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José Alberto Vargas, Ph.D.
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Editorial

Journal News and Francis Galton

Leonardo Trujilloa

Departamento de Estadística, Facultad de Ciencias, Universidad Nacional de
Colombia, Bogotá, Colombia

Welcome to the third issue of the volume 34th of the Revista Colombiana de Esta-
distica (Colombian Journal of Statistics). This is the first time that this Journal is
publishing three numbers in the same year. The first number was the regular one
in June and the second was a Special Issue about Applications of Industrial Sta-
tistics with Professors Piedad Urdinola from the National University of Colombia
and Jorge Romeu from the Syracuse University as Guest Editors. Then, this issue
corresponds to the regular one for December 2011 and it has a very special con-
notation as being the first issue entirely published in English in our long history
since 1968.

The reason is that we were the winners of an Internal Grant at the National
University of Colombia (Universidad Nacional de Colombia) among many Journals
in order to receive funding to publish entire issues in English and then, to strengt-
hen its participation in international indexes according to the editorial policies of
quality, visibility and impact of our published papers. Further information can be
found at http://www.dib.unal.edu.co/convocatorias/r20110803_revistas.
html?ref=dibhome. In this way, we will be only receiving papers in English lan-
guage during the period of receiving this Grant until the end of 2012. We are
repeating the successful experience of having three issues for the next year 2012
as we will be publishing a Special Issue about Biostatistics on July 2012 having
as Guest Editors, Professors Piedad Urdinola and Liliana Lopez-Kleine. We are
also happy to welcome new members in our Editorial and Scientific Committees:
Professors Alex Rojas from Carnegie Mellon in Qatar and Liliana Lopez-Kleine
from the National University of Colombia.

The topics in this current issue range over diverse areas of statistics: five papers
in Probability by Almaraz; Bran-Cardona, Orozco-Castaneda and Nagar; Fierro
and Tapia and Ozel; two more papers in Survey Sampling by Gutierrez and Zhang
and by Soberanis and Miranda; one paper in Biostatistics by Tovar and Achcar;
one paper in Econometrics by Gomez and Gallon and one paper in Industrial
Statistics by Gonzalez and Bueno.

I would not like to finish this Editorial without paying a tribute for the 100
years of the death of Sir Francis Galton (1822-1911). He was not only a statisti-
cian, also an anthropologist, geographer, inventor, meteorologist and psychome-
trician (Forrest 1974). Galton founded many concepts in statistics, among them

aGeneral Editor of the Colombian Journal of Statistics, Assistant Professor.
E-mail: ltrujilloo@bt.unal.edu.co

http://www.dib.unal.edu.co/convocatorias/r20110803_revistas.
html?ref=dibhome


correlation, percentile, quartile and widely promoted regression toward the mean
(Galton 1886, Bulmer 2003). Galton compared the height of children to that of
their parents and he found that adult children are closer to average height than
their parents are. Galton’s later statistical study of the probability of extinction
of surnames led to the concept of Galton-Watson stochastic processes.

He was the first to apply statistical methods to the study of human differences
and inheritance of intelligence, and introduced the use of questionnaires and sur-
veys for collecting demographic and social data for anthropometric, biographical
and genealogical studies (Senn 2003). In one of these studies, he asked to describe
mental images to fellow members of the Royal Society. In another one, he collec-
ted surveys in order to study the effects of nature and nurture on the propensity
toward scientific thinking from eminent scientists (Clauser 2007).

The idea that data have a central tendency or mean but also a deviation around
this central value or the variance is core to any statistical analysis. Galton con-
ceived the idea of a standardized measure, the standard deviation, on the late
1860s.

The year 2011 is coming to its end; however, for statisticians around the world
is going to be remembered as the Galton year - a celebration of Francis Galton, a
genius -. However, he was not a very well-known one. His cousin, Charles Darwin
was more famous. Despite of this, he did many surprising things: he was the first
person to use fingerprints in detective work and the first to publish a weather map
in a newspaper in 1875 (Jones 2011).
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Editorial

Noticias de la Revista y Francis Galton

Leonardo Trujilloa

Departamento de Estadística, Facultad de Ciencias, Universidad Nacional de
Colombia, Bogotá, Colombia

Me es grato presentar el tercer número del volumen 34 de la Revista Colombiana
de Estadística. Esta es la primera vez que esta Revista publica tres números en
un mismo año. El primer número fue el regular del mes de junio y el segundo
correspondió a un Numero Especial en Aplicaciones de la Estadística en la Indus-
tria con los profesores Piedad Urdinola de la Universidad Nacional y Jorge Romeu
de Syracuse University como Editores Invitados. El presente número corresponde
al regular de diciembre de 2011 y tiene la connotación especial de ser el primer
número enteramente publicado en idioma inglés en la historia de la Revista desde
1968.

La razón de este nuevo formato es que hemos sido los ganadores de una Convo-
catoria Interna en la Universidad Nacional de Colombia entre otras revistas con el
fin de recibir financiamiento para publicar ediciones enteras en ingles y fortalecer la
participación en índices internacionales de acuerdo con las políticas editoriales de
calidad, impacto y visibilidad de nuestros artículos publicados. Más información se
puede encontrar en la página web http://www.dib.unal.edu.co/convocatorias
/r20110803_revistas.html?ref=dibhome. De esta manera, estaremos recibiendo
solo artículos en ingles durante el periodo de la convocatoria hasta finales de 2012
y estaremos repitiendo la exitosa experiencia de tener tres números por volumen
para el próximo año 2012 cuando se publicara un Numero Especial en Bioestadís-
tica en el mes de julio, teniendo como Editoras Invitadas a las profesoras Liliana
Lopez-Kleine y Piedad Urdinola. Queremos también dar la bienvenida a algunos
miembros nuevos de los Comités Científico y Editorial: los profesores Alex Rojas de
la Universidad Carnegie Mellon en Qatar y Liliana Lopez-Kleine de la Universidad
Nacional de Colombia.

Los tópicos del presente número abarcan diferentes áreas de la estadística: cinco
artículos en Probabilidad escritos por Almaraz; Bran-Cardona, Orozco-Castañeda
y Nagar; Fierro y Tapia y Ozel; dos artículos más en Muestreo por Gutiérrez
y Zhang y por Soberanis y Miranda; un artículo en Bioestadística por Tovar y
Achcar; un artículo en Econometría por Gómez y Gallón y finalmente uno en
Estadística Industrial por González y Bueno.

No quisiera terminar esta Editorial sin rendir un tributo por la celebración de
los 100 años de la muerte de Francis Galton (1822-1911). El no fue solamente un
estadístico, sino también antropólogo, geógrafo, inventor, meteorólogo y psicome-
trista (Forrest 1974). Galton fue el fundador de muchos conceptos en estadística,
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entre ellos la definición de correlación, cuantil, percentil y la ampliamente difundi-
da regresión hacia la media (Galton 1886, Bulmer 2003). Galton comparó la altura
de los hijos a la de sus padres y encontró que cuando los niños se hacían adultos
el promedio de sus alturas era cercano a la altura promedio de sus padres. Un
estudio posterior de la extinción de algunos apellidos conllevó al concepto de los
procesos estocásticos de Galton-Watson.

Galton fue el primero en aplicar métodos estadísticos para el estudio de las
diferencias entre humanos y la herencia de la inteligencia e introdujo el uso de
cuestionarios y encuestas para recolectar datos de tipo demográfico y social en
estudios antropométricos, biográficos y genealógicos (Senn 2003). En uno de estos
estudios, pidió a sus colegas miembros de la Sociedad Real el describir imágenes
mentales obtenidas ante ciertos estímulos. En otro estudio, recolectó información
para medir los efectos de cualidades innatas (nature) y cualidades aprendidas
(nurture) en la probabilidad de desarrollar pensamiento científico en científicos
eminentes (Clauser 2007).

La idea que los datos tienen una tendencia central o media pero también una
desviación alrededor de esta medida central o varianza es el núcleo de cualquier
análisis estadístico. Galton concibió la idea de una medida estandarizada, la des-
viación estándar a finales de 1860.

El año 2011 se acerca rápidamente a su final; sin embargo, para los estadísticos
alrededor del mundo el 2011 será recordado como el año de Galton - una celebración
por su ingenio. Sin embargo, no fue un genio famoso. Incluso, su primo Charles
Darwin lo fue mucho más que él. A pesar de esto, Galton hizo muchas cosas
sorprendentes: fue la primera persona en usar las huellas digitales en el trabajo de
los detectives y el primero en publicar un mapa con el estado del tiempo en un
periódico en 1875 (Jones 2011).
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Hierarchical Design-Based Estimation in Stratified

Multipurpose Surveys

Estimación jerárquica basada en el diseño muestral para encuestas

estratificadas multi-propósito

Hugo Andrés Gutiérreza, Hanwen Zhangb

Centro de Investigaciones y Estudios Estadísticos (CIEES), Facultad de
Estadística, Universidad Santo Tomás, Bogotá, Colombia

Abstract

This paper considers the joint estimation of population totals for differ-
ent variables of interest in multi-purpose surveys using stratified sampling
designs. When the finite population has a hierarchical structure, different
methods of unbiased estimation are proposed. Based on Monte Carlo sim-
ulations, it is concluded that the proposed approach is better, in terms of
relative efficiency, than other suitable methods such as the generalized weight
share method.

Key words: Design based inference, Finite population, Hierarchical popu-
lation, Stratified sampling.

Resumen

Este artículo considera la estimación conjunta de totales poblacionales
para distintas variables de interés en encuestas multi-propósito que utilizan
diseños de muestreo estratificados. En particular, se proponen distintos
métodos de estimación insesgada cuando el contexto del problema induce
una población con una estructura jerárquica. Con base en simulaciones de
Monte Carlo, se concluye que los métodos de estimación propuestos son
mejores, en términos de eficiencia relativa, que otros métodos de estimación
indirecta como el recientemente publicado método de ponderación general-
izada.

Palabras clave: inferencia basada en el diseño, población finita, población
jerárquica, muestreo estratificado.

aLecturer. E-mail: hugogutierrez@usantotomas.edu.co
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404 Hugo Andrés Gutiérrez & Hanwen Zhang

1. Background

The reality of surveys is complex; as Holmberg (2002) states, most of the
real applications in survey sampling involve not one, but several characteristics of
study; and as Goldstein (1991) claims, real populations have hierarchical struc-
tures. Moreover, in certain occasions, the survey methodologist is faced with the
estimation of several parameters of interest in different levels of the population
and he/she is commanded with the seeking of proper approaches to estimate those
parameters as required in the study. The problem of proposing sampling strategies
(optimal sampling design and efficient estimators) that contemplate joint estima-
tion of several parameters in multipurpose survey has been widely discussed in
recent statistical literature. Although there is a vast number of papers about es-
timation of hierarchical populations (Gelman & Hill 2006) and model-based (or
model-assisted) multilevel survey data (Skinner, Holt & Smith 1989, Lehtonen &
Veijanen 1999, Goldstein 2002, Rabe-Hesketh & Skrondal 2006), the design-based
estimation for finite populations with hierarchical structures seems to be omitted
by survey statisticians. The aim of this paper is to provide a multipurpose ap-
proach to the joint estimation of several parameters for different variables in a
stratified finite population with two levels.

Next are detailed some clarifying ideas concerning the concept of hierarchical
structures in finite populations. Many kinds of data have a hierarchical or clustered
structure. Note that in biological studies it is natural to think in a hierarchy where
the offspring of the races is clustered into families; in educational surveys, students
belong to schools and schools belong to districts, and so on; in social studies, a
person belongs to a household and households are grouped geographically. In this
paper, the concept of hierarchy is related with the multipurpose approach in the
sense that the survey statistician often needs to make inferences on different levels
of the finite population. For example, consider an establishment survey. It would
be of interest to estimate the total sales of the market sections of the stores in
detail (sales by toys, grocery, electronics or pharmacy sections) and at the same
time it would be of interest to estimate the number of employees working in the
stores. It is clear that the multipurpose approach is given by the joint inference of
two different study variables (sales by market section and number of employees in
the stores) but these variables of interest are in different levels of the population:
sales are related with the market section level and the number of employees with
the store level. Note that as the market sections belong to the stores, then the set
of all market sections defines the second level and the set of all stores defines the
first level.

In some occasions, it is impossible to obtain a sampling frame for the first level,
however this is available for the second level. For example, Särndal, Swensson &
Wretman (1992, example 1.5.1) reports on the Swedish household survey where
there is not a good complete list of households and the sampling frame used was the
Swedish Register of the Total Population, which is a list of individuals. In this case,
the first level is composed of households, the second level is composed of individuals
and the inferences about households are induced directly from the population of
individuals. If the requirements of that survey were to obtain inferences about both

Revista Colombiana de Estadística 34 (2011) 403–420



Hierarchical Estimation in Stratified Multipurpose Surveys 405

households and individuals, then it would be a clear example of a study involving
multipurpose estimation within a hierarchical structure in the finite population,
with the restriction that the sampling frame is only available in the second level.
In other cases, it is possible that both sampling frames are available in the design
stage. However, if the requirements of the survey are focused in the estimation of
the population totals in both levels, the most trivial, but in some cases useless,
solution would be planning two sampling designs. In this paper we propose another
solution requiring just the use of a sampling frame in order to simultaneously
estimate several parameters for different study variables in two different levels of
a stratified population, when the sampling frame to be used is related with the
units of the second level. Note that, since the sampling frame is not available
(or available but useless) in the first level, sampling designs such as cluster, or
multi-stage sampling designs are no longer valid to solve this kind of problems.

The outline of this paper is as follows: after a brief introduction explaining the
hierarchical concept, different levels of estimation in such populations, and its im-
plications in the survey sampling context; Section 2, explains in detail, by means
of a simple example, the foundations of the hierarchical finite population and the
issue of this paper. Section 3, refers to the proposal of an indirect estimation in
the first level involving different variables of interest than those considered in the
second level. This approach is based on the computation of the first and second or-
der inclusion probabilities, given by the induced sampling design in the first level,
using the principles of the well-known Horvitz-Thompson and Hájek estimators
for a population total. Besides, in this section, the authors show how this problem
is related with the indirect sampling approach (Lavallée 2007). This section also
presents a simple case study to illustrate the procedures of the proposed approach
in the case of simple random stratified sampling (STSI) in the second level. In
Section 4, we present an empirical study based on several Monte Carlo simula-
tions that show how our proposal outperforms, in the sense of relative efficiency,
other methods of indirect estimation such as the generalized weight share method
(indirect sampling). Finally, some recommendations and conclusions are given in
Section 5.

2. Multipurpose Estimation

Let U = {1, . . . , k, . . . , N} denote the second level finite population of N ele-
ments in which a sampling frame is available. Suppose that the sampling frame is
stratified and for each element k ∈ U the stratum to which k belongs is completely
identified by means of some discrete auxiliary variable. That is, the population U
is partitioned into H subsets U1, U2, ..., UH called strata, where

H⋃

h=1

Uh = U, Uh

⋂
Uh′ = ∅ for all h 6= h′

On the other hand, assume that each element k ∈ U in the second level belongs
to a unique cluster in the first level. It is assumed that there exist NI clusters

Revista Colombiana de Estadística 34 (2011) 403–420



406 Hugo Andrés Gutiérrez & Hanwen Zhang

denoted by U1, . . . , Ui, . . . , UNI
. This set of clusters is symbolically represented as

UI = {1, . . . , i, . . . , NI}. This way, the first level population is UI , the second level
population is U and, clearly, the data show a notorious hierarchical structure.

