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Abstract: Let P (X) denote the polycyclic monoid (Cuntz semigroup) on a nonempty

set X and let A denote the Banach algebra l1(P (X))/Z, where Z is the (closed) ideal

spanned by the zero of P (X). Then A is primitive. Moreover, A is simple if and only if

X is infinite.

The l1-algebra l1(S) of a semigroup S consists of all functions a : S → C (the

complex field) of finite or countably infinite support and such that
∑

x∈S |a(x)|<∞,

where addition and scalar multiplication are defined pointwise and multiplication

is taken to be convolution. As noted in [1], l1(S) is a Banach algebra with respect

to the norm ‖ ‖ defined by ‖a‖ :=
∑

x∈S |a(x)|. By identifying each x ∈ S with

its characteristic function, we can write a typical element of l1(S) in the form
∑

x∈S αxx, where
∑

x∈S |αx| < ∞, (αx ∈ C).

The semigroup algebra C[S] is the subalgebra consisting of all functions

a : S→C of finite support. When S is a nontrivial semigroup with zero z, it is

often helpful to replace C[S] by C[S]/Cz, where Cz is the ideal {αz : α ∈ C}.

We have thus, in effect, simply identified z with the zero of the algebra. In [4,

Chapter 5], C[S]/Cz is called the ‘contracted semigroup algebra’ of S over C
and is denoted by C0[S]. With this in mind, we call the Banach algebra l1(S)/Cz

the contracted l1-algebra of S and denote it by l10(S). A typical element u of l10(S)

can be written in the form u =
∑

x∈S\0 αxx, where
∑

x∈S\0 |αx| < ∞, and

we define its support, supp(u), to be {x ∈ S\0: αx 6= 0}.
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In this paper, we study l10(S) for the case in which S is the polycyclic monoid

P (X) on nonempty a set X [13]. It is shown that l10(S) is primitive for all choices

of X (Theorem 1) and is simple if and only if X is infinite (Theorem 2).

We begin by recalling the definition of P (X). Let M(X) denote the free

monoid on X. For w = x1x2 . . . xn ∈ M(X), where each xi ∈ X, we define the

length l(w) and the content c(w) of w by l(w) := n and c(w) := {x1, x2, ..., xn}.

In addition, we take l(1) := 0 and c(1) := ∅, where 1 denotes the identity of M(X)

(the empty word). We say that u ∈ M(X) is an initial segment of v ∈ M(X),

written u � v, if and only if v = uw for some w ∈ M(X). For u, v ∈ M(X),

we write u ‖ v if and only if u � v and v � u.

Let P (X) := (M(X)×M(X)) ∪ {0} and define a multiplication in P (X) by

(a, b) (c, d) =











(au, d) if c = bu for some u ∈ M(X) ,

(a, dv) if b = cv for some v ∈ M(X) ,

0 if b ‖ c ,

0(a, b) = (a, b)0 = 02 = 0 .

Then P (X) is a monoid with identity (1, 1) and zero 0; further, it admits an

involution ∗ given by

(a, b)∗ = (b, a) , 0∗ = 0 .

(In fact, P (X) is an example of a 0-bisimple inverse semigroup in which ∗ denotes

inversion and in which each subgroup is trivial.) Note that (a, b)2 = (a, b) if and

only if a = b. Thus the set E(X) of idempotents of P (X) is

{

(a, a) : a ∈ M(X)
}

∪
{

0
}

.

Clearly E(X) is a commutative submonoid of P (X) (the ‘semilattice’ of P (X))

and it is easily seen to be partially ordered by

(a, a) ≥ (b, b) ⇐⇒ a � b , (a, a) > 0 .

Observe that (a, a) ≥ (b, b) if and only if (a, a)(b, b) = (b, b) [= (b, b)(a, a)].

An alternative approach to the monoid described above is as follows.

Let FI(X) denote the free monoid with involution∗ on a nonempty set X.

Adjoin a zero 0 to FI(X), take 0∗ = 0 and write Q(X) := (FI(X) ∪ {0})/ρ,

where ρ is the congruence determined by the relations x∗x = 1 (x ∈ X) and

x∗y = 0 (x, y ∈ X and x 6= y). This monoid is termed the Cuntz semigroup on X.

Note that every nonzero ρ-class has a unique representative of the form ab∗

(a, b ∈ M(X)). We identify this element with its ρ-class and so can write
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Q(X) = {ab∗ : a, b ∈ M(X)} ∪ {0}. It is routine to verify that θ : P (X) → Q(X)

is an isomorphism. Various aspects of algebras associated with Q(X) have been

studied in [5], [6] and [2]; see also [14]. For an extended discussion of polycyclic

monoids, see [9, §9.3].

