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STRONGLY NONLINEAR PARABOLIC EQUATIONS
WITH NATURAL GROWTH TERMS AND L! DATA
IN ORLICZ SPACES

A. ELMAHI and D. MESKINE

Abstract: We prove compactness and approximation results in inhomogeneous
Orlicz—Sobolev spaces and look at, as an application, the Cauchy—Dirichlet problem
u' + A(u) + g(x,t,u,Vu) = f € L*. We also give a trace result allowing to deduce the

continuity of the solutions with respect to time.

1 — Introduction

Let © be a bounded open subset of RY and let @ be the cylinder Qx(0,T)
with some given T > 0 and let

A(u) = —div (a(ac, t, u,Vu))

be a Leray—Lions operator defined on LP(0,T; W1P(()).
Dall’aglio-Orsina [9] and Porretta [19] proved the existence of solutions for
the following Cauchy—Dirichlet problem

AW gl tuVw = inQ
(1) w(z,t) =0 on 00x(0,7T),
u(z,0) = up(z) in Q,
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where g is a nonlinearity with the following “natural” growth condition (of order
p):
9, t,5,€)| < b(ls]) (clz,t) + |¢I7)

and which satisfies the classical sign condition g(z,t,s,£)s > 0. The right hand
side f is assumed to belong to L'(Q). This result generalizes analogous one of
Boccardo-Gallouet [4]. See also [5] and [6] for related topics. In all of these
results, the function a is supposed to satisfy a polynomial growth condition with
respect to u and Vu.

When trying to relax this restriction on a (for example, if a has exponential or
logarithmic growth with respect to Vu) we are led to replace LP(0,T; WP (1))
with an inhomogeneous Sobolev space W% L/ (Q) built from an Orlicz space Ly
instead of LP where the N-function M which defines L, is related to the actual
growth of a. The solvability of (1) in this setting is only proved in the variational
case i.e. where f belongs to the Orlicz space W 1*E3(Q), see Donaldson [8]
for g = 0 and Robert [20] for g = g(x,t,u) when A is monotone, t? < M(t)
and M satisfies a Ay condition and also Elmahi [11] for g = g(z,¢,u,Vu) when
M satisfies a A’ condition and M(t) < t™/(N=1 and finally the recent work
Elmahi-Meskine [13] for the general case.

It is our purpose in this paper to prove, in the case where f belongs to L(Q),
the existence of solutions for parabolic problems of the form (1) in the setting of
Orlicz spaces by using a classical approximating method. Thus, and in order to
study the behaviour of the approximate solutions we call upon compactness tools,
so that, we first establish (in section 3) L! compactness results nearly similar to
those of Simon [21] and Boccardo-Murat [6] and Elmahi [10].

Next, and when going to the limit in approximating problems, we have to reg-
ularize an arbitrary test function by smooth ones with converging distributional
time derivatives. This becomes possible thanks to the approximate theorem 3
which is slightly different from theorems 3 and 4 of [15] and will be also applied
to get a trace result giving the continuity of such test functions with respect to
time.

The plan of the paper is as follows: in Section 2 we recall some preliminaries
concerning Orlicz—Sobolev spaces while in Section 3 we prove the compactness
results in inhomogeneous Orlicz—Sobolev spaces.

Section 4 will be devoted to approximation results which allow us to overcome
the difficulties which arise on time derivatives while in Section 5, we look at, as
an application of all previous results, the solvability, in the framework of entropy
solutions, of strongly nonlinear parabolic initial-boundary value problems of the
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form (1), whose simplest model is the following

Ju , m(|Vul) B )

Frie dlv(a(x,t, u) TMVu) +g(z, t,u) m(|Vu|) |Vu| = f in Q,

u(z,t) =0 on 00x(0,T),
u(x,0) = up(z) in Q,

where 0 < a < a(z,t,s) < and where m is any continuous function on [0, 4+00)
which strictly increases from 0 to +oo.

Note that, our existence result generalizes analogous ones of [9] and [19] (take
indeed m(t) = tP~!, with p > 1). Moreover, and contrary to [9] and [19], the proof
is achieved without extending the initial problem or assuming the positiveness of
either the data f or the initial condition ug.

2 — Preliminaries

2.1. Let M:RT — R* be an N-function, i.e. M is continuous, convex, with
M(t) >0fort >0, M(t)/t =0ast— 0and M(t)/t — o0 as t — oo.

Equivalently, M admits the representation: M(t) = f(f m(7)dT where m :
R*T — R™ is non-decreasing, right continuous, with m(0) = 0, m(t) > 0 for ¢t > 0
and m(t) — oo as t — oo.

The N-function M conjugate to M is defined by M (t) = fg m(7)dr, where
m: Rt — RY is given by m(t) = sup{s : m(s) <t} (see [1], [16] and [17]).

We will extend these N-functions into even functions on all R.

The N-function M is said to satisfy a Ag condition if, for some k& > 0:
(2) M@2t) <kM((t) Vt>0.

when (2) holds only for ¢ > some tp > 0 then M is said to satisfy the Ay condition
near infinity.

2.2. Let  be an open subset of RY. The Orlicz class £3/(£2) (resp. the Orlicz
space Ly(€2)) is defined as the set of (equivalence classes of) real-valued measur-
able functions v on 2 such that [ M (u(x))dr <+oo (resp. [ M (u(x)/N)dx <400
for some A\ > 0).
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L (2) is a Banach space under the norm:

lullaza = inf{)\>0:/QM<u(/\x)> dz < 1}

and L37(Q2) is a convex subset of Ly ().

The closure in Ly, (€2) of the set of bounded measurable functions with com-
pact support in Q is denoted by Ej/(2). The equality En () = Ly (Q) holds
if and only if M satisfies the As condition, for all ¢ or for t large according to
whether 2 has infinite measure or not.

The dual of Ejy(£2) can be identified with L77(€2) by means of the pairing
Jo u(@) v(z) dz, and the dual norm on Ly7(€) is equivalent to [|.[57 o

The space Ly () is reflexive if and only if M and M satisfy the A condition
(near infinity only if 2 has finite measure).

Two N-functions M and P are said to be equivalent (resp. near infinity),
if there exist reals numbers ki, k2 > 0 such that P(kaot) < M(t) < P(kat) for all
t > 0 (resp. for all ¢ > some ¢y > 0).

P < M means that P grows essentially less rapidly than M, i.e. for each ¢ > 0,
P(t)/(M(st)) — 0 as t — oo. This is the case if and only if M~1(t)/P~1(t) — 0
as t— 00, therefore, we have the following continuous imbedding L/ (2) C Ep(2)
when 2 has finite measure.

2.3. We now turn to the Orlicz—Sobolev spaces. WLy () (resp. W1E())
is the space of all functions u such that u and its distributional derivatives up to
order 1 lie in Lp;(€2) (resp. Ep(€Q)). It is a Banach space under the norm:

Julliare = Y 1Dl -
lal<1
Thus WLy (Q) and WLE(Q) can be identified with subspaces of the product
of (N +1) copies of Ly (2). Denoting this product by IIL s, we will use the weak
topologies o (ILLys, I1ES;) and o(ILL s, I1Ly;).

The space Wi Ep(Q) is defined as the (norm) closure of the Schwartz space
D() in W'E)\(Q) and the space Wi L () as the o(I1Lys, [IE5;) closure of
D(Q) in WLy ().

We say that u,, converges to u for the modular convergence in WLy (Q) if
for some A > 0, [ M((D%u, — D%)/A)dx — 0 for all |o| < 1. This implies
convergence for o(I1Lys,IILy;). Note that, if u, — u in Lps(€2) for the modular
convergence and v, — v in L7;(£2) for the modular convergence, we have

(3) /unvndx — /uvdm as n — oo .
Q Q
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Indeed, let A > 0 and p > 0 such that
/M(un_u)daﬁﬁ() and /M(Un_v>d$—>()
Q A Q 1
and, since upv, —uv = (uy — u) (v, — v) + upv + uv, — 2uv, we obtain

L1 [t~y <
< [ [

therefore, by letting n — oo in the last side, we get the result.

<

)dm +—’/ (upv + uvy, — 2uv) dz

If M satisfies the Ay condition (near infinity only when 2 has finite measure),
then modular convergence coincides with norm convergence.

2.4. Let W'Ly7(Q) (resp. W 'E5;(9)) denote the space of distributions
on ) which can be written as sums of derivatives of order < 1 of functions in
Ly7(2) (vesp. E57(€2)). It is a Banach space under the usual quotient norm.

If the open set 2 has the segment property, then the space D(2) is dense in
W3 L (£2) for the modular convergence and thus for the topology o (IIL s, IIL7)
(cf. [14], [15]). Consequently, the action of a distribution T in W~ L17(€2) on an
element u of WLy () is well defined, it will be denoted by (T, u).

