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AVERAGING TECHNIQUE AND OSCILLATION FOR

EVEN ORDER DAMPED DELAY DIFFERENTIAL EQUATIONS

Zhiting Xu

Abstract: By using the averaging technique, some integral oscillation criteria are

obtained for even order damped delay differential equations.

1 – Introduction

This paper deals with the oscillatory behavior of the even order damped delay

differential equation

(1.1)

(

Φ(xn−1)(t))
)′

+ p(t)Φ(x(n−1)(t)) + f
(

t, x[ τ01(t) ], ..., x[ τ0m(t) ],

..., x(n−1)[ τn−11(t) ], ..., x(n−1)[ τn−1m(t) ]
)

= 0 for t ≥ t0 > 0 ,

where Φ(s) = |s|α−1s with α > 0 a fixed constant, and n is an even number.

Throughout this paper, we assume that

(A1) p ∈ C(I, R0) and lim
t→∞

∫ t

t̄

[

exp

(

−

∫ s

t̄
p(τ) dτ

)]1/α

ds = ∞ for every t̄ ≥ t0,

where I = [ t0,∞ ) and R0 = [0,∞);

(A2) τki ∈ C(I, R) and limt→∞ τki(t) = ∞, k = 0, 1, ..., n−1, i = 1, 2, ..., m;

(A3) f ∈ C(I×R
m×n, R) satisfies the one-side estimate

f
(

t, x01, x02, ..., x0m, ..., xn−11, ..., xn−1m

)

signx01 ≥ q(t)
m
∏

i=1

|x0i|
αi

for x01x0i ≥ 0 (i = 1, 2, ..., m) ,

where q ∈ C(I, R0) and q(t) is not identically zero on any ray [t∗,∞),

αi ≥ 0 (i = 1, 2, ..., m) are constants with
∑m

i=1 αi = α.

Received : October 9, 2004; Revised : January 16, 2005.

AMS Subject Classification: 34C10, 34C15.

Keywords: Oscillation, delay differential equation, even order, damped.



24 ZHITING XU

By a solution of Eq.(1.1) we mean a function x(t) ∈ Cn−1([ Tx,∞), R) for

some Tx ≥ t0 which has the property that Φ(x(n−1)(t)) ∈ C1(Tx, R) and satisfy

Eq.(1.1) on [Tx,∞). A solution x(t) of Eq.(1.1) is called oscillatory if it has

arbitrarily large zeros; otherwise it is called nonoscillatory. Equation (1.1) is

called oscillatory if all its solutions are oscillatory.

In the last decades, many results are obtained for the particular cases of

Eq.(1.1) such as the even order nonlinear delay differential equation

(1.2)
(

|x(n−1)(t)|α−1 x(n−1)(t)
)′

+ f
(

t, x[ τ(t)]
)

= 0 ,

and the even order damped delay differential equation

(1.3)
x(n)(t) + p(t)x(n−1)(t) + f

(

t, x[τ01(t)], ..., x[ τ0m(t) ],

..., x(n−1)[ τn−11(t) ], ..., x(n−1)[ τn−1m(t) ]
)

= 0 .

For this contributions we refer the reader to [1–3, 10–12] and the references

cited therein. As far as we know that Eq.(1.1) in generalize form has never been

the subject of systematic investigations.

The main objective of this paper is to establish some general oscillation criteria

for Eq.(1.1) by introducing parameter functions H(t, s), ρ(s), k(s) and using inte-

gral averaging techniques similar to that exploited by Kamenev [5] and Philos [8].

We also extend and improve the results in [1, 3, 10–12]. The relevance of our

results is illustrated with two examples.

2 – Preliminaries

In order to discuss our main results, we first introduce the general mean

similar to that exploited by Philos [8].

Set

D =
{

(t, s) : t ≥ s ≥ t0

}

and D0 =
{

(t, s) : t > s ≥ t0

}

.

