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Abstract: A mathematical analysis of a time discretization scheme for an initial-

boundary value problem for a phase-field type model for phase transitions is presented.

Convergence of the solutions of the proposed discretized scheme is proved and existence

and regularity results for the original problem are derived. The long time behavior of

the constructed solutions is also considered.

1 – Introduction

Phase transitions are important phenomena occurring in many physical situ-

ations, and, for this, they have been extensively studied along decades by many

researchers. Although there are many complex possibilities for phase change,

in this work, we restrict ourselves to the analysis of a problem involving only

solidification and melting, that is, solid-liquid phase changes.

We start by observing that there are basically three methodological approaches

for modelling such phase transitions, namely, the Stefan’s, the enthalpy and the

phase-field methodologies.

In a simplified and very brief way, we can say that the main point in the deri-

vation of the model equations using the Stefan’s approach is the assumption that

each solid-liquid interface is a sharp smooth surface (see for instance Alexiades [1].)
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Then, based on conservation principles, the governing equations for thermody-

namic variables are independently formulated in each phase. Next, conservation

laws are imposed of the interface, and by a limit process the so-called Stefan’s

conditions are obtained, which supply additional equations governing the evolu-

tion of the interfaces. The result is a highly non-linear free-boundary problem

since the location of each interface is not a priori known.

In this approach, the inclusion of several important effects, like surface ten-

sion, must be done directly on the Stefan’s conditions for the interfaces, leading

to the so-called modified Stefan problems. Surface tension effects, for instance,

can be incorporated by using a Gibbs–Thompson-type condition (see Colli [11]

and Mullis [31]). However, other important effects may be harder to incorpo-

rate in a clear and satisfactory physical way to the Stefan’s conditions. More

detailed discussion of the Stefan-type problem may be found in Alexiades [1] and

Rubinstein [35].

From a computational viewpoint, perhaps the most difficult aspect of the

Stefan’s approach is the fact that it requires that the interfaces be tracked numer-

ically. And this is a very difficult task in realistic situations where the interfaces

evolve in complex ways, forming for instance dendrities.

Another aspect is that the real physical situation may be more complex than

indicated by the classical Stefan’s approach. The very concept of a sharp inter-

face separating the different phases may be physically unrealistic. In fact, there

are many situations where such interfaces are transitions layers with nonzero

thickness and even internal structure; there are situations where mushy zones are

formed, and so on.

A possibility to avoid the last appointed difficulties is to resort to the concept

of enthalpy. In this approach, the phases are determined by the values of the

enthalpy alone, with no explicit mentioning of the interface locations. The idea

is that the transition layers are determined by certain level sets of the enthalpy.

This allows the possibility of complex geometry and the existence of both thin

layers and extended mushy zones. From the computational point of view, this

formulation does not require that the interfaces be tracked numerically, which in

practical situations brings advantages to the enthalpy method, as compared to

the Stefan formulation (see Alexiades [1], p. 257.) However, the enthalpy method

has certain physical limitations, excluding for instance problems with special

interface conditions, such as supercooling problems (see Wheeler et al [39]).

Another formulation extends this last idea by using more general order pa-

rameters than the enthalpy to specify the phases in terms of level sets. These

order parameters are called phase-fields and not necessarily have direct physical



A PHASE-FIELD TYPE MODEL FOR SOLIDIFICATION 263

meanings. The roots of this approach are originally in statistical physics, since

its involved the construction of the Landau–Ginzburg free energy functional (see

Landau [24]). This approach has the same advantages than the enthalpy approach

as compared to the one by Stefan, including the computational advantages, and

has much more flexibility than the enthalpy method, permitting the modelling of

more complex physical situations.

The phase-field methodology was firstly proposed for the study of solidifica-

tion processes by Fix [14]; then Caginalp extensively studied several phase-field

models for solidification ([5, 7, 8].) He employed a free energy functional in the

derivation of the kinetic equation for the phase-field; the usual conservation laws

were used for the derivation for the thermodynamic variables. An alternative

derivation for the phase-field equation was proposed by Peronse and Fife [32, 33];

they constructed an entropy functional, and postulated kinetic equations for the

phase-field and the temperature that ensure that the entropy increase mono-

tonically in time. Peronse and Fife exhibit a specific choice of entropy density

which essentially recovers the phase-field model employed by Caginalp [4]. Thus,

phase-field models provides a simple and elegant description the phase transition

processes, and physical aspects can be naturally incorporated in the derivation

of model equations. An important example of the utility such models is the

numerical studies of dentritic growth (see Caginalp [7] and Kobayshi [21]).

Several papers have been devoted to the mathematical analysis of phase-field

models for solidification. Questions like existence, uniqueness, regularity, and

large time behavior of their solutions have been examined by many authors (e.g.

[4, 17, 27, 26, 30, 3].)

In this work, we are also interested in performing this kind of mathematical

analysis, in a situation where the phase-field variable is related to the fraction

of solidified material (see Beckermann [2]). In this case, the enthalpy, h, of the

material is expressed by h = e+(L/2)(1−fs), where e is the internal energy, which

depends on the temperature, L is the latent heat and fs is the solid fraction (and

thus, (1− fs) is the liquid fraction). Since this solid fraction may be functionally

dependent on the phase-field variable and the temperature, the usual balance of

energy arguments couple the temperature equation to the phase-field equation.

In [3], this kind of situation was analyzed under the simplifying assumption that

the solid fraction depended only on the phase-field variable. In that work, in a

context that also included the possibility of convection of the melted material, a

mathematical analysis of the resulting model was performed, and existence and

regularity for its solutions were proved. However, the techniques employed in [3]

were not enough to manage the case in which the solid fraction was function both
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of the phase-field and temperature, even in the situation without convection of

the melted material.

The purpose of this paper is analyze a phase-field model for which the solid

fraction is explicitly functionally dependent of both the phase-field variable and

the temperature (without the possibility of convection of the melted material; the

inclusion of this possibility will be addressed in a future work.) For this, we will

employ a technique that constructs approximations by using semidiscretization

in time, and then we will be able to prove existence and regularity of solutions of

the original problem under rather natural physical conditions. We remark that

this kind of technique was also employed in previous papers (e.g. [20, 19, 38])

addressing other types of phase-field problems.

The paper is organized as follows. The next section is dedicated to present the

model equations, formulate our general assumptions and fix both the notations

and the basic functional spaces to be used. In this section, we also define what

we understand by a generalized solution of our problem, introduce the time-

discretization scheme and state the main results of the paper. Section 3 has the

proof of existence of the discrete solution, that is, the solution of the discretized

scheme, as well as certain regularity results. Section 4 contains a collection of

estimates, which are uniform with respect to the time-discretization step. These

estimates will allow us to pass to the limit in Section 5 and obtain our main

results. In Section 6, we comment on the long time behavior of the constructed

solutions.

Finally, we remark that, as it is usual in this sort of work, during the com-

putations of the estimates, we will often use a generic C to denote constants

depending only on known quantities.

2 – Model equations, technical hypotheses and main results

Let us consider the following initial-boundary value problem:

(2.1)

∂ϕ

∂t
− α∆ϕ = a(x)ϕ+ b(x)ϕ2 − ϕ3 + θ in Q ,

∂θ

∂t
− κ∆θ =

ℓ

2

∂

∂t
fs(θ, ϕ) in Q ,

(2.2)

∂ϕ

∂η
= 0 , θ = 0 on S ,

ϕ(x, 0) = ϕ0(x) , θ(x, 0) = θ0(x) in Ω .
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This system is a mathematical model for the evolution in time of a process of

solidification/melting of a pure material. We assume that the process is occurring

in a region Ω ⊂ R
n, and the time interval of interest is [0, T ], with T > 0. The

variables ϕ and θ are respectively the phase-field and temperature. The mass

solid fraction fs(θ, ϕ) is supposed to be a known function of the temperature and

phase-field. The initial data ϕ0(x), θ0(x) and a(x), b(x) are also known functions.

The parameters ℓ, and κ are positive constants corresponding respectively to the

latent heat and thermal conductivity coefficients divided by the specific heat of

the material. α > 0 is a constant related to the thickness of the transition layers,

and ∂/∂η denotes the outward normal derivative at ∂Ω.

The first equation in (2.1) describes the evolution of the phase-field variable ϕ;

it is exactly as in Hoffman and Jiang [17]. The function g(x, s)=a(x)s+b(x)s2−s3
at the the right-hand side of this equation is classical and comes from the choice

of a double-well potential as an interaction potential between the phases for the

free-energy of the system. Other possibilities could be considered; see for instance

[12]. For a detailed discussions of the phase-field transition system, we refer to

[4] and [13]. The second equation in (2.1) results from energy conservation.

In the following, we will very briefly describe our notations and functional

spaces to be used.

Let Ω ⊂ R
n be an open and bounded domain with sufficiently smooth bound-

ary ∂Ω; (C2-regularity will be enough for the purposes of this paper); let T be

a finite positive number, and denote Q = Ω×(0, T ) the space-time cylinder with

lateral surface S = ∂Ω×(0, T ).