Although there is an available sampling frame for U , suppose that it is im-
possible to obtain a frame for the population of the first level UI and that the
requirements of the survey imply the inference of parameters, say population to-
tals or means, for both levels. Hence, it is assumed that there are two variables of
interest, say, y in the second level, and z in the first level, and it is requested the
estimation of both population totals, defined by

ty =
∑

k∈U

yk =
H∑

h=1

∑

k∈Uh

yk

and

tz =
∑

i∈UI

zi

In this paper, the notation of any pair of elements in the second level will be
denoted by the letters k and l; meanwhile for the units in the first level, the letters
i and j will be used.

By taking advantage of the sampling frame in the second level, a stratified
sample s is drawn. For each k ∈ s, the value of the variable of interest yk is
observed. Besides, it is supposed that unit k can also provide the information
of its corresponding cluster, say Ui. This way, the value of the other variable of
interest zi is recorded. Note that for a particular second level sample there exists
a corresponding set of units in the first level. In other words, the second level
sample s induces a set, contained in the first level population, which will be called
the first level sample, denoted by m and given by

m = {i ∈ UI | at least one unit of the cluster Ui belong to s}

In summary, the values of both variables of interest could be recorded ar the
same time: yk for the elements in the selected sample; s and zi for the clusters in
the induced sample m. As an example, consider the finite population showed in
Table 1. The second level population, denoted by U = {A1, B1, D1, . . . , D4, E4}
of size N = 15 is a set of market sections in different stores. This population
is stratified in four sections (H = 4). The population of the first level is hence
UI = {A,B,C,D,E} with NI = 5. Each stratum is present in different clusters.
For example, Section 1 is present in four stores, whereas Section 3 is present in
three stores. Notice that it is not required that each stratum be present in all of
the clusters.

Following with the example, when a sample s is drawn, an interviewer visits
the selected market section, say k, records the value of yk and also obtains the
information about zi, the value of the variable of interest in the cluster that con-
tains that section. Table 2, reports the first and second level population values
for the variables of interest. If the sampling design is such that only one element
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Table 1: Description of a possible hierarchical configuration.

Section 1 Section 2 Section 3 Section 4

Store A A1 A2 - A4

Store B B1 - B3 -

Store C - C2 - C4

Store D D1 D2 D3 D4

Store E E1 E2 E3 E4

of each section is selected, then a possible sample in the second level would be
s = {A1, E2, B3, E4}. This way, the recorded values for this specific sample corre-
spond to 32, 33, 26, 55 and the induced first level sample would be m = {A,B,E}
and the values of the variable of interest in this level correspond to 14.12, 10.25 and
24.81, respectively. Note that a store may be selected more than once; however,
following Särndal et al. (1992, section 3.8), we omit the repeated information in the
first level and carry out the inference by using the reduced sample. The parameter
of interest in the first level is tz = 14.12+10.25+17.52+22.58+24.81 = 89.28 and
the parameter of interest in the second level is ty = 106 + 105 + 68 + 162 = 441.

Table 2: Variables of interest in a possible hierarchical configuration.

Y1 Y2 Y3 Y4 Z

yA1 = 32 yA2 = 12 - yA2 = 51 ZA = 14.12

yB2 = 18 - yB3 = 26 - ZB = 10.25

- yC2 = 36 - yC4 = 10 ZC = 17.52

yD1 = 42 yD2 = 24 yD3 = 14 yD4 = 46 ZD = 22.58

yE1 = 14 yE2 = 33 yE3 = 28 yE4 = 55 ZE = 24.81

As stated at the beginning of this section, the second level population U is
stratified into H strata. In each stratum h (h = 1, . . . , H) a sampling design ph(·)
is applied and a sample sh is drawn. An important feature of stratified sampling
design is the independence between selections. For this reason, the sampling design
takes the following form

p(s) =

H∏

h=1

ph(sh) where s =

H⋃

h=1

sh

We have that an unbiased estimator of ty and its variance are given by

t̂yπ =

H∑

h=1

∑

sh

yk
πk

=

H∑

h=1

t̂hπ (1)

V (t̂yπ
) =

H∑

h=1

Vh(t̂hπ) =

H∑

h=1

∑

k∈Uh

∑

l∈Uh

∆kl

yk
πk

yl
πl

Revista Colombiana de Estadística 34 (2011) 403–420



408 Hugo Andrés Gutiérrez & Hanwen Zhang

where ∆kl = πkl − πkπl, and t̂hπ corresponds to the Horvitz-Thompson esti-
mator in the h-th stratum, defined by

t̂hπ =
∑

sh

yk
πk

In the case that the sample design is simple random sampling carried out along
the strata, the first and second order inclusion probabilities are given by

πk = P (k ∈ s) = P (k ∈ sh) =
nh

Nh

And

πkl =





nh

Nh
if k = l

nh

Nh

nh−1
Nh−1 if k 6= l, with k, l ∈ h

nh

Nh

nh′

Nh′

if k 6= l, with k ∈ h y l ∈ h′

where Nh and nh denote the population size and the sample size in the stratum
h, respectively.

3. Estimation in the First Level

In this section, we develop the proposed approach in order to estimate the
parameter of interest in the first level and we point out that another suitable
approach could be used to solve this kind of estimation problems, namely the
Generalized Weight Share Method (GWSM) (Deville & Lavallée 2006). However,
as it will be confirmed later, in the simulation report of Section 4, our proposal is
more efficient than the GWSM.

3.1. Proposed Approach

Recalling that the second level sample s induces a first level sample m, we can
obtain the induced sampling design as stated in the following result.

Result 1. The sampling design in the first level induced by the stratified sample
s is given by

p(m) =
∑

{s: s→m}

H∏

h=1

ph(sh) (2)

where the notation s → m indicates that the second level sample s induces the first
level sample m.

Proof . Considering that even though a particular first level sample m may be
induced by different samples in the second level, it is clear that a second level
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sample s may only induce a unique first level sample m, then we have that

p(m) =
∑

{s: s→m}

p(s)

=
∑

{s: s→m}

H∏

h=1

ph(sh)

The last equation follows because of the independence in the selection of sh for
h = 1, . . . , H .

For example, continuing with the population described in Table 1, if the sam-
pling design in the second level is simple random sampling in each stratum such
that N3 = 3, N1 = N2 = N4 = 4 and nh = 1 for h = 1, 2, 3, 4, then in order to
compute the selection probability of the particular first level sample m = {A,B},
it is necessary to find all of the second level samples inducing that specific sample
m. Given the data structure, the set {s : s → m} has only two second level
samples; these samples are: {A1, A2, B3, A4} and {B1, A2, B3, A4}. For that m,
we have that its selection probability corresponds to

p(m) = p({A1, A2, B3, A4}) + p({B1, A2, B3, A4})

=

4∏

h=1

1

Nh

+

4∏

h=1

1

Nh

=
1

96
= 0.0104

Given that one parameter of interest is the population total of the variable z
in the first level, we can obtain the first and second order inclusion probability
of clusters in UI in order to propose some estimators for tz. These inclusion
probabilities are given in the following results.

Result 2. The first order inclusion probability of the cluster Ui, denoted by πi, is
given by

πi = Pr(i ∈ m) = 1−
H∏

h=1

q
(i)
h (3)

where q
(i)
h = Pr(None of the units of Ui belongs to sh) and sh denotes the selected

sample in the stratum Uh, for h = 1, . . . , H.

Proof .

πi = Pr(i ∈ m) = Pr(At least one unit of Ui belongs to s)

= 1− Pr(None of the units of Ui belongs to s)

= 1−
H∏

h=1

q
(i)
h
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Note 1. Note that the computation of the quantities q
(i)
h depends on the sampling

design used in each stratum. Moreover, if a
(i)
h denotes the number of units of cluster

Ui belonging to stratum Uh, then a
(i)
h ≥ 0. Which implies that each cluster is not

necessarily present in each stratum.

Note 2. The stratified sampling design on the second level population implies
independence across strata. However, depending on the sampling design used
within each stratum, the independence of units selection may not be guaranteed.
For example, in the case of simple random sampling designs, there is no indepen-
dence. On the other hand, other sampling designs such as Bernoulli and Poisson
do provide that independence feature.

Result 3. The second order inclusion probability for any pair of clusters Ui, Uj

is given by

πij = 1−
H∏

h=1

q
(i)
h −

H∏

h=1

q
(j)
h +

H∏

h=1

q
(ij)
h (4)

With q
(ij)
h = Pr(None of the units of Ui belongs to sh and none of the units of

Uj belongs to sh) and q
(i)
h , q

(j)
h are defined analogously in Result 3.2.

Proof . After some algebra, we have that

πij = Pr(i ∈ m, j ∈ m)

= 1− Pr(i /∈ m or j /∈ m)

= 1− [Pr(i /∈ m) + Pr(j /∈ m)− Pr(i /∈ m, j /∈ m)]

= 1− [(1 − πi) + (1 − πj)− Pr(i /∈ m, j /∈ m)]

= 1−
H∏

h=1

q
(i)
h −

H∏

h=1

q
(j)
h + Pr(i /∈ m, j /∈ m)

= 1−
H∏

h=1

q
(i)
h −

H∏

h=1

q
(j)
h +

H∏

h=1

q
(ij)
h

Once these inclusion probabilities are computed, it is possible to estimate tz
by means of the well known Horvitz-Thompson estimator given by

t̂zπ =
∑

i∈m

zi
πi

(5)

Note that t̂zπ is unbiased for tz and, if the stratified sampling design in the
second level is such that nh ≥ 2 for h = 1, . . . , H , its variance is given by

V (t̂zπ) =
∑

i∈UI

∑

j∈UI

∆ij

zi
πi

zj
πj
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Where ∆ij = πij − πiπj . However, since the first level sample is induced by
the second level sample, the size of m is random, even when the stratified sample
design of the second level is of fixed size. For a more detailed discussion about the
randomness of the sample size and its effects when a Horvitz-Thompson estimator
is used, an interested reader can see Särndal et al. (1992, Example 5.7.3 and
Example 7.4.1). In order to avoid extreme estimates, sometimes obtained with the
previous estimator, and taking into account that NI is known, we propose to use
the expanded sample mean estimator (denoted in this paper as Hájek estimator)
given by

t̃z = NI

t̂zπ

N̂I,π

(6)

Where N̂I,π =
∑

i∈m
1
πi

. It is well known that its approximate variance is
given by

AV (t̃z) =
∑

i∈UI

∑

j∈UI

∆ij

zi − zUI

πi

zj − zUI

πj

(7)

With zi∈ UI
=

∑
UI

zi/NI . For more comprehensive details, see Gutiérrez
(2009, expressions 9.3.7. and 9.3.9.) and Särndal et al. (1992, expression 7.2.10.).

3.1.1. Some Particular Cases

In the case that in each stratum of the second level population a Bernoulli
sampling design is used, with the same inclusion probability θ across the strata,
then the first order inclusion probability for a cluster Ui is given by

πi = 1−
H∏

h=1

q
(i)
h = 1−

H∏

h=1

(1− θ)a
(i)
h

= 1− (1− θ)
∑H

h=1 a
(i)
h = 1− (1 − θ)Ni

Where Ni = #(Ui). The second order inclusion probability for clusters Ui and
Uj is given by

πij = 1−
H∏

h=1

q
(i)
h −

H∏

h=1

q
(j)
h +

H∏

h=1

q
(ij)
h

= 1− (1− θ)Ni − (1− θ)Nj +
H∏

h=1

(1− θ)a
(i)
h

+a
(j)
h

= 1− (1− θ)Ni − (1− θ)Nj + (1− θ)Ni+Nj

Other interesting case is carrying out simple random sampling in each stratum.
This way, the resulting formulaes for the proposed approach are quite simple.
Denoting the population size and the sample size in the h-th stratum by Nh and
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nh, respectively, and by following the assumptions of the Result 3.2, the first

inclusion probability for a cluster Ui is given in terms of q
(i)
h , where

q
(i)
h =





(Nh−a
(i)
h

nh
)

(Nh
nh
)

, if nh ≤ Nh − a
(i)
h

0, otherwise

On the other hand, for the computation of the second order inclusion proba-
bility for clusters Ui and Uj , we have that

q
(ij)
h =





(Nh−a
(i)
h

−a
(j)
h

nh
)

(Nh
nh
)

, if nh ≤ Nh − a
(i)
h − a

(j)
h

0, otherwise

For example, following the finite population in Table 1, the first inclusion
probabilities of the store A and store B are given by

πstore(A)
= 1−

(
1−

n1

N1

)(
1−

n2

N2

)(
1−

n4

N4

)

πstore(B)
= 1−

(
1−

n1

N1

)(
1−

n3

N3

)

And the second order inclusion probability for these two stores is given by

πstore(A),store(B)
= 1−

(
1−

n1

N1

)(
1−

n2

N2

)(
1−

n4

N4

)
−

(
1−

n1

N1

)(
1−

n3

N3

)

+
(N1 − n1)

N1

(N1 − n1 − 1)

(N1 − 1)

(
1−

n2

N2

)(
1−

n3

N3

)(
1−

n4

N4

)

Once the inclusion probabilities are computed, it is possible to obtain estima-
tions of tz , by using (5) and (6), along with its respective estimated coefficients of
variation by means of the expression for the estimated variances.

3.2. Indirect Sampling

This kind of situations can also be handled by using the indirect sampling
approach (Lavallée 2007). We introduce it briefly: it is assumed that the first level
population UI is related to the second level population U through a link matrix
representing the correspondence between the elements of UI and U . Since there is
no available sampling frame for UI , an estimate for tz can be obtained indirectly
using a sample from U and the existing links between the two populations. The
link matrix is denoted by Θ with size N ×NI , and the ki-th element of the matrix
Θ is defined as

[Θ]ki =

{
1 if the element k is related with the cluster Ui

0 otherwise

Revista Colombiana de Estadística 34 (2011) 403–420



Hierarchical Estimation in Stratified Multipurpose Surveys 413

for k = 1, . . . , N , i = 1, . . . , NI .

The formulation of the standardized link matrix is needed to carry out the
estimation of tz. This matrix is defined as

Θ̃ = Θ[diag(1′
NΘ)]−1

where 1N is the vector of ones of dimension N . It can be shown that Θ̃1N = 1NI
.

This way, the population total tz can be expressed as

tz = 1
′
NI

z = 1
′
NΘ̃z

Where z = (z1, . . . , zNI
). By using the previous expression and taking into

account the principles of GWSM, as pointed in Deville & Lavallée (2006), we have
the following estimator:

t̂z = 1
′
NINΠ

−1
N Θ̃z (8)

where ΠN = diag(π1, . . . , πN ), is a matrix of dimension N ×N that contains the
inclusion probabilities for all the elements in the second level population and IN

is the diagonal matrix containing the indicator variables Ik for the membership of
elements in the second level sample s. Note that (8) may be expressed as

t̂z = wz

where w = 1
′
NINΠ

−1
N Θ̃. We can see that the elements of w are given by

wi =





∑
k∈U Ik

Θ̃ki

πk

, if i ∈ m

0, if i /∈ m

for i = 1, . . . , NI . Note that t̂z is a weighted sum upon all units in the induced
sample m of UI .

