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Abstract: Let P(X) denote the polycyclic monoid (Cuntz semigroup) on a nonempty
set X and let A denote the Banach algebra I'(P(X))/Z, where Z is the (closed) ideal
spanned by the zero of P(X). Then A is primitive. Moreover, A is simple if and only if
X is infinite.

The I'-algebra I'(S) of a semigroup S consists of all functions a: S — C (the
complex field) of finite or countably infinite support and such that ) _¢la(@)| < oo,
where addition and scalar multiplication are defined pointwise and multiplication
is taken to be convolution. As noted in [1], I'(S) is a Banach algebra with respect
to the norm || || defined by |la|| := > cg|a(x)|. By identifying each z € S with
its characteristic function, we can write a typical element of I'(S) in the form
Y ses Qa®, where > oo, | < 00, (o, € C).

The semigroup algebra C[S] is the subalgebra consisting of all functions
a: §—C of finite support. When S is a nontrivial semigroup with zero z, it is
often helpful to replace C[S] by C[S]/Cz, where Cz is the ideal {az: a € C}.
We have thus, in effect, simply identified z with the zero of the algebra. In [4,
Chapter 5], C[S]/Cz is called the ‘contracted semigroup algebra’ of S over C
and is denoted by Cy[S]. With this in mind, we call the Banach algebra I'(S)/Cz
the contracted I'-algebra of S and denote it by I5(S). A typical element u of I}(S)
can be written in the form w=3} oz, where }° q\olow| < oo, and
we define its support, supp(u), to be {x € S\0: «a, # 0}.
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In this paper, we study l(l)(S ) for the case in which S is the polycyclic monoid
P(X) on nonempty a set X [13]. It is shown that I}(.S) is primitive for all choices
of X (Theorem 1) and is simple if and only if X is infinite (Theorem 2).

We begin by recalling the definition of P(X). Let M(X) denote the free
monoid on X. For w = z1x2...x, € M(X), where each x; € X, we define the
length I(w) and the content c(w) of w by l(w) :=n and c(w) := {x1,x2, ..., xs}.
In addition, we take /(1) := 0 and ¢(1) := (), where 1 denotes the identity of M (X)
(the empty word). We say that v € M(X) is an initial segment of v € M(X),
written v < v, if and only if v = ww for some w € M(X). For u,v e M(X),
we write u||v if and only if u A v and v £ u.

Let P(X) := (M(X)xM(X))U{0} and define a multiplication in P(X) by

(au,d) if ¢=bu for some u € M(X)
(a,b) (c,d) =1 (a,dv) if b=cv for somev e M(X) ,
0 if b c,

0(a,b) = (a,b)0=0%=0.

Then P(X) is a monoid with identity (1,1) and zero 0; further, it admits an
involution * given by

(a,b)" = (b,a), 0"=0.

(In fact, P(X) is an example of a 0-bisimple inverse semigroup in which * denotes
inversion and in which each subgroup is trivial.) Note that (a,b)? = (a,b) if and
only if @ = b. Thus the set E(X) of idempotents of P(X) is

{(a,a): a € M(X)} U {0} .

Clearly E(X) is a commutative submonoid of P(X) (the ‘semilattice’ of P(X))
and it is easily seen to be partially ordered by

(a,a) > (b)) <= a=<b, (a,a)>0.

Observe that (a,a) > (b,b) if and only if (a,a)(b,b) = (b,b) [= (b,b)(a,a)].

An alternative approach to the monoid described above is as follows.
Let FI(X) denote the free monoid with involution® on a nonempty set X.
Adjoin a zero 0 to FI(X), take 0 =0 and write Q(X) := (FI(X)U{0})/p,
where p is the congruence determined by the relations z*x =1 (z € X) and
¥y =0 (z,y € X and x # y). This monoid is termed the Cuntz semigroup on X.
Note that every nonzero p-class has a unique representative of the form ab*
(a,b€ M(X)). We identify this element with its p-class and so can write
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Q(X) ={ab*: a,b e M(X)} U{0}. It is routine to verify that 6: P(X) — Q(X)
is an isomorphism. Various aspects of algebras associated with Q(X) have been
studied in [5], [6] and [2]; see also [14]. For an extended discussion of polycyclic
monoids, see [9, §9.3].

