condition:

|g(x, t, s, ξ)| ≥ δM(|ξ|/λ) ,

for all |s| ≥ θ > 0, ξ ∈ RN and for a.e. (x, t) ∈ Q with δ, λ > 0. If f is in L1(Q)

then there exists a solution of






















∂u

∂t
− div

(

a(x, t, u,∇u)
)

+ g(x, t, u,∇u) = f in Q

u(x, t) = 0 on ∂Ω×(0, T )

u(x, 0) = u0(x) in Ω

(47)

such that u ∈ W 1,x
0 LM (Q), g(x, t, u,∇u) ∈ L1(Q) and the equation is satisfied

in distributional sense, if and only if u0 belongs to L1(Ω).

Indeed, if there exists a distributional solution u in W 1,x
0 LM (Q) with

g(x, t, u,∇u) in L1(Q), then ∂u/∂t∈W−1,xLM (Q)+L1(Q) and hence by Lemma5,

u ∈ C([0, T ], L1(Ω)). So that u0 must be in L1(Ω).

Conversely, the existence of one distributional solution of (47) can be obtained

by adapting the above proof to the approximate equations,










un ∈ D(A) ∩W 1,x
0 LM (Q) ∩ C([0, T ], L2(Ω)) , un(x, 0) = u0n

∂un
∂t
− div

(

a(x, t, un,∇un)
)

+ g(x, t, un,∇un) = fn
(48)

where, further, the sequence of the approximating solutions un is now bounded

in W 1,x
0 LM (Q) (it suffices to use Tθ(un) as a test function), which allow to pass

to the limit in (48) in distributional sense.
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