Deville & Lavallée (2006) have shown that t̂z is an unbiased estimator for tz
and its variance is given by

V (t̂z) = z
′
∆NI

z

with ∆NI
= Θ̃

′
∆NΘ̃, where the kl-th element of ∆N is given by

[∆N ]kl =
πkl − πkπl

πkπl

for k, l = 1, . . . , N .

It is important to comment that despite the resulting inferences of indirect
sampling from the GSWM are defined for the first level population, they are
directly induced by the probability measure of the sampling design in the second
level p(s). However, the inferences from our proposed approach are given directly
by the induced sampling design of the first level p(m).
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4. Simulation Study

In this section, by means of Monte Carlo simulations, we compare the per-
formance of the two proposed estimators given by (5) and (6) and the indirect
sampling estimator. We simulate several stratified populations with hierarchical
structure where all clusters are presented in each stratum, that is, Nh = NI in all
strata. The values of the variables of interest y and z are generated from different
gamma distributions. Wu (2003) claims that heavy tail distributions such as the
log-normal and the gamma distribution with large scale parameters should not
be used to generate sampling observations. For this reason, we use the gamma
distribution with small shape and scale parameters.

In each stratum, a simple random sample of equal size n is selected, then the two
proposed estimators and the indirect sampling estimator are computed in order to
estimate tz . The process was repeated G = 1000 times with NI = 20, 50, 100, 400
clusters, and H = 5, 5, 10, 50 for each of these values of NI . The simulation was
programmed in the statistical software R (R Development Core Team 2009) and
the source codes are available from the author upon request. In the simulation,
the performance of an estimator t̂ of the parameter t was tracked by the Percent
Relative Bias (RB), defined by

RB(t̂) = 100%G−1
G∑

g=1

t̂g − t

t

and the Relative Efficiency (RE), that corresponds to the ratio of the Mean Square
Error (MSE) of the estimator of the GWSM approach to the Horvitz-Thompson
and the Hájek estimators defined as

RE(t̂zπ) =
MSE(t̂z)

MSE(t̂zπ)
and RE(t̃z) =

MSE(t̂z)

MSE(t̃z)

respectively. Note that t̂g is computed in the g-th simulated sample and the Mean
Square Error is given by

MSE(t̂) = G−1
G∑

g=1

(t̂g − t)2

The estimators are considered under a wide range of specifications. The simu-
lation results correspond to the ratio of MSE, since the ratio of bias is in all cases
negligible indicating that no estimator takes advantage over others in terms of the
RB.

Table 3, reports the simulated ratio of MSE for the proposed estimators with
the indirect sampling estimator for NI = 20, H = 5 and n = 1, 5, 10, 15. It can
be seen that the Hájek estimator is always more efficient, even when the sample
size is n = 1. The gain in efficiency increases with increasing sample size. The
Horvitz-Thompson estimator has a quite poor performance.
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Table 3: MSE ratio of the indirect sampling estimator to HT and Hájek estimators for
H = 5 strata and NI = 20 clusters.

Sample size per stratum HT Hájek

n=1 0,08 1,06

n=5 0,03 1,84

n=10 0,05 5,50

n=15 0,52 73,75

Table 4: MSE ratio of the indirect sampling estimator to HT and Hájek estimators for
H = 5 strata and NI = 50 clusters.

Sample size per stratum HT Hájek

n=1 0,12 1,02

n=5 0,03 1,29

n=10 0,02 1,57

n=20 0,02 3,24

n=40 1,06 175,83

Table 5: MSE ratio of the indirect sampling estimator to HT and Hájek estimators for
H = 10 strata and NI = 100 clusters.

Sample size per stratum HT Hájek

n=1 0,09 1,03

n=10 0,02 1,83

n=20 0,02 3,64

n=50 0,44 101,47

Table 6: MSE ratio of the indirect sampling estimator to HT and Hájek estimators for
H = 50 strata and NI = 40 clusters.

Sample size per stratum HT Hájek

n=1 0,02 1,98

n=5 0,77 110,25

n=10 Inf Inf

n=20 Inf Inf

Table 7: MSE ratio of the stratified estimator to indirect sampling (IND), HT and
Hájek estimators for H = 5 strata and NI = 20 clusters.

Sample size per stratum IND HT Hájek

n=1 4,84 3.45 5.39

n=5 4,92 2.53 9.42

n=10 4,34 4.94 27.08

n=15 5,37 40.88 342.90
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In the simulation reported in Table 4, we increased the number of clusters to
NI = 50, and the sample size to n = 40. We see that the Hájek estimator maintains
its advantage over the indirect sampling estimator, and it is particularly large when
n = 40. On the other hand, the Horvitz-Thompson still performs poorly, although
when n is close to NI it is slightly better. The results reported in the Table 5 with
NI = 100 and H = 10, are similar to those reported in Table 3.

In Table 6, we set NI = 40 and H = 50, that is, there are more strata than
first level population clusters. We see that the advantage of the Hájek estimator
increases substantially even when n = 5. The symbol Inf indicates that the MSE
of the Horvitz-Thompson and the Hájek estimator are both close to zero in com-
parison with the MSE of the indirect sampling estimator; that is, the ratio of MSE
is huge.)

In order to visualize the average performance of these three approaches, Figure
1, presents the histogram of the Horvitz-Thompson, Hájek and indirect sampling
estimators with NI = 20, H = 5, n = 5. The vertical dotted line indicates the value
of the parameter of interest. We observe that the three estimators are unbiased
and the estimations obtained with the Hájek estimator are highly concentrated
around the population total, while the Horvitz-Thompson estimator has a larger
variance.

An interesting, but less practical, situation arises when the parameter of inter-
est in the second level coincides with the parameter of interest in the first level.
That is, if zi =

∑
k∈Ui

yk, the variable of interest in the cluster Ui corresponds to
the total of the variable y in the cluster Ui. In this case, both population totals
are the same (ty = tz) and they can be estimated by using the four mentioned
estimators, namely: the stratified estimator given in (1), the Horvitz-Thompson
estimator given in (5), the Hájek estimator given in (6) and the indirect sampling
estimator given in (8). Notice that in this case, the Horvitz-Thompson, Hájek
and indirect estimators use first level information, whereas the stratified estimator
uses second level information. Then, it is interesting to evaluate these estimators
and compare them. Figure 2 shows the average performance of the four estimators
with NI = 20, H = 5, n = 5. We conclude, once more, that the Hájek estimator
is the most efficient and that the estimator of indirect sampling has an acceptable
performance, while the stratified and the Horvitz-Thompson estimators have large
variances.

Table 7, reports simulation results when comparing the stratified estimator
with respect to the remaining three estimators which use the first level informa-
tion, in terms of relative efficiency. We can see that estimators using first level
information are always more efficient than the classical stratified estimator; on the
other hand, for each n, the Hájek estimator is the most efficient when increasing
the sample size.

The above simulations involve the case that any cluster contains at most one
member per stratum, this way the sample includes at most one member in each
cluster. However, since our approach may be extended to the general case where a
cluster might contain more than one member in some strata, then a more realistic
situation arises when we set ah > 1 in some strata. Table 8, reports the simulated
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Figure 1: Histogram of estimates in 1000 iterations with NI = 20, H = 5, n = 5.
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Figure 2: Histogram of estimates in 1000 iterations with NI = 20, H = 5, n = 5.
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MSE ratio for the proposed estimators with the indirect sampling estimator for
NI = 20, H = 5, ah = 3 for each h = 1, . . . , H and each cluster. Finally, the
sample size considered per stratum was n = 1, 5, 10, 15. It can be seen that the
Hájek estimator is always more efficient, even when sample size is n = 1; its gain in
efficiency increases with the sample size augmenting. Figure 3, shows the average
performance of the three estimators with NI = 20, H = 5, n = 5.

Table 8: MSE ratio of the indirect sampling estimator to HT and Hájek estimators for
H = 5 strata, NI = 20 clusters and ah = 3.

Sample size per stratum HT Hájek

n=1 0,07 1,06

n=5 0,03 1,89

n=10 0,04 4,85

n=15 0,11 17,65
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Figure 3: Histogram of estimates in 1000 iterations with NI = 20, H = 5, n = 10 and
ah = 3.

It is worth commenting that the Hajek estimator is asymptotically unbiased.
However, for samples of size 20 or more, the bias may be important not to be
ignored (Särndal et al. 1992, p. 251). There are some proposals available in the
literature to modify either the estimator or the sampling design to reduce the
bias of this estimator. For a review of some variations of the Hajek estimator,
see Rao (1988). Note that even though the sample size in the stratified second
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level is small, the induced sample size in the first level is not. This way, it is
understandable that the bias for the Hajek estimator is negligible.

5. Discussion and Conclusion

In this paper, we have proposed a design-based approach that yields the un-
biased estimation of the population total in the first level based on a stratified
sampling design in the second level. With this in mind, the proposed approach
is multipurpose in the sense that, for the same survey, different parameters can
be estimated in different levels of the population. An important feature of this
method is its suitability in the estimation of parameters in the first level where
there is no sampling frame available. The empirical study shows that by using
the same information, our proposal outperforms the indirect sampling approach
because our proposal always has a smaller mean squared error.

The reduction of variability in our proposal may be explained because different
second level samples may induce the same first level sample m. In this case, the
estimates obtained by applying the GWSM principles will be generally different
because the vector of weights w, that depends on the inclusion probabilities of the
selected elements in s, differs from sample to sample in the second level. Then we
will have different estimates for the same induced sample m. This feature is not
present if we follow the approach proposed in this paper, since t̂z,π and t̃z remain
constant for different second level samples that induce the same first level sample
m. However, t̂z,π does not perform as well as t̃z because, in general, the Horvitz-
Thompson approach does not work well under random size sample designs, which
is the nature of the sampling design p(m).

This research is still open, further work could be focused in the development of
a general methodology conducive to joint estimation in more than two levels when
the sampling frame is only available in the last level of the hierarchical population.
Besides, the proposed approach could be easily extended in some situations where
there is a suitable auxiliary variable (continuous or discrete) that helps to improve
the efficiency of the resulting estimators, just as in the functional form of the
GWSM with the calibration approach (Lavallée 2007, ch. 7).
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Abstract

We developed an asymptotically optimal hypothesis test concerning the

homogeneity of a Poisson process over various subintervals. Under the null

hypothesis, maximum likelihood estimators for the values of the intensity

function on the subintervals are determined, and are used in the test for

homogeneity.

Key words: Poisson process, hypothesis testing, local alternatives, asymp-

totic distribution, asymptotically optimal, likelihood ratio test.

Resumen

Una prueba de hipótesis asintótica para verificar homogeneidad de un

proceso de Poisson sobre ciertos subintervalos es desarrollada. Bajo la hipóte-

sis nula, estimadores máximo verosímiles para los valores de la función in-

tensidad sobre los subintervalos mencionados son determinados y usados en

el test de homogeneidad.

Palabras clave: proceso de Poisson, prueba de hipótesis, alternativas lo-

cales, distribución asintótica, asintóticamente óptimo, prueba de razón de

verosimilitud.

1. Introduction

Poisson processes have been used to model random phenomena in areas such
as communications, hydrology, meteorology, insurance, reliability, and seismology,

aProfessor. E-mail: rfierro@ucv.cl
bDoctoral student. E-mail: alejandreandrea@gmail.com
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among others. These processes are often appropriate for modeling a series of events
over time.

Poisson processes are governed by an intensity function λ(t), which determines
the instantaneous rate of event occurrence at time t. Equivalently, a Poisson
process is also governed by the cumulative intensity function Λ(t) =

∫ t

0 λ(τ) dτ .
When the intensity function is a constant, the Poisson process is known as a
homogeneous Poisson process. When the intensity function varies with time, the
Poisson process is known as a nonhomogeneous Poisson process (NHPP). A special
case of an NHPP which arises in this paper has an intensity function that is
piecewise constant over various time subintervals. The main aim of this paper is
to develop a hypothesis test to determine whether an observed point process is
drawn from a homogeneous Poisson process or a nonhomogeneous Poisson process
with a piecewise constant intensity function.

A number of authors have carried out statistical analysis on the intensity of
an NHPP. For instance, Leemis (1991), Leemis (2004), Kuhl, Wilson & Johnson
(1997), Arkin & Leemis (2000), Kuhl & Wilson (2000), Henderson (2003), and
others have considered the nonparametric estimation of the cumulative intensity
function for a NHPP, and some of these authors have devoted their attention to
modeling the periodic behavior of the process.

By following ideas from Fierro (2008), and considering, as in Leemis (2004), a
finite time horizon that has been partitioned into subintervals, we state a result for
testing whether a Poisson process is homogeneous or not over certain time intervals.
Although a nonhomogeneous Poisson process is oftentimes a more accurate model
of a phenomenon occurring in a non-stationary fashion, from a statistical point
of view, the modeling based on a homogeneous Poisson process is simpler due to
the fact that its intensity function depends only upon a single real parameter.
Even though the process could be nonhomogeneous, it is important to investigate
whether the process is homogeneous at certain time intervals.

For this reason, the main aim of this paper is to develop an asymptotic like-
lihood test for homogeneity. It is proved that this test is asymptotically optimal.
As in Neyman (1949), we study the asymptotic behavior of the log likelihood of
the test, but additionally, we consider the noncentral scenario to obtain an approx-
imation to the power of the test. A sequence of local alternative hypotheses are
stated, similar to those considered in some tests, which can be found in Serfling
(1980), Karr (1991) and Lehmann (1999). Under the null hypothesis, the inten-
sity function of the process is piecewise constant and, in order to obtain sufficient
information to estimate these constants, observations from each of these intervals
should be considered. A maximum likelihood estimator should take this informa-
tion into account, for example, when estimating the cumulative intensity function.
The methods introduced here are parametric because the inference on the inten-
sity function of a NHPP involves a finite number of parameters. This technique
has been argued against by some authors because it requires the introduction of
parameters by the modeler (Leemis 1991, Arkin & Leemis 2000); this technique,
however, has been used by Henderson (2003) and Leemis (2004) and we believe it
is appropriate in many settings. Even though, in this work, the intensity of the
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nonhomogeneous Poisson process is not sequentially estimated, it is worth men-
tioning there are other estimation methods. One of them is the Shiryayev-Roberts
test which was introduced by Shiryaev (1963) and Roberts (1966). This procedure
is concerned with the sequential detection of changes in distributions occurring at
unknown points in time.

The article is organized as follows. In Section 2 we introduce the null hypothesis
and derive maximum likelihood estimators under the null hypothesis and without
restrictions on the parameters. In Section 3, the asymptotic normality of the
estimators is stated with the main results introduced in Section 4. In Section 5,
an example is presented. Finally a method for simulations of NHPP variables
under the null hypothesis, is proposed in Section 5.

2. Preliminaries

Let T be a fixed strictly positive real number and let us partition the interval
[0, T ] into m subintervals [t0, t1], (t1, t2], . . . , (tm−1, tm], where t0 = 0 and tm = T .
The subintervals do not necessarily have equal widths. Let us denote by C the
class of all functions λ which are piecewise constant on each subinterval defined
above. From now on, the constant value of λ on (ti−1, ti] will be denoted by λi.
Consequently,

λ(t) = λ1I[t0,t1](t) +

m∑

i=2

λiI(ti−1,ti](t)

where IC stands for the indicator function on a set C.

