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ON RAMIFICATION AND GENUS
OF RECURSIVE TOWERS

Peter Beelen, Arnaldo Garcia and Henning Stichtenoth

Abstract: We introduce the notion of the dual tower of a recursive tower of function

fields over a finite field. We relate the ramification set of the tower with the one of the

dual tower, for the case of good asymptotic behaviour of the genus.

1 – Introduction

The interest in the theory of algebraic curves (or function fields) over finite

fields has a long history in mathematics and it was crowned by the famous the-

orem of A. Weil (see [13]) bounding the number of rational points (or rational

places) in terms of the genus and the cardinality of the finite field. This theorem

is equivalent to the validity of the Riemann hypothesis for the associated congru-

ence zeta function. The asymptotic aspect of this theory; i.e., towers of curves

(or of function fields) over finite fields, received much attention in recent years

after Tsfasman–Vladut–Zink showed its application to coding theory leading to

linear codes better than the Gilbert–Varshamov bound (see [12]).

Throughout this paper we denote by Fq the finite field with q elements and

by Fq the algebraic closure of Fq. Also, we denote by p the characteristic of Fq.

A tower F over Fq or an Fq-tower is an infinite sequence F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . .

of function fields over Fq, with Fq algebraically closed in Fn for all n, such that
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the genus g(Fn) → ∞ as n → ∞. Since for any purely inseparable extension

E/F of function fields over Fq the fields E and F are isomorphic, we can assume

that all extensions Fn+1/Fn are separable.

We say that a tower F is recursively defined by the polynomial f(X,Y ) ∈
Fq[X,Y ] if there exist elements xn ∈ Fn for all n ≥ 1 such that the following

holds: i) F1 = Fq(x1) is the rational function field, and Fn+1 = Fn(xn+1) for all

n ≥ 1. ii) f(xn, xn+1) = 0 and [Fn+1 : Fn] = degY f(X,Y ) for all n ≥ 1. If the

polynomial f(X,Y ) has the special form

f(X,Y ) = ϕ0(Y ) · ψ1(X)− ϕ1(Y ) · ψ0(X)

with polynomials ϕ0(Y ), ϕ1(Y ) ∈ Fq[Y ] and ψ0(X), ψ1(X) ∈ Fq[X] then we also

say that the tower F is recursively given by the equation

ψ0(X)

ψ1(X)
=

ϕ0(Y )

ϕ1(Y )
.

If a tower F can be defined recursively by some polynomial f(X,Y ) ∈ Fq[X,Y ]

it is called a recursive tower.

We denote by N(Fn) the number of Fq-rational places of Fn and by g(Fn) its

genus. Then the following limits exist (see [9]):

ν(F) := lim
n→∞

N(Fn)

[Fn : F1]
, called the splitting rate of F/F1 ,

and

γ(F) := lim
n→∞

g(Fn)

[Fn : F1]
, called the genus of F/F1 .

The limit λ(F) of the tower F over Fq is then defined as

λ(F) := ν(F)
γ(F) .

Weil’s theorem implies that λ(F) ≤ 2
√
q, for any Fq-tower F . It was first observed

by Ihara that this upper bound can be significantly improved. Refining Ihara’s

arguments, Drinfeld and Vladut proved the following upper bound (see [4]):

λ(F) ≤ √q − 1, for any Fq-tower F .

An Fq-tower is called good if λ(F) > 0. Clearly a tower is good if and only if

ν(F) > 0 and γ(F) < ∞. We say that the tower has finite genus if γ(F) < ∞.

When dealing with the genus we will often abuse notation and also denote by F
the tower F1 · Fq ⊂ F2 · Fq ⊂ . . . ⊂ Fn · Fq ⊂ . . . over the field Fq.
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Suppose that the tower F over Fq can be defined recursively by the polynomial

f(X,Y ) ∈ Fq[X,Y ], where f(X,Y ) is separable in both variables. It is easy to

prove (see [5]) that if F is a good tower then

degX f(X,Y ) = degY f(X,Y ) .

In most cases, especially when wild ramification occurs in the tower, it is not

an easy task to decide if the tower has finite genus. The aim of this paper is to

present some necessary conditions for finite genus (hence for being a good tower).

This will be done in terms of the dual tower of F (see definition in Section 2).

The criteria for finite genus of a tower are given in Theorem3.3 and Theorem3.6

of Section 3.

2 – Preliminaries and definitions

We denote by P(E) the set of places of a function field E. If F is a tower over

Fq we consider the ramification locus V (F) which is the subset of P(F1) defined

by

V (F) :=
{

P ∈ P(F1) ; for some n ≥ 2 there exists

a place Q ∈ P(Fn) with Q|P and e(Q|P ) > 1
}

.