We say a function H ∈ C(D, R) belong to a class ℑ, if

(H1) H(t, t) = 0 for t ≥ t0, and H(t, s) > 0 for (t, s) ∈ D0;

(H2) H has a continuous and nonpositive partial derivative on D0 with

respect to the second variable;
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(H3) There exist functions h∈C(D0, R), and ρ, k ∈ C1(I, R+) (R+=(0,∞))

such that

∂

∂s

(

H(t, s) k(s)
)

+

(

ρ′(s)

ρ(s)
− p(s)

)

H(t, s) k(s) = −h(t, s)
(

H(t, s) k(s)
)α/(α+1)

.

The following three lemmas will be need in the proofs of our results. The first

is the well-known Kiguardze’s Lemma [7]. The second can be founded in [9].

The third is new and extend Lemma 5.1 in [6] for Eq.(1.1).

Lemma 2.1. Let u ∈ Cn(I, R+). If u(n)(t) is of constant sign and not iden-

tically zero on any interval of the form [t∗,∞), then there exist a t4 ≥ t0 and

integer l, 0 ≤ l ≤ n, with n + l even for u(n)(t) ≥ 0, or n + l odd for u(n)(t) ≤ 0

and such that

l > 0 implies that u(k)(t) > 0 for t ≥ t4, k = 0, 1, ..., l−1

and

l ≤ n−1 implies that (−1)l+k u(k)(t) > 0 for t ≥ t4, k = l, l+1, ..., n−1 .

Lemma 2.2. If the function u(t) is as in Lemma 2.1 and

u(n−1)(t)u(n)(t) ≤ 0 for any t ≥ tu ,

then for every λ ∈ (0, 1), we have

u(λt) ≥
21−n

(n − 1)!

[

1

2
−

∣

∣

∣

∣

λ −
1

2

∣

∣

∣

∣

]n−1

tn−1 |u(n−1)(t)| for all large t .

Lemma 2.3. Let (A1)–(A3) hold. Then, if x(t) is a nonoscillatory solution

of Eq.(1.1), we have

(2.1) x(t)x(n−1)(t) > 0, x(t)x(n)(t) ≤ 0 and x(t)x′(t) > 0 for all large t .

Proof: Without loss of generality, we may assume that x(t) > 0 on [t1,∞)

for some sufficiently large t1 ≥ t0. As limt→∞ τ0i(t) = ∞, there exists t2 ≥ t1
such that τ0i(t) ≥ t1 for t ≥ t2 (i = 1, 2, ..., m). Hence x(τ0i(t)) > 0 for t ≥ t2
(i = 1, 2, ..., m). By (A3), we have

(2.2)
(

Φ(x(n−1)(t))
)′

+ p(t)Φ(x(n−1)(t)) ≤ 0 for t ≥ t2 ,
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that is
(

exp

(
∫ t

t2

p(s) ds

)

Φ
(

x(n−1)(t)
)

)′

≤ 0 ,

it follows that exp(
∫ t
t2

p(s) ds)Φ(x(n−1)(t)) is decreasing and x(n−1)(t) is even-

tually of one sign. If there exists t3 ≥ t2 such that x(n−1)(t) < 0 for t ≥ t3,

we have

exp

(
∫ t

t2

p(s) ds

)

Φ
(

x(n−1)(t)
)

≤ exp

(
∫ t3

t2

p(s) ds

)

Φ
(

x(n−1)(t3)
)

=: −Mα exp

(
∫ t3

t2

p(s) ds

)

, (M > 0) .

So
(

−x(n−1)(t)
)α

≥ Mα exp

(

−

∫ t

t3

p(s) ds

)

,

that is

x(n−1)(t) ≤ −M

[

exp

(

−

∫ t

t3

p(s) ds

)]
1

α

for t ≥ t3 .

Integrating it from t3 to t, we get

x(n−2)(t) − x(n−2)(t3) ≤ −M

∫ t

t3

[

exp

(

−

∫ s

t2

p(τ) dτ

)]
1

α

ds .

In view of (A1), it follows that limt→∞ x(n−2)(t) = −∞. Thus, we show that

x(n−2)(t) < 0 eventually. But, by Lemma 2.1, we find

x(n−1)(t) < 0 implies that x(n−2)(t) > 0 for sufficient large t .

Hence, we get a desired contradiction. So we find that x(n−1)(t) > 0 eventually.