For a nonnegative integer m and 1 ≤ q ≤ +∞, Wm
q (Ω) is the traditional

Sobolev space consisting of the functions u(x) having generalized derivatives up

to order m in Lq(Ω). Such space is supplied with the usual norm. For q=2 this

space is denoted by Hp(Ω).
0
Wm

q (Ω) is the closure in this norm of the set of all

infinitely differentiable functions with compact support in Ω. For non integers m,

similar spaces can be defined by interpolation, for instance.

W 2,1
q (Q) is a Banach space consisting of functions u(x, t) in Lq(Q) whose gen-

eralized derivatives Dxu,D
2
xu,ut are Lq-integrable (q≥1). The norm in W 2,1

q (Q)

is defined by

(2.3) ‖u‖(2)
q,Q = ‖u‖q,Q + ‖Dxu‖q,Q + ‖D2

xu‖q,Q + ‖ut‖q,Q

where Ds
x denotes any partial derivatives with respect to variables x1, x2, ..., xn

of order s = 1, 2 and ‖ · ‖q the usual norm in the space Lq(Q).
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The spaceW 1,0
2 (Q) consist of the functions u(x, t) in L2(Q) having generalized

derivatives Dxu in L2(Q). We denote by
0
W

1,0
2 (Q) the subspace of W 1,0

2 (Q) whose

functions vanish on S in the sense of traces.

The spaceW 1,1
2 (Q) consist of the functions u(x, t) in L2(Q) having generalized

derivatives Dxu and ut in L2(Q). We denote by
0
W

1,1
2 (Q) the subspace of W 1,1

2 (Q)

whose functions vanish on S in the sense of traces.

More details about the above spaces are given in [23]. Other classical func-

tional spaces will also be used, with standard notations and definitions.

All along this work we will be using the following technical hypotheses:

(H1) Ω⊂R
n, n=2 or 3, is an open and bounded domain with a C2 boundary.

(H2) a(x), b(x) are given functions in L∞(Ω); fs is a known function in

C1,1
b (R2) such that 0 ≤ fs(y, z) ≤ 1 ∀ (y, z) ∈ R

2 and such that for

each z ∈ R, y 7→ fs(y, z) is non increasing.

(H3) ϕ0 ∈W
(3/2)+δ
2 (Ω) for some δ ∈ (0, 1);

∂ϕ0

∂η
= 0 on ∂Ω; θ0 ∈

0
W1

2(Ω).

Remark. The monotony condition on fs( . z) required in (H2) is natural

since for most materials the solid fraction is not expected to increase with an

increase of temperature.

In the following we will explain in what sense we will understand a solution

of (2.1)–(2.2) (see [23], p. 26).

Definition 2.1. By a generalized solution of problem (2.1)–(2.2), we

mean a pair of functions (ϕ, θ) ∈W 1,1
2 (Q)×

0
W

1,1
2 (Q) satisfying (2.1)–(2.2) in

the following sense

−
∫

Q
ϕβt dxdt + α

∫

Q
∇ϕ∇β dxdt =

=

∫

Q

(
a(x)ϕ+ b(x)ϕ2 − ϕ3

)
β dxdt +

∫

Q
θβ dxdt +

∫

Ω
ϕ0(x)β(x, 0) dx ,

−
∫

Q
θ ξt dxdt + κ

∫

Q
∇θ∇ξ dxdt =

=
ℓ

2

∫

Q

(
∂fs

∂t
(θ, ϕ)

)
ξ dxdt +

∫

Ω
θ0(x) ξ(x, 0) dx ,

for all β in W 1,1
2 (Q) such that β(x, T ) = 0 and for all ξ in

0
W

1,1
2 (Q) such that

ξ(x, T ) = 0.
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Note that due to our technical hypotheses and choice of functional spaces, all

of the integrals in Definition 2.1 are well defined.

In the sequel, we introduce a time-discretization scheme (see [23], p. 241) for

the phase-field type model (2.1)–(2.2).

Let N be an integer and P be a partition of the time interval [0,T] such that

P = {t0, t1, ..., tN} with 0 = t0 < t1 < ... < tm < ... < tN = T where tm = mτ ,

0 ≤ m ≤ N and τ = T/N is the time-step.

For m = 1, 2, ..., N , we consider the differential-difference equations

δtϕ
m − α∆ϕm = a(x)ϕm + b(x)(ϕm)2 − (ϕm)3 + θm a.e. in Ω ,(2.4)

δtθ
m − κ∆θm =

ℓ

2

(
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

)
a.e. in Ω ,(2.5)

∂ϕm

∂n
= 0 , θm = 0 a.e. in ∂Ω ,(2.6)

assuming

(2.7) ϕ0 = ϕ0 , θ0 = θ0 .

Here, we used the notation

δtϕ
m =

1

τ

(
ϕm − ϕm−1

)
(2.8)

δtθ
m =

1

τ

(
θm − θm−1

)
,(2.9)

and ϕm and θm, m = 1, ..., N , are expected to be approximations of ϕ(x, tm) and

θ(x, tm), respectively.

Definition 2.2. (ϕm, θm), m=1, 2, ..., N , is said to be solution to the scheme

(2.4)–(2.7) if ϕm ∈ W 1
2 (Ω), θm ∈

0
W 1

2(Ω) for every m = 1, 2, ..., N , (2.7) is true,

and relations (2.4)–(2.6) are satisfied in the following sense
∫

Ω
δtϕ

m β̂(x) dx + α

∫

Ω
∇ϕm ∇β̂ dx =

=

∫

Ω

(
aϕm + b(ϕm)2 − (ϕm)3

)
β̂(x) dx +

∫

Ω
θmβ̂(x) dx ,

∫

Ω
δtθ

mξ̂(x) dx + κ

∫

Ω
∇θm ∇ξ̂ dx =

ℓ

2

∫

Ω

fs(θ
m, ϕm) − fs(θ

m−1, ϕm−1)

τ
ξ̂(x) dx

for all ξ̂ ∈
0
W1

2(Ω) and β̂ ∈W 1
2 (Ω).



268 CRISTINA VAZ and JOSÉ LUIZ BOLDRINI

The following existence result for the discrete scheme given by (2.4)–(2.7) will

be proved in the next section.

Theorem 2.1. Assume that (H1), (H2) and (H3) hold. Then, there is a

generalized solution of the discrete scheme (2.4)–(2.6) in sense of Definition 2.2.

Moreover, this solution is unique when the time-step τ is small enough.

Using this result, we may introduce the corresponding piecewise constant

interpolating functions ϕτ , θτ and also the corresponding linear interpolate func-

tions ϕ̃τ , θ̃τ :

Definition 2.3. Consider a partition P = {t0, t1, ..., tN−1, tN} such that

tm = mτ for 1 ≤ m ≤ N and τ = T/N . Then, given {γm}N
m=0 ∈ L2(Ω), we define

the interpolations functions γτ , γ̃τ : [0, T ] → L2(Ω) as follows: for a.e. x ∈ Ω and

for t ∈ [(m−1)τ,mτ ], we set

γτ (x, t) = γm ,

γ̃τ (x, t) = γm +

(
t− tm
τ

)(
γm − γm−1

)
.

In Section 5, we will prove the following result

Theorem 2.2. Assume that (H1), (H2) and (H3) holds. Let ϕτ , ϕ̃τ , θτ , θ̃τ

be functions as in Definition 2.3 and corresponding to the solution of the discrete

scheme (2.4)–(2.6) that was obtained in Theorem 2.1. Then, as τ → 0, we have

the following convergences:

θτ ⇀ θ, ϕτ ⇀ ϕ in L2
(
0, T,W 2

2 (Ω)
)
,

θτ
∗
⇀ θ, ϕτ

∗
⇀ ϕ in L∞

(
0, T,W 1

2 (Ω)
)
,

(2.10)
θ̃τ ⇀ θ, ϕ̃τ ⇀ ϕ in L2

(
0, T,W 1

2 (Ω)
)
,

θτ → θ, ϕτ → ϕ in L2(Q) .

and the pair (ϕ, θ) is a generalized solution of the problem (2.1)–(2.2) in the sense

of the Definition 2.1.

Moreover, when ϕ0 ∈W
2−2/q
q (Ω)∩W 3/2+δ

2 (Ω) for some δ∈(0, 1) and 3≤q≤9,

then such solution satisfies ϕ ∈W 2,1
q (Q) ∩ L∞(Q) and θ ∈W 2,1

2 (Q) ∩ L9(Q).
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Finally, we mention that in Theorem 6.1 we will state a result concerning the

long time behavior of the solutions given in Theorem 2.1.