The symbol e(Q|P ) above denotes the ramification index of a place Q ∈ P(Fn)

over its restriction P to the first field F1 of the tower F . The tower F is called

tame if all places P ∈ V (F) are only tamely ramified in all extensions Fn/F1;

i.e., e(Q|P ) is not divisible by the characteristic p of Fq for all n ≥ 2 and all

Q ∈ P(Fn) lying above P . Otherwise the tower is said to be wild. For tame

towers with finite ramification locus V (F) we have γ(F) <∞ (see [8]), but

there are examples of wild towers with finite ramification locus and γ(F) =∞
(see Example 3.8).

For any tower F we also consider the wild ramification locus Vw(F) which is

the subset of V (F) defined by

Vw(F) :=
{

P ∈ P(F1) ; for some n ≥ 2 there exists a place

Q ∈ P(Fn) with Q|P such that e(Q|P ) is divisible by p
}

.

Suppose that the tower F = (F1, F2, F3, . . .) is defined recursively by the poly-

nomial f(X,Y ) ∈ Fq[X,Y ]. We define its dual tower G = (G1, G2, G3, . . .) as

the tower given recursively by the polynomial f(Y,X). We identify the rational
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function fields F1 = Fq(x1) and G1 = Fq(y1) by setting x1 = y1, and then we

have
Fn = Fq(x1, . . . , xn) with f(xi, xi+1) = 0, and

(∗)
Gn = Fq(y1, . . . , yn) with f(yi+1, yi) = 0

for all n ≥ 2 and 1 ≤ i ≤ n− 1.

Example 2.1. Let F1 be the tower in characteristic p = 2 given recursively

by

Y 2 + Y = X +
1

X
+ 1 .

It was shown in [10] that the limit of this tower over the finite field with eight

elements is equal to 3/2 (see also Theorem 4.10 and Example 5.5 in [1]). Its dual

tower G1 is given recursively by the equation

Y +
1

Y
+ 1 = X2 +X .

Changing variables X = (X̃ + 1)/X̃ and Y = (Ỹ + 1)/Ỹ we get the equality

Ỹ 2 + Ỹ = X̃2/(X̃2 + X̃ + 1), and hence the tower G1 can also be defined recur-

sively by the equation

Y 2 + Y =
X2

X2 +X + 1
.

A recursive tower F and its dual tower G have the same limit; i.e., we

have λ(F) = λ(G). In fact if F = (F1, F2, . . .) and G = (G1, G2, . . .), the function

fields Fn and Gn are isomorphic over Fq: if we present Fn = Fq(x1, . . . , xn) and

Gn= Fq(y1, . . . , yn) as in (∗) above, then the map x1 7→ yn, x2 7→yn−1, . . ., xn 7→ y1

gives an isomorphism from Fn onto Gn. In particular the dual tower G1 in

Example 2.1 has limit λ(G1) = 3/2 over the field with 8 elements.

Example 2.2. The tower F2 over the finite field Fq with q = `2 which is

given recursively by the equation

Y ` + Y =
X`

X`−1 + 1
(1)

attains the Drinfeld–Vladut bound; i.e., its limit over Fq satisfies λ(F2) = `− 1

(see [7]). We show here that F2 is self-dual; i.e., its dual tower G2 can also be

defined recursively by Equation (1). Indeed, Equation (1) can be written as

Y ` + Y =

(

(

1

X

)`

+
1

X

)−1

,
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and hence the dual tower G2 is defined by

(

1

Y

)`

+
1

Y
=

1

X` +X
.

Setting Ỹ := 1/Y and X̃ := 1/X we get the following equation which also defines

G2 recursively:

Ỹ ` + Ỹ =
1

X̃−` + X̃−1
=

X̃`

X̃`−1 + 1
.

This shows that the tower F2 is in fact self-dual.

Let H = (H1, H2, H3, . . .) be a tower over Fq and let P ∈ P(H1) be a place

of the first function field H1 of the tower H. We now give some definitions

concerning the ramification in the tower.

Definition 2.3. We define

ε(P,H) := sup
n≥2

{

e(Qn|P )
}

,

where Qn runs over all places of Hn lying over P .

Definition 2.4. Denoting by p the characteristic of Fq, we define

π(P,H) := sup
n≥2 ; i≥0

{

pi ; pi divides e(Qn|P )
}

,

where again Qn runs over all places of Hn lying over P .