This work refers to the hypothesis test that the intensity λ is constant in
certain groups of the above subintervals. To do this, we need to partition the set
J = {1, . . . ,m} into r subsets J(1), . . . , J(r), (r groups), that is, J = J(1) ∪ · · · ∪
J(r), and for u 6= v, J(u) ∩ J(v) = ∅. Let us denote by m(u) the cardinality of
J(u). Hence m(1) + · · · + m(r) = m. With these notations, we are interested
in finding out whether or not λ(t) is constant on the sets

⋃
i∈J(u)(ti−1, ti], (u ∈

{1, . . . , r}). Consequently, the null hypothesis should be stated in mathematical
terms as follows:

H0 : ∀u ∈ {1, . . . , r}, ∀i, j ∈ J(u), λi = λj (1)

This hypothesis can be stated in the following simpler equivalent form:

H0 : ∀u ∈ {1, . . . , r}, ∀i ∈ J(u), λi = λu

where λu =
∑

i∈J(u) λi/m(u).

Considering r = 1, H0 is the hypothesis corresponding to λ is the intensity of
an homogeneous Poisson process.

Assume there are N1, . . . , Nk independent realizations of a nonhomogeneous
Poisson process with intensity λ ∈ C and as before, λi denotes the constant value
of λ on (ti−1, ti]. Put Nk = N1 + · · ·+Nk. An estimation of λi can be obtained
by counting the jumps of Nk into the interval (ti−1, ti].
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From Theorem 2.31, in Karr (1991), a likelihood function for λ1, . . . , λm is
given on [0, T ] by

L(λi; 1 ≤ i ≤ m) = exp

[∫ T

0

log(λ(t)) dNk(t)− k

∫ T

0

λ(t) dt

]

Hence,

L(λi; 1 ≤ i ≤ m) = exp

[
m∑

i=1

{log(λi)△Nk
i − kλi△ti}

]

where △Nk
i = Nk(ti)−Nk(ti−1) and △ti = ti − ti−1.

Under H0, this likelihood function on [0, T ] becomes

L0(λ
u; 1 ≤ u ≤ r) = exp




r∑

u=1

log(λu)
∑

i∈J(u)

△Nk
i − kλu

∑

i∈J(u)

△ti




It is easy to see that the maxima of L0 and L are attained at λu = λ̂u, 1 ≤ u ≤ r,
and λi = λ̂i, 1 ≤ i ≤ m, respectively, where

λ̂u =

∑
i∈J(u) △Nk

i

k
∑

i∈J(u) △ti
and λ̂i =

△Nk
i

k△ti

For the sake of simplicity, the reference to k in these maximum likelihood
estimators has been omitted.

Notice that, under H0, λ̂i is not sufficient for λi and thus there exists infor-
mation from the data which is not contained in the statistic λ̂i. This lack of
information is contained in T =

∑
i∈J(u) △Nk

i , for instance. Consequently, it is

prominent the convenience of using, under H0, λ̂u instead of λ̂i, in any estimation
of a function of λi, (i ∈ J(u)). This fact is relevant in Section 5, where an esti-
mation of the cumulative intensity function of the process is considered in variate
generation by inversion and by thinning for a NHPP from event count data.

3. Asymptotic Normality of Estimators

For making inference about the parameters λi, (i = 1, . . . , r), for instance, in
order to obtain asymptotic confidence intervals for these parameters, we need the
corresponding estimators to be consistent and asymptotically normal. This fact is
stated in Proposition 1 below. Moreover, Corollary 1, provides us the asymptotical
distribution for the parameters under the null hypothesis.

Proposition 1. For each i = 1, . . . ,m, λ̂i is consistent and asymptotically normal
N (0, λi), which means that the following two conditions hold:
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(C1) For each i = 1, . . . ,m, λ̂i converges to λi, with probability 1, as k → ∞.

(C2)
√
k(λ̂1−λ1, . . . , λ̂m−λm) converges in distribution to an m-variate normal

random vector having mean zero and covariance matrix Σ given by

Σ =




λ1 · · · 0
...

. . .
...

0 · · · λm




Proof . Conditions (C1) and (C2) directly follow from Kolmogorov’s Law of Large
Numbers, the independent increments property of Poisson processes and the clas-
sical Central Limit Theorem.

Corollary 1. Under H0, for each u = 1, . . . , r, λ̂u converges to λu as k ↑ ∞ and√
k(λ̂1 − λ1, . . . , λ̂r − λr) converges in distribution to an r-variate normal random

vector having mean zero and covariance matrix Σ given by

Σ =




λ1 · · · 0
...

. . .
...

0 · · · λr




The above corollary enables us to obtain the usual confidence-interval estimate
for λu, and hence for λi where i ∈ J(u). Indeed, an asymptotically 100(1 − α)%
confidence interval for λu is

λ̂u − zα/2

√
λ̂u/k < λu < λ̂u + zα/2

√
λ̂u/k

where zα/2 is the 1− α/2 percentile of the standard normal distribution.

4. Main Result

The main result of this paper is stated in Theorem 1 below. For testing H0

against H0 fails to be true, we denote by Rk the likelihood ratio, that is

Rk =
L0(λ̂u; 1 ≤ u ≤ r)

L(λ̂i; 1 ≤ i ≤ m)

and hence

Rk = exp




r∑

u=1

∑

i∈J(u)

[log(λ̂u/λ̂i)△Nk
i − k(λ̂u − λ̂i)△ti]


 (2)

Even though Rk depends on Nk, it is worth noting Rk does not depend on k,
i.e., Rk depends on k only through Nk.
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In order to state the main result, for each u ∈ {1, . . . , r}, we consider the
following sequence of local alternatives to the null hypothesis:

H(k) : ∀u ∈ {1, . . . , r}, ∀i ∈ J(u), λi = λu + δi/
√
k (3)

where δ = (δ1, . . . , δm) is a fixed vector in Rm satisfying
∑

i∈J(u) δi = 0, for each

u ∈ {1, . . . , r}.

Theorem 1. Under H(k) as k → ∞, −2 log(Rk) has noncentral asymptotically
χ2 distribution with m− r degrees of freedom and noncentrality parameter

Φ2 =

r∑

u=1

1

λu

∑

i∈J(u)

△ti

[
δi −

∑
j∈J(u) δj△tj∑
j∈J(u) △tj

]2

=

r∑

u=1

1

λu

∑

i∈J(u)

△ti


δ2i −

(∑
j∈J(u) δj△tj∑
j∈J(u) △tj

)2



Proof . By taking into account that log(x) = (x− 1)− (x− 1)2/2 +O((x− 1)3),
from (2) it is obtained

−2 log(Rk) =
r∑

u=1

∑

i∈I(u)

(
[(λ̂i − λ̂u)/λ̂i]

2△Nk
i +O([(λ̂i − λ̂u)/λ̂i]

3)
)

=
m∑

i=1

[
(Uk

i )
2 +OP((U

k
i )

3/
√
△Nk

i )

]

where Uk
i = (λ̂i − λ̂u)

√
k△ti/λ̂i whenever i ∈ J(u), and in general, An = OP(Bn)

means that given any η > 0, there is a constant M = M(η) and a positive integer
n0 = n0(η) such that Pr{|An| ≤ M |Bn|} ≥ 1− η for every n > n0.

For each i = 1, . . . ,m, let △Mk
i = (△Nk

i −kλi△ti)/
√
k. Since △Mk

1 , . . . ,△Mk
m

are independent, by the classical Central Limit Theorem, {(△Mk
1 , . . . ,△Mk

m)}k∈N

converges in distribution to a normal random vector having mean zero and co-
variance matrix Σ given by the diagonal matrix Σ = diag(λ1△t1, . . . , λm△tm).
Under H(k), for each u = 1, . . . , r and each i ∈ J(u), △Nk

i = λuk△ti+ δi
√
k△ti+√

k△Mk
i . Hence,

λ̂i = λu +
δi√
k
+

△Mk
i√

k△ti
(4)

and

λ̂u = λu +

∑
j∈J(u) δj△tj

√
k
∑

j∈J(u) △tj
+

∑
j∈J(u) △Mk

j
√
k
∑

j∈J(u) △tj
(5)
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From (4) and (5), for each i ∈ J(u) one obtains

Uk
i =

√
△ti

λ̂i

(
δi +

△Mk
i

△ti
−

∑
j∈J(u) △Mk

j∑
j∈J(u) △tj

−

∑
j∈J(u) δj△tj∑
j∈J(u) △tj

)

= V k
i −

√
△ti

∑
j∈J(u)

√
△tjV

k
j

√
λ̂j/λ̂i∑

j∈J(u) △tj

where V k
i = △Mk

i /

√
λ̂i△ti + δi

√
△ti/λ̂i.

Under H(k), for each i ∈ J(u), λi = λu+δi/
√
k and by Proposition 1 in Section

3, for each i, j ∈ J(u),

√
λ̂j/λ̂i → 1, with probability 1, as k → ∞. Consequently,

from a slight modification of Proposition 1 in Section 3 and Slutzky’s theorem,
{(Uk

1 , . . . , U
k
m)}k∈N converges in distribution to U = (U1, . . . , Um), where for each

i ∈ J(u), (u = 1, . . . , r),

Ui = Vi −

√
△ti

∑
j∈J(u)

√
△tjVj∑

j∈J(u) △tj

and V = (V1, . . . , Vm)t is a vector of m independent normal random variables
with variance one, and such that for each u ∈ {1, . . . , r} and each j ∈ J(u),
Vj has mean δj

√
△tj/λu. Hence, {−2 log(Rk))}k∈N converges in distribution to

‖U‖2 =
∑m

i=1 U
2
i , where ‖ · ‖ stands for the Euclidean norm in Rm.

Let

P =




P(1) · · · 0
...

. . .
...

0 · · · P(r)




where for each u = 1, . . . , r, P(u) = (pij(u); i, j ∈ J(u)) is the matrix defined by
pij(u) =

√
△ti△tj/

∑
j∈J(u) △tj . Hence, U = (I − P)V, and since for each u =

1, . . . , r, P(u) is an idempotent matrix having rank 1, the matrix P is idempotent
as well and has rank r. Consequently, I−P is idempotent and has rank m− r. It
follows from Theorem 3.5.1 in Serfling (1980) that ‖U‖2 has χ2 distribution with
m− r degrees of freedom and non-centrality parameter µ(I−P)µt, where

µ = (δ1

√
△t1/λu(1), . . . , δm

√
△tm/λu(m))

and for each i ∈ {1, . . . ,m}, u(i) is the unique integer in {1, . . . , r} such that
i ∈ J(u(i)). Since µt(I − P)µ = ‖(I − P)µ‖2 = ‖µ‖2 − ‖Pµ‖2, the proof is
complete.

The corollary below is useful to test the hypothesis whether a Poisson process
is homogeneous or not.
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Corollary 2. Let λ̃ =
∑m

j=1 λj/m, (δ1, . . . , δm) ∈ Rm such that
∑m

j=1 δi = 0 and

H(k) be the statistical hypothesis defined as

H(k) : ∀i ∈ {1, . . . ,m}, λi = λ̃+ δi/
√
k

Then, under H(k), −2 log(Rk) has noncentral asymptotically χ2 distribution
with m− 1 degrees of freedom and noncentrality parameter

Φ2 =
1

λ̃

m∑

i=1

△ti

[
δi −

∑m

j=1 δj△tj∑m
j=1 △tj

]2

Note 1. A natural application of the foregoing theorem is to calculate the ap-
proximate power of the test relative to

H0 : ∀u ∈ {1, . . . , r}, ∀i ∈ J(u), λi = λu

against the simple alternative

H1 : ∀u ∈ {1, . . . , r}, ∀i ∈ J(u), λi = λ∗

i

Suppose that the critical region is {−2 log(Rk) > t0}, where t0 has been cal-
culated for a level of significance α based upon the null hypothesis asymptotic
χ2−distribution of −2 log(Rk).

We interpret δi in H(k) as
√
k(λ∗

i − λu) and approximate the power of the test
by means of the probability of {χ2 > t0}, where χ2 is a random variable having
χ2−distribution with m− r degrees of freedom and noncentrality parameter

Φ2 = k

r∑

u=1

1

λu

∑

i∈J(u)

△ti

[
λ∗

i −

∑
j∈J(u) △tjλ

∗

j∑
j∈J(u) △tj

]2

Note 2. By the standard Central Limit Theorem, for m− r and k large enough,
−2 log(Rk) has approximate normal distribution with mean m − r and variance
2(m− r).

Based on Theorem 1, an asymptotically maximum likelihood test, for testing
H0, according to (1), against local alternatives, can be stated. An important
property of a test is its power optimality. The following proposition allows to
conclude the above-mentioned test is asymptotically uniformly most powerful.

Proposition 2. Let B(R) be the Borel σ-algebra of subsets of R and for each ν ≥ 0,
Pν be the probability distribution on (R,B(R)) corresponding to the χ2−distribution
with g degrees of freedom and noncentrality parameter ν. For testing H : ν = 0
against K : ν > 0, the test defined by the critical region [tα,∞), where P0([tα,∞)) =
α, is uniformly most powerful.

Proof . The probability density function corresponding to the χ2−distribution
with g degrees of freedom and noncentrality parameter ν is given by

f(x, g, ν) =
xg/2−1 e−(x+ν)/2

2g/2Γ(g/2)


1 +

∞∑

j=1

(νx/4)jΓ(g/2)

j!Γ(j + g/2)


 I]0,∞[(x)
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Hence, for each x ≥ 0, we have f(x, g, ν) = f(x, g, 0)G(x, g, ν), where

G(x, g, ν) = e−ν/2


1 +

∞∑

j=1

(νx/4)jΓ(g/2)

j!Γ(j + g/2)




Let A = [tα,∞[ and B be a Borelian subset of R such that P0(B) = α. We
need to prove, for each ν ≥ 0, Pν(A) ≥ Pν(B).

We have

Pν(A)− Pν(B) =

∫

A∩B c

f(x, g, 0)G(x, g, ν) dx−

∫

A c ∩B

f(x, g, 0)G(x, g, ν) dx

and since G is increasing at the first variable, we derive

Pν(A)− Pν(B) ≥ G(tα, g, ν)

(∫

A∩B c

f(x, g, 0) dx−

∫

A c ∩B

f(x, g, 0) dx

)

= G(tα, g, ν)(P0(A)− P0(B))

= 0

Therefore, the proof is complete.

Corollary 3. Let H0 and H(k) be the statistical hypotheses defined by (1) and (3),
respectively. For testing H0 against H(k) with a significance level α, (0 < α < 1),
the test defined by the critical region {−2 log(Rk) > tα} is asymptotically uniformly
most powerful, where tα > 0 is determined by

lim
k→∞

Pr(−2 log(Rk) > tα) = α.