3 – Discrete solutions

Our aim in this section is to prove the existence of the solution ϕm, θm of the

system (2.4)–(2.6), for a fixed m and assuming that ϕm−1 and θm−1 are already

known. For this, consider the following non-linear system:

(3.1)





−τα∆ϕ+ ϕ = τ
(
a(x)ϕ+ b(x)ϕ2 − ϕ3 + θ

)
+ g(x) ,

−τκ∆θ + θ =
ℓ

2
fs(θ, ϕ) + h(x) , in Ω ,

subject to the boundary conditions:

(3.2)
∂ϕ

∂n
= 0 , θ = 0 on ∂Ω ,

where (ϕ, θ) = (ϕm, θm), g(x) = ϕm−1, and h(x) =
(
θm−1 + fs(θ

m−1, ϕm−1)
)
.

We will apply the Leray–Schauder degree theory (see [12]) to prove the exis-

tence of solutions of problem (3.1), (3.2). For this, we reformulate the problem

as T (1, ϕ, θ) = (ϕ, θ), where T (λ, .) is a compact homotopy depending on a pa-

rameter λ ∈ [0, 1] defined as follows.

Consider the non-linear operator

T : [0, 1]×W 1
2 (Ω)×

0
W

1
2(Ω) →W 1

2 (Ω)×
0
W

1
2(Ω)

defined as

(3.3) T (λ, φ, ω) = (ϕ, θ) ,

where (ϕ, θ) is the unique solution of the following problem:

(3.4)





−τα∆ϕ+ ϕ = λτ
(
a(x)φ+ b(x)φ2 − φ3 + ω

)
+ λg(x) ,

−τκ∆θ + θ = λ

(
ℓ

2
fs(ω, φ) + h(x)

)
in Ω ,

subject to the following boundary conditions

(3.5)
∂ϕ

∂n
= 0 , θ = 0 on ∂Ω .
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To verify that T (λ, ·) is well defined, we observe that aφ+ bφ2 −φ3 +ω+ g ∈
L2(Ω); thus, by the Lp-regularity theory for elliptic linear equations (see [22],

Chapter 3), we conclude that the first equation of problem (3.4), (3.5) has a

unique solution ϕ ∈ W 2
2 (Ω) ∩ (L2(Ω)/R). In addition, fs ∈ C1,1

b (R2) and h ∈
L6(Ω) imply again by the Lp-regularity theory for elliptic linear equation that

there is a unique solution θ ∈W 2
2 (Ω) of the second equation of (3.4)–(3.5).

To check the continuity of T (λ, ·), let λn → λ in [0,1] and (φn, ωn) → (φ, ω)

in W 1
2 (Ω)×

0
W 1

2(Ω). Denote T (λn, φn, ωn) = (ϕλn

n , θλn

n ), T (λ, φn, ωn) = (ϕλ
n, θ

λ
n)

and T (λ, φ, ω) = (ϕλ, θλ). From (3.3) and (3.4)–(3.5), we obtain

(3.6)





−τα∆(ϕλn

n − ϕλ
n) + (ϕλn

n − ϕλ
n) = (λn− λ) τ(aφn + bφ2

n − φ3
n + ωn)

+(λn− λ)g ,

−τκ∆(θλn

n − θλ
n) + (θλn

n − θλ
n) = (λn− λ)

(
ℓ

2
fs(ωn, φn) + h

)
,

subject to boundary conditions

(3.7)
∂

∂η

(
ϕλn

n − ϕλ
n

)
= 0 ,

(
θλn

n − θλ
n

)
= 0 on ∂Ω .

Applying the Lp-regularity theory for elliptic linear equations to the equations

of problem (3.6)–(3.7), observing that φ ∈ W 1
2 (Ω) ⊂ L6(Ω) and using the fact

that fs ∈ C1,1
b (R2), we obtain the following estimates

‖ϕλn

n − ϕλ
n‖W 1

2
(Ω) ≤ C |λn − λ|

(
‖φn‖2,Ω + ‖φn‖3

2,Ω + ‖ωn‖2,Ω + ‖g‖2,Ω

)
,

(3.8)
‖θλn

n − θλ
n‖W 1

2
(Ω) ≤ C |λn − λ|

(
1 + ‖h‖2,Ω

)
,

where C depends on Ω, α, κ, ℓ, τ , ‖a‖∞, ‖b‖∞ and ‖fs‖∞.

Since the sequences {φn} and {ωn} are bounded in W 1
2 (Ω)×

0
W 1

2(Ω), we con-

clude that ‖ϕλn

n − ϕλ
n‖W 1

2
(Ω) −→ 0 and ‖θλn

n − θλ
n‖W 1

2
(Ω) −→ 0 as n→ ∞.

Again from (3.3) and (3.4)–(3.5), we obtain

(3.9)





−τα∆(ϕλ
n − ϕλ) + (ϕλ

n − ϕλ) = τλ
(
dn(φn − φ) + ωn − ω

)
,

−τκ∆(θλ
n − θλ) + (θλ

n − θλ) = λ
ℓ

2

(
fs(ωn, φn) − fs(ω, φ)

)
,

subject to boundary conditions

(3.10)
∂

∂η

(
ϕλ

n − ϕλ
)

= 0 ,
(
θλ
n − θλ

)
= 0 on ∂Ω ,
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where dn = a(x) + b(x)(φn+ φ) − (φ2
n + φnφ+ φ2) ∈ L3(Ω).

As before, the Lp-regularity theory for elliptic linear equations implies the

following estimates

‖ϕλ
n − ϕλ‖W 1

2
(Ω) ≤ C

(
‖dn(φn − φ)‖2,Ω + ‖ωn − ω‖2,Ω

)
,

‖θλ
n − θλ‖W 1

2
(Ω) ≤ C

(
‖fs(ωn, φn) − fs(ω, φ)‖2,Ω

)
.

Since fs(y, z) is a Lipschitz function, we get

(3.11)

‖ϕλ
n − ϕλ‖W 1

2
(Ω) ≤ C

(
‖dn‖3,Ω‖φn − φ‖6,Ω + ‖ωn − ω‖2,Ω

)
,

‖θλ
n − θλ‖W 1

2
(Ω) ≤ C

(
‖φn − φ‖W 1

2
(Ω) + ‖ωn − ω‖2,Ω

)
.

Thus, ‖ϕλ
n −ϕλ‖W 1

2
(Ω) −→ 0 and ‖θλ

n − θλ‖W 1

2
(Ω) −→ 0 as n→ ∞, and we

obtain the continuity of T (λ, ·).
The mapping T (λ, ·) given by (3.3) is also compact. In fact, if {(λn, φn, ωn)} is

any bounded sequence in [0, 1]×W 1
2 (Ω)×

0
W 1

2(Ω), the previous arguments can be

applied to obtain exactly the same sort of estimates for T (λn, φn, ωn) = (ϕn, θn).

These estimates supply ‖ϕn‖W 1

2
(Ω) ≤ C and ‖θn‖W 1

2
(Ω) ≤ C.

By using this and applying again the Lp-regularity theory for elliptic equa-

tions, we obtain that for all n

(3.12) ‖ϕn‖W 2

2
(Ω) ≤ C and ‖θn‖W 2

2
(Ω) ≤ C ,

where C depends only on Ω, α, κ, ℓ, τ , ‖a‖∞ and ‖b‖∞.

Estimates (3.12) show that the norms of the elements of the sequence

{T (λn, φn, ωn)} = {(ϕn, θn)} are uniformly bounded with respect to n in the func-

tional space W 2
2 (Ω)×W 2

2 (Ω). Since the embedding of W 2
2 (Ω)×(W 2

2 (Ω)∩
0
W1

2(Ω))

into W 1
2 (Ω)×

0
W1

2(Ω) is compact, there exists a subsequence of T (λn, φn, ωn) con-

verging in W 1
2 (Ω)×

0
W1

2(Ω) and, the compactness of T (λ, ·) is proved.

In the following, we will show that any possible fixed point of T (λ, ·) can

be estimated independently of λ ∈ [0, 1]; that is, we will show that if (ϕ, θ) ∈
W 1

2 (Ω)×
0
W 1

2(Ω) is such that T (λ, ϕ, θ) = (ϕ, θ), for some λ ∈ [0, 1], then there

exists a constant β > 0 such that

(3.13) ‖(ϕ, θ)‖W 1

2
(Ω)×W 1

2
(Ω) < β .
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For this, we recall that such fixed point (ϕ, θ) ∈ W 1
2 (Ω)×

0
W 1

2(Ω) solves the

problem

(3.14)





−τα∆ϕ+ ϕ = τλ
(
aϕ+ bϕ2 − ϕ3 + θ

)
+ λg ,

−τκ∆θ + θ = λ

(
ℓ

2
fs(θ, ϕ) + h

)
in Ω ,

subject to the following boundary conditions

(3.15)
∂ϕ

∂n
= 0 , θ = 0 on ∂Ω .

By multiplying the first equation in (3.14) by ϕ, integrating over Ω, using

Green’s formula and Young’s inequality, we obtain

(3.16) τα

∫

Ω
|∇ϕ|2 dx +

1

4

∫

Ω
|ϕ|2 dx ≤ Cτ +

τ2

2
‖θ‖2

2,Ω +
1

2
‖g‖2

2,Ω .