Next, we review the concept of primitivity. Let A be a complex algebra and
let V' be a nonzero right A-module under the action o. A vector v € V'\0 is called
cyclic if and only if vo A = V. Recall that V is termed

(i) faithful if and only if, for all @ € A, Voa = 0 implies a = 0,
(ii) strictly irreducible if and only if every nonzero vector in V' is cyclic.

We say that A is (right) primitive if and only if there exists a faithful strictly
irreducible right A-module.

For the case in which A is a Banach algebra, V' a Banach space with norm || ||y
and o a right action of A on V with [[voally < ||v]|v|lall (v €V, a € A), we make
a further definition. We say that V is topologically irreducible if and only if,
for all v € V\0, all w € V and a given positive real number ¢, there exists a € A
such that

lvoa—uly <e.

The following result ([8], [10]) is required below. For convenience, we include

a proof.

Lemma. Let A and V be as in the preceding paragraph. If V is topologically
irreducible and possesses a cyclic vector then V' is strictly irreducible.

Proof: Let V be topologically irreducible, with a cyclic vector v1. Since the
mapping f: A — V defined by f(a) =wv; 0oa is continuous, the open mapping
theorem shows that, for some positive real number 4§,

{veV: lvllv <(5} - {f(a): a€ A and |a| < 1} .

Let v € V\0. Since V is topologically irreducible, there exists b € A such that
|v1 —vob|ly < J. Hence there exists a € A with ||a|| <1 such that v; —vob = vjoa.
Consider ¢ € A defined by ¢ = —> 72, a”". Then a + ¢ — ac = 0. Hence

vo(b—bc) = (v1—vi0a)—(vy—vyo0a)oc

=wv—vio(a+c—ac) = v .

Consequently, v is cyclic. Thus V is strictly irreducible. =
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We now come to our first result. Note that since the polycyclic monoid on X
admits an involution, so also does its contracted ['-algebra. Thus the term
‘primitive’ can be used without qualification.

Theorem 1. For every nonempty set X, I}(P(X)) is primitive.

Proof: For a given nonempty set X write S:=P(X), E:=E(X) and V:=1(E).
We begin by defining a right action of I}(S) on V. First note that, if 2 € S
and e € FE then zz*, z¥ex € E. Now define o : Ex.S — FE by the rule that
exr if e<uzzx*,

(VeeE) Wz elf) eox:{x*

0 otherwise .
Let e € F and let z,y € S. A straightforward calculation shows that
(1) e<zz® and z'ex <yy" <= e <ay(zy)*.
Using this, we now prove that

(2) (eox)oy = eo(ay) .

Suppose that e < zy(xy)*. Then e o (zy) = (xy)*exry. But, by (1), e < zz* and
x*er < yy*. Hence (eox)oy = (x*ex)oy = y*(z*ex)y = (zy)*exy. Thus (2) holds
in this case. Now suppose that e £ zy(zy)*. Then eo(zy) = 0. But, by (1), either
e £ za* or z¥ex £ yy*. If e < zz* and x*ex £ yy* then (eox)oy = (z*ex)oy = 0,
while if e £ zz* then eoz = 0 and so again (eoxz) oy = 0. Thus (2) holds in this
case also. Since, for all e € E and z € S, |leoz|| < ||z*ex| < 1 we can extend
o to a right action, also denoted by o, of ][1)(5’ ) on V; and, clearly, for all v € V
and all u € I§(S), |[voul| < ||v].]|ul.