On the other hand, by (A1) and (2.2), we have

0 ≥
(

Φ(x(n−1)(t))
)′

= α
(

x(n−1)(t)
)α−1

x(n)(t) ,

then x(n)(t) ≤ 0 eventually. Further, when x(n−1)(t) > 0 eventually then again

from Lemma 2.1, we have x′(t) > 0 eventually. Thus, there exist a t4 > t3 such

that

x′(t) > 0 , x(n−1)(t) > 0 and x(n)(t) ≤ 0 for all t ≥ t4 .

This completes the proof.
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3 – Main results

For convenience of statement, we shall introduce the following notations with-

out further mentioning. Put

M(n, λ) =
λ 22−n

(n − 2)!

[

1

2
−

∣

∣

∣

∣

λ −
1

2

∣

∣

∣

∣

]n−2

, β =
α + 1

α
,

θ = (α + 1)−(α+1)M−α(n, λ) , g(t) = σ′(t)σn−2(t) ρ−1/α(t)

and

AH
T

(

Θ(t, s), t
)

=
1

H(t, T )

∫ t

T
Θ(t, s) ds ,

where ρ, σ ∈ C1(I, R+), H ∈ C(D, R), Θ ∈ C(D, R) and λ ∈ (0, 1).

In the sequel, we also assume that

(A4) there exists a function σ ∈ C1(I, R+) such that

σ(t) ≤ inf
i∈J

{

t, τ0i(t)
}

, lim
t→∞

σ(t) = ∞ and σ′(t) > 0 for t ≥ t0 ,

where J = {i : αi > 0, i = 1, 2, ..., m}.

In this paper, we always assume that the conditions (A1)–(A4) hold.

Theorem 3.1. Suppose that there exist functions H∈C(D, R), h∈C(D0, R),

ρ, k ∈ C1(I, R+) and a constant λ ∈ (0, 1) such that H belongs to the class ℑ,

and

(3.1) lim sup
t→∞

AH
t0

(

H(t, s) ρ(s) q(s) k(s) − θ g−α(s) |h(t, s)|α+1, t
)

= ∞ .

Then Eq.(1.1) is oscillatory.

Proof: To obtain a contradiction, suppose that x(t) is a nonoscillatory so-

lution of Eq.(1.1). By Lemma 2.3, there exists a T0 ≥ t4 such that (2.1) holds.

Without loss of generality, we may assume that

(3.2) x(t) > 0, x′(t) > 0, x(n−1)(t) > 0, and x(n)(t) ≤ 0 for t ≥ T0 .

It is easy to check that we can apply Lemma 2.2 for u = x′ and conclude that

there exists a T1 ≥ T0 such that

(3.3)

x′[λ σ(t)] ≥
22−n

(n − 2)!

[

1

2
−

∣

∣

∣

∣

λ −
1

2

∣

∣

∣

∣

]n−2

σn−2(t)x(n−1)[σ(t)]

≥
1

λ
M(n, λ)σn−2(t)x(n−1)(t) for t ≥ T1 ,
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since x(n−1)[σ(t)] ≥ x(n−1)(t) for t ≥ T1. Put

(3.4) W (t) = ρ(t)
Φ

(

x(n−1)(t)
)

xα[λ σ(t)]
for t ≥ T1 .

Then, differentiating (3.4), using (1.1), (3.3) and observing x[λ σ(t)] ≤ x[τ0i(t)],

we obtain

W ′(t) ≤ − ρ(t) q(t)

∏m
i=1 xαi [ τ0i(t) ]

xα[ λσ(t) ]
+

[

ρ′(t)

ρ(t)
− p(t)

]

W (t)

−
α λ ρ(t)σ′(t)[ x(n−1)(t) ]α

xα+1[ λσ(t) ]
x′[ λ σ(t) ]

≤ − ρ(t) q(t) +

[

ρ′(t)

ρ(t)
− p(t)

]

W (t) − α M(n, λ) g(t)W β(t) ,

that is, for t ≥ T1,

(3.5) ρ(t) q(t) ≤ −W ′(t) +

(

ρ′(t)

ρ(t)
− p(t)

)

W (t) − α M(n, λ) g(t)W β(t) .