2.5. Let Q be a bounded open subset of RY, T' > 0 and set Q = Q2x]0, 7.
Let M be an N-function. For each o € NV, denote by D the distributional
derivative on Q of order o with respect to the variable 2 € RY. The inhomoge-
neous Orlicz—Sobolev spaces of order 1 are defined as follows

WL (Q) = {u € Ly(Q): D € Ly (Q), Vel < 1}

and
W EM(Q) = {u € Ba(Q): Diu € En(Q), V]| <1}

The latter space is a subspace of the former. Both are Banach spaces under the
norm
lull = > 1Dgullrmg -
lal<1

We can easily show that they form a complementary system when () sat-
isfies the segment property. These spaces are considered as subspaces of the
product space I1Ly/(Q) which has (N +1) copies. We shall also consider the
weak topologies o(IILys, [1F5;) and o(I1La,ILy7). If w € WH Ly (Q) then
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the function: t — u(t) = u(.,t) is defined on (0,7 with values in WL/ ().
If, further, u € W% Ey (Q) then u(.,t) is a W!Ey (Q)-valued and is strongly
measurable. Furthermore the following continuous imbedding holds: W% Ey/(Q)
C LY0,T;W'Ej(Q)). The space W% Ly (Q) is not in general separable, if
u € WH L (Q), we can not conclude that the function u(t) is measurable from
(0,T) into WLy (Q). However, the scalar function ¢t — [|D%u(t)| s is in
LY0,T) for all || < 1.

2.6. The space Wol’mEM(Q) is defined as the (norm) closure in W% E;(Q)
of D(Q). We can easily show as in [15] (see the proof of theorem 3 below) that
when  has the segment property then each element u of the closure of D(Q)) with
respect to the weak * topology o(IILy, I1E5;) is limit, in WLy (Q), of some
sequence (u,) C D(Q) for the modular convergence i.e. there exists A > 0 such
that, for all a| <1, o M((Dgun, — Dgu)/A)dx dt — 0 when n — oo, this implies
that (u,) converges to u in WH*Ly(Q) for the weak topology o(IILas, I1L57).
Consequently, MU(HLM’HEH) = MJ(HLM’HLM), this space will be denoted
by Wy Lar(Q). Furthermore, Wy Epr(Q) = Wy Las(Q) NT1E),.

Poincaré’s inequality also holds in Wol “Lp(Q) and then there is a constant
C > 0 such that for all u € Wy"" L/ (Q) one has

Y IDsullmg < C Y IDgullmg

la|<1 |a|=1

thus both sides of the last inequality are equivalent norms on WO1 L (Q).
We have then the following complementary system

(W&“LM@) F)
Wy Ex(Q) Fo 7

F being the dual space of WO1 “Eyv(Q). Tt is also, up to an isomorphism,
the quotient of IILy; by the polar set Wol “Epm(Q)*, and will be denoted by
F = W L(Q) and it is shown that W1 L—(Q) = {f = Ylal<1 Di fa
fa € L37(Q)}. This space will be equipped with the usual quotient norm:

17 = inf 3 [fallzro

la|<1

where the inf is taken over all possible decompositions f=3",<1 D7 o, Jo € L37(Q)-
The space Fp is then given by Fy = {f = 3 |qj<1 D7 fo : fa € E57(Q)} and is
denoted by Fyy = W17 E(Q).
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3 — Compactness results

In this section, we shall prove some compactness theorems in inhomogeneous
Orlicz—Sobolev spaces which will be applied to study the behaviour of the ap-
proximating solutions for parabolic problems. These results, which are nearly
similar to those of Simon [21], Boccardo-Murat [6] and Elmahi [10], give only L1
(and not Ljys) compactness for sets in W% L;(Q). They are, however, sufficient
for applications to solve parabolic problems in Orlicz spaces of variational type
or with L' data.

For each h > 0, define the usual translated 7, f of the function f by 7, f(t) =
f(t+h). If f is defined on [0,T] then 71, f is defined on [—h,T — h].

First of all, recall the following compactness result proved by Simon [21].

Theorem 1. See [21]. Let B be a Banach space and let T > 0 be a fixed
real number. If F C L'(0,T; B) is such that

to
(4) { ft) dt} is relatively compact in B, forall 0 <t; <ty <T .
t1 f

(5) Imnf — fllLror;y — O uniformly in f € F, when h—0.

Then F is relatively compact in L'(0,T; B).

Next, we prove the following lemma, which it can be seen as a “Orlicz” version
of the well known interpolation inequality related to the space LP(0, T VVO1 P(Q)).

Lemma 1. Let M be an N-function. Let Y be a Banach space such that the
following continuous imbedding holds: L*(Q) C Y. Then, for all ¢ > 0 and all
A > 0, there is C. > 0 such that for all u € Wol’xLM(Q), with |Vu|/\ € Ly(Q),

Vu
ey < <x( f,ar(S) i+ 7) + s,

Proof: Since Wi Ly (Q) C L'(Q) with compact imbedding, see [1], then, for
all € > 0, there is C. > 0 such that for all v € W} Ly (Q):

(6) [0l < ellVollLy, @) + Cellvlly -
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Indeed, if the above assertion holds false, there is g > 0 and v,, € WOIL M (82)
such that

lonllLi) = collVonllLy @) + nllonlly -

This gives, by setting wy, = vn/[|Vn| 1, (@)
lwnllzi@) = o +nllwnlly,  [VwnlLy@ =1
Since (wy,) is bounded in Wi Ly () then for a subsequence,
wy, —w in WLy (Q) for o(IILy,TIE5;) and strongly in L'(Q) .

Thus [[wn|L1(q) is bounded and [[wy[ly — 0 as n — oo. We deduce that w,, — 0
in Y and that w = 0 implying that eg < |lwy| 1) — 0, a contradiction.
Using v = u(t) in (6) for all u € Wol’mLM(Q) with [Vu|/A € Ly (Q) and a.e.
tin (0,7"), we have
[u@)llLr @) < ellVu®)llL,y @) + Cellu®)lly -
Since [ M(|Vu(z,t)|/A)dz dt < oo we have thanks to Fubini’s theorem,

/M(W)dac < oo forae. tin (0,7)
Q

and then

rvwmem>sx(éﬂfciﬂgﬁgdx+l>

which implies that

Integrating this over (0,7") yields

\V4 ,t T
me@SE%éMo“f)ﬁmunj+@4mwwm

and finally

Vu
lulo < 5)\</QM<|)\|>dxdt + T> + Cellulpory) - @
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We also prove the following lemma which allows us to enlarge the space Y
whenever necessary.

Lemma 2. Let Y be a Banach space such that L'(Q) C Y with continuous
imbedding.

If F' is bounded in Wol’xLM(Q) and is relatively compact in L'(0,T;Y) then
F is relatively compact in L'(Q) (and also in Ep(Q) for all N-function P < M).

Proof: Let € > 0 be given. Let C' > 0 be such that [, M(|Vf|/C)dzdt <1
for all f € F.

By the previous lemma, there exists C. > 0 such that, for all u € VV&L “Lu(Q)
with |[Vul|/(2C) € Ly (Q),

2eC |Vul
lu@®)lzrq) < m(/QM<%)dxdt + T) + Cellullioryy -

Moreover, there exists a finite sequence (f;) in F satisfying:

3

WfeF, 3f suchthat |[f — filiiomy) < o
fer, 3fi suchthat [[f— fillLiomry) 5C.

so that

' 93 |Vf*VfZ| '
1f = fillvg) < S0+T) (/QM(T)dwdt + T) + Cellf = fill o,y

<e

and hence F is relatively compact in L(Q).
Since P < M then by using Vitali’s theorem, it is easy to see that F
is relatively compact in Ep(Q). n

Lemma 3. (See [21]). Let B be a Banach space.
If f € D'(|0,T[; B) is such that % € L'(0,T; B) then f € C(]0,T[, B) and
for all h > 0
E

lmnf = fllcror) < h e

LY(0,T;B)

Remark 1. By lemma 4, if F C L'(0,7T; B) is such that {% :f e F} is
bounded in L!(0,T; B) then

Imnf = fllLror3) — 0 as h — 0  uniformly with respect to f € F .o
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Lemma 4. (See[8]). The following continuous imbedding hold: WOI’ZEM(Q)
C LY0,T; Wy En () and W E£(Q) € L0, T; W1 Ez7(Q)).

We shall now apply the previous results to prove some compactness theorems
in inhomogeneous Orlicz—Sobolev spaces.

Theorem 2. Let M be an N-function. If F' is bounded in Wol’mLM(Q) and
{% 1 fe F} is bounded in W~ L+7(Q) then F is relatively compact in L*(Q).