Here we also used that max
s∈R, x∈Ω

(
a(x)s2 + b(x)s3 − s4

)
is finite.

By multiplying the second equation in (3.14) by θ, integrating over Ω, using

Green’s formula and Young’s inequality, we get

(3.17) τκ

∫

Ω
|∇θ|2 dx +

∫

Ω
|θ|2 dx ≤ C

(
‖fs(θ, ϕ)‖2

2,Ω + ‖h‖2
2,Ω

)
.

By using the fact that fs ∈ C1,1
b (R2), we conclude that

(3.18) ‖θ‖W 1

2
(Ω) ≤ C

(
1 + ‖h‖2,Ω

)
.

Now, by combining (3.16) and (3.18), we obtain

(3.19) ‖ϕ‖W 1

2
(Ω) ≤ C

(
1 + ‖g‖2,Ω + ‖h‖2,Ω

)

with C depending only on Ω, α, κ, ℓ, τ , ‖a‖∞, ‖b‖∞ and ‖fs‖∞.

Thus, it is enough to take β as any constant satisfying

β > max
{
C
(
1 + ‖h‖2,Ω

)
, C
(
1 + ‖g‖2,Ω + ‖h‖2,Ω

)}

to obtain the stated result. By denoting

Bβ =
{

(ϕ, θ) ∈W 1
2 (Ω)×

0
W

1
2(Ω) ; ‖(ϕ, θ)‖W 1

2
(Ω)×W 1

2
(Ω) < β

}
,
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(3.13) ensures in particular that

(3.20) T (λ, ϕ, θ) 6= (ϕ, θ) ∀ (ϕ, θ) ∈ ∂Bβ , ∀λ ∈ [0, 1] .

According to property (3.20) and the compactness of T (λ, ·), we may consider

the Leray–Schauder degree D(Id−T (λ, ·), Bβ , 0), ∀λ ∈ [0, 1] (see Deimling [12]).

The homotopy invariance of the degree implies

(3.21) D
(
Id− T (0, ·), Bβ , 0

)
= D

(
Id− T (1, ·), Bβ , 0

)
.

Now, by choosing β > 0 large enough so that the ball Bβ contains the unique

solution of the linear equation T (0, ϕ, θ) = (ϕ, θ) given by

{
−τα∆ϕ+ ϕ = 0

−τκ∆θ + θ = 0
in Ω ,

subject to the following boundary conditions

∂ϕ

∂n
= 0 , θ = 0 on ∂Ω .

Therefore D(Id−T (0, ·), Bβ , 0) = 1, and, from (3.21), we conclude that prob-

lem (3.1), (3.2) has a solution (ϕ, θ) ∈W 1
2 (Ω)×

0
W1

2(Ω).

By the Lp-regularity theory for elliptic linear equations and the fact that

fs ∈ C1,1
b (R2), it is easy to conclude that θ ∈ W 2

2 (Ω) ∩ C1,σ(Ω) for σ = 1 − n/4.

Also, aϕ + bϕ2 − ϕ3 + θ + g ∈ L2(Ω) and by applying again the Lp-regularity

theory, we obtain that ϕ ∈W 2
2 (Ω) ∩ C1,σ(Ω), with σ = 1 − n/4.

To prove the uniqueness of such solutions, let ϕi and θi with i = 1 or 2 be to

two solutions of the problem (3.1)–(3.2). By writing the corresponding problems

for both (ϕ1, θ1) , (ϕ2, θ2); denoting ϕ̂ = ϕ1 − ϕ2, θ̂ = θ1 − θ2, and adding the

two resulting equations, we infer that

(3.22)





−τα∆ϕ̂+ ϕ̂ = τ
(
a+ b(ϕ1+ϕ2) − (ϕ2

1 + ϕ1ϕ2 + ϕ2
2)
)
ϕ̂+ τ θ̂ ,

−τκ∆θ̂ + θ̂ =
ℓ

2

(
fs(θ1, ϕ1) − fs(θ2, ϕ2)

)
in Ω ,

subject to the boundary conditions

(3.23)
∂ϕ

∂n
= 0 , θ = 0 on ∂Ω .
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By multiplying the first equation in (3.22)–(3.23) by ϕ̂, integrating over Ω,

using Green’s formula, that a(.), b(.), ϕ1, ϕ2 ∈ L∞(Ω), Holder’s inequality and

Young’s inequality, we obtain

(3.24) τα

∫

Ω
|∇ϕ̂|2 dx +

1

2

∫

Ω
|ϕ̂|2 dx ≤ C1 τ‖ϕ̂‖2

2,Ω +
τ2

2
‖θ̂‖2

2,Ω .

By choosing τ small enough such that τ ≤ 1/(4C1), we obtain

(3.25) τα

∫

Ω
|∇ϕ̂|2 dx +

1

4

∫

Ω
|ϕ|2 dx ≤ τ2

2
‖θ̂‖2

2,Ω .

Next,we multiply the second equation in (3.22)–(3.23) by θ̂ = θ1− θ2, and

proceed as usual to obtain

(3.26) τκ

∫

Ω
|∇θ̂|2 dx +

∫

Ω
|θ̂|2 dx =

ℓ

2

∫

Ω

(
fs(θ1, ϕ1)−fs(θ2, ϕ2)

)
(θ1−θ2) dx .

Now, we observe that the integral at the right-hand side of (3.26) can be

rewritten as
∫

Ω

(
fs(θ1, ϕ1) − fs(θ2, ϕ2)

)
(θ1− θ2) dx =

=

∫

Ω

(
fs(θ1, ϕ1)−fs(θ2, ϕ1)

)
(θ1− θ2) dx +

∫

Ω

(
fs(θ2, ϕ1)−fs(θ2, ϕ2)

)
(θ1− θ2) dx .

By recalling that for each z ∈ R the function y 7→ fs(y, z) is non-increasing, and

using that fs is a Lipschitz function together with Young’s inequality, we can

conclude that

ℓ

2

∫

Ω

(
fs(θ2, ϕ1) − fs(θ2, ϕ2)

)
(θ1 − θ2) dx ≤ C2 ‖ϕ̂‖2

2,Ω +
1

2
‖θ̂‖2

2,Ω .

By combining this result with estimate (3.26), we obtain

τκ

∫

Ω
|∇θ̂|2 dx +

1

2

∫

Ω
|θ̂|2 dx ≤ C2 ‖ϕ̂‖2

2,Ω .

Now, we add this last result to (3.25) multiplied by 5C2 to obtain

(3.27) τα ‖∇ϕ̂‖2
2,Ω + τκ ‖∇θ̂‖2

2,Ω +
1

4
C2 ‖ϕ̂‖2

2,Ω + ‖θ̂‖2
2,Ω ≤ 5

2
C2τ

2 ‖θ̂‖2
2,Ω .

Thus, by taking τ ≤ min
{
1/(4C1), 1/

√
5C2

}
, we conclude that

τα ‖∇ϕ̂‖2
2,Ω + τκ ‖∇θ̂‖2

2,Ω +
1

4
Cℓ ‖ϕ̂‖2

2,Ω +
1

2
‖θ̂‖2

2,Ω ≤ 0 ,

which implies that ϕ̂ = 0, θ̂ = 0 and thus the uniqueness of solution.

This completes the proof the Theorem 2.1.
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Remark. We observe that the fact that the solid fraction function fs is

non-increasing with respect to the temperature was not used in the part of the

proof that shows the existence of discrete solutions; it is only used to obtain the

uniqueness of such solutions. However, this monotony hypothesis will play an

important role in what follows, namely in the proof of certain estimates that will

be necessary to obtain the existence of the solutions of the original continuous

model.

4 – A priori estimates

In this section we will be interested in obtaining a priori estimates, which are

uniform with respect to τ .

We start by multiplying equation (2.5) by δtθ
m (see (2.9)). After integration

over Ω and the usual integration by parts, we obtain

∫

Ω
(δtθ

m)2 dx +
κ

τ

∫

Ω
∇θm(∇θm −∇θm−1) dx =

=
ℓ

2

∫

Ω

(
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

)
δtθ

m dx .

By using the relation

(4.1) 2

∫

Ω
χ(χ− ψ) dx =

∫

Ω
|χ|2 dx −

∫

Ω
|ψ|2 dx +

∫

Ω
|χ− ψ|2 dx ,

we get

‖δtθm‖2
2,Ω +

κ

2τ

(
‖∇θm‖2

2,Ω − ‖∇θm−1‖2
2,Ω + ‖∇θm−∇θm−1‖2

2,Ω

)
=

(4.2)

=
ℓ

2

∫

Ω

(
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

)
δtθ

m dx .