Multiplying inequality (3.5) by H(t, s) k(s) and integrating from T to t, which in

view of (H3) leads to

(3.6)

∫ t

T
H(t, s) ρ(s) q(s) k(s) ds

≤ H(t, T ) k(T )W (T ) +

∫ t

T
|h(t, s)| [H(t, s) k(s)]1/β W (s) ds

− α M(n, λ)

∫ t

T
H(t, s) k(s) g(t)W β(s) ds .

By the Young inequality

(3.7)
|h(t, s)| [H(t, s) k(s)]1/β W (s)

≤ θ g−α(s) |h(t, s)|α+1 + α M(n, λ)H(t, s) k(s) g(s)W β(s) .

Substituting (3.7) into (3.6), we obtain, for t > T ≥ T1,

(3.8)

∫ t

T
H(t, s) ρ(s) q(s) k(s) ds

≤ H(t, T ) k(T )W (T ) + θ

∫ t

T
g−α(s) |h(t, s)|α+1 ds .



AVERAGING TECHNIQUE AND OSCILLATION 29

Then, for t ≥ t0,

H(t, t0) AH
t0

(

H(t, s) ρ(s) q(s) k(s) − θ g−α(s) |h(t, s)|α+1, t
)

= H(T1, t0)AH
t0

(

H(t, s) ρ(s) q(s) k(s) − θ g−α(s) |h(t, s)|α+1, T1

)

+ H(t, T1)AH
T1

(

H(t, s) ρ(s) q(s) k(s) − θ g−α(s) |h(t, s)|α+1, t
)

≤ H(t, t0)

{
∫ T1

t0

ρ(s) q(s) k(s) ds + k(T1)W (T1)

}

.

Divide the above inequality by H(t, t0) and take the upper limit as t → ∞. Using

(3.1), we obtain a contradiction. This completes the proof.

Remark 3.1. Taking H(t, s) = t − s and k(s) = 1, then Theorem 3.1 im-

proves Theorem 2.1 in [1] for Eq.(1.2), and taking H(t, s) = (t − s)v−1, k(s) = 1

and ρ(s)=sl, for some v>2 and some constant l in case of Eq.(1.3), Theorem 3.1

reduces to the oscillation criteria in [3].

Remark 3.2. For Eq.(1.2), Theorem 3.1 improves Theorem 2.1 in [12] by

dropping the restriction “ρ′(t) ≥ 0”. For Eq.(1.3), we obtain Theorem 2.1 (X) in

[10] and Theorem 2.1 in [11] from Theorem 3.1.

It may be happen that condition (3.1) in Theorem 3.1 fails to hold. Conse-

quently, Theorem 3.1 does not apply. In the remainder of this paper we treat

this cases and give new oscillation theorems for Eq.(1.1).

Theorem 3.2. Let the functions H, h, ρ, k, and constant λ be as in Theo-

rem 3.1. Further, assume that

(3.9) 0 < inf
s≥t0

{

lim inf
t→∞

H(t, s)

H(t, T0)

}

≤ ∞ ,

and

(3.10) lim sup
t→∞

AH
t0

(

g−α(s) |h(t, s)|α+1, t
)

< ∞ .

If there exists a function ϕ ∈ C(I, R) such that for t ≥ t0, T ≥ t0,

(3.11)

∫ ∞

g(s) k−1/α(s) [ϕ+(s)]β ds = ∞
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and

(3.12) lim sup
t→∞

AH
T

(

H(t, s) ρ(s) q(s) k(s) − θ g−α(s) |h(t, s)|α+1, t
)

≥ ϕ(T ) ,

where ϕ+ = max{ϕ, 0}. Then Eq.(1.1) is oscillatory.

Proof: Proceeding as in proof of Theorem 3.1 we get (3.6) and (3.8) hold,

and return to inequality (3.8). Therefore, for t > T ≥ T1,

lim sup
t→∞

AH
T

(

H(t, s) ρ(s) q(s) k(s) − θ g−α(s) |h(t, s)|α+1, t
)

≤ W (T ) k(T ) .

By (3.12), we have

(3.13) k(T )W (t) ≥ ϕ(T ) for T ≥ T1 ,

and

(3.14) lim sup
t→∞

AH
T1

(

H(t, s) ρ(s) q(s) k(s), t
)

≥ ϕ(T1) .