Next, we review the concept of primitivity. Let A be a complex algebra and

let V be a nonzero right A-module under the action ◦. A vector v ∈ V \0 is called

cyclic if and only if v ◦ A = V . Recall that V is termed

(i) faithful if and only if, for all a ∈ A, V ◦ a = 0 implies a = 0,

(ii) strictly irreducible if and only if every nonzero vector in V is cyclic.

We say that A is (right) primitive if and only if there exists a faithful strictly

irreducible right A-module.

For the case in which A is a Banach algebra, V a Banach space with norm ‖ ‖V

and ◦ a right action of A on V with ‖v ◦a‖V ≤ ‖v‖V ‖a‖ (v ∈ V, a ∈ A), we make

a further definition. We say that V is topologically irreducible if and only if,

for all v ∈ V \0, all u ∈ V and a given positive real number ǫ, there exists a ∈ A

such that

‖v ◦ a − u‖V < ǫ .

The following result ([8], [10]) is required below. For convenience, we include

a proof.

Lemma. Let A and V be as in the preceding paragraph. If V is topologically

irreducible and possesses a cyclic vector then V is strictly irreducible.

Proof: Let V be topologically irreducible, with a cyclic vector v1. Since the

mapping f : A → V defined by f(a) = v1 ◦ a is continuous, the open mapping

theorem shows that, for some positive real number δ,

{

v ∈ V : ‖v‖V < δ
}

⊆
{

f(a) : a ∈ A and ‖a‖ < 1
}

.

Let v ∈ V \0. Since V is topologically irreducible, there exists b ∈ A such that

‖v1−v◦b‖V < δ. Hence there exists a∈A with ‖a‖<1 such that v1−v◦b = v1◦a.

Consider c ∈ A defined by c = −
∑∞

r=1 ar. Then a + c − ac = 0. Hence

v ◦ (b − bc) = (v1− v1 ◦ a) − (v1− v1 ◦ a) ◦ c

= v1− v1 ◦ (a + c − ac) = v1 .

Consequently, v is cyclic. Thus V is strictly irreducible.
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We now come to our first result. Note that since the polycyclic monoid on X

admits an involution, so also does its contracted l1-algebra. Thus the term

‘primitive’ can be used without qualification.

Theorem 1. For every nonempty set X, l10(P (X)) is primitive.

Proof: For a given nonempty set X write S :=P (X), E :=E(X) and V := l10(E).

We begin by defining a right action of l10(S) on V . First note that, if x ∈ S

and e ∈ E then xx∗, x∗ex ∈ E. Now define ◦ : E×S → E by the rule that

(∀ e ∈ E) (∀ x ∈ S) e ◦ x =

{

x∗ex if e ≤ xx∗ ,

0 otherwise .

Let e ∈ E and let x, y ∈ S. A straightforward calculation shows that

(1) e ≤ xx∗ and x∗ex ≤ yy∗ ⇐⇒ e ≤ xy(xy)∗ .

Using this, we now prove that

(2) (e ◦ x) ◦ y = e ◦ (xy) .

Suppose that e ≤ xy(xy)∗. Then e ◦ (xy) = (xy)∗exy. But, by (1), e ≤ xx∗ and

x∗ex ≤ yy∗. Hence (e◦x)◦y = (x∗ex)◦y = y∗(x∗ex)y = (xy)∗exy. Thus (2) holds

in this case. Now suppose that e � xy(xy)∗. Then e◦(xy) = 0. But, by (1), either

e � xx∗ or x∗ex � yy∗. If e ≤ xx∗ and x∗ex � yy∗ then (e◦x)◦y = (x∗ex)◦y = 0,

while if e � xx∗ then e ◦x = 0 and so again (e ◦x) ◦ y = 0. Thus (2) holds in this

case also. Since, for all e ∈ E and x ∈ S, ‖e ◦ x‖ ≤ ‖x∗ex‖ ≤ 1 we can extend

◦ to a right action, also denoted by ◦, of l10(S) on V ; and, clearly, for all v ∈ V

and all u ∈ l10(S), ‖v ◦ u‖ ≤ ‖v‖.‖u‖.