Proof: Let P and R be N-functions such that P < M and R < M near
infinity.
For all 0 < t; <ty < T and all f € F, we have

t
N0 dtH
t Wl Ep(Q)

IN

T
| 1Ol oo

IN

Cl”fHWOLZEP(Q) < CQHfHWOLZLM(Q) = C

where we have used the following continuous imbedding
WL (Q) € Wy®Ep(Q) C L'(0,T; Wy Ep(Q)) -

Since the imbedding WgEp(Q) C L'(2) is compact we deduce that

( ttf f(t) dt)feF is relatively compact in L!(Q2) and in W—51(Q) as well.

On the other hand {%—{:fEF} is bounded in W™'*Liz(Q) and in
LY0,T; W=HL(Q)) as well, since

W L(Q) € W ER(Q) € LN0,T; W ER(R)) C LN0, T;WHH(9Q))

with continuous imbedding.
By Remark 1, we deduce that ||74 f — f|[ 110, 7,w 1.1 (q)) — 0 uniformly in f € F
when h — 0 and by using theorem 1, F is relatively compact in L*(0,7; W~11(Q)).
Since L'(Q2) ¢ W—11(Q) with continuous imbedding we can apply lemma 2
to conclude that F is relatively compact in L'(Q). u
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Corollary 1. Let M be an N-function.
Let (uy,) be a sequence of W12 Ly (Q) such that

u, —u weakly in WLy (Q)  for o(IILyy, E5;)

and % — hn+ ke in D(Q)

with (h,) bounded in W~*L:7(Q) and (k,) bounded in the space M(Q) of
measures on Q.

Then u,, — u strongly in L}, (Q).

If further u,, € Wol’xLM(Q) then u, — u strongly in L*(Q).

Proof: It is easily adapted from that given in [6] by using Theorem 2 and
Remark 1 instead of lemma 8 of [21]. m

4 — Approximation and time mollification

In this section,  is an open subset of RY with the segment property and
I is a subinterval of R (both possibly unbounded) and @ = Qx1I.

Definition 1. We say that u, — u in W~*L3(Q) + L' (Q) for the modular
convergence if we can write

Uy = Z Doy +ud and wu = Z D2u® + u°
lal<1 lal<1

with u — u® in L37(Q) for the modular convergence V|a| < 1 and uf — u°

strongly in L'(Q). o

This implies, in particular, that u, — uwin W% Li+(Q) + L(Q) for the weak
topology o(ILL57 + L, IILj; N L) in the sense that (up,v) — (u,v) for all v €
W * L (Q) N L>®(Q) where here and throughout the paper ( , ) means for either
the pairing between W, L/(Q) and W% [(Q), or between Wy Ly (Q) N
L>®(Q) and W1 L+(Q) + L'(Q); indeed,

(Up,v) = Z (—1)‘“'/ us DSv dx dt +/ ulv dx dt
jal<1 @ @
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and since for all || < 1, ufy — u® in L37(Q) for the modular convergence, and
so for o(L7, Lar), we have

Z (—1)‘“'/ up DS dax dt —I-/ wlv drdt —
Q

o<1

Q
— Z (—1)""/ u*DSv dx dt +/ v dedt = (u,v) .
jal<1 Q Q

Moreover, if v,, — v in VVO1 *Lp(Q) for the modular convergence and weakly*
in L>*(Q), we have (uy,v,) — (u,v) as n — oo, see (3).

We shall prove the following approximation theorem which plays a fundamen-
tal role when proving the existence of solutions for parabolic problems.

Theorem 3. If u € WHLy(Q) N LY(Q) (resp. Wol’mLM(Q) N LY(Q)) and
Ou/0t € W1 L+(Q) + L' (Q) then there exists a sequence (v;) in D(Q) (resp.
D(1,D(R))) such that

ov;  Ou

v; —u in WYLy (Q) and 5 " W L—(Q) + L'(Q)

for the modular convergence.

Proof: Let u € WLy (Q)NL*(Q) such that du/0t € W1 L1(Q)+ LY (Q)
and let £ > 0 be given. Writing du/dt = >jal<1 Dgu® + u®, where u® € L+7(Q)
for all |a| <1 and u° € L(Q), we will show that there exists A > 0 (depending

only on uw and N) and there exists v € D(Q) for which we can write dv/0t =
>laj<1 Do + v? with v¥,v? € D(Q) such that

D% — D& 2T R
(7) / M(M)dmdt <e, / M<” u )dmdt <
Q A Q A

Vie| <1 and |]o° —u0||L1(Q) <eg.

We will process as in [15] (see the proofs of Theorem 3 and Theorem 4). Since
the approximation of v and D$wu can be obtained in the same way, we will only
show that the approximation also holds for the time derivative. Thus, we consider
¢ € DRV with 0 < p < 1, ¢ =1 for |(z,t)] <1 and p = 0 for |(x,t)] > 2.
Let ¢, (z,t) = ¢((x,t)/r) and let u, = ¢ u.
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On the one hand, we have

au?"_ a, o 0 laﬁ( )
o —sor(ZDxu +u)+ at( . )u

la|<1

Z Dz (¢ru®

o<1

L 2 3
= Up + Uy + U

When 7 — oo, we have, by Lemma 5 of [15], ul — > jaj<1 D3u® in W L(Q)

for the modular convergence and, by direct examination, u?

— 0 strongly in
L+7(Q) and u? — u° strongly in L'(Q). Hence, we can choose A > 0 (namely
such that Dgu/\ € L3(Q) and u*/\ € L37(Q) for all [a < 1) and r > 0 such

that

/ M((Dguy — Dgu)/N) dadt < & Vo] <1, /M(uZ/A) drdt < ¢
Q Q
(8) Jud— w1 <e and / ©—u)/A)dedt < Vo] <1.

On the other hand, let v; be a C* partition of unity on Q subordinate to a
covering {U;} of Q satisfying the properties of lemma 7 of [15] and consider the
translated function (v, ), defined by (¢Yivy)s, (z,t) = (Yivr)((x,t) + t;y;) where
y; is the vector associated to U; by the segment property. Let p, be a mollifier
sequence in RV*1 that is, p, € D(RVTY), py(x,t) = 0 for |(z,t)] > o, ps > 0
and [pni1 po = 1. Extending u, outside @ by zero, we see that t);u, vanishes
identically for all 7 > some i,. As in [15], we define

ir

=Y (@Win)t, * po, € D(Q) -

i=1
Clearly, we have
ov r
ot - Z(wz tz*paz+z Yiuy, tz*Paz"‘Z Pitt, tz*pal—i_z Ur) * Po;
i=1 ti
and since

i=1 i=1 lal<1

Zr(wz )tl*pal - ZT (wz Z D?(SOTUO‘>> * Po; =

i
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= XT: (Z Daocé(dji‘prua)) * Poy — XT: (Z(Dgwi%@rua) * Po;

i=1 \|a|<1 , i=1 \|a|=1 ,
7 7
ir

= Z (Z (Dg(¢i¢rua))ti* Pcn) - i (Z (Dg?ﬁi)%u"‘) % P

lo|<1 \i=1 i=1 \|a|=1 .
we deduce that 9
6—: = ZD?UQ—{—UQ—{—U?)

o<1
where, as it can be easily seen
ir
v = Z(wi(prua)ti * Po; Ve <1,
i=1

ir i
v = Z(%U?)tl * Po; — Z Z D;‘(T/)i)gorua * Do,
=1 =1 \|a|=1 .

i

ir

i
0 = St e+ 35(%) e
i=1 t;

i=1
Now, for each i = 1,...,4,, we can choose (see lemma 5 of [15]) 0 < ¢; < 1 and

Po; = pi such that

/ M <<Z(¢iDaOf“r)ti*Pi — D:‘fjur) /A) dedt < e Vo<1,
Q

i=1
/ M((v2 —u%)/)\) dedt < g,
Q
[0* =}l 1) < €,

/ M ((i(%%uo‘)ti * p; — wu“‘) //\) dedt < e V| <1.
Q

i=1
Combining (8) and (9), we get the result.
The case where u € I/VO1 Ly (Q) N LY(Q) can be handled similarly without
essential difficulty as it is mentioned in the proof of theorem 4 of [15]. u

Remark 2. The assumption v € L'(Q) in theorem 3 is needed only when Q
has infinite measure, since else, we have Ly/(Q) C L*(Q) and so WLy (Q) N
LNQ) = WH La(Q). o
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Remark 3. If, in the statement of theorem 3 above, one takes I =R,
we have that D(Q2xR) is dense in {u € Wol’xLM(QXR) N LY QxR) : Ou/dt €
W2 L(QxR) + LY (Q2xR)} for the modular convergence. This trivially fol-
lows from the fact that D(R,D(Q2)) = D(2xR). o

A first application of theorem 3 is the following trace result (see [19], Theorem
1.1, for the case of ordinary Sobolev spaces).