It is clear that the tower H is tame if and only if π(P,H) = 1 for all places

P ∈ P(H1). In the next section we will give necessary conditions for finite genus

of recursive towers in terms of the concepts introduced in Definition 2.3 and

Definition 2.4.

3 – Ramification and finite genus

We first relate the concept in Definition 2.3 and the finiteness of the genus of

recursive towers. For that we need two lemmas:
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Lemma 3.1 ([7]). Let F = (F1, F2, F3, . . .) be a tower over Fq and denote

by Dn:= degDiff(Fn+1/Fn) the degree of the different of Fn+1/Fn, for all n≥ 1.

Suppose that there exists a sequence (ρ1, ρ2, ρ3, . . .) of positive real numbers

satisfying:

(i) ρn ≤ Dn holds for each n ≥ 1.

(ii) We have ρn+1 ≥ [Fn+2 : Fn+1] · ρn, for all n ≥ 1.

Then the genus γ(F) of the tower is infinite.

Lemma 3.2 ([14]). Let E1/F and E2/F be linearly disjoint function field

extensions and denote by E := E1 · E2 the composite field of E1 and E2.

Let P ∈ P(F ) be a place of F and let Q1 ∈ P(E1) and Q2 ∈ P(E2) be places

above P . Then there exists a place Q ∈ P(E) lying above the places Q1 and Q2.

Our first result is:

Theorem 3.3. Let F be a recursive tower over Fq, defined by a polynomial

f(X,Y ) ∈ Fq[X,Y ] which is separable in both variables. Let G be the dual tower

of F , and let P be a place of the first function field F1 = G1. If the tower has

finite genus γ(F) <∞, then

ε(P,F) = ε(P,G) .

Proof: We can consider F as a tower over the algebraic closure Fq of Fq,

since genus and ramification indices do not change in constant field extensions.

Hence all places occurring in the proof below will be of degree one. By the remark

at the end of Section 1 we also have degX f(X,Y ) = degY f(X,Y ) =: a > 1 and

therefore

[Fn+1 : Fn] = [Gn+1 : Gn] = a

for all n ≥ 1. We are going to show that ε(P,F) > ε(P,G) implies that the genus

γ(F) is infinite. Interchanging F and G and observing that γ(F) = γ(G), this
will prove the theorem. Suppose then that ε(P,F) > ε(P,G). In particular we

have that e1 := ε(P,G) is a finite number. By definition of ε(P,G) there is some

n ≥ 1 and a place Q1 ∈ P(Gn) such that

(i) e(Q1|P ) = e1.

(ii) Q1 is unramified in Gm/Gn, for all m ≥ n.
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It follows that for all m ≥ n there are exactly [Gm : Gn] places of Gm above

the place Q1. Now we fix a field Fk+1 (with k ≥ 1) in the tower F and a place

Q2 ∈ P(Fk+1) lying above P with

e2 := e(Q2|P ) > e1 .

The existence of such a place Q2 follows from the assumption ε(P,F) > ε(P,G).
Let m ≥ n and let Hm := Fk+1 · Gm (resp. Hn := Fk+1 · Gn) be the composite

field of Fk+1 with Gm (resp. with Gn). Consider a place R1 ∈ P(Gm) lying above

the place Q1. Then we have the following picture:

Gm

©©
©©

©©
©

A
A
A
A
A
A
AA

Hm = Gm · Fk+1

A
A
A
A
A
A
AA

Gn

©©
©©

©©
©

A
A
A
A
A
A
AA

Hn = Gn · Fk+1

A
A
A
A
A
A
AA

F1 = G1

©©
©©

©©
©

Fk+1

e(Q2|P ) = e2 > e1

e(Q1|P ) = e1

e(R1|Q1) = 1

Figure 1

Note that the field Gm is isomorphic to Fm, and Hm is isomorphic to the field

Fm+k. Moreover the degree of the field extension Hm/Gm is

[Hm : Gm] = ak

with a = degX f(X,Y ) as above. Now we fix a place R2 ∈ P(Hn) lying above

Q1 and Q2 (the existence of R2 follows from Lemma 3.2). Since e2 > e1 we have

e(R2|Q1) > 1. Again by Lemma 3.2 there exists a place S1 ∈ P(Hm) above the
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places R1 and R2, and it follows that e(S1|R1) = e(R2|Q1) > 1. We conclude

that

degDiff (Hm/Gm) ≥ #
{

R1 ∈ P(Gm) ; R1|Q1

}

= [Gm : Gn] = am−n ,

and hence

degDiff (Fm+k/Fm) = degDiff (Hm/Gm) ≥ am−n, for all m ≥ n .