We show next that V is faithful. Let S′ and E′ denote S\0 and E\0, respec-

tively. Observe first that E′ satisfies the maximal condition with respect to ≤ ;

for if T is a nonempty subset of M(X) and s ∈ T is chosen such that l(s)≤ l(t) for

all t∈T then (s, s) is maximal in the subset {(t, t) : t∈T} of E′. Let u ∈ l10(S)\0,

say u =
∑

x∈S′ αxx, with
∑

x∈S′ |αx| < ∞ and not all αx = 0. Choose e ∈ E′

maximal in {xx∗ : x ∈ supp(u)}. Then

(3) e ◦ u =
∑

xx∗=e

αx(x∗ex) .

Now let x, y ∈ S′ be such that xx∗ = yy∗ = e and x∗ex = y∗ey. We have that

x = (a, b) and y = (c, d) for some a, b, c, d ∈ M(X). Thus (a, a) = e = (c, c) and

(b, b) = x∗ex = y∗ey = (d, d). Hence a=c, b=d and so x=y. It follows from (3)

that e ◦ u 6= 0. This shows that V is faithful.
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To complete the proof, we show that V is strictly irreducible. Let v ∈ V \0

and let e ∈ supp(v), with coefficient α ∈ C\0. We prove first that, for a given

positive real number ǫ, there exist v′ ∈ V and u ∈ l10(E) (⊆ l10(S)) such that

(4) v ◦ u = αe + v′ , ‖v′‖ < ǫ .

Note that if e is minimal in supp(v) then v ◦ e = αe and so (4) holds with u = e

and v′= 0. Suppose, therefore, that e is not minimal in supp(v). Write v = w+w′,

where w, w′ ∈ V are such that

(5) e ∈ supp(w), supp(w) is finite, supp(w) ∩ supp(w′) = ∅, ‖w′‖<ǫ .

Without loss of generality, we may assume that e is not minimal in supp(w).

(If need be, transfer a term from w′ to w.) Let F := {f ∈ supp(w) : f < e} and

define u ∈ l10(E) by

u :=
∏

f∈F

(e − f) .

We now show that

(6) (∀ g ∈ E′) g ◦ u =











g if g ≤ e and, for all f ∈ F, g � f ,

0 if g ≤ e and, for some f ∈ F, g ≤ f ,

0 if g � e .

Suppose first that g ∈ E′ is such that g ≤ e and that, for all f ∈ F, g � f . Then,

for all f ∈ F , g ◦ (e−f) = g and so g ◦ u = g. Next, suppose that g ∈ E′ is such

that g ≤ e and that there exists f ∈ F with g ≤ f . Then g ◦ (e−f) = g−g = 0

and so g ◦ u = 0. Finally, suppose that g ∈ E′ is such that g � e. Then, for any

f ∈ F , g � f and so g ◦ (e−f) = 0. Hence again g ◦ u = 0. This establishes (6).

It follows from (6) that w ◦ u = αe. Write v′ := w′◦ u. Since, by (6), for all

g ∈ supp(w′), g ◦ u is either g or 0 we have that ‖v′‖ ≤ ‖w′‖. Thus, from (5),

we see that (4) holds.

Next, let f ∈ E′. There exist a, b ∈ M(X) such that e = (a, a) and f = (b, b).

Write x := (a, b). Then xx∗= e and

(7) e ◦ x = f .

Hence, from (4), v ◦ (ux) = αf + (v′◦ x) and, in addition, ‖v′◦ x‖ ≤ ‖v′‖ < ǫ.

Thus
∥

∥v ◦ (ux) − αf
∥

∥ < ǫ ,

from which we deduce that V is topologically irreducible. But, from (7), it follows

that e is a cyclic vector in V . Hence, by the Lemma, V is strictly irreducible.
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The corresponding result for C0[P (X)] is a consequence of a theorem of

Domanov [7]. A short proof is given in [12]. As already remarked, P (X) is

a special case of a 0-bisimple inverse semigroup with only trivial subgroups.

In [3], we show that if S is a 0-bisimple inverse semigroup with a nonzero maximal

subgroup G such that l1(G) is primitive then l10(S) is primitive. This generalises

Theorem 1 above, but is harder to prove since we have to allow for the presence

of nontrivial subgroups and cannot assume that the semilattice of S satisfies the

maximal condition under the natural partial ordering.

Our second result gives a necessary and sufficient condition for l10(P (X)) to

be a simple algebra.

Theorem 2. Let X be a nonempty set. Then l10(P (X)) is simple if and only

if X is infinite.