Lemma 5. Let a < b € R and Q be a bounded open subset of RN with the
segment property. Then

{u € W Lar(Qx(a,b)): Bufdt € WL (Qx(a,b)) + L' (0 (a, b))} c

c C([a,b], LY()) .

Proof: Let u € Wy Ly (Q2x(a,b)) such that du/dt W L (Qx (a, b)) +
L'(Qx(a,b)). After two consecutive reflections first with respect to ¢ = b and
then with respect to t = a:

@(l‘a t) = U(:L’, 75))((a,b) + U(ZE, 20— t)X(b,Qb—a) on x (CL, 26 — CL)
and

ft(x, t) = ﬂ($, t)X(a,bea) + "&(3:, 2a — t)X(3a72b,a) on Qx (3@ — 20,20 - a) )

we get a function @ € Wy Ly (€2 x (3a — 2b, 2b— a)) with 9@/t € W L ( x
(3a—2b,2b—a)) + L' (Q x(3a — 2b,2b—a)). Now, by letting a function n € D(R)
with n = 1 on [a,b] and suppn C (3a — 2b,2b — a), we set w = nu; therefore,
by standard arguments (see [7], Lemme IV and Remarque 10 p.158), we have:
a=wu on Qx(a,b), we Wy L (QxR)NL (QxR) and du/dt € W1 L-(QxR)+
LY(QxR).
Let now v; the sequence given by theorem 3 corresponding to @, that is,

vj =T in Wy Ly (QxR)
and B

‘95;1 . g;‘ in W L(QxR) + L' (2xR)

for the modular convergence.
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Throughout this paper, we denote T} the usual truncation at height k£ defined
on R by Tj(s) = min(k, max(s, —k)) and Si(s) = [5 Tx(t) dt its primitive. We
have,

ov; ()'U
P — = ! 1 — ), ] —
/5’1(1) T)dr = // I (v ( " t)dxdt 0 as 4,7 — 00,

from which, by following [19], one deduces that v; is a Cauchy sequence in
C(R, LY(Q2)) and hence w € C(R, L'(2)). Consequently, u € C([a,b], L}(Q2)). n

In order to deal with the time derivative, we introduce a time mollification of
a function uw € Ly/(Q). Thus we define, for all 4 > 0 and all (z,t) € Q

(10) (x,t) = ,u/ (x,s)exp ,u(s—t)) ds

where @(z, s) = u(x, s)Xx(0,7)(s) is the zero extension of u.
Throughout the paper the index i always indicates this mollification.

Proposition 1. If v € Ly(Q) then u, is measurable in Q and Ou,/0t =
p(u —w,) and if u € L7(Q) then

/QM(uM)dmdt §/QM(u)dxdt.

Proof: Since (z,t,s) — u(x,s)exp(u(s — t)) is measurable in Qx[0,T]x
[0, T], we deduce that u, is measurable by Fubini’s theorem. By Jensen’s integral
inequality we have, since f_o o texp(us)ds =1,

M (/t wa(z,s) exp<,u(s — t))ds> =M </_O w exp(ps) u(x,s +t) d8>

< /_OOO poexp(us) M(a(z,s+1t))ds

which implies

/QM(uu(x,t))dxdt g/

. </o w exp(us) M (a(x, s +t))d5> di dt

—0o0

< /_OOO p exp(us) ( QXR]\I(ﬁ(:c, s+t))dx dt) ds

< /OOO p exp(us) (/Q M (u(zx,t)) dx dt) ds

= /QM(u)dJ:dt.
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Furthermore
Oup _ 1 e Lo H(s—(t+6))
- = (glir(l) 5(6 —Duy(z,t) + élir(l)e u(z,s)e ds

= —pUy + pu . n

Proposition 2.

1) If u € Ly(Q) then uy, — w as p — —+oo in Ly(Q) for the modular
convergence.

2) If u € Wh* Ly (Q) then u, — u as p — +oo in Wh¥Ly(Q) for the
modular convergence.

Proof: 1) Let (pr) C D(Q) such that ¢ — u in Ly (Q) for the modular
convergence. Let A > 0 large enough such that

gEﬁM(Q) and /M((pk_u)dmdt — 0 as k—o0.
A Q A
For a.e. (z,t) € Q we have
3¢k ok
(o)l t) = (o 0] = % | w0 < 3|2

On the other hand

/M(““ u)d:cdt < —/M(M)dxdt—k - M(M>da:dt
Q 3 3 Jo A 3 Jog A

1

- d

3

IN

This implies that

/Qz\4<7“‘”3A )dxdt < _/ (

Let € > 0. There exists k such that

/M(sok_u)dxdt < €
Q A

s+ .
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and there exists ug such that
M(LH%
pA|| Ot

/M(u”?);u)dxdt <e forall p>po.
Q

) meas(Q) <e forall u>pp.
o0

Hence

2) Since Vo, |af < 1, we have Dg (u,) = (Dgu), , consequently, the first part
above applied on each D¢u, gives the result. n

Remark 4. If u € Ep(Q), we can choose A arbitrary small since D(Q) is
(norm) dense in Ej/(Q). Thus, for all A >0

/M(u“)\_u>da:dt — 0 as pu— +o0
Q

and w, — u strongly in Fj/(Q). Idem for WhH*Ey(Q). o

Proposition 3. If u, — u in WH* Ly, (Q) strongly (resp. for the modular
convergence) then (uy), — wu, in WYLy (Q) strongly (resp. for the modular
convergence).

Proof: For all A > 0 (resp. for some A > 0),

/M<Dg((un)u)_Dg(uﬂ)>dxdt < / M(Dg(u")_Dg(u)>d:zdt — 0
Q Q

A A

as n — 0o,

then (un), — u, in WLy (Q) strongly (resp. for the modular convergence). u

5 — Existence theorem

Let © be a bounded open subset of RN (N > 2) with the segment property,
T > 0 and set @ = Qx(0,T). Let M be an N-function.

Consider a second order partial differential operator A: D(A) C W1 Ly (Q) —
W12 L(Q) in divergence form

A(u) = —div a(z,t,u,Vu)
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where a: Qx[0, T]xRxRY — R¥ is a Carathéodory function satisfying for a.e.
(z,t) € Qx[0,7T] and all s € R, & # £* € RV:

(11) la(@,t,5,€)] < B(Jsl) (e1(,t) + M M(l¢]))
(12) [a(m,t,s,{) — a(x,t,s,é*)} E—&] >0
(13) a(x7tas7f)§ > CVM("SD

where ci(z,t) € Eg(Q), ¢1>0; §:[0,400) — [0,+00) a continuous and non-
decreasing function; «,~y > 0.

Note that, (13) written for £ = ¢, ¢ > 0, and the fact that a is a Carathéodory
function, imply that

a(z,t,s,0) =0 for almost every (z,t) € Q and every s € R .

Let g : Qx[0,T]xRxRY — R be a Carathéodory function satisfying for a.e.
(x,t) € Qx(0,7T) and for all s € R, £ € RV :

(14) 9(z,t,5,€)| < bls]) (ea(,t) + M(I¢]))
(15) g(x7t737§)3 Z 0

where co(x,t) € L'(Q) and b:RT— RT is a continuous and nondecreasing
function. Furthermore let

(16) fell Q.

Throughout this paper (, ) means for either the pairing between I/VO1 T Ly (Q)N
L>®(Q) and W1 L+=(Q)+ L' (Q) or between WOI’xLM(Q) and W1 L+=(Q) and
Qr = Qx(0,7) for 7 € [0,T).

Consider, then, the following parabolic initial-boundary value problem:

ou

e + A(u) + g(z, t,u,Vu) = f in Q
(17) u(z,t) =0 on 90Qx(0,T)
u(z,0) = ug(x) in

where ug is a given function in L!(€2).
Let us now precise in which sense the problem (17) will be solved. Thus, we
state, as in [19], the following
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Definition 2. A measurable function u : 2x(0,7") — R is called entropy so-
lution of (17) if u belongs to L>°(0,T; L*(£2)), Tk (u) belongs to D(A)ﬁWol’xLM(Q)
for every k > 0, Sk(u(.,t)) belongs to L}() for every ¢ € [0, T] and every k > 0,
g(z,t,u,Vu) is in L'(Q) and u satisfies:

/Sk(u—v)(T)dx + <8—U,Tk(u—v)> + [ a(z,t,u,Vu) VIg(u—v) dedt +
Q 8t QT Q"’

(18) —i—/Q g(z,t,u,Vu) Ty (u —v) dedt <
< /QTka(u—v) dx dt +/§25k(uo—v(0))dx

for every 7 € [0,T], k > 0, and for all v in Wol’xLM(Q) N L*>(Q) such that dv/0t
belongs to W% L7(Q) + L*(Q) (recall that T}, is the usual truncation at height
k defined on R by Tj(s) = min(k, max(s, —k)) and that Si(s) = [; T (t)dt is its
primitive vanishing on 0).