5. An Example

Let us suppose in a call center there are k employees in charge of state con-
nections. The call number is recorded from 10.00 am to 1.00 pm every day during
a seven-day period. It is possible to assume the number of phone connections
made for each server follows a Poisson process and that these k Poisson processes
are independent. For this purpose, it is assume the end of a working day agrees
with the beginning of the next day. Even though people usually go for a walk on
Saturday and Sunday, it is suspected that on weekends this number decreases due
to people are not working. To find out this circumstance, the null hypothesis is
defined as “H01: the call rates are every day the same”. From Corollary 4.1, in this
case, −2 log(Rk) has asymptotically χ2-distribution with six degrees of freedom.
Another test could be stated by defining the null hypothesis as “H02: the call rates
from Monday to Friday are the same, and the Saturday call rate equals the Sun-
day one”. In this last case, there are two groups J(1) and J(2) and consequently,
−2 log(Rk) has asymptotically χ2-distribution with five degrees of freedom.

In order to compare both tests, we simulate k = 10 copies of Poisson process
and test H01 and H02 with the same data set. The call rate corresponding to the
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working days was assumed to be 50 calls/hour, and the call rate on Saturday and
Sunday was assumed to be 45 calls/hour. Both hypothesis tests were performed
105 times with a level of significance α = 0.05, and as result of this simulation,
H01 and H02 were rejected 96.6% and 4.95%, respectively, which illustrates the
test and gives an insight of its power.

6. Variate Generation

The cumulative intensity function for a NHPP is often estimated for simulating
the NHPP. A number of methods for carrying out this simulation are described
in Lewis & Shedler (1979), where the simulation method for a NHPP by thinning
is stated. In this section, our purpose is not to give detailed variate generation
algorithms, but to give an estimation of the cumulative intensity function based on

λ̂u (u = 1, . . . , r), which are, under H0, estimators containing sufficient informa-
tion for the parameters λ1, . . . , λm. To this end, an estimator for the cumulative
intensity function is defined and the basis of variate generation by inversion is
recalled.

For each t ≥ 0, let i(t) denote the unique i ∈ {1, . . . ,m} satisfying t ∈ Qi(t),
where Q1 = [t0, t1] and Qi = (ti−1, ti] for j ∈ {2, . . . ,m}. By writing U(t) = {u :
∃i ≤ i(t), i ∈ J(u)} and V (u, t) = {j ∈ J(u) : j < i(t)}, the cumulative intensity

function Λ : [0, T ] → R defined as Λ(t) =
∫ t

0
λ(u) du satisfies

Λ(t) =
∑

u∈U(t)

∑

j∈V (u,t)

λj△tj + λi(t)(t− ti(t)−1)

Let ui denote the unique u ∈ {1, . . . , r} such that i ∈ J(u) and define u(t) =
ui(t). Under H0, we have

Λ(t) =
∑

u∈U(t)

λu
∑

i∈V (u,t)

△ti + λu(t)(t− ti(t))

Consequently, Λ can be estimated by Λ̂, where for t ≥ 0,

Λ̂(t) =
∑

u∈U(t)

λ̂u
∑

i∈V (u,t)

△ti + λ̂u(t)(t− ti(t))

Following Leemis (2004), a realization of a Poisson process for modeling in a
discrete-event simulation can be generated, under H0, by inversion. Let

Ψ̂(u) =

{
inf{t > 0 : Λ̂(t) ≥ u} if u ≤ Λ̂(T )

+∞ if u > Λ̂(T )

Note that for each u ≥ 0, Λ̂(Ψ̂(u)) = u, almost everywhere, and consequently,
if S1, S2, . . . are the points in a homogeneous Poisson process of rate one (which
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have been chosen independently of Λ̂), then Ψ̂(S1), Ψ̂(S2), . . . are the points in a

nonhomogeneous Poisson process with cumulative intensity function Λ̂. This fact
enables us to generate NHPP event times starting from standard Poisson random
variate generation.

According to Henderson (2003), at the beginning of Section 3, pages 379-380,
for a general rate function, a faster generation procedure of NHPP event times is
obtained by thinning. This method for simulating the NHPP was introduced by
Lewis & Shedler (1979) and it is based on an estimator of the rate function λ.

Under H0, a maximum likelihood estimator for λ is given by λ̂, which is defined
for t ≥ 0 as

λ̂(t) =
r∑

u=1

λ̂u
∑

i∈J(u)

I(ti−1,ti](t).

Recall that thinning first generates a candidate event time T ∗, and then accepts
the event time with probability λ̂(T ∗)/λ∗, where λ∗ is an upper bound of λ. The

novelty here is that in this case, thinning is based on the estimators λ̂1, . . . , λ̂r,
which, as pointed out before, are sufficient statistics for λ1, . . . , λr.

7. Conclusions and Recommendations

In this paper we carry out a hypothesis test that allows us to find out whether
or not a NHPP could be considered homogeneous in certain time intervals. Such
an inquiry becomes very important when it is assumed that the rate function is a
piecewise constant on subintervals of the time. Indeed, when there exists a great
non-homogeneity and an approximated piecewise constant rate function has to be
defined, it is necessary to partition the time interval in many subintervals. How-
ever, if homogeneity is observed in a large subset (which need not be connected) of
the time horizon, a lesser number of subintervals will be necessary and an economy
of computational time and/or memory to store the information could be obtained.
On the other hand, under the null hypothesis, the estimators of the constant val-
ues of the intensity function are expressed in terms of sufficient statistics, which
enables us to make use of the whole information provided by the data. This fact
is particularly important for generating Poisson variates by inversion or thinning
procedure.
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Abstract

In many practical situations, clinical diagnostic procedures include two
or more biological traits whose outcomes are expressed on a continuous scale
and are then dichotomized using a cut point. As measurements are per-
formed on the same individual there is a likely correlation between the con-
tinuous underlying traits that can go unnoticed when the parameter estima-
tion is done with the resulting binary variables. In this paper, we compare
the performance of two different indexes developed to evaluate the depen-
dence between diagnostic clinical tests that assume binary structure in the
results with the performance of the binary covariance and two copula depen-
dence parameters.

Key words: Copula, Farlie Gumbel Morgenstern distribution, Gumbel dis-
tribution.

Resumen

Muchos procedimientos de diagnóstico clínico médico exigen la evalu-
ación de dos o mas rasgos biológicos que se ven alterados ante la presencia
de fenómenos de enfermedad o infección, los cuales se expresan en una escala
contínua de medición con posterior dicotomización usando de un valor límite
o punto de corte. Dado que las mediciones son realizadas en el mismo indi-
víduo, los resultados probablemente presenten dependencia de algún tipo, lo
cual puede ser ignorado en la etapa de análisis de datos dada la presentación
binaria de los datos. En este estudio comparamos el comportamiento de dos
parámetros de dependencia presentes en funciones de cópula con el de la co-
varianza binaria y dos índices creados para medir dependencia entre pruebas
diagnósticas de respuesta dicótoma.

Palabras clave: cópula, distribución Farlie, Gumbel.
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1. Introduction

The study of dependence between two clinical diagnostic tests has been a mat-
ter of interest in medical and statistical research. Many studies developed within
clinical diagnostic tests framework have studied the conditional dependence be-
tween diagnostic tests using the binary covariance as dependence parameter (see
for instance: (Thibodeau 1981), (Vacek 1985), (Torrance-Rynard & Walter 1997),
(Enoe, Georgiadis & Johnson 2000) and (Dendukuri & Joseph 2001) among many
others). Some authors as Georgiadis, Johnson & Gardner (2003), have used
reparametrizations of the conditional correlation between binary tests to facilitate
the prior specification in the implementation of a Bayesian estimation procedure.
Bohning & Patilea (2008), consider one of the indexes used by Georgiadis et al.
(2003) and developed another one to study the association between two diagnostic
tests in designs where the individuals with negative outcome in both screening
tests are not verified by “gold standard” (verification bias conditions).

Many diagnostic procedures include the measures of two or more biological
traits directly observable or not, whose outcomes are initially expressed on a con-
tinuous scale and operationalized within a dichotomous representation using a
cut point. It is possible that, there exists dependence between the two evaluated
traits conditional on the true disease state and the same should be studied us-
ing indexes developed to study association between continuous variables, but as
the data analyses is made with the binary data, the data analyst evaluates the
conditional dependence hypothesis using indexes developed to binary variables.

In this paper, we use the indexes developed by Bohning & Patilea (2008) and
we compare their performance with the performance of the binary covariance and
the performance of the Farlie Gumbel Morgerstern (FGM) and Gumbel copula de-
pendence parameters. The main goal is to evaluate the existing relationship among
the five dependence parameters, where three of them (covariance and Böhning’s
indexes) are built to study dependence between binary variables and the other
two (copula parameters) are developed to model dependence between continuous
variables.

The paper is organized as follows: in Section 2, we introduce the estimation
model formulation for two associated diagnostic tests, in Section 3, we present the
comparative study among Böhning and Patilea’s indexes, the binary covariance
and the copula dependence parameters, in Section 4, we introduce two examples,
one of them with simulated data and the other with published data. Finally, in
Section 5, we present some conclusions on the results obtained.

2. Statistical Model with Two Dependent Screening

Tests

Let us assume that we have a clinical diagnostic procedure that uses two screen-
ing tests whose performance we are interested to study and a reference procedure
that classifies individuals as diseased and non-diseased without error called “gold
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standard”. Sometimes, the design of the study considers that those individuals
with negative outcomes in both screening tests are not verified by the “gold stan-
dard” which is known as “verification bias”. We assume that, the screening test
outcomes are expressed on a continuous scale and they are exposed to a process
of dichotomization using a cut point. We also assume that the test outcomes have
a continuous dependent structure but the same can not be considered in the data
analysis since they are presented in a binary form.

2.1. Modelling Dependence with Binary Structure

Let us denote by p the prevalence of a disease and by D a random variable
related to the true disease status, where D = 1 denotes a diseased individual and
D = 0 denotes a non-diseased individual. That is, p = P (D = 1). Also, denote by
T1 and T2, the two random variables associated to the test results, where Tj = 1,
denotes a positive result and Tj = 0, denotes a negative result, P (Tj = 1 | D =
1) = Sj is the sensitivity of the test j and P (Tj = 0 | D = 0) = Ej is the specificity
of the test j, for j = 1, 2. If we assume that, the dependence between tests can
be modeled by the covariance (ψ parameter) using a Bernoulli distribution on the
test outcome and we also assume the covariance is not necessarily the same in
both populations (ψD 6= ψND), we can use the Dendukuri’s procedure to obtain
the likelihood function contributions, as shown in Table 1.

Table 1: Likelihood contributions of all possible combinations of outcomes of T1, T2 and
D assuming binary dependence structure (Values in brackets are unknown
under verification bias. fi: number of individuals for each combination of
results)

Contribution to likelihood

D T1 T2 fi Binary dependence

1 1 1 a p[S1S2 + ψD]

1 1 0 b p[S1(1 − S2)− ψD]

1 0 1 c p[(1 − S1)S2 − ψD]

1 0 0 [d] p[(1− S1)(1− S2) + ψD]

0 1 1 e (1− p)[(1 − E1)(1 − E2) + ψND]

0 1 0 f (1− p)[(1 − E1)E2 − ψND]

0 0 1 g (1− p)[E1(1− E2)− ψND]

0 0 0 [h] (1− p)[E1E2 + ψND]

2.2. Modelling Dependence using Copula Functions

Let us assume that the test outcomes are realizations of the random variables
V1 and V2 measured in a positive continuous scale, that is, V1 > 0 and V2 > 0.
Also, let us assume that two cut-off values ξ1 and ξ2 are chosen for each test in
order to determine when an individual is classified as positive or negative. In this
way we assume that an individual is classified as positive for test ν if Vν > ξν
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that is, Tν = 1 if and only if Vν > ξν for ν = 1, 2. To measure the degree of the
dependence structure between the random variables V1 and V2, let us consider the
use of copula functions (For details about this topic, (Nelsen 1999) is a good refer-
ence). For specified univariate marginal distribution functions F1(v1), . . . , Fm(vm),
the function C(F1(v1), . . . , Fm(vm)) which is defined using a copula function C,
results in a multivariate distribution function with univariate marginal distribu-
tions specified as F1(v1), . . . , Fm(vm). Any multivariate distribution function F
can be written in the form of a copula function, that is, if F (v1, . . . , vm) is a joint
multivariate distribution function with univariate marginal distribution functions
F1(v1), . . . , Fm(vm), thus there exists a copula function C(u1, . . . , um) such that,
F (v1, . . . , vm) = C(F1(v1), . . . , Fm(vm)). For the special case of bivariate distri-
butions, we have m = 2. The approach to formulate a multivariate distribution
using a copula is based on the idea that a simple transformation can be made
of each marginal variable in such a way that each transformed marginal variable
has an uniform distribution. Once this is done, the dependence structure can be
expressed as a multivariate distribution on the obtained uniforms and a copula
is precisely a multivariate distribution on marginally uniform random variables.
In this way, there are many families of copulas which differ in the detail of the
dependence they represent. In the bivariate case, let V1 and V2 be two random
variables with continuous distribution functions F1 and F2. The probability inte-
gral transformation is applied separately for the two random variables to define
U = F1(V1) and W = F2(V2) where U and W have uniform (0, 1) distributions,
but are usually dependent if V1 and V2 are dependent (V1 and V2 independent im-
plies that U and W are independent). Specifying dependence between V1 and V2 is
the same as specifying dependence between U and W , thus the problem reduces to
specifying a bivariate distribution between two uniform variables, that is a copula.
In this paper, we use two copula functions to study the dependence between two
diagnostic tests namely: the Farlie Gumbel Morgerstern (FGM) copula and the
Gumbel copula.

The FGM copula is defined by,

C(u,w) = uw[1 + ϕ(1− u)(1− w)] (1)

where u = F1(v1), w = F2(v2) and −1 ≤ ϕ ≤ 1. As, ϕ measures the dependence
between the two marginals, then, if ϕ = 0, we have independent random variables.
We assume two dependence parameters ϕD and ϕND with the same value for
diseased and non-diseased individuals, respectively. From (1), the cumulative joint
distribution and the joint survival distribution functions for the random variables
V1 and V2 conditional on the diseased status (D subscript and superscript) are
given respectively by,

F (v1, v2) = C(F1(v1), F2(v2)) = F1(v1)F2(v2)

[1 + ϕ(1 − F1(v1))(1 − F2(v2))] (2)

S(v1, v2) = P (V1 > v1, V2 > v2) = 1− F1(v1)− F2(v2) + F (v1, v2) (3)
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To obtain the likelihood function contributions within the diseased individuals
group we have;

P (T1 = 1, T2 = 1 | D = 1) = P (V1 > ξ1, V2 > ξ2 | D = 1) = SD(ξ1, ξ2),

P (T1 = 1 | D = 1) = P (V1 > ξ1 | D = 1) = S1,

P (T2 = 1 | D = 1) = P (V2 > ξ2 | D = 1) = S2,

FD
1 (ξ1) = P (V1 ≤ ξ1 | D = 1) = 1− S1,

and
FD
2 (ξ2) = P (V2 ≤ ξ2 | D = 1) = 1− S2

Using (2) we get,

FD(ξ1, ξ2) = FD
1 (ξ1)F

D
2 (ξ2)[1 + ϕ(1− FD

1 (ξ1))(1 − FD
2 (ξ2))]

= (1 − S1)(1− S2)(1 + ϕDS1S2)

and,

P (T1 = 1, T2 = 1 | D = 1) = SD(ξ1, ξ2) = 1− (1− S1)− (1 − S2)+

(1− S1)(1− S2)(1 + ϕDS1S2)

That is,

P (T1 = 1, T2 = 1|D = 1) = S1S2(1 + ϕD(1− S1)(1− S2)) (4)

and
P (T1 = 1, T2 = 1, D = 1) = pS1S2(1 + ϕD(1 − S1)(1− S2)) (5)

Similarly, we get all likelihood contributions with diseased and non-diseased
individuals (see Table 2).