Now, the integral of the right-hand side of this expression can be written as

∫

Ω

(
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

)
δtθ

m dx =

=

∫

Ω

(
fs(θ

m, ϕm) − fs(θ
m−1, ϕm)

τ

)
δtθ

m dx(4.3)

+

∫

Ω

(
fs(θ

m−1, ϕm) − fs(θ
m−1, ϕm−1)

τ

)
δtθ

m dx .
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Working as before, that is, by using the fact that for each fixed z ∈ R the

function y 7→ fs(y, z) is non increasing Lipschitz function, and Young’s inequality,

we conclude that

ℓ

2

∫

Ω

(
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

)
δtθ

m dx ≤ C ‖δtϕm‖2
2,Ω +

1

2
‖δtθm‖2

2,Ω .

Combining this result with estimates (4.2), we obtain

τ ‖δtθm‖2
2,Ω +

(
‖∇θm‖2

2,Ω−‖∇θm−1‖2
2,Ω +‖∇θm−∇θm−1‖2

2,Ω

)
≤ Cτ ‖δtϕm‖2

2,Ω .

By adding these relations for m = 1, 2, ..., r, for 1 ≤ r ≤ N , we obtain

τ
r∑

m=1

‖δtθm‖2
2,Ω + ‖∇θr‖2

2,Ω +
r∑

m=1

‖∇θm−∇θm−1‖2
2,Ω ≤

(4.4)

≤ C

(
‖∇θ0‖2

2,Ω + τ
r∑

m=1

‖δtϕm‖2
2,Ω

)
.

where C depends only on Ω, ℓ and κ.

Now, by multiplying equation (2.5) by θm, integrating over Ω and using

Green’s formula, we obtain

1

τ

∫

Ω
θm(θm − θm−1) dx + κ

∫

Ω
|∇θm|2 dx =

=
ℓ

2

∫

Ω

(
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

)
θm dx ,

which as before implies that

1

2τ

(
‖θm‖2

2,Ω − ‖θm−1‖2
2,Ω + ‖θm − θm−1‖2

2,Ω

)
+ κ ‖∇θm‖2

2,Ω ≤

≤ ℓ

2

∫

Ω

(
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

)
θm dx .

We can treat the last term in this expression as we did before, by using the

fact that fs is a Lipschitz function, that fs(z, ·) is non-increasing and Young’s

inequality, to obtain

1

2

(
‖θm‖2

2,Ω − ‖θm−1‖2
2,Ω + ‖θm− θm−1‖2

2,Ω

)
+ τκ ‖∇θm‖2

2,Ω ≤
(4.5)

≤ C1τ ‖δtϕm‖2
2,Ω + Cτ ‖θm‖2

2,Ω .
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Now, we multiply the equation (2.4) by δtϕ
m, integrate over Ω and use Green’s

formula together with the convexity of h(s)=s4, which implies (ϕm)4−(ϕm−1)4≤
4(ϕm)3(ϕm− ϕm−1), to obtain
∫

Ω
(δtϕ

m)2 dx +
α

τ

∫

Ω
∇ϕm(∇ϕm−∇ϕm−1) dx

+
1

τ

∫

Ω
(ϕm)4 dx − 1

τ

∫

Ω
(ϕm−1)4 dx =

=

∫

Ω
a(x)ϕm δtϕ

m dx +

∫

Ω
b(x)(ϕm)2δtϕ

m dx +

∫

Ω
θm δtϕ

m dx .

In this last expression, now we use Hölder’s and Young’s inequality and apply

the relation (4.1) to find

τ ‖δtϕm‖2
2,Ω + α

(
‖∇ϕm‖2

2,Ω − ‖∇ϕm−1‖2
2,Ω + ‖∇ϕm −∇ϕm−1‖2

2,Ω

)

+
1

4

(
‖ϕm‖4

4,Ω − ‖ϕm−1‖4
4,Ω

)
≤

≤ C2τ ‖ϕm‖4
4,Ω + Cτ

(
‖ϕm‖2

2,Ω + ‖θm‖2
2,Ω

)
.

By multiplying this expression by 2C1 and adding the result to estimate (4.5),

we obtain

α
(
‖∇ϕm‖2

2,Ω − ‖∇ϕm−1‖2
2,Ω + ‖∇ϕm −∇ϕm−1‖2

2,Ω

)

+ ‖θm‖2
2,Ω − ‖θm−1‖2

2,Ω + ‖θm− θm−1‖2
2,Ω + τκ ‖∇θm‖2

2,Ω

+ τ ‖δtϕm‖2
2,Ω +

1

4

(
‖ϕm‖4

4,Ω − ‖ϕm−1‖4
4,Ω

)
≤(4.6)

≤ C2τ ‖ϕm‖4
4,Ω + Cτ

(
‖ϕm‖2

2,Ω + ‖θm‖2
2,Ω

)
.

Now, we multiply equation (2.4) by ϕm, integrate over Ω, and use Green’s

formula to get

1

τ

∫

Ω

(
ϕm− ϕm−1

)
ϕm dx + α

∫

Ω
|∇ϕm|2 dx +

1

2

∫

Ω
(ϕm)4 dx =

=

∫

Ω

(
a(x) + b(x)ϕm − 1

2
(ϕm)2

)
(ϕm)2 dx +

∫

Ω
θmϕm dx .

By using relation (4.1) and that max
s∈R, x∈Ω

(
a(x)+b(x)s− 1

2s
2
)

is finite, together

with Young’s inequality, we are left with

‖ϕm‖2
2,Ω − ‖ϕm−1‖2

2,Ω + ‖ϕm− ϕm−1‖2
2,Ω + τα‖∇ϕm‖2

2,Ω + τ‖ϕm‖4
4,Ω ≤

≤ Cτ
(
‖ϕm‖2

2,Ω + ‖θm‖2
2,Ω

)
.
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By multiplying this last expression by 2C2 and adding the result to estimate

(4.6), we get

‖ϕm‖2
2,Ω − ‖ϕm−1‖2

2,Ω + ‖ϕm − ϕm−1‖2
2,Ω

+ ‖θm‖2
2,Ω − ‖θm−1‖2

2,Ω + ‖θm − θm−1‖2
2,Ω

+ ‖∇ϕm‖2
2,Ω − ‖∇ϕm−1‖2

2,Ω + ‖∇ϕm −∇ϕm−1‖2
2,Ω

+ τ ‖∇ϕm‖2
2,Ω + τ ‖∇θm‖2

2,Ω + τ ‖ϕm‖4
4,Ω

+ ‖δtϕm‖2
2,Ω + ‖ϕm‖4

4,Ω − ‖ϕm−1‖4
4,Ω ≤

≤ Cτ
(
‖ϕm‖2

2,Ω + ‖θm‖2
2,Ω

)
.

By adding these relations for m = 1, 2, ..., r, with 1 ≤ r ≤ N , we finally get

‖ϕr‖2
W 1

2
(Ω) + ‖θr‖2

2,Ω + ‖ϕr‖4
4,Ω

+
r∑

m=1

(
‖ϕm− ϕm−1‖2

W 1

2
(Ω) + ‖θm− θm−1‖2

2,Ω

)

+ τ

r∑

m=1

(
‖∇ϕm‖2

2,Ω + ‖∇θm‖2
2,Ω

)
(4.7)

+ τ
r∑

m=1

‖ϕm‖4
4,Ω + τ

r∑

m=1

‖δtϕm‖2
2,Ω + ‖ϕr‖4

4,Ω ≤

≤ C
(
‖ϕ0‖2

W 1

2
(Ω) + ‖ϕ0‖4

4,Ω + ‖θ0‖2
2,Ω

)
+ Cτ

r∑

m=1

(
‖ϕm‖2

2,Ω + ‖θm‖2
2,Ω

)
.

where C depends only on Ω, α, κ, ℓ, ‖a‖∞ and ‖b‖∞.

Now, we apply Gronwall’s lemma in a discrete form (see for instance [18, 34])

to conclude that

(4.8) ‖ϕr‖2
W 1

2
(Ω) + ‖θr‖2

2,Ω ≤ C
(
‖ϕ0‖2

W 1

2
(Ω) + ‖ϕ0‖4

4,Ω + ‖θ0‖2
2,Ω

)
,

for r = 0, 1, ..., N .

By going back to (4.7), we obtain the following estimates:

τ
r∑

m=1

(
‖∇ϕm‖2

2,Ω + ‖∇θm‖2
2,Ω

)
≤ C ,(4.9)

r∑

m=1

(
‖ϕm− ϕm−1‖2

W 1

2
(Ω) + ‖θm− θm−1‖2

2,Ω

)
≤ C ,(4.10)
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τ
r∑

m=1

‖ϕm‖4
4,Ω ≤ C ,(4.11)

τ
r∑

m=1

‖δtϕm‖2
2,Ω ≤ C ,(4.12)

max
1≤r≤N

‖ϕr‖W 1

2
(Ω) ≤ C .(4.13)

max
1≤r≤N

‖ϕr‖4,Ω ≤ C .(4.14)

Combining (4.4) with (4.12), we obtain

(4.15) τ
r∑

m=1

‖δtθm‖2
2,Ω + ‖∇θr‖2

2,Ω ≤ C for r = 1, ..., N .

Similarly, we obtain

(4.16) max
1≤r≤N

‖θr‖W 1

2
(Ω) ≤ C .