Proof: Write S := P (X) and S′ := S\0. Assume first that X is infinite.

Let T be a nonzero ideal of l10(S). We show that T = l10(S).

Let t ∈ T\0. Choose a ∈ M(X) such that a has minimal length amongst the

first components of the elements of supp(t); and choose b ∈ M(X) such that

(a, b) ∈ supp(t). Then, for some positive integer n, we may write t in the form

(1) t = α1u1 + α2u2 + · · · + αnun + v ,

where u1, u2, ..., un are distinct elements of supp(t) with u1 = (a, b), αi ∈ C\0

(i=1, 2, ..., n) and v∈ l10(S) is such that ‖v‖< |α1|. Write ui =(ai, bi)∈M(X)×M(X)

(i=1, 2, ..., n) and assume, without loss of generality, that for some k∈{1, 2, ..., n},

(a =) a1 = a2 = · · · = ak, while ai 6= a if k < i ≤ n. Since u1, u2, ..., uk are dis-

tinct, it follows that (b =) b1, b2, ..., bk are distinct.

Let Y denote
⋃n

i=1

(

c(ai)∪c(bi)
)

. Since Y is a finite subset of the infinite set X,

there exists x ∈ X\Y . Write

e := (ax, ax) , f := (bx, bx) .

We shall show that

(2) euif =

{

(ax, bx) if i = 1 ,

0 if 2 ≤ i ≤ n .

Suppose first that 1≤ i≤k. Then euif =(ax, ax)(a, bi)(bx, bx)=(ax, bix)(bx, bx).

In particular, eu1f =(ax, bx). Now consider the case where 2 ≤ i ≤ k. Here

bix � bx ; for otherwise, since x /∈ c(b), we would have bi = b. Similarly, bx � bix.
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Hence euif = 0. Next, suppose that k < i ≤ n. Then, by the choice of x, ax � ai.

Further, ai � ax ; for otherwise ai � a, which is impossible since l(ai) ≮ l(a)

and ai 6= a. Hence ax ‖ ai and so eui = (ax, ax)(ai, bi) = 0, which gives euif = 0.

Thus we have established (2).

Take p := (1, ax) and q := (bx, 1). Then, from (1) and (2),

p e tfq = α1(1, 1) + p e vfq .

But, since p, e, f, q ∈ S′, we have that ‖p e vfq‖ ≤ ‖v‖ < |α1|. Thus
∥

∥α−1
1 (p e tfq) − (1, 1)

∥

∥ < 1 .

Consequently, α−1
1 (p e tfq) is invertible in l10(S); thus there exists r ∈ l10(S) such

that α−1
1 (p e tfq r)=(1, 1). Since t∈T , it follows that (1, 1)∈T and so T = l10(S).

This shows that l10(S) is simple.

Now assume that X is finite, with elements x1, x2, ..., xn. For (a, b) ∈ S′ define

wa,b ∈ l10(S) by

wa,b := (a, b) −
n

∑

i=1

(axi, bxi) .

Then ‖wa,b‖ = n+1. Define a subspace T of l10(S) by

T :=







∑

(a,b)∈S′

αa,b wa,b : αa,b ∈ C and
∑

(a,b)∈S′

|αa,b| < ∞







.

Let (a,b), (c,d)∈S′ and consider the product wa,b(c,d). If b = cu for some u∈M(X)

then wa,b(c, d) = (a, du) −
∑n

i=1(axi, duxi) = wa,du ∈ T . If c = bxrv for some r

and some v ∈ M(X) then wa,b(c, d) = (axrv, d) − (axrv, d) = 0. If b ‖ c then

wa,b(c, d) = 0. Thus T (c, d) ⊆ T . This shows that T is a right ideal of l10(S).

A similar argument shows that it is a left ideal.

Finally, we prove that the ideal T is proper. Define φ : S′→ C by φ((a, b)) =

n−(1/2)(l(a)+l(b)). Since |φ((a, b))| ≤ 1, φ extends to a continuous linear functional

on l10(S). Now, for all (a, b) ∈ S′,

φ(wa,b) = φ
(

(a, b)
)

−
n

∑

i=1

φ
(

(axi, bxi)
)

= n−(1/2)(l(a)+l(b)) − n . n−(1/2)(l(a)+l(b)+2) = 0 .

Hence, by continuity, φ(t) = 0 for all t ∈ T . But φ((1, 1)) = 1 and so (1, 1) /∈ T .

Thus T is proper.

The corresponding result for C0[P (X)] was obtained in [11].
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