The Gumbel copula, developed by Gumbel (1960) is defined as,

C(u,w) = u+ w − 1 + (1 − u)(1− w) exp{−φ ln(1− u) ln(1− w)} (6)

In this model, the joint cumulative distribution function for the random vari-
ables V1 and V2 is given by,

F (v1, v2) = F1(v1) + F2(v2)− 1+

(1− F1(v1))(1 − F2(v2)) exp{−φ ln(1− F1(v1)) ln(1− F2(v2))} (7)

The dependence parameter of the Gumbel copula does not model positive linear
correlations and when the two variables are independents, we have φ = 0.

Employing the same arguments considered in the FGM copula to find the joint
probabilities of all combinations with D, T1 and T2 and using (7) we obtain all the
contributions for the likelihood function using the Gumbel copula (See Table 2).
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Table 2: Likelihood contributions of all possible combinations of outcomes of T1, T2

and D when the dependence has the FGM copula or Gumbel copula struc-
ture. (Values in brackets are unknown under verification bias. fi: number of
individuals for each combination of results)

Contribution to likelihood

D T1 T2 fi FGM copula Gumbel copula

1 1 1 a pS1S2[1 + ϕD(1 − S1)(1 − S2)] pS1S2Q1

1 1 0 b pS1(1 − S2)[1 − ϕD(1 − S1)S2] pS1[1 − S2Q1]

1 0 1 c p(1 − S1)S2[1 − ϕDS1(1 − S2)] pS2[1 − S1Q1]

1 0 0 [d] p(1 − S1)(1 − S2)[1 + ϕDS1S2] p[1 − S1 − S2 + S1S2Q1]

0 1 1 e (1 − p)(1 − E1)(1 − E2)[1 + ϕNDE1E2] (1 − p)(1 − E1)(1 − E2)Q2

0 1 0 f (1 − p)(1 − E1)E2[1 − ϕNDE1(1 − E2)] (1 − p)(1 − E1)[1 − (1 − E2)Q2]

0 0 1 g (1 − p)E1(1 − E2)[1 − ϕNDE2(1 − E1)] (1 − p)(1 − E2)[1 − (1 − E1)Q2]

0 0 0 [h] (1 − p)E1E2[1 + ϕND(1 − E1)(1 − E2)] (1 − p)[E1 + E2 − 1 + (1 − E1)(1 − E2)Q2]

Q1 = exp(−φD lnS1 lnS2), Q2 = exp(−φND ln(1 − E1) ln(1 − E2))

3. Indexes Developed by Böhning and Patilea

Bohning & Patilea (2008), developed two association indexes to study the case
of two dependent diagnostic tests in situations where it is not possible to verify the
true disease status in individuals with negative outcome in both screening tests.
The authors proposed computation of the indexes using the observed probabilities
in the likelihood function. The Böhning and Patilea’s indexes θi and αi (i = D
denotes diseased individuals and i = ND denotes non-diseased individuals) are
defined as:

θi =
P (T1 = 1 | T2 = 1, D = i)

P (T1 = 1, D = i)

=
P (T1 = 1, T2 = 1, D = i)

P (T1 = 1, D = i)P (T2 = 1, D = i)
θi ∈ (0,∞)

(8)

If θi = 1 the tests results are independent; if θi < 1 there is negative association
between tests and if θi > 1, the association between tests is positive.

αi =
P (T1 = 1, T2 = 1, D = i)P (T1 = 0, T2 = 0, D = i)

P (T1 = 1, T2 = 0, D = i)P (T1 = 0, T2 = 1, D = i)
αi ∈ (0,∞) (9)

Thus, αi is defined as the odds ratio in the ith diseased state, and when αi = 1
we have independence between tests; negative dependence is expressed by αi < 1
and positive dependence by αi > 1.

In spite of the fact that, both indexes measure dependence and they are within
of the same range of values, they are different in nature. To establish the re-
lationship between them, the authors considered a reparametrization given by:
ai = θiP (T1 = 1 | D = i) = P (T1 = 1 | T2 = 1, D = i), bi = θiP (T2 = 1 | D =
i) = P (T2 = 1 | T1 = 1, D = i) and ηi =

1
θi

.

Let us rewrite the cell probabilities in the cross-tabulation as:

P (T1 = 1, T2 = 1, D = i) = ηaibi,
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P (T1 = 0, T2 = 1 = ηai(1− bi)),

P (T1 = 1, T2 = 0, D = i) = η(1 − ai)bi

and

P (T1 = 0, T2 = 0, D = i) = η(1 − ai)(1 − bi) + 1− η

In this way, the αi parameter can be expressed in terms of the parameter ηi,
by,

αi = 1 +
1− ηi

ηi(1 − ai)(1 − bi)
(10)

The BP indexes were developed assuming that the tests have the same depen-
dence within the disease and non-disease populations (θD = θND and αD =
αND) and they are useful when the design of the study does not include the ver-
ification with “gold standard” of those individuals with negative outcome in both
screening tests. So, using the θ index, we can to estimate the unknown quantities
of disease and non-disease individuals,

nD = a+ b+ c+ [d] and nND = e+ f + g + [h]

as follows:

n̂D = θ̂

{
(a+ b+ 1)(a+ c+ 1)

(a+ 1)
− 1

}
= θ̂q1

n̂ND = θ̂

{
(e+ f + 1)(e+ g + 1)

(e + 1)
− 1

}
= θ̂q2

(11)

On the other hand, with the α index we can to estimate the unknown quantities
d and h, as follows:

d̂ = α̂

{
(b + 1)(c+ 1)

(a+ 1)
− 1

}
= α̂(r1 − 1)

ĥ = α̂

{
(f + 1)(g + 1)

(e+ 1)
− 1

}
= α̂(r2 − 1)

(12)

where

θ̂ =
n

q1 + q2
, α̂ =

u+ 2

r1 + r2

u is the quantity of individuals not verified by the “gold standard” and n is the
total of participants in the screening study.

Assuming the three dependence structures for the two diagnostic tests, using
the results showed in Tables 2 and 3 and the equations (8), (9), we obtained the
analytic relationship between θi and αi with ψi ϕi and φi.

• Diseased individuals population:
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Binary Covariance

θD = 1 +
ψD

S1S2
,

αD =
[S1S2 + ψD][(1− S1)(1 − S2) + ψD]

[S1(1− S2)− ψD][S2(1 − S1)− ψD]
,

ϕD = ψD[S1S2(1− S1)(1 − S2)]
−1,

φD = −[lnS1 lnS2]
−1 ln[ψDS

−1S−1
2 + 1]

FGM copula
θD = 1 + ϕD(1− S1)(1− S2);

αD =
S1S2[1 + ϕD(1− S1)(1− S2)](1 − S1)(1 − S2)[1 + ϕDS1S2]

S1(1 − S2)[1− ϕDS2(1− S1)]S2(1− S1)[1 − ϕDS1(1 − S2)]

Gumbel copula
θD = exp{−φD lnS1 lnS2},

αD =
exp{−φD lnS1 lnS2}[S1S2(1− S1)(1− S2)]

[S1 − S1S2 exp{−φD lnS1 lnS2}][S2 − S1S2 exp{−φD lnS1 lnS2}]

• Non-diseased individuals population:

Binary Covariance,

θND = 1 +
ψND

(1− E1)(1− E2)
,

αND =
[(1 − E1)(1 − E2) + ψND][E1E2 + ψND]

[(1 − E1)E2 − ψND][E1(1− E2)− ψND]
,

ϕND = ψD[E1E2(1− E1)(1− E2)]
−1,

φND = −[ln(1− E1) ln(1 − E2)]
−1 ln[ψND(1− E1)

−1(1− E2)
−1 + 1]

FGM copula,
θND = 1 + ϕNDE1E2,

αND =
(1 − E1)(1 − E2)[1 + ϕNDE1E2]E1E2[1 + ϕND(1− E1)(1 − E2)]

E1(1− E2)[1− ϕNDE2(1− E1)]E2(1− E1)[1 − ϕNDE1(1− E2)]

Gumbel copula,

θND = exp{−φND ln(1 − E1) ln(1 − E2)},

αND =
[(1− E1)(1− E2) exp{−k}][E1 + E2 − 1 + (1− E1)(1− E2) exp{−k}]

[(1− E1)− (1− E1)(1− E2) exp{−k}][(1 −E2)− (1−E1)(1− E2) exp{−k}]

where, k = φND ln(1− E1) ln(1− E2)}.

For two independent tests, we obtain λi = 1 and δi = 1 when ψi = 0, ϕi = 0
and φi = 0, regardless of the performance test values.
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In all cases, the Böhning and Patilea’s association indexes (BP indexes) are
functions of the performance characteristics of the tests, and when the performance
parameters are going to one or zero, the BP indexes could go to infinity or to be
indeterminate. We have in Table 3, the limit values of the BP indexes when the
test parameters are going to zero or one and the dependence coefficients are fixed
at their extreme values.

Table 3: Limits of θ and α indexes when the performance test parameters (PTP), are
going to zero or one and ψi = ±1, ϕi = ±1 and φi = 1. (for diseased
individuals, PTP are S1 and S2; for non-diseased individuals, PTP are E1

and E2)
Limit values of θ and α

Coefficient Population Limit values of PTP ψi = −1 ψi = 1 ϕi = −1 ϕi = 1 φi = 1

0 0 −∞ +∞ 0 2 0

θD Diseased 1 1 0 2 1 1 1

individuals 0 1 −∞ +∞ 1 1 1

1 0 −∞ +∞ 1 1 1

0 0 0 2 1 1 1

θND Non-diseased 1 1 −∞ +∞ 0 2 0

individuals 0 1 −∞ +∞ 1 1 1

1 0 −∞ +∞ 1 1 1

0 0 0 2 0 2 0

αD Diseased 1 1 0 2 0 2 0

individuals 0 1 1/2 +∞ 1/2 +∞ 0

1 0 1/2 +∞ 1/2 +∞ 0

0 0 0 2 0 2 0

αND Non-diseased 1 1 0 2 0 2 0

individuals 0 1 1/2 +∞ 1/2 +∞ 0

1 0 1/2 +∞ 1/2 +∞ 0

The relationship between covariance and copula parameters is not shown in
Table 3, given that the covariance has zero as limit value in all combinations of
extreme values made with the copula parameters and performance test parameters.

Observe that, under the hypothetical situation where we have two binary tests
with the same perfect association within each individuals group (ψD = −1 and
ψND = −1 or ψD = 1 and ψND = 1) if the tests have perfect negative association,
we need for both tests to have absolutely perfect sensitivities (S1 = S2 = 1) and
absolutely imperfect specificities (E1 = E2 = 0), to model association using θi;
otherwise, we can not use it. If the tests have perfect positive association, we can
model associations with θi values belonging to the interval [2,∞) provided that
the performance parameters belong to the interval (0, 1). In this way, values of θi
very close to 2, will be related with ψi values close of zero.

On the other hand, if we have two tests, whose perfectly negative or positive
dependence structure can be modeled using the FGM copula, we only can have
agreement between the copula parameter and the BP indexes, when both sen-
sitivities are equal to zero and both specificities are equal to one; then, under
those conditions, we can only model associations when θi belongs to the interval
[0, 2]. When the test parameters take values inside the within (0, 1), the θi param-
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eter would be indicating independence between tests while the FGM is indicating
strong dependence between them.

For the Gumbel copula, we evaluated the extreme value 1 because this model
is only applicable for positive dependence and 0 indicates independence. When
the Gumbel dependence parameter indicates perfect positive dependence between
two tests, both with absolutely imperfect sensitivities S1 = S2 = 0 or both with
absolutely perfect specificities E1 = E2 = 1, the θi index takes the zero value indi-
cating perfect negative association. When the tests have performance parameters
belonging to interval (0, 1), the θi parameter indicates independence between tests
when those have perfect Gumbel dependence.

When the diagnostic tests have perfect FGM dependence, the θ index indicates
independence and only when both tests have perfect specificities and absolutely
imperfect sensitivity (Sj = 0), the index expresses a very weak association between
tests (θ ∈ [0, 2]).

Based on these facts, we observe that, the αi parameter has a performance
better than the θi parameter in their relations with the other parameters of asso-
ciation. For all combinations of sensitivity and specificity, αi takes values within
the range allowed by definition. When we have two binary tests negatively or pos-
itively associated with extreme values in their tests parameters, αi takes values in
the interval [0, 2] for both populations, whereas, when the two tests have perfor-
mance parameters belonging to the interval (0, 1), the αi parameter takes values
in the interval [1/2,∞) for diseased and non-diseased individuals. For tests with
dependence structure modeled by the FGM copula, the behaviour of αi within
groups of individuals is similar to that observed when we have two binary tests.
When de dependence structure responds to the perfectly dependent Gumbel cop-
ula, in both populations, αi indicates independence between tests regardless of the
values of their performance parameters.

4. Examples

To illustrate the performance of the indexes, we show two examples, one of
them with simulated data and the other one with a data set used by Bohning &
Patilea (2008) to illustrate their methodology.

4.1. Example with Simulated Data

As a first example, we simulated 10000 pairs of observations with binary de-
pendence structure and the same number of pairs of data for each copula structure
(1000 diseased individuals and 9000 non-diseased individuals), considering the fol-
lowing conditions:

• Three dependence levels: weak (0.2), moderate (0.5) and strong (0.9),

• The dependence is the same in both populations (ψD = ψND, ϕD = ϕND

and φD = φND)
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• The specificities of the dependent tests are the same (E2 = E3 = 0.95) and
the prevalence is relatively lower (p = 0.10)

• Stage 1: the dependent tests have the same relatively high sensitivities (S1 =
S2 = 0.85)

• Stage 2: the dependent tests have the same relatively low sensitivities (S1 =
S2 = 0.45)

We wrote a program in R to simulate pairs of variates with the different de-
pendence forms. To simulate outcomes of the correlated binary variables Z1, Z2

we implemented the algorithm developed by Park, Park & Shin (1996) and to
simulate the variables T1, T2 with FGM structure and the variables V1,V2 with
Gumbel structure, we implemented algorithms introduced by Johnson (1987) as
follows:

1. Binary data (ψ is the correlation coefficient)

• Initialize p1, p2, q1 = 1− p1, q2 = 1− p2 and ψ12

• Let λ11 = log
{
1 + q1p

−1
1

}
, λ22 = log

{
1 + q2p

−1
2

}
and

λ12 =
{
1 + ψ12

√
q1q2
p1p2

}

• Generate X1 ∼ Poisson(λ11 − λ12), X2 ∼ Poisson(λ22 − α12) and
X3 ∼ Poisson(λ12)

• Set Y1 = X1 +X3 and Y2 = X2 +X3

• Set Z1 = 1 if Y1 = 0, else Z1 = 0 and Z2 = 1 if Y2 = 0, else Z2 = 0

• Then, Zj ∼ Bernoulli (pj); j = 1, 2 and ψ12 is the correlation coefficient.