We show next that V' is faithful. Let S” and E" denote S\0 and E\0, respec-
tively. Observe first that E’ satisfies the maximal condition with respect to <;
for if T' is a nonempty subset of M (X) and s € T is chosen such that [(s) <I(t) for
all teT then (s, s) is maximal in the subset {(t,t): t€T} of E'. Let u € I§(5)\0,
say w =) g O, With ) o |oz| < oo and not all oy = 0. Choose e € E
maximal in {xz*: = € supp(u)}. Then

(3) eou = Z agz(z*ex) .

Now let z,y € S’ be such that zz* = yy* = e¢ and z*ex = y*ey. We have that
x = (a,b) and y = (¢, d) for some a,b,c,d € M(X). Thus (a,a) = e = (¢,c) and
(b,b) = z*ex = y*ey = (d,d). Hence a=c, b=d and so z=y. It follows from (3)
that e ou # 0. This shows that V is faithful.
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To complete the proof, we show that V is strictly irreducible. Let v € V\0
and let e € supp(v), with coefficient o € C\0. We prove first that, for a given
positive real number ¢, there exist v € V and u € I} (E) (C I§(S)) such that

(4) vou=ae+v , |V <e.

Note that if e is minimal in supp(v) then v o e = ce and so (4) holds with u = e
and v'= 0. Suppose, therefore, that e is not minimal in supp(v). Write v = w—+w’,
where w,w’ € V are such that

(5) e € supp(w), supp(w) is finite, supp(w)Nsupp(w’) =0, |w'||<e.

Without loss of generality, we may assume that e is not minimal in supp(w).
(If need be, transfer a term from w’ to w.) Let F := {f € supp(w): f < e} and

define u € I} (E) by
u = H(e—f) .

feF

We now show that

if g<e and,forall feF, g£f,
6) (VgekFE) gou=4¢0 if g<e and, forsome f€eF, g<f,
if g£e.

Suppose first that g € E' is such that g < e and that, for all f € F, g £ f. Then,
forall f€ F, go(e—f)=gandso gou=g. Next, suppose that g € E’ is such
that g < e and that there exists f € F with ¢ < f. Then go(e—f)=g—g=0
and so g o u = 0. Finally, suppose that g € E’ is such that g £ e. Then, for any
fE€F, g% fandsogo(e—f)=0. Hence again g ou = 0. This establishes (6).

It follows from (6) that w ou = ae. Write v':= w'o u. Since, by (6), for all

@

[an)

g € supp(w’), g o u is either g or 0 we have that |[v/|| < ||w'[|. Thus, from (5),
we see that (4) holds.

Next, let f € E’. There exist a,b € M(X) such that e = (a,a) and f = (b,b).
Write z := (a,b). Then zz*= e and

(7) eor=f.

Hence, from (4), vo (uzx) = af + (v'o z) and, in addition, [[v'oz| < ||V/]] < e
Thus

Hvo (uz) — af|| <€,
from which we deduce that V is topologically irreducible. But, from (7), it follows
that e is a cyclic vector in V. Hence, by the Lemma, V is strictly irreducible. n
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The corresponding result for Cy[P(X)] is a consequence of a theorem of
Domanov [7]. A short proof is given in [12]. As already remarked, P(X) is
a special case of a 0-bisimple inverse semigroup with only trivial subgroups.
In [3], we show that if S is a 0-bisimple inverse semigroup with a nonzero maximal
subgroup G such that [1(G) is primitive then [}(S) is primitive. This generalises
Theorem 1 above, but is harder to prove since we have to allow for the presence
of nontrivial subgroups and cannot assume that the semilattice of S satisfies the
maximal condition under the natural partial ordering.

Our second result gives a necessary and sufficient condition for I§(P(X)) to
be a simple algebra.

Theorem 2. Let X be a nonempty set. Then I{(P(X)) is simple if and only
if X is infinite.