Considering the tower E = (E1, E2, E3, . . .) with

Es := Fn+(s−1)k, for all s ≥ 1 ,

we see that

degDiff (Es+1/Es) = degDiff (Fn+sk/Fn+(s−1)k) ≥ an+(s−1)k−n = a(s−1)k .

We use the terminology of Lemma 3.1 and set ρs := a(s−1)k. Then the assump-

tions of Lemma 3.1 are satisfied, and we conclude that γ(E) =∞, and hence also

that γ(F) =∞ (see [8, Lemma 2.6]).

Corollary 3.4. Let F be a recursive tower over Fq, defined by a polynomial

f(X,Y ) ∈ Fq[X,Y ] which is separable in both variables, and let G be the dual

tower of F . If F has finite genus γ(F) <∞, then F and G have the same

ramification locus:

V (F) = V (G) .

We remark that Corollary 3.4 was already shown by J. Wulftange under the

additional hypothesis that the tower F is tame, see [14, Satz 3.2.1]. We now

relate the concept in Definition 2.4 and the finiteness of the genus of recursive

towers. We will need Abhyankar’s lemma (see [11, Prop.III.8.9]):

Lemma 3.5. Let E/F be a finite extension of function fields and let E1, E2

be intermediate fields F ⊂ E1, E2 ⊂ E such that E = E1 ·E2 is the composite of

E1 and E2. Let S1 be a place of E and denote by R1, R2, and Q1 the restrictions

of the place S1 to the fields E1, E2, and F respectively. Suppose that R1 is tame

over F ; i.e., the characteristic of F does not divide e(R1|Q1). Then we have

e(S1|Q1) = lcm
{

e(R1|Q1), e(R2|Q1)
}

,

where lcm stands for the least common multiple.
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Theorem 3.6. Let F be a recursive tower over Fq, defined by a polynomial

f(X,Y ) ∈ Fq[X,Y ] which is separable in both variables. Let G be the dual tower

of F , and let P be a place of the first function field F1 = G1. If the tower has

finite genus γ(F) <∞, then

π(P,F) = π(P,G) .

Proof: As in the proof of Theorem 3.3 we can consider F as a tower over the

algebraic closure Fq of Fq, and we can also assume that the equality of degrees

[Fn+1 : Fn] = [Gn+1 : Gn] = a > 1 holds for all n ≥ 1. We are going to show that

the assumption π(P,F) > π(P,G) implies that the genus γ(F) is infinite.
The assumption π(P,F) > π(P,G) gives in particular that π(P,G) is a finite

number. We then fix n ∈ N and a place Q1 ∈ P(Gn) such that Q1 lies above P

and π(P,G) divides e(Q1|P ). We also fix k ∈ N and a place Q2 ∈ P(Fk+1) lying

above P such that p ·π(P,G) divides e(Q2|P ) (where p denotes the characteristic
of Fq). Such a place Q2 exists, since π(P,F) > π(P,G). As in the proof of

Theorem 3.3 we define Hm := Gm · Fk+1 for all m ≥ n. Using Lemma 3.2 we fix

a place R2 ∈ P(Hn) lying above Q1 and Q2. Since the power of p appearing in

e(Q2|P ) is strictly larger than the one in e(Q1|P ) we conclude that R2 is wild;

i.e., p divides e(R2|Q1).

Now let m ≥ n. For any place R1 ∈ P(Gm) lying above Q1 we choose a place

S1 ∈ P(Hm) lying above R1 and R2 (using Lemma 3.2 again). Then we have the

following picture:

Gm

©©
©©

©©
©

A
A
A
A
A
A
AA

Hm

A
A
A
A
A
A
AA

Gn

©©
©©

©©
©

Hn

R1

©©
©©

©©
©

A
A
A
A
A
A
AA

S1

A
A
A
A
A
A
AA

Q1

©©
©©

©©
©

R2

p | e(R2|Q1)

p 6 | e(R1|Q1)

Figure 2
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Given a separable extension E/F of function fields and two places P1 ∈ P(F ),
P2 ∈ P(E) with P2|P1, we denote by d(P2|P1) the different exponent of P2|P1.

From the transitivity of the different exponents (see [11, Cor.III.4.11]) we obtain

in our situation (see Figure 2):

d(S1|Q1) = d(S1|R1) + e(S1|R1) · d(R1|Q1)

= d(S1|R1) + e(S1|R1)
(

e(R1|Q1)− 1
)

,

and also
d(S1|Q1) = d(S1|R2) + e(S1|R2) · d(R2|Q1)

= e(S1|R2)− 1 + e(S1|R2) · d(R2|Q1) .