By (3.6) and (3.14), we see that

(3.15)

lim inf
t→∞

{

LAH
T1

(

H(t, s) k(s) g(s)W β(s), t
)

− AH
T1

(

|h(t, s)|
[

H(t, s) k(s)
]1/β

W (s), t
)

}

≤ k(T1)W (T1) − lim sup
t→∞

AH
T1

(

H(t, s) ρ(s) q(s) k(s), t
)

≤ k(T1)W (T1) − ϕ(T1) < ∞ ,

where L = α M(n, λ).

Now, we claim that

(3.16)

∫ ∞

T1

k(s) g(s)W β(s) ds < ∞ .

Suppose to the contrary that

(3.17)

∫ ∞

T1

k(s) g(s)W β(s) ds = ∞ .

By (3.9), there exists a positive constant η > 0 satisfying

(3.18) inf
s≥t0

{

lim inf
t→∞

H(t, s)

H(t, t0)

}

> η > 0 .
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It follows from (3.17) that for any arbitrary positive number ν there exists a

T2 ≥ T1 such that
∫ ∞

T1

k(s) g(s)W β(s) ds ≥
ν

η
for all t ≥ T2 .

Therefore

AH
T1

(

H(t, s) k(s) g(s)W β(s), t
)

=
1

H(t, T1)

∫ t

T1

H(t, s) d

(
∫ s

T1

k(τ) g(τ)W β(τ) dτ

)

≥
1

H(t, T1)

∫ t

T2

(
∫ s

T1

k(τ) g(τ)W β(τ) dτ

) (

−
∂

∂s
H(t, s)

)

ds

≥
ν

η

1

H(t, T1)

∫ t

T2

(

−
∂

∂s
H(t, s)

)

ds =
ν

η

H(t, T2)

H(t, T1)
.

By (3.18), there exists a T3 ≥ T2 such that H(t, T2)/H(t, T1) ≥ η for all t ≥ T3,

which implies

AH
T1

(

H(t, s) k(s) g(s)W β(s), t
)

≥ ν for all t ≥ T3 .

Since ν is arbitrary, we conclude that

(3.19) lim
t→∞

AH
T1

(

H(t, s) k(s) g(s)W β(s), t
)

= ∞ .

Next, let us consider a sequence {tj}
∞
1 in [t0,∞) with limj→∞ tj = ∞ satisfying

lim
j→∞

{

LAH
T1

(

H(tj , s) k(s) g(s)W β(s), tj

)

−AH
T1

(

|h(tj , s)|
[

H(tj , s)k(s)
]1/β

W (s), tj

)

}

= lim inf
t→∞

{

LAH
T1

(

H(t, s) k(s) g(s)W β(s), t
)

−AH
T1

(

|h(t, s)|
[

H(t, s)k(s)
]1/β

W (s), t
)

}

.

In view of (3.15), there exists a constant M0 such that

(3.20)
L AH

T1

(

H(tj , s) k(s) g(s)W β(s), tj

)

− AH
T1

(

|h(tj , s)|
[

H(tj , s) k(s)
]1/β

W (s), tj

)

≤ M0 ,

for all sufficient large j. It follows from (3.19) that

(3.21) lim
j→∞

AH
T1

(

L H(tj , s) k(s) g(s)W β(s), tj

)

= ∞ .
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This and (3.20) give

(3.22) lim
j→∞

AH
T1

(

|h(tj , s)|
[

H(tj , s) k(s)
]1/β

W (s), tj

)

= ∞ .

Thus, by (3.20) and (3.21), for all enough large j,

AH
T1

(

|h(tj , s)|
[

H(tj , s) k(s)
]1/β

W (s), tj

)

L AH
T1

(

H(tj , s) k(s) g(s)W β(s), tj

) − 1 ≥ −
1

2
.

That is

AH
T1

(

|h(tj , s)|
[

H(tj , s) k(s)
]1/β

W (s), tj

)

AH
T1

(

H(tj , s) k(s) g(s)W β(s), tj

) ≥
1

2
L for all large enough j .

This and (3.22) imply

(3.23)

[

AH
T1

(

|h(tj , s)|
[

H(tj , s) k(s)
]1/β

W (s), tj

)

]α+1

[

AH
T1

(

H(tj , s) k(s) g(s)W β(s), tj

)

]α = ∞ .