2. FGM data (ϕ is the dependence parameter)

• Initialize ϕ

• Generate variates U1 ∼ U(0, 1), and U2 ∼ U(0, 1)

• Set

T1 = U1

A = ϕ(2U1 − 1)− 1

B = [1− 2ϕ(2U1 − 1) + ϕ2(2U1 − 1)2 + 4ϕU2(2U1 − 1)]1/2

T2 = 2U2/(B −A)

3. Gumbel data (φ is the dependence parameter)

• Initialize φ

• Generate U1 ∼ U(0, 1), U2 ∼ U(0, 1) and U3 ∼ U(0, 1)

• Set W1 = − ln(U1) and Y = − ln(U2)

• Compute β = 1 + φW1 and q = (β − φ)/β
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• If U3 < q, set W2 = βY stop

• If U3 ≥ q, generate U4 ∼ U(0, 1), set X2 = β(Y − lnU4) and stop

• Let V1 = 1− e−W1 and V2 = 1− e−W2

As our data resulted from simulation, so we know all frequencies of individu-
als, but for the data analysis, we assume that we only have the total number of
individuals with negative results in both tests.

The data analysis was made using the Bayesian paradigm, for that, we assumed
that the screening tests have positive dependence (P (ψ < 0) = P (ϕ < 0) = 0)
and we used the Beta(17,122), Beta(39.5, 39.5) and Beta(122, 17) as informative
prior distributions for the weak, moderate and strong dependences respectively.
To obtain the estimates we used a code in Winbugs software and we simulate
60, 000 Gibbs samples from the conditional distribution of each parameter. From
these generated samples, we discarded the first 10, 000 samples to eliminate the
effect of the initial values. The results obtained are showed in Table 4

Table 4: Simulated data with three different dependence structures in two scenarios
and BP indexes estimates.

Scenary fi ψ = 0.2 ψ = 0.5 ψ = 0.9 ϕ = 0.2 ϕ = 0.5 ϕ = 0.9 φ = 0.2 φ = 0.5 φ = 0.9

a 745 800 832 712 725 721 652 551 462

b 116 68 13 131 137 133 152 175 190

c 93 59 12 133 116 123 153 195 188

S1 = 0.85 d 46 73 143 24 22 23 43 79 160

S2 = 0.85 e 95 241 405 20 22 17 23 14 7

E1 = 0.95 f 332 207 53 430 438 417 354 294 249

E2 = 0.95 g 352 213 46 427 420 451 360 308 266

h 8221 8339 8496 8123 8120 8115 8306 8384 8478

θ̂ 3.37 5.63 7.31 0.94 1.01 0.81 1.22 1.33 1.74

α̂ 6.67 44.5 1336 0.93 1.01 0.77 0.94 1.43 2.00

a 238 350 433 198 209 201 275 334 406

b 179 119 21 245 254 261 246 220 214

c 214 105 33 239 239 238 223 246 209

S1 = 0.45 d 369 426 513 298 298 300 256 200 171

S2 = 0.45 e 95 241 405 20 22 17 19 17 15

E1 = 0.95 f 332 207 53 430 438 417 353 329 255

E2 = 0.95 g 352 213 46 427 420 451 365 320 264

h 8221 8339 8496 8123 8120 8115 8263 8332 8466

θ̂ 3.59 6.88 10 0.94 0.94 0.81 1.23 1.34 1.76

α̂ 6.20 39.8 1130 0.93 0.93 0.78 1.28 1.41 1.99

The results presented in Table 4, confirm those shown in Table 3. When the
data have a binary structure with linear dependence, both BP indexes tend to have
high values. It is important to point out that, the sensibility has little effect on the
index estimates but with low sensitivities the θ index shows a slight increase and
the α index shows a opposite behaviour. If the data have a low or moderate FGM
dependence both indexes express independence while for high FGM dependency
both indexes indicate negative association in the data, that behaviour remains
independent of the sensitivity of the tests. With low or moderate type Gumbel
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dependences, the BP indexes indicate independence between tests, while with high
Gumbel dependences the indexes express low dependence.

Table 5: Estimates of BP indexes and unknown quantities of diseased and non-diseased
individuals within group with negative outcome in both screening tests, using
data with binary and copula dependence. (nD = 1,000; nND = 9,000 and
n(D+ND) = 10,000)

Scenary Dependence BP Index n̂D n̂ND d̂ ĥ n̂(D+ND)

ψ = 0.2 θ̂ = 3.37 3,264 6,728 2,310 5,949 9,991

α̂ = 6.67 1,046 8,943 92 8,164 9,989

S1 = S2 = 0.85 ψ = 0.5 θ̂ = 5.63 5,247 4,747 4,320 4,086 9,994

E1 = E2 = 0, 95 α̂ = 44.5 1,113 8,801 186 8,104 9,913

ψ = 0.9 θ̂ = 7.31 6,266 3,728 5,409 3,224 9,994

α̂ = 1336 1,149 7,518 292 7,014 8,666

ϕ = 0.2 θ̂ = 0.94 940 9,043 -36 8,166 9,984

α̂ = 0.93 998 9,002 22 8,125 10,000

S1 = S2 = 0.85 ϕ = 0.5 θ̂ = 1.01 1,010 8,967 32 8,087 9,977

E1 = E2 = 0, 95 α̂ = 1.01 1,000 9,000 22 8,121 10,000

ϕ = 0.9 θ̂ = 0.81 810 9,180 -167 8,295 9,990

α̂ = 0.77 994 9,006 17 8,121 10,000

φ = 0.2 θ̂ = 1.22 1,222 8,759 239 8,022 9,981

α̂ = 0.94 1,000 6,971 17 6,094 7,971

S1 = S2 = 0.85 φ = 0.5 θ̂ = 1.33 1,328 8,665 341 7,999 9,992

E1 = E2 = 0, 95 α̂ = 1.42 1,002 8,997 15 8,331 9,999

φ = 0.9 θ̂ = 1.74 1,731 8,250 745 7,716 9,981

α̂ = 2.00 1,002 8,996 16 8,462 9,998

ψ = 0.2 θ̂ = 3.59 2,841 7,167 2,210 6,388 10,008

α̂ = 6.20 1,635 8,361 1,004 7,582 9,996

S1 = S2 = 0.45 ψ = 0.5 θ̂ = 6.88 4,194 5,801 3,620 5,140 9,995

E1 = E2 = 0, 95 α̂ = 39.8 2,017 7,945 1,443 7,284 9,962

ψ = 0.9 θ̂ = 10.0 4,886 5,100 4,596 4,399 9,986

α̂ = 1130 2,435 6,438 1,948 5,934 8,872

ϕ = 0.2 θ̂ = 0.94 939 9,062 248 8,185 10,001

α̂ = 0.93 976 9,025 285 8,148 10,000

S1 = S2 = 0.45 ϕ = 0.5 θ̂ = 0.94 933 9,069 231 8,191 10,002

E1 = E2 = 0, 95 α̂ = 0.93 971 9,027 269 8,149 9,998

ϕ = 0.9 θ̂ = 0.81 816 9,180 116 8,295 9,996

α̂ = 0.78 941 9,060 241 8,175 10,000

φ = 0.2 θ̂ = 1.23 1,160 8,831 416 8,094 9,990

α̂ = 1.28 999 9,001 255 8,264 9,999

S1 = S2 = 0.45 φ = 0.5 θ̂ = 1.34 1,289 8,730 489 8,064 10,000

E1 = E2 = 0, 95 α̂ = 1.41 1,029 8,971 229 8,305 9,999

φ = 0.9 θ̂ = 1.76 1,652 8,345 823 7,811 10,000

α̂ = 1.99 1,047 8,951 218 8,417 9,998

Using the index estimate, we computed the estimated unknown quantities of
diseased and non-diseased individuals within group with negative outcome in both
tests (d and h in Tables 1 and 2), using equations 11 and 12. We observed that,
when the data have linear binary dependence the θ index overestimate d and nD

and underestimates h and nND, that effect is more evident when the covariance
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level is increased. With weak and moderate linear binary dependences, the α
index tends to overestimates all quantities but the observed bias is very little, if
the dependence is strong, the observed behaviour is similar to the observed with
the other index and it remains regardless of the test sensitivities. See Table 5.

When the diagnostic tests show a weak or strong FGM dependence structure
and the sensitivities are higher than 0.5, the θ index takes a value lower than
one indicating negative dependence which underestimates nD and the estimate
value for d is negative. For moderate FGM dependences the θ index expresses
independence. If the test sensitivities are lower than 0,5, the nD and d quantities
are underestimated while nND and h are overestimated but the estimation biases
are lower than those observed in data with linear binary dependence. For this type
of dependences with high sensitivities the α index shows estimates very close to
the true quantities but if the tests have sensitivities lower than 0.5, the behaviour
is similar to that observed with binary data however the estimation biases are
lower. See Table 5.

The obtained results using data within dependence type Gumbel, have a be-
haviour very similar with the at observed in binary linear dependent data, but in
this case, the estimation bias is lower in all cases. Table 5

4.2. Example with Published Data

Bohning & Patilea (2008) used a published data set to illustrate the perfor-
mance of their two indexes. The authors took the subset of data of serum choles-
terol and body mass index as risk factors for cardiovascular disease considered in
the Framingham Heart Study (Shurtleff 1974). In agreement with these authors,
for that data, conditional on the disease status, the risk factors are positively
and significantly associated as when measured by the Mantel-Haenszel odds ra-
tio with the summary taken over disease status. With the estimate values of the
indexes, they estimated the quantities of diseased and non-diseased individuals
within group with negative outcome in both tests, using for that the equations 11
and 12.

We fit models assuming covariance, FGM dependence and Gumbel dependence
and we obtained prevalence, performance test and dependence estimates under
Bayesian paradigm. As we have six observed frequencies in the cross table and we
have seven parameters to estimate, we have a non-identifiable model. So, in the
same manner as Joseph, Gyorkos & Coupal (1995) we fitted models using Beta(a,b)
as informative prior distributions on dependence parameters and Beta(1/2, 1/2)
as non-informative prior distribution on prevalence and test parameters. Since
we have no prior information on dependence parameters, we used the three prior
distributions employed in the example with simulated data and we used the De-
viance Information Criteria (DIC) to select the better fit. With our estimates,
we computed the values of the BP indexes and we assumed that d and h are not
known, so we use the estimators d̂ and ĥ to predicting the known nD and nND.
The results are showed in Table 6.
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Table 6: Estimates of indexes and disease classes in a study with completely known
disease status. (Observed frequencies: a = 51, b = 19, c = 70, d = 86, e = 69,
f = 20, g = 38, h = 60, n(D+ND) = 413)

Model Index n̂D n̂ND d̂ ĥ n̂(D+ND)

Böhning* θ̂ =1,36 225 188 85 61 413

α̂ =3.79 242 171 104 44 414

FGM copula* θ̂ =1.32 219 183 79 56 402

α̂ =2.48 205 154 65 27 359

Covariance θ̂D =1.57 261 - 121 - -

θ̂ND =1.08 - 202 - 75 463

α̂D =8.32 366 - 227 - -

α̂ND =3.14 - 161 - 34 527

Gumbel copula θ̂D =0.45 75 - (-65) - -

θ̂ND =0.78 - 129 - (-11) 204

α̂D =0.23 146 - 6 - -

α̂ND =0.27 - 130 - 3 276

*Models with homogeneous dependence

With this data set, the index values obtained after of fitting a model with
Gumbel parameter show negative dependence between test outcomes and the es-
timates of the unknown quantities are negative which makes no sense, indicating
the data do not fit well with the Gumbel copula. The model assuming binary de-
pendence eliminates the assumption of homogeneity retained by the Böhning and
FGM models. That model overestimates the numbers of individuals not verified
by “gold standard” expressing that dependence between the tests do not have lin-
ear binary structure. The results obtained using the model with FGM dependence
shows a better fit despite, it tends to underestimate both indexes a little and un-
derestimate the unknown quantities. This implies tending a contradiction because
in agreement with Bohning & Patilea (2008) when θ > 1, the expected value of ni,
(i = D,ND) will be below the true value of n and the amount of underestimation
is determined by the value of θ; the higher value of θ, the higher the underesti-
mation; therefore, if the index values obtained with FGM fitted model are lower
than Böhning index, the estimate quantities for ni should be higher than those
observed with the Böhning model. In both models, the θ index estimate shows
better behaviour than the other index.

5. Conclusions

In many clinical diagnostic procedures, it is necessary to use two or more
(observable or not) biological traits expressed on a continuous scale in designs that
includes verification with gold standard only for those individuals with at least one
positive outcome in the screening tests. To obtain the diagnostic, those measures
are dichotomized using a cut point, in this way, the final result is one of two values
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(positive or negative). The continuous traits measured can be correlated in some
way (not necessarily linear dependence) but when performing data analysis, can
occur dependence is assumed with binary structure and not on the continuous
structure. Given that the study planning has verification bias, some values in
cross table are unknown so it is very complex to estimate the prevalence and
performance test parameters using the maximum likelihood procedure. Many
authors have considered the estimation problem using models with latent variables
to complete the data set, others as Bohning & Patilea (2008) have developed
reparametrizations using the observed incomplete data under binary structure
assumption. In this paper, we studied the performance of models developed by
Bohning & Patilea (2008) and we compared them with the performance of models
that use covariance and copula functions to obtain information on the dependence
between diagnostic tests.

Despite the covariance and the θ index have different parametric spaces, within
the diseased population, we observed that, regardless of the population (diseased
and non-diseased individuals) it exists a perfect linear relation between them,
whenever there is the diagnostic tests have binary dependence structure, it is pos-
sible that the θ index to take values lower than zero and this range of values is
not considered within the construction of the index. To have θ < 0 indicates that
we have at least one of the tests with sensitivity zero or at least one test without
specificity and both situations are unacceptable in practical terms. The α index
does not identify covariances lower than −0.5; and when tests with perfect sen-
sitivities (Sj = 1) have a strong dependence expressed by a covariance close to
unity, the α index takes values in a very constrained range [0,2] indicating very
weak dependence; therefore, in cases where tests with perfect performance have
perfect binary dependence structure, the BP index either may indicate values not
allowed by construction or may underestimate the true dependence. It is obvious
that tests with absolutely perfect or imperfect performance is a hypothetical situ-
ation very unlikely to occur in reality. In our simulation study with more realistic
conditions, we observed that the BP indexes take values within range (0,∞), the
relationship between covariance and α index grows more exponentially and the
same do not show strong changes with the differences in the test sensitivities.

It is totally wrong to use the BP indexes with dichotomized data that initially
have some of the two copula dependence structures studied, therefore, to use some
of those indexes developed to binary data with dichotomized data, leads to erro-
neous conclusions regarding the dependence between tests which modify the final
diagnostic result. In this work, we used two copula functions that model weak
non linear dependences and the BP indexes failed to model them, whenever there
are many other copula families which the BP indexes relationship could be stud-
ied. On the other hand, when the continuous traits are perfectly dependent with
some of the copula structures studied, and we evaluate the dependence hypothesis
using the dichotomized results and assume binary covariance as parameter, the
estimation leads to conclude that test outcomes are independent from each other
what directly affects the estimation of the test performance parameters and the
prevalence.
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Abstract

The randomized response technique (RR), introduced by Warner (1965)
was designed to avoid non-answers to questions about sensitive issues and
protect the privacy of the interviewee. Some other randomized response
techniques have been developed as the Mortons technique which was devel-
oped based on a finite population sampling without replacement. In this
paper we are presenting an estimation of the population (total of individuals
N) based on Mortons technique assisted for a logistic regression model and
considering a specific sensitive characteristic A, with an auxiliary variable
associated to the sensitive variable. Analyses were conducted assuming finite
population sampling and based on the p-estimators theory through a model
assisted estimator. In addition, we propose an estimator of the variance of
the estimator, as well as the results of simulations showing that the model as-
sisted estimator of the variance decreases compared with an estimator which
depends of the sampling design.