Note that, all the terms in (18) make sense since T} (u—v) belongs to Wé’ILM(Q)
NL>®(Q). Moreover Lemma 5 implies that v € C([0,T], L(Q2)) and then the first
and last terms are well defined. o

We shall prove the following existence theorem:

Theorem 4. Assume that (11)-(16) hold true. Then the problem (17) ad-
mits at least one entropy solution u € C([0,T], L(Q)) satisfying u(x,0) = ug(x)
for a.e. x € Q.

Proof of Theorem 4: We divide the proof in four steps.

Step 1: A priori estimates.

Let (f,) be a sequence of smooth functions such that f, — f in L'(Q) and
let (ug,) be a sequence in L2(Q) such that ug, — ug in L'(£2).
Consider the sequence of approximate problems:

19) {“ & D(A) N WL Lus(@) 1 CU0,T], I2(D)), un(,0) = oy

Ouy, /Ot — div(a(ac,t,Tn(un),Vun)) + gn(z,t,un,Vuy,) = fn

where g, (x,t,5,&) = Th(g(x,t,s,8)).
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Note that g, (z,t,s,£)s>0, |gn(z,t,s,8)| < |g(x,t,s,£)| and |gn(z,t,s,8)| <n.
Since g, is bounded for any fixed n >0, then, by Theorem 1 of [12], there exists
at least one solution u,, of (19).

Note also that (u},v) is defined in the sense of distributions. Since f, —
A(un) — gn is in W% L+=(Q) we can extend (ul,,v) to all v € Wol’xLM(Q).

Using in (19) the test function T} (un)X (o), We get, for every 7 € (0,7)

(20) /Q Sy (un (7)) dz + /Q a2t Te(un) V() ) VTi(u) drdt < crk

where here and below ¢; denote positive constants not depending on n and k.
On the other hand, thanks to Lemma 5.7 of [14], there exists two positive
constants 4, A\ such that

(21) /QM(U) dx dt < 5/QM()\\V1)])da:dt for all v e W&’”CLM(Q) :

Taking v = Ty (uy,)/A in (21) and using (20) with (13), give

a/ M<Tk(un))dxdt < ek
Q A

which implies that

63]{?

meas{ (2,1) € Q: fun| > £} < 370

so that

(22)  lim (meas{(:v,t) €Q: |upl > k}) = 0 uniformly with respect to n .

k—o00

Consider now for ,e > 0 a function pj € C*(R) such that

po(s) =0 if |5 <,
pi(s) = sign(s) if [s| > 0 +e.
(b5)(s)=0  VscR

then, by using pj(u,) as a test function in (19) and following [19], we can see
that

(23) / |gn (2, t,un,Vuy,)| de dt §/ | fn| dz dt +/ |won| dz dt
{un|>0} {un|>0} {l

uOn‘>0}
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and so by letting # — 0 and using Fatou’s lemma, we deduce that g, (x,t, u,,Vuy,)
is a bounded sequence in L*(Q).

Moreover, we have from (20) that Ty (uy) is bounded in Wol * Ly (Q) for every
k > 0. Take a C%(R), and nondecreasing function ¢, such that (x(s) = s for
|s| < k/2 and (x(s) = ksign(s) for |s| > k. Multiplying the approximating
equation by (. (uy,), we get

0

E(Ck(un)) — div(a(ac,t, Un, Viy) C,’C(un)> + a(z, t, un, Vuy) L (up)

+ gn<$a t, unavun> Cl/g(un) = fn <]/g(un> )
in the sense of distributions. This implies, thanks to (20) and the fact that (;, has
compact support, that (x(uy,) is bounded in WO1 * Ly (Q) while its time derivative
%(Ck(un)) is bounded in W1 L+(Q) + L'(Q), hence Corollary 1 allows us to
conclude that (j(uy,) is compact in L*(Q). Therefore, following [19], we can see
that there exists a measurable function u in L (0, T; L'(£2)) such that for every
k > 0 and a subsequence, not relabeled,

(24)  Ti(up) — Ti(u)  weakly in Wy Lar(Q) for o(IILys, TE;)
strongly in L'(Q) and a.e. in Q .

To prove that a(z,t, Ty (un),VTk(uy)) is a bounded sequence in (L37(Q))".
Let ¢ € (Ep(Q))N with ||¢|larg = 1. In view of (12), we have

/Q [, . Ti (1), VT (1)) — a1, Ti(un). )] [VTk(un) — ] drdt > 0
which gives
/Q a(, b, To(un), VT (un)) @ do dt < /Q a(, t, T (), V T (tn)) VT (1) da dt
- /Q a(z, t, To(un), @) [VTi(un) — ¢ da dt .
On the one hand, by (20), we have [ a(z,t, Tj(un),VT)(un)) VT (un) dz dt < C,

where here and below C' denotes a positive constant not depending on n. On the
other hand, using (11), we see that

_<| a(a:,t, Tk(un)a 90) ’

w(letet Tule ) < M, ) + M(rlel)
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and hence a(z,t,Tx(up), ) is bounded in (Ly7(Q))Y, implying that, since
Ti(un) is bounded in Wy Ly (Q)

‘/Qa(x’t’T’“(“")ﬂo) (VT (un) — ¢l dxdt] < C

and so, by using the dual norm, a(z,t, Tx(u,), VT (uy)) is a bounded sequence
in (Ly(Q)).

Thus, up to subsequences
(25)  a(z,t, Tk (un),VIk(up)) — hx in (LM(Q))N for o(IlLy7, IIEy) ,

for some hy, € (L37(Q))".

Step 2: Almost everywhere convergence of the gradients.

: s - b(k) |2
Fix k > 0 and let ¢(s) = se° ", § > 0. It is well known that when ¢ > (W)
one has

1
(26) o'(s) — —=|p(s)| > 3 forall seR.
Let v; € D(Q) be a sequence such that
(27) vj — Tp(u) in Wy "Ly(Q)  for the modular convergence

and let 1; € D(Q) be a sequence which converges strongly to ug in L' (£2).

Set W:L,j = Ty (vj) p+e T (¢;) where Ty (v;), is the mollification with respect
to time of Tj(vj), see (10). Note that w), ; is a smooth function having the
following properties:

a(wu,j) = M(Tk(vj) - wu,j) ’ wu,j(o) = Tk(¢l) ) |wu,j| <k,

Wi = Te(w)y+ e M Ty(yy)  in Wy L(Q)

for the modular convergence as j — oo ,

To(w)y + e #Ti(thi) = Tr(u) in Wy Li(Q)
for the modular convergence as p — oo .
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Let now the function p,, defined on R by

1 if |s| <m,
pm(s) =3 m+1—]s| if m<|s|<m+1,
0 if |s|>m+1,
where m > k. Let 9“’?:Tk(un)— M and Zn]m_ (Hul)pm(un)

Using in (19) the test function 2/"% = we get (u/, denotes the distributional

n j m
time derivative of u,),

(ul,, 2" 2 5m) / a(x, t,un,Vuy) [VTi(un)— Vw gl (0’“)pm(un) dzx dt
+ /Qa(x,t?un,Vun)go(H’;:;)p/m(un) dx dt
n /an(m,t,un,Vun) S dwdt = /fn 2 dwdt
which implies, since gp(x,t, tn,Vu,) @(Tk(u,) — wfm)pm(un) >0 on {|u,|>k}:
(ul, 20 4 / 02,y 1, Vi) [V T (1) — Ve, ] (0) (1)

(28) N
un|<

/ ol drdt .

In the sequel and throughout the paper, we will omit for simplicity the de-
pendence on z and t in the function a(x,t,s,{) and denote &(n, j, i, i,s,m) all
quantities (possibly different) such that

lim lim lim lim lim lim e(n,j, u,i,s,m) = 0
m—0o0 S—00 —00 H—00 ]—)oo n—oo

and this will be the order in which the parameters we use will tend to infinity,
that is, first n, then j, u, 4, s and finally m. Similarly we will write only €(n), or
e(n,j), ... to mean that the limits are made only on the specified parameters.



STRONGLY NONLINEAR PARABOLIC EQUATIONS... 167

We will deal with each term of (28). First of all, observe that
(29) | o Tilun) = ) o) dzt = <o)

since p(Ti(un) — Wi ;) pm(un) — @(Th(u) — Wi ;) p(1s) weakly * in L(Q)
asn — 00, G(Th(w) — wi ;) pmlu) — (T(u) — Te(wly + € FTi(ts)) prm(v)
weakly * in L>(Q) as j — oo and finally (T (u)—Tj(u),+e Tk (1)) pm(u) — 0
weakly * in L>®(Q) as pu — 0.