On the other hand, by Hölder’s inequality, we have
[

AH
T1

(

|h(tj , s)|
[

H(tj , s) k(s)
]1/β

W (s), tj

)

]α+1

≤

[

AH
T1

(

H(tj , s) k(s) g(s)W β(s), tj

)

]α [

AH
T1

(

g−α(s) |h(tj , s)|
α+1, tj

)

]

.

It follows that, for all large enough j,
[

AH
T1

(

|h(tj , s)|
[

H(tj , s) k(s)
]1/β

W (s), tj

)

]α+1

[

AH
T1

(

H(tj , s) k(s) g(s)W β(s), tj

)

]α ≤ AH
T1

(

g−α(s) |h(tj , s)|
α+1, tj

)

.

By (3.23), we find

lim
j→∞

AH
T1

(

g−α(s) |h(tj , s)|
α+1, tj

)

= ∞ ,

which contradicts to (3.10). Hence, (3.16) holds. Finally, by (3.13), we obtain
∫ ∞

t0

g(s) k−1/α(s) [ϕ+(s)]β ds ≤

∫ ∞

t0

k(s) g(s)W β(s) ds < ∞ ,

which contradicts (3.11). This completes the proof.
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Following the procedure of the proof of Theorem 3.2, we can also prove the

following two theorems.

Theorem 3.3. Let the functions H, h and ρ, k and constant λ be as in

Theorem 3.1, and assume that (3.9) holds. Suppose that there exists a function

ϕ ∈ C(I, R) such that (3.11) and the condition

(3.24) lim inf
t→∞

AH
t0

(

g−α(s) |h(t, s)|α+1, t
)

< ∞

and

(3.25) lim inf
t→∞

AH
T

(

H(t, s) ρ(s) q(s) k(s) − θ g−α(s) |h(t, s)|α+1, t
)

≥ ϕ(T )

hold for all T ≥ t0. Then Eq.(1.1) is oscillatory.

Theorem 3.4. Let the functions H, h, ρ, k and constant λ as in Theorem 3.1,

and assume that (3.9) holds. Suppose that there exists a function ϕ ∈ C(I, R)

such that (3.11), (3.25) and the condition

(3.26) lim inf
t→∞

AH
t0

(

H(t, s) ρ(s) q(s) k(s), t
)

< ∞

hold for all T ≥ t0. Then Eq.(1.1) is oscillatory.

Remark 3.3. The results obtained here are presented in a form which is

essentially new. Since the functions τki(t) (k = 0, 2, ..., n − 1, i = 1, 2, ..., m)

have not to assume any particular form, Eq.(1.1) can be any ordinary, retarded,

advanced or mixed type equations. Hence Theorems 3.1–3.4 hold for all that kind

of equations.

Remark 3.4. The above Theorems 3.2–3.4 extend and improve Theorems

2.2–2.4 in [12].

For illustration, we consider the following two examples.

Example 3.1. Consider the following delay differential equation

(3.27)
(

|x(n−1)(t)|x(n−1)(t)
)′

+ p(t) |x(n−1)(t)|x(n−1)(t) + q(t)x(t−τ)x(t−σ) = 0 ,

for t ≥ t0 = {1, 1+max{τ, σ}}, where α = 2, n is a even number, and τ, σ are

constants, p, q ∈ C(I, R0), 0 ≤ p(t) ≤ c1t
−1, 0 ≤ c1 ≤ 1.
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Let ρ(t) = exp(
∫ t
t0

p(u) du ), then ρ(t) ≤ t−c1
0 tc1 , and

ρ′(t)

ρ(t)
− p(t) = 0 , exp

(

−

∫ t

t0

p(u) du

)

≥
tc10
t

.

So, conditions (A1) and (A2) are satisfied. Here, we define

σ(t) =











t, if τ, σ ≤ 0 ,

t − τ, if τ ≥ 0, τ ≥ σ ,

t − σ, if σ ≥ 0, σ ≥ τ ,

then σ(t) ≥ 1, σ′(t) = 1 and g(t) ≥ t
c1/2
0 t−c1/2 for all t ≥ t0.