Proof: Write S := P(X) and S’:= S\0. Assume first that X is infinite.
Let T be a nonzero ideal of [}(S). We show that T'= I}(S).

Let t € T\0. Choose a € M(X) such that a has minimal length amongst the
first components of the elements of supp(t); and choose b € M(X) such that
(a,b) € supp(t). Then, for some positive integer n, we may write ¢ in the form

(1) t = aqur + agug + -+ Ay + U,

where wuy,ug,...,u, are distinct elements of supp(t) with u; = (a,b), o; € C\0
(i=1,2,...,n) and v € [}(S) is such that ||v||<|a1|. Write u; = (a;, b;) € M (X) x M (X)
(i=1,2,...,n) and assume, without loss of generality, that for some k€ {1,2,...,n},
(a =)a1=ay = -+ = ag, while a; # a if k <i <n. Since u,ug, ..., u; are dis-
tinct, it follows that (b =) b1, be, ..., by, are distinct.

Let Y denote |J"_; (c(a;) Uc(b;)). Since Yis a finite subset of the infinite set X,
there exists x € X\Y. Write

e:= (ax,ax) , f = (bx,bx) .
We shall show that
(ax,bx) if i=1,
(2) eu;f =
0 if 2<i<n.

Suppose first that 1 <i<k. Then eu;f=(ax,az)(a,b;)(bzx,bx)= (azx,bx)(bx,bx).
In particular, eu; f=(ax,bx). Now consider the case where 2 <1i < k. Here
biz £ bx; for otherwise, since x ¢ ¢(b), we would have b; = b. Similarly, bz A bz.
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Hence eu; f = 0. Next, suppose that k& < i < n. Then, by the choice of z, ax £ a;.
Further, a; £ az; for otherwise a; < a, which is impossible since (a;) £ I(a)
and a; # a. Hence ax || a; and so eu; = (ax,ax)(a;, b;) = 0, which gives eu; f= 0.
Thus we have established (2).

Take p := (1,azx) and ¢ := (bx,1). Then, from (1) and (2),

petfq = ai(1,1) +pevfq.

But, since p, e, f,q € S’, we have that ||[pevfq| < ||v|| < |az|. Thus

o (petfe) — (1, 1) < 1.

Consequently, a; '(petfq) is invertible in I}(S); thus there exists € I}(S) such
that ay ' (petfqr)=(1,1). Since t€T, it follows that (1,1)€T and so T = I3(S).
This shows that 1}(9) is simple.

Now assume that X is finite, with elements 21, x9, ..., x,. For (a,b) € S’ define
Wa b € lé(S) by

n

Wep = (a,b) — Z(ami,bxi) .

i=1
Then |Jw, || = n+1. Define a subspace T of I§(S) by

T = Z QapWap: qp € C and Z |ag p| < 00
(a,b)es’ (a,b)es’

Let (a,b), (¢,d) € S” and consider the product wq p(c,d). If b = cu for some u e M (X)
then wqp(c,d) = (a,du) — Y1 (az;, dux;) = wo g, € T. If ¢ = bx,v for some r
and some v € M(X) then wgyp(c,d) = (ax,v,d) — (ax,v,d) =0. If b c then
wq p(c,d) = 0. Thus T(c,d) CT. This shows that T is a right ideal of 13(S).
A similar argument shows that it is a left ideal.

Finally, we prove that the ideal T is proper. Define ¢: S’— C by ¢((a,b)) =
n~(1/2UOHO) - Since |¢((a,b))| < 1, ¢ extends to a continuous linear functional
on I}(S). Now, for all (a,b) € S,

d(wap) = ¢((a,b)) =Y _ ¢((ax;, b))
=1
_ @B _ /D@2 _

Hence, by continuity, ¢(t) = 0 for all t € T". But ¢((1,1)) =1 and so (1,1) ¢ T.
Thus T is proper. =

The corresponding result for Co[P(X )] was obtained in [11].
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