On the one hand, from (19) one deduces that u, € Wy Lys(Q) and du,, /ot €
W=b%(Q)+L'(Q) and then by theorem 3 there exists a smooth function ,, such

that, as 0 — 07, upe — uy, in Wol’ILM(Q) and Oupy /Ot — Ouy, /Ot in WL (Q)+

T

L'(Q) for the modular convergence, so that, o(T(tny) — wz?j)pm(um) = Zpim

in VVO1 * L (Q) for the modular convergence and weakly * in L>°(Q). This implies

/! u,i >
n’ “n,j,m

= lim | up, @(Tk(tno) — @), ;) Pm(tng) da dt

<u o—0t JQ

= UIH& Q[(Rm(uno))/] (T (tno) — wz,j) dx dt

where R,,(s) = [5 pm(n)dn. Hence

<U§L72if,’§-,m> = Jli%{r [/Q(Rm(una) — Tk (tno)) &(Th(tng) — Wi,j) dz dt
+ /Q(Tk(ung))/go(Tk(um) - wi’j) dx dt]

T

oc—0t 0

= lim {{A(Rm(una) - Tk(“na)) W(Tk(una) - wz,j) Cl.%':|
N / (R (ttno) = T (tno)) @' (T (o) = ) (T (thno) = ;) vt

Q
[ (T10an)) 9T (anr) = ) dt}

= lim {11(0) + Ir(o) +I3(O’)} .

o—0t

Observe that for |s| < k we have R,,(s) = Ti(s) = s and for |s| > k we have
|R(8)| > |Tk(s)| and, since both R,,(s) and Ty(s) have the same sign of s,



168 A. ELMAHI and D. MESKINE

we deduce that sign(s) (R, (s)—Tk(s)) > 0. Consequently

T

I(o) = [ oy Bone) = Tl @ (Tiane) = ) |

v

—/ (Ron(ttng (0)) = Ti (o (0))) (T (g ) (0) — wy, 5(0)) daz
{lunc (0)|>k}
and so, by letting 0 — 07 in the last integral, we get

limsup I1(o) > — /{Iuo Pk}(Rm(uon) — Ti(uon)) Tk (uon) — Tr(¢i)) dz .

o—0t

Letting n — oo, the right hand side of the above inequality clearly tends to
~ [ (R(uo) = Tiwo)) p(Ti(uo) ~ T() do
{luol=k}

which obviously goes to 0 as i — oo. We deduce then that

limsup I1(0) > e(n,i) .
oc—0t

About (o), we have, since (R, (tung) — T (tno)) (Tk(une)) =0

(o) = / (R (o) = T (o)) ' (T (o)~ 5) (W) e dt
{funo|>k}
= Bunlttae) = Tiae)) @ (Teltne) —h ) (Th(o) = i) e
{Juno >k}

= /{ oy T n) () Tetn) ) (Ti) =T ))

by using the fact that ¢'>0 and that (R, (tne ) =Tk (Une)) (Tk (“mf)_wi,j)x{lumbk}
> 0 and so, by letting o — 0T in the last integral

limsup Is(0) >
o—0t

> u/ (Rin(un) = Ti(un)) ¢ (T (un) = wp ;) (Ti(v5) = Ti(un)) do dt
{lun|=k}
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and since, as it can be easily seen, the last integral is of the form €(n, j) we deduce
that

limsup Is(0) > e(n,j) .
oc—0t

For what concerns I3(c), one has
I(0) = /Q (Ti(tine) — 'Y @(Th(ttng) — ;) daz dlt
+ /Q (@) P (Ti(ting) — ;) dardt

and then, by setting ®(s) = [ ¢(n) dn and integrating by parts

T
I3(0) =

/Q<I>(Tk(um) — ) da

+p /Q (Te(vy) — ;) (T (ting) — i, ;) dadt

0

which implies, since ® > 0 and (Tg(ung) — w, ;) (T (tng) — w}, ;) > 0

L(o) > — /Q @ (Tt (0)) — Ti(ur)) do
- /Q (Ti(05) — Th(ttno)) 9(Tk(ttng) — i) dvdt |
so that

limsup Is(r) > — [ @(Ti(unn) = Ti(w)) do

o—0t

[ (Tulo) = Tilun)) 9(Tilow) — ) dev
and by letting n — oo in the last side, we obtain

limsup (o) > — [ ®(Ti(uo) = Tulw) da

o—07t

n M/Q(Tk(vj)—Tk(u))ap(Tk(u) i) dedt + e(n) .

Since the first integral of the last side is of the form ¢(¢) while the second one
is of the form &(j) we deduce that

limsup I3(o) > e(n,j,i) .
oc—0t
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Combining these estimates, we conclude that

(30) (s @(Tilun) = W) () 2 £(n,jii) -

On the other hand, the second term of the left hand side of (28) reads as

/Q 0t Vi) [V T () — Ve, ] @' (T (i) — o) pon (i) dav it =

- o) a(tn,Vuy) [VTE(upn) — chfhj] O (T (up) — wl7j) pm(uy) dx dt

+ /{| - a(tn,Vuy) [VTi(un) — Vu)/ﬂ’j] o' (Ty,(upn) — wi,ﬂ pm(uy) dx dt
Un |>

- /Qa(Tk(un),VTk(un)) (VT (un) — Ve, ¢ (Th(un) — o, ;) dadt
+ /{|un|>k} a(tu,Vun) [V Ty (1) — Vi, ] (T (un) — W 5) () dae dt

where we have used the fact that, since m > k, py,(u,) =1 on {Ju,| < k}.

Setting for s >0, Q°={(z,1) € Q:[VTi(u)| < s} and QF = {(z,t) € Q:
|VTk(v;)| < s} and denoting by x* and x; the characteristic functions of Q°
and Q7 respectively, we deduce that

/Q 0t Vi) [V T (1) — Ve, 10 (Th(t) — ;) pr (1) vt =
= [o0Tilom). 9Tiom0)) = T () 9 T(0)x3)] [V ) = V(0]
% @' (Ti(un) — i, ;) da dt
+ /Qa(Tk(un)VTk(vj)X?) (VT (un) = VTk(05)x5] @' (T (un) — w, ;) da di
+ /Q (T (1), VT (1)) VT (07) x5 @' (Ti (1) — i, ;) dlv
- /Q 0t V) V' ' (T (i) — W ;) () s lt

=1+ o+ J3+Js.

We shall go to the limit as n, j, u and s — oo in the last three integrals of the
last side. Starting with Jo, we have by letting n — oo

Ja = /Q(I(Tk(’lt),VTk(’Uj)X;) [VTk(’LL) — VT (Uj)xj] gOI(Tk(u) — wliiyj) pm(u) dx dt

+ e(n)
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since a(Tk(un),VTk(vj)x;) — a(Tk(u),VTr(v;)x;) strongly in (E57(Q)N by
using (11) and Lebesgue theorem while VT},(uy,) — VT (u) weakly in (L (Q))Y
by (25).

Letting j — 0o in the first term of the right hand side of the above equality,
one has, since a(Ty(u),VTi(v;)x;) — a(Tk(u),VTi(u)x?®) strongly in (B (@)Y
by using (11), (27) and Lebesgue theorem while VT}(v;)x; — VTi(u)x® strongly
in (L (Q))N,

J2 = €(TL, ]) .
About J3(n,j, i, s), we have by letting n — oo and using (25)
Jy = /Q hi VTk(03) X5 ' (T () — w7, ) pm () dzdt + £(n)
which gives by letting j — oo, thanks to (27) (recall that p,,(u) =1 on {|u| < k})
Jy = /Q i V() X° @' (Te(w) — Ti(w)y + e P Ti(4)) dwdt + (n, )
implying that, by letting p— oo, J3 = [o bV} (u)x® dx dt +e(n, j, 1), and thus
J3 :/ hiVTi(u) dedt + e(n, j, @, s)
Q

For what concerns J4 we can write, since py,(u,) = 0 on {|u,| > m+1}

Ji=— /Q (T2 (1), VT 1 () Vs s & (T () — W) pon (1) dl it

_ /{ | Kk}a(Tk(un),VTk(un))w;‘m & (T (un) — &' ;) () da dt

-/ (T 1 (), T 1 (1)) Vil @' (Ti(ttn) ~ s ;) o1t i
{k<|un|<m+1}

and, as above, by letting n — oo
Jy = —/ hiVw'! @ (Ti(u) — Wi ) dxdt
{Jul <k} " "