Now, by multiplying equation (2.4) by −∆ϕm, integrating over Ω, using

Green’s formula, we get

α

∫

Ω
|∆ϕm| dx + 3

∫

Ω
|∇ϕm|2(ϕm)2 dx ≤

≤
∫

Ω
|a| |ϕm| |∆ϕm| dx +

∫

Ω
|b| |ϕm|2 |∆ϕm| dx(4.17)

+

∫

Ω
|θm| |∆ϕm| dx +

∫

Ω
|δtϕm| |∆ϕm| dx .

By using Poincarè inequality and Young’s inequality, we estimate the right-hand

side of this expression by

∫

Ω
|a| |ϕm| |∆ϕm| dx ≤ C ‖∇ϕm‖2

2,Ω +
α

2
‖∆ϕm‖2

2,Ω ,

∫

Ω
|b| |ϕm|2 |∆ϕm| dx ≤ C ‖ϕm‖4

4,Ω +
α

4
‖∆ϕm‖2

2,Ω ,

∫

Ω
|θm| |∆ϕm| dx ≤ C ‖∇θm‖2

2,Ω +
α

8
‖∆ϕm‖2

2,Ω ,

∫

Ω
|δtϕm| |∆ϕm| dx ≤ C ‖δtϕm‖2

2,Ω +
α

16
‖∆ϕm‖2

2,Ω .
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Therefore, (4.17) implies that

τ‖∆ϕm‖2
2,Ω ≤ Cτ

(
‖∇ϕm‖2

2,Ω + ‖ϕm‖4
4,Ω + ‖∇θm‖2

2,Ω + ‖δtϕm‖2
2,Ω

)
.

By adding these relations for m = 1, 2, ..., r, with 1 ≤ r ≤ N , we get

τ

r∑

m=1

‖∆ϕm‖2
2,Ω ≤ C

(
τ

r∑

m=1

‖∇ϕm‖2
2,Ω + τ

r∑

m=1

‖ϕm‖4
4,Ω

(4.18)

+ τ
r∑

m=1

‖∇θm‖2
2,Ω + τ

r∑

m=1

‖δtϕm‖2
2,Ω

)
.

Combining (4.9), (4.11), (4.12) with (4.18), we obtain

(4.19) τ

r∑

m=1

‖∆ϕm‖2
2,Ω ≤ C for r = 0, 1, ..., N ,

where C depends on Ω, α, κ, ℓ, ‖a‖∞ and ‖b‖∞.

By multiplying equation (2.5) by −∆θm, integrating over Ω, we get

κ

∫

Ω
|∆θm| dx ≤ ℓ

2

∫

Ω

∣∣∣∣
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

∣∣∣∣ |∆θ
m| dx

+

∫

Ω
|δtθm| |∆θm| dx .

By using that fs is Lipschitz function and Young’s inequality in in this expression,

we obtain

τ‖∆θm‖2
2,Ω ≤ Cτ

(
‖δtθm‖2

2,Ω + ‖δtϕm‖2
2,Ω

)
,

which, by addition for m = 1, 2, ..., r, with 1 ≤ r ≤ N , and the use of estimates

(4.12), (4.15), gives

(4.20) τ
r∑

m=1

‖∆θm‖2
2,Ω ≤ C for r = 0, 1, ..., N ,

where C depends on Ω, α, κ, ℓ, ‖a‖∞ and ‖b‖∞.

Finally, multiply equation (2.5) by (1/τ)
(
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

)
and

integrate over Ω to obtain

ℓ

2

∫

Ω

(
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

)2

dx ≤

≤ κ

∫

Ω

∣∣∣∣
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

∣∣∣∣ |∆θ
m| dx

+

∫

Ω

∣∣∣∣b
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

∣∣∣∣ |δtθ
m| dx .
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By using that fs is Lipschitz function and Young’s inequality in this expres-

sion, we obtain

τ

∥∥∥∥
fs(θ

m, ϕm)−fs(θ
m−1, ϕm−1)

τ

∥∥∥∥
2

2,Ω

≤ Cτ
(
‖∆θm‖2

2,Ω + ‖δtθm‖2
2,Ω + ‖δtϕm‖2

2,Ω

)
.

By adding these relations for m = 1, 2, ..., N , and using the estimates (4.12),

(4.15), (4.20), we get

(4.21) τ
N∑

m=1

∥∥∥∥
fs(θ

m, ϕm) − fs(θ
m−1, ϕm−1)

τ

∥∥∥∥
2

2,Ω

≤ C ,

where C depends on Ω, α, κ, ℓ, ‖a‖∞ and ‖b‖∞.

5 – Proof of Theorem 2.2

With the notations of Definition 2.3, we may rewrite the scheme (2.4)–(2.6)

in terms of ϕτ , ϕ̃τ , θτ , θ̃τ as follows.

(5.1)





∂ϕ̃τ

∂t
− α∆ϕτ = a(x)ϕτ + b(x)ϕ2

τ − ϕ3
τ + θτ in Q ,

∂θ̃τ

∂t
− κ∆θτ =

ℓ

2

∂f̃sτ

∂t
in Q ,

(5.2)





∂ϕτ

∂η
= 0 , θτ = 0 on S ,

ϕ̃τ (x, 0) = ϕ0(x) , θ̃τ (x, 0) = θ0(x) in Ω .

Here, f̃sτ denotes the interpolation function as in Definition 2.3 and corresponding

to {fs(θ
m, ϕm)}N

m=0.

By rewriting the estimates obtained in the last section in terms of the inter-

polations functions ϕτ , ϕ̃τ , θτ , ϕ̃τ , f̃sτ , we obtain

Lemma 5.1.

(5.3)

‖ϕτ‖L∞(0,T ;W 1

2
(Ω)) + ‖ϕ̃τ‖L∞(0,T ;W 1

2
(Ω)) ≤ C ,

‖ϕτ‖L2(0,T ;W 2

2
(Ω)) + ‖ϕ̃τ‖L2(0,T ;W 2

2
(Ω)) ≤ C ,

‖θτ‖L∞(0,T ;W 1

2
(Ω)) + ‖θ̃τ‖L∞(0,T ;W 1

2
(Ω)) ≤ C ,

‖θτ‖L2(0,T ;W 2

2
(Ω)) + ‖θ̃τ‖L2(0,T ;W 2

2
(Ω)) ≤ C ,

‖ϕτ‖4,Q ≤ C ,
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(5.4)

∥∥∥∥
∂ϕ̃τ

∂t

∥∥∥∥
2,Q

+

∥∥∥∥
∂θ̃τ

∂t

∥∥∥∥
2,Q

≤ C ,

∥∥∥∥
∂f̃sτ

∂t

∥∥∥∥
2,Q

≤ C .

Proof: By using estimate (4.12), we obtain
∥∥∥∥
∂ϕ̃τ

∂t

∥∥∥∥
2

2,Q

=
N∑

m=1

∫ mτ

(m−1)τ
‖ϕm

t̄ ‖2
2,Ω dt ≤ τ

N∑

m=1

‖ϕm
t̄ ‖2

2,Ω ≤ C .

Similarly, from (4.15) we conclude that

∥∥∥∥
∂θ̃τ

∂t

∥∥∥∥
2,Q

≤ C.

By using estimates (4.9), (4.13) and (4.19), we obtain

‖∇ϕτ‖2
2,Q =

N∑

m=1

∫ mτ

(m−1)τ
‖∇ϕm‖2

2,Ω dt ≤ τ
N∑

m=1

‖∇ϕm‖2
2,Ω ≤ C ,

‖∆ϕτ‖2
2,Q =

N∑

m=1

∫ mτ

(m−1)τ
‖∆ϕm‖2

2,Ω dt ≤ τ
N∑

m=1

‖∆ϕm‖2
2,Ω ≤ C ,

‖ϕτ‖L∞(0,T ;W 1

2
(Ω)) = max

1≤r≤N
‖ϕτ‖2

W 1

2
(Ω) ≤ C .

Applying estimate (4.21), we obtain
∥∥∥∥
∂f̃sτ

∂t

∥∥∥∥
2

2,Q

=
N∑

m=1

∫ mτ

(m−1)τ

∥∥∥∥
fs(ϕ

m, θm) − fs(ϕ
m−1, θm−1)

τ

∥∥∥∥
2

2,Ω

dt

≤ τ
N∑

m=1

∥∥∥∥
fs(ϕ

m, θm) − fs(ϕ
m−1, θm−1)

τ

∥∥∥∥
2

2,Ω

≤ C .

By similar arguments, using estimates (4.9), (4.11), (4.16) and (4.20), we

obtain the other estimates of the statement.