Choosing q(t) such that ρ(t) q(t) ≥ c2 t−1, (c2 >0), and taking H(t, s)=(t−s)δ,

k(s) ≡ 1, δ < 3 is integer, then h(t, s) = δ(t − s)δ/3−1. Thus

g−α(s) |h(t, s)|α+1 ≤ δ3 t−c1
0 (t − s)(δ−3) s .

It follows from [4] that

(t − s)δ ≥ tδ − δstδ−1 for t ≥ s ≥ 1 .

By using this inequality, we obtain that

lim sup
t→∞

AH
t0

(

H(t, s) ρ(s) q(s) k(s) − θ g−α(s) |h(t, s)|α+1, t
)

≥ lim sup
t→∞

1

(t − t0)δ

∫ t

t0

[

c2(t
δ − δstδ−1)

s
− θ δ3 tc1t0 (t − s)δ−3 s

]

ds

= lim sup
t→∞

{

c2( ln t − δ )
}

= ∞ .

Thus, all conditions of Theorem 3.1 are satisfied and Eq.(3.27) is oscillatory.

Example 3.2. Consider even order nonlinear delay equation

(3.28)

(

|x(n−1)(t)|α−1 x(n−1)(t)
)′

+ c1 t−1 |x(n−1)(t)|α−1 x(n−1)(t)

+ q(t)
∣

∣

∣
x
( t

2

)
∣

∣

∣

α−1
x
(3t

4

)

= 0 ,

for t ≥ 1, where n is even number, q ∈ C(I, R0), 0 ≤ c1 ≤ 1, 2 > α > 0 with

nα ≥ 2(α + 1).
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Choosing ρ(t) = exp(
∫ t
1 p(u) du ) = tc1 such that ρ(t) q(t) ≥ c2/t2. Note that

σ(t) =
t

2
, and g(t) =

1

2n−1
t(n−2)−c1/α .

Taking H(t, s) = (t−s)2, k(s) ≡ 1 for t ≥ s ≥ 1, then |h(t, s)|α+1 = 2α+1(t−s)1−α.

Since, nα ≥ 2α + 1, we have

AH
1

(

g−α(s) |h(t, s)|α+1, t
)

=
2αn+1

(t − 1)2

∫ t

1
sc1+(2−n)α (t − s)1−α ds

≤
2αn+1

(t − 1)2

∫ t

1
s1+(2−n)α (t − s)1−α ds

≤
2αn+1

(t − 1)2
(t − 1)2−α

2 − α
.

So, Condition (3.10) is satisfied. On the other hand, for t ≥ T ,

lim sup
t→∞

AH
T

(

H(t, s) ρ(s) q(s) k(s) − θ g−α(s) |h(t, s)|α+1, t
)

≥ lim sup
t→∞

{

1

(t−T )2

∫ t

T
(t−s)2

c2

s2
ds −

θ 2αn+1

2 − α

1

(t−T )α

(

1−
T

t

)2−α
}

≥
c2

T
.

Set ϕ(T ) = c2/T . It is clear that

∫ ∞

g(s) k−1/α(s) [ϕ(s)]β+ ds ≥
cβ
2

2n−1

∫ ∞

s(n−3)−2/α ds

≥
cβ
2

2n−1

∫ ∞

s−1 ds = ∞ .

Thus, all hypotheses of Theorem 3.2 are satisfied, and Eq.(3.28) is oscillatory.

Remark 3.5. The results in this paper are presented in the form of a high

degree of generality. New oscillatory criteria can be obtained with the appropriate

choices of the functions H and k. For instance, one can apply Theorems 3.1–3.4

with

H(t, s) =

(
∫ t

s

dτ

ξ(τ)

)δ−1

, (t, s) ∈ D, k(s) = sl .

where δ > α and l are constants, ξ ∈ C(I, R+) with
∫ ∞

t0
1/ξ(τ) dτ = ∞.

For example, an important particular case is ξ(τ)=τγ , γ≤1 is real number.
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