—/ hm+1sz7j o' (Ty(u) — wzd) pm(u) dedt + £(n)
{k<[ul<m+1}
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which implies that, by letting 7 — oo
Ji= - /{ oy [T T ()] (T (o)~ T e Ti)) e
+¢e(n, j)
- /{k§|u§m+1} fim-+1 [VT]“(U)“ B ei#tVTk(wi)}
x ¢’ (Tk(u) = Tho(u)u — 6_“tTk(¢i)) pm(u) d dt
so that, by letting u — oo
Jy = —/QthTk(u) drdt + ¢(n,j, p) .
We conclude then that
/Q (1t V1) [V T (1) = V5 ] @' (Ti(t) = ;) pr(im) vt =
Bl = /Q{G(Tk(un),VTk(un)) = a( T (), V Tk (0)x)] [V Tk () = VT ()]
x o (Ty(un) — wi’j) dedt + e(n,j,1,5s) .
To deal with the third term of the left hand side of (28), observe that
‘/Qa(:v,t,un,Vun) gp(@ﬁ;)p;n(un) dx dt‘ <

< (p(2k)/ a(un,Vuy) Vu, dedt .
{m<|up|<m+1}

On the other hand, using 6,,(u,) as a test function in (19) where 6,,(s) =
Ti(s — Tin(s)), we get

<u;170m(un)> +/ a(un,Vun) vungin(un) dz dt +/ g(unavun) em(un) dedt =
Q Q
= / frn O (uy) dz dt
Q

which gives, by setting ©,,(s) = [ 0m(n) dn (observe that 6,,(s)s > 0)

T

/@m(un(t))dx} + a(tn,Vuy) Vuy, de dt S/ | fr| dx dt
Q 0 Hm<|un|<m+1} {lun|>m}

and since ©,, > 0, we deduce that

a(un,Vuy) Vu, dedt < /G)m(uon) dr + | fr| dx dt .
Q

{lun|zm}

/{mgun|§m+1}
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Since, as it can be easily seen, each integral of the right hand side is of the form
g(n,m) we obtain

(32) ’/Qa(x,t, un,Vun)cp(Hg:;)p;n(un) dx dt’ < g(n,m) .

We now turn to the fourth term of the left hand side of (28). We can write

|/ gn(x, t, U, Vuy) o(Ti(un) — wi’j) pm(up) dxdt| <
{lun|<k}
(33) < 0(k) | eatar ) oTi(un) )
+ @/Qa(Tk(un),VTk(un)) VT (un) | (T (un) — wLJ)| dx dt .

Since ca(z,t) belongs to L'(Q) it is easy to see that
b(k) | eatat) lo(Tiun) =) dwdt = (o)

On the other hand, the second term of the right hand side of (33) reads as

@/Qa(Tk(Un%VTk(’U/n))VTk(Un) lo(Tx (un) —wfl’j)\ de dt =
_ b(a’“) /Q [T (), VT 10n)) — (T (1) VT (03)3)] [V T 1) — VT (7))
x Jo(Ty (un) — wj, ;)| da dt
+ b(ak)/Qa(Tk(un),VTk(vj)Xj) (VT (un) —VTi(vi)x;] ISO(Tk(Un)—me)I de di
+ @/Qa(Tk(Un),VTk(Un))VTk(Uj)Xj | (Ti(un) — &, ;)| da dt

and, as above, by letting first n then j, u and finally s go to infinity, we can easily
see that each one of last two integrals is of the form &(n, j, ). This implies that

<

{lun|<k}

) < " [ Lol V1) = i) TTul05)55)]

«
x [V To(un) = VTi(05)x5] 1 (Tho(wn) —wp, )| dwdt + e(n,j,p) -
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Combining (28), (29), (30), (31), (32) and (34) we get
| [0 000) 9Ti0)) = (T 0) V)5

< 9T (1) = VI (03] |4 (T (1)~ )

b(k)

Y |‘:0(Tk(un)_wz,j)| dedt <

< e(n,j, p,1,5,m)

and so, thanks to (26)

/Q (T (1), VT () = a(Ti (), VI(0)X5) | [V Tk () = VTi(v)x3] ddt <
(35) < e(n,J, m,i,8,m) .

On the other hand, we have
/Q{a(Tk(un),VTk(un)) — a(Tk(un),VTk(u)Xs)} [VTi(up) — VT (u)x®] dedt —

- /Q (T (), VT () =T (), VT (0)X5) | [V Tk () = VT (07)x5] devdt =

- /Q (T (). VT (1)) [V T(0) — VT(w)y] da dt
- /Q (T (), VT (0)X*) [V T (tn) — V() "] da dt
4 /Q (T (11 ).V T (0,)X3) [V Tk (1) — VT (03)] it

and, as it can be easily seen, each integral of the right hand side is of the form
e(n, j,s) implying that

/Q (T (), VT () = a(Tp (), V() X*) | [V Tk () = VTi(w)x*] dadt =
(36) = [aTim) 9T () = aT(a) V50|
X [VTi(un) — VTi(vj)x;] dzdt + e(n,j,s) .
For r < s, we have

0< /Q ) [G(Tk(un),ka(un)) —a(Tk(un),VTk(u))} (VT3 () — VT (w)] da dt

< / [Ty (). VT3 (1)) — a(Ti (1) VT ()] [V T ()~ VT ()] dardt =
Q.S
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/QS [a(Tk(un),VTk(un)) — a(Tk(un),VTk(u)Xs)} VT (un)—VTi(uw)x®] dxdt

< /Q |a(T (1), VT () = a(Ti (), V() X*) | [V Tk () = VT () X da

/Q (T (). VT () = (T (1) VT (0)x3) | (VT (1) = VT (07)5] dee dt
+ &(n, 7, s)
S E(”?j?”)i?‘g?m)

hence by passing to the limit sup over n, we get

0 < limsup {G(Tk(un)vVTk(un))_a(Tk(un)ka(u))} VT (un) = VTi(u)] do dt

n—oo JQr
S nh~>nolo 5(”7 Js Ky 25 S, m)
in which we can let successively j, i, 4, s and m go to infinity, to obtain
/ [l T(wn) VT () = a( T (), VT ()| [V Tk () = VT (w)] dwdt — 0
as n — 0o

and thus, as in the elliptic case (see [3]), there exists a subsequence also denoted
by u,, such that
(37) Vu, - Vu ae. in Q.

We deduce then that,
a(x,t, Ti(un), VT (un)) = a(z,t, Tx(u), VT (u))

(38)
weakly in (L37(Q))" for o(IlLy;, I1E)y) for every k>0 .

Step 3: Modular convergence of the truncations and equi-integrability of the
nonlinearities.

Thanks to (35) and (36), we can write
/ (T (), V T () VT (up) dadt <
Q
< / (T (1) V Ty (1)) VT (1) X da di
Q

+ /Q (T (), VT () x*) [V T (1) — VT (w)x?] dax dt

+ E(n?j?uﬂ i? S7m)
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and then

limsup [ a(Tk(upn),VTi(upn)) VIk(uy) dedt <
Q

n—oo

< / a(Ty(u), VT (u)) VI (u) x° de dt + nlingoe(n,j, [y, S, M)
Q —
in which we can pass to the limit as j, u, 7, s, m — oo to obtain

limsup [ a(Tk(un) VTk(un)) VIi(uy) dedt < / a(Ti(u) VT (u)) VI (u) de dt .
n—0o0 Q Q

On the other hand, Fatou’s lemma implies

/Qa(Tk(u),VTk(u)) VTi(u) dedt < liminf [ a(Tk(un)VTi(uy)) VI(uy) dxdt

e JQ
and thus, as n — oo
(39)  a(Te(un), VTi(un)) VTi(un) — a(Ti(u),VTi(u) VTk(w) in LY(Q)
implying by using (13) and Vitali’s theorem that
VTi(un) — VTi(u) in (Ly(Q))N  for the modular convergence.

We shall now prove that g,(z,t,un,Vu,) — g(z,t,u,Vu) strongly in L'(Q)
by using Vitali’s theorem. Since gy (z,t,un,Vu,) — g(x,t,u,Vu) ae. in Q,
thanks to (24) and (37), it suffices to prove that g,(z,t, u,,Vu,) are uniformly
equi-integrable in (). Let £ C @ be a measurable subset of ). We have for any
m > O:

/Ign(x,t,un,Vunﬂdxdt =
E
— / lgn(x,t, un,Vuy,)| dz dt +/ \gn (2, t, U, V)| da dt
En{|un|<m} {un|>m}

< 2 [ T 0) 9 Ton 1)) V) dirt + bm) [ (o, 0) v

«

+/ ol dadt + luon| dz dt |
{unl>m) {uon|>m}
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where we have used (14) and (23). Therefore, it is easy to see that there exists
n > 0 such that

|E|<n = /E|gn(:v,t,un,Vun)|dxdt§5, Vn

which shows that g, (x,t, u,,Vuy,) are uniformly equi-integrable in @ as required.