Now, by using the estimates (5.3)–(5.4), there exist subsequences, which for

simplicity we still denote ϕτ , θτ , ϕ̃τ , θ̃τ , such that as τ → 0 they satisfy

θτ ⇀ θ, ϕτ ⇀ ϕ in L2
(
0, T,W 2

2 (Ω)
)
,(5.5)

θτ
∗
⇀ θ, ϕτ

∗
⇀ ϕ in L∞

(
0, T,W 1

2 (Ω)
)
,(5.6)

θ̃τ ⇀ θ̃, ϕ̃τ ⇀ ϕ̃ in L2
(
0, T,W 1

2 (Ω)
)
,(5.7)

ϕτ ⇀ ϕ in L4(Q) ,(5.8)

∂θ̃τ

∂t
⇀

∂θ

∂t
,

∂ϕ̃τ

∂t
⇀

∂ϕ

∂t
in L2(Q) .(5.9)
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We must control the differences ϕ̃τ − ϕτ and θ̃τ − θτ with respect to suitable

norms. From their definitions,

‖ϕ̃τ − ϕτ‖2
2,Q =

N∑

m=1

∫ mτ

(m−1)τ
(t− tm)2 ‖δtϕm‖2

2,Ω

(5.10)

=
τ

3

2
(
τ

N∑

m=1

‖δtϕm‖2
2,Ω

)
=

τ

3

2
∥∥∥∥
∂ϕ̃τ

∂t

∥∥∥∥
2

2,Q

.

Therefore, from (5.4), we conclude that ‖ϕ̃τ −ϕτ‖L2(Q) ≤ Cτ . Similarly, from

(5.4) we deduce that ‖θ̃τ − θτ‖L2(Q) ≤ Cτ . Thus, from (5.5) and (5.7), we obtain

ϕ = ϕ̃, θ = θ̃ a.e. in Q.

This, (5.5) and (5.7) in particular imply

(5.11) ϕ̃τ ⇀ ϕ and θ̃τ ⇀ θ in L2
(
0, T ;W 1

2 (Ω)
)
.

Using (5.9) and the Aubin–Lions Compactness Lemma (see for instance [36]),

we derive also that

(5.12) ϕτ → ϕ and θτ → θ in L2(Q) .

Now, from (5.4) there exists µ ∈ L2(Q) such that

(5.13)
∂f̃sτ

∂t
⇀ µ in L2(Q) .

We now claim that µ is in fact the weak derivative of fs(θ, ϕ) with respect to

time. Indeed, for any ψ ∈ C∞
0 (Q) with ψ(·, 0) = ψ(·, T ) = 0, we obtain

(5.14)

∫

Q

∂f̃sτ

∂t
ψ(x, tm) dx dt = τ

N∑

m=1

∫

Ω

(
fs(θ

m, ϕm)−fs(θ
m−1, ϕm−1)

τ

)
ψ(x, tm) dx .

By using the identity

N−1∑

m=0

ym(zm+1 − zm) = −
N∑

m=1

(
zm(ym + ym−1)

)
+ (yz)N − (yz)0

at the right-hand side of (5.14), we get

(5.15)

∫

Q

∂f̃sτ

∂t
ψ(x, tm) dx dt = −τ

N∑

m=1

∫

Ω
fs(θ

m, ϕm)

(
ψ(x, tm)−ψ(x, tm−1)

τ

)
dx

= −
∫

Q
fs(θτ , ϕτ ) ψ̃t dx dt .
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Since fs(·, ·) is continuous and (5.12) is valid, extracting subsequences if nec-

essary, we conclude that fs(θτ , ϕτ ) → fs(θ, ϕ) almost everywhere in Q. Moreover,

ψ̃t → ψt and
∣∣fs(θτ , ϕτ )ψ̃t

∣∣<C a.e. in Ω× [(m−1)τ,mτ ]. Therefore, by Lebesgue

dominated convergence theorem we obtain that

(5.16)

∫

Q
fs(θτ , ϕτ ) ψ̃t dx dt →

∫

Q
fs(θ, ϕ)ψt dx dt .

Thus, by passing to the limit in (5.15) and using (5.13) and (5.16), we conclude
∫

Q
µψ dx dt = −

∫

Q
fs(θ, ϕ)ψt dx dt

and also that µ is the weak derivative of fs(θ, ϕ) with respect to time.

Now we are ready to pass to the limit in scheme (5.1)–(5.2) and to verify that

(ϕ, θ) is in fact a generalized solution of (2.1)–(2.2).

To obtain this result, we take ξ in
0
W

1,1
2 (Q) such that ξ(·, T ) = 0 and β ∈

C1(0, T ;W 1
2 (Ω)) such that β(·, T ) = 0. We use these functions to multiply the

suitable equations and integrate over Q. Due to the kind of convergences we

already have, the arguments to justify the passage to the limit in several of the

terms of the resulting equations are rather standard. So, we just briefly describe

this process for the nonlinear terms.

The convergence
∫

Q

(
∂f̃sτ

∂t

)
ξ dx dt →

∫

Q

(
∂fs

∂t

)
ξ dx dt

turns out to be an immediate consequence of (5.13).

By (5.8) and (5.12), we obtain
∫

Q

(
a(x)ϕτ + b(x)ϕ2

τ − ϕ3
τ

)
β dx dt →

∫

Q

(
a(x)ϕ+ b(x)ϕ2 − ϕ3

)
β dx dt .

Thus,

−
∫

Q
ϕβt dx dt +

∫

Q
∇ϕ∇β dx dt =

∫

Q

(
a(x)ϕ+ b(x)ϕ2 − ϕ3

)
β dx dt +

∫

Q
θ β dx dt +

∫

Ω
ϕ0(x)β(x, 0) dx ,

−
∫

Q
θ ξt dx dt +

∫

Q
∇θ∇ξ dx dt =

ℓ

2

∫

Q

(
∂fs

∂t

)
ξ dx dt +

∫

Ω
θ0(x) ξ(x, 0) dx ,

and we conclude that (ϕ, θ) is a weak solution of (2.1)–(2.2).
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To examine the regularity of (ϕ, θ), we use the following bootstrapping argu-

ment. By using the Lp-theory of parabolic linear equations (see [23], p. 351) with(
∂fs

∂ϕ

∂ϕ

∂t
+
∂fs

∂θ

∂θ

∂t

)
∈ L2(Q), we conclude that θ ∈ W 2,1

2 (Q) ∩ L9(Q). This im-

plies that aϕ+ bϕ2 − ϕ3 + θ ∈ L3(Q), and, by applying the Lp-regularity theory

for parabolic linear equations again with ϕ0 ∈ W
4/3
3 (Ω) ∩W

3/2+δ
2 (Ω) for some

δ ∈ (0, 1), we obtain ϕ ∈ W 2,1
3 (Q) ∩ L∞(Q). Moreover, by using a similar boot-

strapping argument starting with θ ∈ L9(Q) and the known regularity of

the given initial datum ϕ0, we conclude that ϕ ∈W 2,1
q (Q) with 3 ≤ q ≤ 9.

This completes the proof of Theorem 2.2.

6 – Long time behavior of the solutions

In this section we will be interested in the long time behavior of the solutions

constructed in the previous sections. We will show that when heat diffusion

dominates (as we will explain later on), the construct solutions approach the set

of the corresponding stationary solution as time increases.

For this, we start by observing that the stationary solutions of Problem 2.1

are solutions of the following system:

(6.1)





−α∆ϕ = g(., ϕ) − θ in Ω ,

−κ∆θ = 0 in Ω ,

∂ϕ/∂η = 0 , θ = θ1 on ∂Ω ,

where g(x, s) = a(x)s+ b(x)s2 − s3.

As it can be seen, the existence of such stationary solutions is rather easy to

prove. In fact, since the second of the above equations is a very simple linear de-

coupled equation, the existence of θ is immediate. Using this θ just obtained, the

first equation then decouples, and we recognize it as a Chafee–Infante equation [9],

with Neumann boundary conditions. Results on existence of its solutions, and

some of their properties, can then be obtained for instance using the techniques

of Henry [16]. See also Caginalp [4].

Here, we consider the long time behavior of transient solutions, and as before,

for simplicity of exposition, we will take the case with homogeneous boundary

condition for the temperature, that is,

(6.2) θ = θ1 = 0 on ∂Ω .

The general case can be obtained in a standard way.
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The idea now is to construct a suitable Liapunov function for our system.

For this, let (ϕ, θ) be any solutions of (2.1) constructed as in the previous sections,

and we observe that if we multiply the first equation in (2.1) by ϕt, integrate

over Ω and use Hölder and Poincaré inequality, after some computations we end

up with:

(6.3)

∫

Ω
ϕ2

t + α
d

dt

∫

Ω
|∇ϕ|2 +

d

dt

∫

Ω
2G(., ϕ) ≤ C2

p

∫

Ω
|∇θ|2 ,

where Cp denotes the constant associated to the Poincaré inequality and G is

defined as G(x, y) = −
∫ y

0
g(x, s) ds.

Now, if we multiply the second equation in (2.1) by θt and proceed as before,

we obtain:

(6.4)

∫

Ω
θ2
t + κ

d

dt

∫

Ω
|∇θ|2 −

∫

Ω

ℓ

2
fs,θ θ

2
t ≤ ℓ2M2

2

4

∫

Ω
ϕ2

t ,

where M2 = sup
{
|fs,ϕ(z1, z2)| : z1, z2 ∈ R

}
. We also remark that due to hypoth-

esis (H2),

(6.5) −
∫

Ω

ℓ

2
fs,θ θ

2
t ≥ 0 .