Here we have used that R1|Q1 and hence also S1|R2 are tame. For simplicity

we set e1 := e(R1|Q1) and e2 := e(R2|Q1). We also set D := gcd(e1, e2). By

Lemma3.5 we know that e(S1|R2) = e1/D and e(S1|R1) = e2/D, and since

R2|Q1 is wild we also have d(R2|Q1) ≥ e2 (see [11, Theor.III.5.1]). It follows

from the expressions involving different exponents above that

d(S1|R1) + e(S1|R1) · (e1 − 1) = e(S1|R2)− 1 + e(S1|R2) · d(R2|Q1) ,

hence

e2 · d(S1|R1) ≥ D · d(S1|R1) = e1 −D + e1 · d(R2|Q1)− e2(e1 − 1)

≥ e1 −D + e1e2 − e2(e1 − 1) = e1 + e2 −D ≥ e1 .

We have shown that for any place R1 ∈ P(Gm) lying above Q1 the different

exponent of S1|R1 satisfies

d(S1|R1) ≥
1

e2
· e(R1|Q1) ,

where the number e2 is independent of the place S1. It now follows that

degDiff (Hm|Gm) ≥
∑

R1∈P(Gm)
R1|Q1

d(S1|R1) ≥
1

e2

∑

R1∈P(Gm)
R1|Q1

e(R1|Q1) =
1

e2
· [Gm : Gn] ,

and we finish the proof of Theorem 3.6 as in Theorem 3.3.

Corollary 3.7. Let F be a recursive tower over Fq, defined by a polynomial

f(X,Y ) ∈ Fq[X,Y ] which is separable in both variables, and let G be the dual

tower of F . If F has finite genus γ(F) < ∞, then F and G have the same wild

ramification locus:

Vw(F) = Vw(G) .
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We apply this corollary in the next example, which is a generalization of an

example given in [2]:

Example 3.8. Let ` be a prime power and consider the tower F3 over Fq

with q = `p (where p = char(Fq)) which is given recursively by the equation

Y ` − Y =
(X + 1)(X`−1 − 1)

X`−1
.

In the particular case ` = p = 2 this tower attains the Drinfeld–Vladut bound

over F4; i.e., in this particular case its limit is λ(F3) = 1 =
√
4− 1. Indeed, after

the substitutions X = X̃ + 1 and Y = Ỹ + 1 we get

Ỹ 2 + Ỹ =
X̃2

X̃ + 1
,

and this defines the tower F2 over F4 in Example 2.2.

From the defining equation for the tower F3 one sees that X
` = X+1 implies

that Y ` = Y + 1. Hence the set Ω = {α ; α` = α+ 1} splits completely in the

tower F3 over Fq (it is easy to verify that Ω ⊂ Fq). Therefore the splitting

rate satisfies ν(F3) > 0. Moreover we have V (F3) = F` ∪ {∞}, and it seems

worthwhile to investigate the limit of the tower F3 more closely.

There is only tame ramification in the extensions Fq(xn, xn+1)/Fq(xn+1) for

p 6= 2, as follows from the defining equation of the tower. Hence we have

Vw(F3) 6= ∅ and Vw(G3) = ∅ ,

denoting by G3 the dual tower of F3. We conclude from Corollary 3.7 that

γ(F3) =∞ and therefore λ(F3) = 0. Hence the tower F3 is bad in characteristic

p 6= 2.

For p = 2 both towers F3 and G3 are wild. However, we believe that also in

the case 2 = p < ` the genus of F3 is infinite. If this is really the case, it would

be nice to have a criterion similar to the one in Theorem 3.6 that would imply

easily that γ(F3) = ∞. One should look for a criterion involving π(P,F) and
π(P,G) even in the case where both of them are infinite.

Example 3.9. Let p be any prime number and consider the tower F4 over

Fp3 given recursively by the equation:

Y p+1 − Y p =
(X − 1)p+1

X
=

Xp+1 −Xp + 1

X
− 1 .
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It is easily seen that the solutions of xp+1
1 = xp

1− 1 are rational over Fp3 and also

that their corresponding places of the first field F1 are completely splitting in the

tower F4. But it follows from Corollary 3.7 that γ(F4) = ∞ and, in particular,

that the tower F4 is bad; indeed the place of F1 corresponding to x1 = 1 is wildly

ramified in the tower F4 and it is tamely ramified in the dual tower G4.
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