Step 4: Passage to the limit.

Let v € Wy Ly (Q) N L®(Q) such that dv/dt € W1 L(Q) + LY(Q).
There exists a prolongation ¥ of v such that (see the proof of lemma 5)
T=v onQ, ve Wy Ly(QxR)NL'(QxR)NL®QxR),
(40) and  9v/0t € WM Liz(QxR) + L' (QxR) .

By Theorem 3 (see also Remark 3, Section 4), there exists a sequence (w;) C
D(QxR) such that

wj — T in Wy Ly (QxR)
(41) and
8w]~ ov
owj oV
ot ot

for the modular convergence and ||w;||co,0 < (N 42) |||/ 00,0-

in W' Lz(QxR) + L' (QxR)

Go back to approximate equations (19) and use Ty (u, — w;)X(0,r) (Which
belongs to Wol’ILM(Q)) as a test function, one has, for every 7 € [0,T7:

(s Tl = ), + /Q (T (1) VT (1)) VT (1t — w;) der dlt
(42) +/ Gn(Un,Vuy) Ty (up— wj) dedt =
Qr
= / fn T (up— wj) dadt
Qr

where k =k + C||v]|00,q-
The second term of the left hand side of (42) reads as

/ (T (1) VT (1)) VT (1t — w;) dx dt =

-

= a(Ty(un),VIz(un)) Vuy, dxdt
QrN{|un—w;|<k}

- / (T (1) VT (1)) Ve da dt
Qr un—uwy|<k)
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and, by using Fatou’s lemma in the first integral of the last side and (38) in the
second one, we deduce that

/ a(T3(u), VI (u)) VI (v — w;) dedt <

< liminf | a(Tp(un),VIg(un)) VI (up— wj) dxdt .

= Jo-

Since T (up— wj) — T(u — wj) weakly* in L°°(Q) as n — oo, we have
(as n — 00)

/ Gn(Un,Vuy) Ty (up— wj) dedt — / 9(u,Vu) Ty (u — wj) d dt
Qr Qr

and
/ fon T (up— wj) dedt — / [Te(u—wj) dedt .
Qr Qr

For what concerns the first term of (42), we have, by setting Si(s) = [ Tx(n) dn

<u;1,Tk(un—wj)>Q = <u/ w i T (un, wj)>QT + <w9,Tk(un—wj)>

Q-
(43) _ / Sy (u P dr — / Sk (o — w;(0)) dz

ow;
+ o 575] T (un—wj) dxdt

and, in order to pass to the limit (as n — oo) in (43), we will first prove that
u, — u in C([0,T], L*(Q)) (implying, in particular, that u € C([0,T], L*(Q2))).

Let now, for every l >k, w” = T1(v5),+ e M Ti(¢i) and wil = Ty(u), +
e MTy(1);), where 1)] € D(Q) is a sequence such that: vé- — Ty(u) in WOI’QCLM(Q)
for the modular convergence as j — +oo. We have for every 7 € (0,7

(@) Telwn—wiy)) = u/ (Tz(vé) ) T (up— W) da dt

Qr
y y
(44) o / (T() — W'l Ty(u — Wiy dadt

— N/Q(Tl(u)—wz’l)Tk(u—wZ;l) dedt > 0

as first » and then j go to infinity, where we have used the fact that \wf;l] <l
to get the positiveness of the last integral.
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On the other hand, by using (19)

Y y
<u§b, Ty (un— w;’“)>QT = / a(@, t, un,Vup) [Vwy, —Vuy] X {fun i [ <k} dxdt

T

+/ g(x,t, up,Vuy,) Tk(w;-’il—un) dx dt
Qr ’

il
—i—/QTka(un—wj,#) dx dt

in which we can use Fatou’s lemma and Lebesgue theorem to pass to the limit
sup first over n and then over j, u, [, to get, for every fixed k > 0,

(45) <u;1,Tk(un— w;lu)>QT < &(n,j,pu,1) not depending on 7 .
Therefore, by writing
il _
/st (un(T) — wj#(T)) de =
= (il (@) Tl = i)+ /Q Si(uo — Ty(thy)) dz

= (s Tl — ) ) = (@) Ti(un = wii)) + /Q Sk(uo—Ty(vy)) da

and using (44) and (45), we see that, for every fixed k > 0,

/ Sk (un(T) — w;L(T)) dx < e(n,j,p,l,i) not depending on T
Q b

which implies, by writing (recall that Sy is a convex function)

/Q S, B(un(T)—um(T))] dr <
< /Q Si(ua(r) — Wil (7)) dw + /Q St (tm () — i (7)) da

)

that

/Q S, B(un(f)—um(f))] dr < e1(n,m)

where €;(n,m) (i =1,2) is a term not depending on 7 and which tends to 0
as n and m go to infinity.
We deduce then that (see for instance, the proof of Theorem 1.1 of [19]),

/ |un (7)) — um (7)|dz < e2(n,m) not depending on T
Q
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and thus (u,) is a Cauchy sequence in C([0,T], L}(Q)) (the space of continuous
functions from [0, 7] into L'(£2)) equipped with the topology of uniform conver-
gence). Since the limit of u, in L'(Q) is u, we have

u,— u in C([0,T], LY()) .

Moreover, since Si(u,— w;)(7) < klun(7)| + k|w;(7)|, we have by using
Lebesgue theorem

/Sk —wj)(7) dx H/Sku—wj)()d:n as n — 0o

therefore we can pass to the limit in n in each term of the right hand side of (43)
to get

nh_)m< L T (un wj)>Q -

= /Sk (u—w;)(7) dx —/Sk (uo—w;(0)) dx + Ow ]Tk(u wj)dxdt,

Q. Ot

and thus, by passing to the limit inf over n in (42), we have

/Sk(u—wj)(T)dx +/ %Tk(u—wj)dmdt +
Q Q. Ot

+/ a(u,Vu) VT (u — wj) de dt + / 9(u,Vu) Tp(u — wj) dedt <
Q

T T

< / fTi(u—wj)dedt +/ Sk(ug —w;(0)) d .
Qr Q
To go to the limit in (46) as j — oo, observe that, thanks to (41), we have

/ Ow; Ty(u — wj) dedt — <§;,Tk(u—v)>

T T

Moreover, for every 7 € [0, T

ow;  Ow;
/Sl —w;j)( d:c—// T (w <at—at)dxdt—>0

as i,j — 00,

implying, as above, that |w;(T)—w;(7)l[L1 — 0 as 4,j— o0 and so
Jwj(T) —v(7)||L1 @) — 0 as j — o0,
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Therefore, we can go to the limit, as j — oo, in each integral of (46), to get

[ setu—nmas + (5Tt -v)) +

T

+ a(u,Vu) VT (v —v)dedt + / g(u,Vu) Ty (u —v)drdt <
Qr Qr

< /QTka(u—v)dxdt + /QSk(U()—U(O))dxa

where for the first and last integrals, we have used the fact that Sy (u —w;)(7) <
Sk(u(r)) + k|lw;j(7)|, and thus, u is an entropy solution of (17). This completes
the proof of theorem 4. n

Remark 5. Assume that a satisfies (11)-(13) with § bounded from above
(i.e. B(s) < some fy), and let g satisfying, in addition to (14) and (15), the
following coercivity condition:

lg(x,t,5,8)] = SM([E]/A)

for all [s| > 0 >0, £ € RY and for a.e. (z,t) € Q with ,\ > 0. If f is in L(Q)
then there exists a solution of

((99_? - div(a(w,t,u,Vu)) +g(z,t,u,Vu) = f in Q
(47) u(z,t) =0 on 9Qx(0,T)
u(z,0) = up(x) in Q

such that u € Wol’wLM(Q), g(z,t,u,Vu) € L'(Q) and the equation is satisfied
in distributional sense, if and only if 1y belongs to L!(€2).

Indeed, if there exists a distributional solution u in Wy“Ly/(Q) with
g(z,t,uVu) in L*(Q), then du/dote W1 L++(Q)+L*(Q) and hence by Lemma 5,
u € C([0,T],L*(2)). So that up must be in L'(9).

Conversely, the existence of one distributional solution of (47) can be obtained
by adapting the above proof to the approximate equations,

un € D(A)NWy " Lar(Q) NC([0,T], LX(R)),  un(x,0) = uon
(48)
% - div(a(x, t,un,Vun)) + g(x, t, un,Vuy) = fn

where, further, the sequence of the approximating solutions u, is now bounded
in Wy Ly (Q) (it suffices to use Ty(u,) as a test function), which allow to pass
to the limit in (48) in distributional sense. o
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