If we multiply the second equation in (2.1) by θ, working as before, we obtain:

(6.6)
d

dt

∫

Ω
θ2 + κ

∫

Ω
|∇θ|2 ≤

ℓ2M2
1C

2
p

2κ

∫

Ω
θ2
t +

ℓ2M2
2C

2
p

2κ

∫

Ω
ϕ2

t ,

where M1 = sup
{
|fs,θ(z1, z2)| : z1, z2 ∈ R

}
.

By taking in consideration (6.5), if we multiply (6.4) by (ℓ2M2
1C

2
p)(κ)−1 and

add the result to (6.6), we obtain

d

dt

∫

Ω
θ2 + κ

∫

Ω
|∇θ|2 +

ℓ2M2
1C

2
p

2κ

∫

Ω
θ2
t + ℓ2M2

1C
2
p

d

dt

∫

Ω
|∇θ|2 ≤ D

∫

Ω
ϕ2

t ,

where

D =
ℓ2M2

2C
2
p

2κ

(
ℓ2M1

2
+ 1

)
.

By adding this last result to (6.3) multiplied by 2D, we finally obtain:

d

dt

∫

Ω

(
2αD|∇ϕ|2 + 4DG(·, ϕ) + ℓ2M2

1C
2
p |∇θ|2 + θ2

)

+ D

∫

Ω
ϕ2

t +
ℓ2M2

1C
2
p

2κ

∫

Ω
θ2
t + κ

∫

Ω
|∇θ|2 ≤ 2C2

pD

∫

Ω
|∇θ|2 .
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Now we impose the condition that κ ≥ 2C2
pD, which requires

(6.7) κ ≥ ℓM2C
2
p

(
ℓ2M2

1 /2 + 1
)1/2

,

and define the functional

(6.8) J(ζ, ψ) =

∫

Ω

(
2αD|∇ψ|2 + 4DG(·, ψ) + ℓ2M2

1C
2
p |∇ζ|2 + ζ2

)
.

Under the condition (6.7), inequality (6) implies that

d

dt
J
(
θ(t), φ(t)

)
≤ −E

∫

Ω
|φt|2+ |θt|2 dx = −E

(
‖φt‖2

L2(Ω) + ‖θt‖2
L2(Ω)

)
,

where E = min
{
D, (ℓ2M2

1C
2
p)/(2κ)

}
> 0.

This in particular implies that J(θ(t), ϕ(t)) is a decreasing function of time,

and thus J is a Liapunov function for (2.1).

Moreover, due to the expression of G(·, ·), there are finite positive constants

C1 and C2 such that for any ψ ∈ H1(Ω) and ζ ∈ H1(Ω) there holds

−C1 ≤ J(ψ, η) ,

(6.9) ‖∇ψ‖2
L2(Ω) + ‖ψ‖4

L4(Ω) + ‖∇ζ‖2 ≤ C2

{
J(ψ, ζ) + 1

}
.

From the first inequality and the fact that J(θ(t), φ(t)) is decreasing, we

conclude that there is J̄ ∈ R such that

(6.10) lim
t→+∞

J
(
θ(t), φ(t)

)
= J̄ ,

and also

(6.11) lim
t→+∞

d

dt
J
(
θ(t), φ(t)

)
= lim

t→+∞
−
(
‖φt(t)‖2

L2(Ω) + ‖θt(t)‖2
L2(Ω)

)
= 0 .

On the other hand, due again to the regularity of the solutions obtained in

the previous sections, by a modification in a set of zero measure if necessary,

for all t > 0 there hold:

(6.12)

ϕt(t) − ∆ϕ(t) = g
(
·, ϕ(t)

)
+ θ(t) in Ω ,

θt(t) − κ∆θ(t) =
ℓ

2
fs,θ

(
θ(t), ϕ(t)

)
θt(t) +

ℓ

2
fs,ϕ

(
θ(t), ϕ(t)

)
ϕt(t) in Ω ,

∂ϕ

∂n
(t) = 0 , θ(t) = 0 on ∂Ω .
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Now consider a sequence {tn}n of positive numbers such that tn→ +∞ as

n → +∞. From (6.10), (6.9), (6.11) and usual compactness arguments, there is

a subsequence, which for simplicity we still denote {tn}, and functions ϕ̄ and θ̄

such that:
∇ϕ(tn) → ∇ϕ̄ , weakly in

(
H1(Ω)

)n
,

∇θ(tn) → ∇θ̄ , weakly in
(
H1(Ω)

)n
,

(6.13)
ϕ(tn) → ϕ̄ , strongly in Lp(Ω) ,

θ(tn) → θ̄ , strongly in Lp(Ω) ,

any 1 ≤ p < 6 for n ≤ 3 (obviously better results hold for n = 1 or 2),

ϕ(tn) → ϕ̄ , a.e. ,

θ(tn) → θ̄ , a.e. ,

ϕt(tn) → 0, strongly in L2(Ω) ,

θt(tn) → 0, strongly in L2(Ω) .

Now, by taking t = tn in (6.12) and taking to the limit as n → +∞, with

the help of the previous convergence, we obtain that (ϕ̄, θ̄) satisfy the first two

equations of (6.1). Moreover, since

∆ϕ(tn) = −g
(
·, ϕ(tn)

)
− θ(tn) + ϕt(tn) ,

κ∆θ(tn) = −(ℓ/2) fs,θ

(
θ(tn), ϕ(t)

)
θt(tn)

−(ℓ/2) fs,ϕ

(
θ(tn), ϕ(tn)

)
ϕt(tn) + θt(tn) ,

the previous convergences imply that ∆ϕ(tn) and ∆θ(tn) converge in L2(Ω).

These results and (6.13) imply that

ϕ(tn) → ϕ̄ in H2(Ω) ,

θ(tn) → θ̄ in H2(Ω) ,

which imply that the boundary conditions are also satisfied and that (ϕ̄, θ̄) is

a stationary solution.

We conclude that the w-limit set associated to any of the constructed transient

solution is contained in the set of the stationary solutions, and thus, under the

condition (6.7) we can state the following:
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Theorem 6.1. Let κ ≥ 2 ℓM2(ℓ
2M2

1 /2 +1)1/2, whereM1 =sup
{
|∂θfs(z1, z2)| :

z1, z2 ∈ R
}

and M2 = sup
{
|∂ϕfs(z1, z2)| : z1, z2 ∈ R

}
.

Then, any of the solutions
(
ϕ(·, t), θ(·, t)

)
given in Theorem 2.2 is attracted

to set of stationary solutions in the space H1(Ω)×H1(Ω). In particular, under

the previous condition, when each stationary solution is isolated, any transient

solution converges to a unique stationary solution.

Remark. The question concerning the structure of the set of the stationary

solutions, including the question whether they are isolated, is easy to answer in

general terms. However, when the temperature at the boundary is a constant θ1,

the stationary problem reduces to the isothermal case (θ ≡ θ1). If in addition

the functions a(·) and b(·) appearing in g(·) are constants, then the first equa-

tion in (6.1) becomes an autonomous scalar equation. If we are also in the

one-dimensional case, for which phase-plane analysis is available, then better re-

sults are known. For instance, in [37] it is proved that under these conditions,

the first equation in (6.1) can have at most one non constant solution (for the

homogeneous Neumann boundary conditions for ϕ, as in our case.). Thus, our

stationary problem can have at most four stationary solutions (corresponding to

three constants and at most a non constant ϕ.) A fortiori, the associated sta-

tionary solutions are isolated, and the second statement in the last theorem can

be applied in this particular case.

Remark. Observe that the steady state solutions for the discretized scheme

(2.4)–(2.7), which corresponds to the case when (θm, ϕm) = (θm−1, ϕm−1) , for

all m ≥ 1, are the same as the steady state solutions of the original problem,

that is, of (6.1). Now, recall that for simplicity we are considering the case when

the boundary datum for the temperature is θ|∂Ω = θ1 = 0; and, therefore, such

steady states solutions are such that the temperature is θ ≡ 0, and the phase

field ϕ satisfies −α∆ϕ = g(., ϕ). On the other hand, the the critical points of

the Liapunov functional (6.8) satisfy the conditions ℓ2M2
1C

2
p∆ζ + ζ = 0 , with

ζ|∂Ω = 0 and α∆ψ − g(·, ψ) = 0, with (∂/∂n)ψ|∂Ω = 0. Since these also imply

that ζ ≡ 0, we see that, as should be, the critical points of the proposed Liapunov

functional are exactly the steady state solutions of both the original problem and

the discretized scheme. Thus, it is expected that, under suitable conditions, (6.8)

be also a Liapunov functional for the given discretized scheme. However, we were

not able to prove that, and it would be very interesting to know whether this is

indeed true.
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