Key words: Model assisted inference, Randomized response, Sampling de-
sign, Sensitive question.

Resumen

La técnica de respuesta aleatorizada (RA) introducida por Warner (1965),
fue diseñada para disminuir la no-respuesta sobre aspectos sensibles y para
proteger la confidencialidad del entrevistado en muestreos con reemplazo.
Otras técnicas RA para muestreos sin reemplazo en poblaciones finitas, como
la de Morton, han sido desarrolladas y comparadas. En este trabajo se expo-
nen los resultados de la estimación del total de individuos de una población
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finita con la técnica de Morton, considerando una característica específica
sensitiva A en un muestreo sin reemplazo y asistido por un modelo de regre-
sión logística, con una variable auxiliar asociada a la variable sensitiva. Se de-
sarrolla en el contexto de poblaciones finitas y en el marco de la teoría de los
estimadores-π, a través de un estimador asistido por el modelo. Asimismo,
se propone un estimador para la varianza del estimador y se muestra, vía
simulación, que este estimador para la varianza disminuye, comparado con
otro estimador que depende únicamente del diseño de muestreo.

Palabras clave: diseño de muestreo, inferencia asistida por modelo, pre-
gunta sensitiva, respuesta aleatorizada.

1. Introduction

Surveys represent procedures used by researchers to obtain information about a
sample of individuals. Sometimes surveys include one or more questions related to
personal information that could be considered as “private” and cause the individual
to feel at risk (Méndez, Eslava & Romero 2004), and therefore, the individual
refuses to participate or provides untrue responses.

When interviewers try to obtain honest responses, in studies where some sen-
sitive issues, such as drug use, tax evasion, or sexual preferences, through survey
sampling, they may face difficulties that intrinsically belong to the interviewee: at-
titude, time available, a different way of thinking, among others. (Sánchez 1985).

Strategies to minimize resistance from the interviewee to provide the real re-
sponse, when the topic might represent an invasion of privacy are classified into
two types. The first strategy is based on the phrasing of the questions that contain
the characteristic that wants to be measure in such a way that indirect questions
are used to obtain the real response. The second strategy refers to the method
of randomized response (RR), introduced by Warner (1965). The RR is a spe-
cially designed method to ensure the privacy of the interviewee when sensitive,
delicate, or embarrassing topics are studied. With these two strategies, the re-
searcher avoids that the behavior of those surveyed gets skewed toward socially
desirable responses. In this regard, real responses are obtained about sensitive
issues (true/false) while assuring the confidentiality of the responses. In other
words, the interviewer will not know the real answer.

Warner (1965) developed a technique called Randomized Response that guar-
antees the anonymity of the interviewee. It consists of a random mechanism that
selects one of two complementary questions, as follows: Question (1): “do you have
a specific characteristic A?” whereas Question (2) is “do you have the complemen-
tary characteristic?” where A represents the sensitive characteristic of interest
and, the absence of such characteristic (Estevao, Hidiroglou & Sarndal 1999). The
interviewee will provide the answer (yes or no), however, the interviewer will not
know which question is answered. In this way, the anonymity of the interviewee is
protected. This technique is also known as the Complementary Question Model.

As an alternative to Warner’s Model of Complementary Questions Greenberg,
Abul-Ela & Horvitz (1969) proposed a Model of Randomized Responses that con-
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tain two unrelated questions. One question addresses the sensitive issue of in-
terest and the second one is innocuous. In other words, the second question is
non-sensitive.

Horvitz, Greenberg & Abernathy (1976) attributed to R. Morton the idea about
the Randomized Response Technique in which the random selection of unrelated
questions are made among three options: (1) the sensitive question itself, (2) an
instruction that indicates “yes”, and (3) an instruction that indicates “no”, that can
be chosen with their respective probabilities P1,P2,P3, where P1 + P2 + P3 = 1.
In this paper, we will call this model MU (Morton Unrelated), in allusion to R.
Morton who had the original idea.

In order to understand the objective of this paper, we will consider a finite
population of N units with a sensitive characteristic yk, (k = 1, 2, . . . , N) in which
the total, Ty = y1 + y2 + · · · + yN wants to be estimated. The main objective
of this paper is to obtain better estimations of Ty (Soberanis, Ramírez, Pérez &
González 2008) through Sampling without Replacement and the design of Morton
Unrelated (MU), exploring estimators assisted by the Generalized Logistic Regres-
sion Estimator (GLRE) proposed by Lehtonen & Veijanen (1998a). In addition,
the standard deviations of the estimators will be compared through simulation and
recommendations will be provided. Thus, in this paper, an estimator of Ty will be
proposed using a super population model: The Model of Logistic Regression.

2. The Generalized Logistic Regression Model

Let U = 1, . . . , k, . . . , N be a finite population of participants. The subset
A ⊂ U is defined by a sensitive characteristic A; therefore, the RR technique is
used to protect the anonymity of the sample of individuals (Soberanis et al. 2008).
We will estimate TA =

∑
U

yk where yk = 1 if k ∈ A, and yk = 0 if k /∈ A. The

selection of sample S is conducted under the sampling design p(s) with positive
inclusion probabilities πk and πkl, where

πk = Pr(S ∋ k) =
∑

S∋k

p(s) y πkl = Pr(S ∋ k& l) =
∑

S∋ k& l

p(s)

The estimator GLRE is generated with the predicted values obtained through
the adjustment of the following model (Estevao, Hidiroglou & Sarndal 1995): We
need to estimate the total population T =

∑
U yk. A sample S is obtained as-

signing to unit k the sampling weight ak = 1
πk

. x represents an auxiliary vector
of dimension J ≥ 1, and xk represents the a priori value for unit k ∈ U . In
this method, data {(yk, xk) : k ∈ s} are observed. For those units that are not
included in the sample, y − k is unknown but it is possible to obtain a value µk

that approximates yk for all population units even though the approximation is
not the most precise. Now, let

TA =
∑

U

µk +
∑

U

(yk − µk)
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where the sum
∑

U µk is the dominante term and the residual sum
∑

U (yk − µk),
even though it is small, it needs to be estimated. Let us assume that xk is situated
in the sampling frame for all k ∈ s. The predicted values ŷk are obtained from
the supplementary information adjusting a model in such a way that Eξ(Yk |
xk;β) = µ(xk | β), where Eξ is the expectation operator under the theoretical
model ξ, µ(xk | β). In addition ξ, µ(xk | β) is a specific function, and β is an
unknown vector of parameters in the model. The function of model ξ is to describe
the elements in the population in a “reasonable” way as if they would have been
generated by the model itself.

However, it is not expected that the population was generated by the model ξ,
therefore, conclusions about population parameters, including T̂A, are independent
from assumptions underlying the model.

In this manner, using the data from sampling{(yk, xk : k ∈ s}, β̂ is obtained
as the maximum likelihood pseudo-estimator (MLEP) of β, as it includes the

sampling weights. In addition, the predicted values ŷk = µ(xk | β̂) = µ̂k are
calculated, for each k ∈ U . Further, using µ̂ and the Horvitz-Thompson estimator
(HT) for the residual sum, we obtain:

T̂LGREG =
∑

U

µ̂k +
∑

s

π−1
k (yk − µ̂k) (1)

Equation (1) is the GLRE from Lehtonen & Veijanen (1998a).

In practice, model ξ works as a way to find β̂, in order to use it in the estimation
functions.

2.1. The LGREG for Model MU

The Generalized Logistic Regression Estimator T̂A,LGREG for T̂A, proposed
previously, is an application of the Lehtonen & Veijanen (1998a), which, as we
have mentioned before, is an estimator assisted for a Logistic Regression Model.
In other words, for y = (y1, . . . , yk, . . . , yN)t, the following model is suggested:

Pr{Yk = 1 | xk;β} =
ex

t

k
β

1 + ex
t

k
β
, k = 1, 2, . . . , N (2)

From now on, this super population model will be referred as model ξ. In
addition, for Morton’s (MU) Random Mechanism (RR), it is defined:

Zk =





yk with probability P1

1 with probability P2

0 with probability 1− P1 − P2

(3)

k = 1, 2, . . . , N . Thus,

E(Zk) = EξERC(Zk)

= Eξ[P1yk + P2]

= P1Eξ(yk) + P2

= P1µk + P2

(4)
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where

µk = Eξ(Yk) = Pr{Yk = 1 | xk;β} =
ex

t

k
β

1 + ex
t

k
β

(5)

Therefore, if λk = E(Zk) = Pr{Zk = 1 | xk;β}, we obtain:

λk = P1µk + p2 (6)

Now,

tA =
∑

U

yk =
∑

U

µk +
∑

U

(yk − µk) (7)

and,

T̂A =
∑

U

µ̂k +
∑

s

(yk − µ̂k)

πk

(8)

where

µ̂k = µ(xt
k B̂) =

ex
t

k
B̂

1 + ex
t

k
B̂

(9)

Thus, β̂, satisfies the following equation

∑

S

[
yk − µ(xt

k B
]xk

πk

= 0

where β represents the population parameter defined for the likelihood equation:

∂ logL(β)/∂β = 0

which is equivalent to the following equation

∑

U

[
yk − µ

(
xt
k B
)]
xk = 0

For practical purposes, we will use either β or B.

For the open sampling, the likelihood function L(β) is given by:

L
(
β | y

)
=
∏

k∈A

µ
(
xt
k β
) ∏

k∈U−A

[
1− µ

(
xt
k β
)]

Regarding the Random Responses problem, the vector of observations is Zs =
(Zk)k∈s its parameter, λ = (λk)k∈s, and the likelihood function is given by

L(β | z) =
∏

U

Pr{Zk = zk}

=
∏

U

λzk
k (1− λk)

1−zkI{0,1}(zk)
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as if (Zk, xk) was observed for each k ∈ U , as in a census. Thus,

l(β | z) = ln L(β | z)

=
∑

U

[
zk ln λk + (1− zk) ln {(1− λk)

]

It should be noted that the function l(B | z) reaches a maximum in B, and is
defined and characterized by the following equation:

∂l(B | Z)

∂B
= 0 ⇔

∑

U

[
(

zk − (P1µk + P2)

) µk(1− µk)

P2(1 − P2) + P1µk(1 − P1µk − 2P2)

]

x
k

= 0

(10)

Thus, B is defined implicitly as the one parameter that maximizes l(B | Z).

Also, the estimator π of l(B | z) is given by:

Îπ(β | z) =
∑

s

π−1
k

[
zk ln λk + (1 − zk) ln (1− λk)

]

Where λk is given by (6).

In addition,
∂λk

∂β
= P1

∂µk

∂β
= P1µk(1− µk)xk

thus,

∂Îπ
∂β

=
∑

s

π−1
k

[
zk
λk

∂λk

∂β
−
( 1− zk
1− λk

)∂λk

∂β

]

= P1

∑

s

π−1
k

[
(zk − λk)µk(1 − µk)

λk(1− λk)

]
xk

but
µk(1− µk)

λk(1− λk)
=

µk(1− µk)

P2(1− P2) + P1µk(1− P1µk − 2P2)

then,

∂Îπ
∂β

= P1

∑

s

π−1
k

[
(zk − λk)

µk(1− µk)

P2(1 − P2) + P1µk(1 − P1µk − 2P2)

]
xk

= P1

∑

s

π−1
k

[(
zk − (P1µk + P2)

) µk(1 − µk)

P2(1− P2) + P1µk(1− P1µk − 2P2)

]
xk

Therefore, by solving the following equation
∂Îπ
∂β

= 0, we obtained β̂.

Once β̂ is obtained, the estimator proposed for TA is

T̂A,LGREG =
∑

U

µ̂k +
1

P1

∑

s

Zk − (P1µ̂k + P2)

πk

(11)

where µ̂k is given by (9).
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2.2. Estimation of the Estimator Variance

Base on the π estimators theory (Sarndal, Swensson & Wretman 1992, Wret-
man, Sarndal & Cassel 1977, Lehtonen & Veijanen 1998a), the following estimator

is proposed for V ar(T̂A,LGREG):

V̂ (T̂A,LGREG) =

(
1

P 2
1

)
∑∑

s

∆kl

πkl

(
Zk − λ̂k

πk

)(
Z1 − λ̂1

π1

)
(12)

3. An Estimator that only Depends on the Sampling

Design

Based on Morton’s random response technique and a sampling design p(s), a
π-estimador for tA, is given by Soberanis et al. (2008):

T̂A,π =
1

P1

∑

S

Zk

πk

−
NP2

P1
(13)

Its variance is given by

V (T̂A,π) =
1

P 2
1

{
∑∑

U

∆klλ̂kλ̂1 +
∑

U

λk(1− λk)

πk

}

Where λ̂ = λk/πk. So, the estimator proposed for the variance of the estimator
is:

V̂ (T̂A,π) =

1

P 2
1

{
∑∑

s

∆̆kl

(
Zk

πk

)(
Z1

πl

)
+P1(1−P1 − 2P2)

∑

s

Ẑk

π2
k

+P2(1− P2)
∑

U

1

πk

}

Where Ẑk =
Zk − P2

P1
y ∆̆kl =

πkl − πkπl

πkl

4. Simulations using Simple Random Sampling with

No-Replacement

This section analyzes the properties of the estimator (11) in the specific case of
Simple Random Sampling with No-replacement (SRSN). If the sampling design,
p(s), is the SRSN, then,

πk =
n

N
= f ; πkl =

n(n− 1)

N(N − 1)
, k 6= 1; πkk = πk

∆kl = πkl − πkπl =
−f(1− f)

N − 1
, k 6= 1; ∆kk = πk(1 − πk) = f(1− f) (14)
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5. Comparison of the Estimators T̂A,π and T̂LGREG,π

In order to compare the estimators T̂A,π and T̂LGREG,π, a population with
B = (B0, B1)

′ = (−3, 0.1)′ with A = 490 “successes” using the Accept-Reject
algorithm to generate random variables.

5.1. Simulations Results

Table 1: Mean, minimum, maximum and percentiles of estimators T̂A,π and T̂A,LGREG,
using N = 700, A = 490, n = 140 and N = 800 (Number of simulations).

Percentiles

Estimator Mean DE Minimun 25% 50% 75% Maximum

T̂A,π 490.164 39.04 342.857 464.285 492.857 514.285 621.428

T̂A,LGREG 489.818 36.22 383.185 466.997 491.953 513.498 594.419

6. Benefits of the Estimator’s Variance of T̂A,LGREG

For the simulated population, Section 6.1, shows that

V̂ (T̂A,LGREG) =

(
1

P 2
1

)
∑∑

s

∆kl

πkl

(
Zk − λ̂k

πk

)(
Zl − λ̂l

πl

)

is an excellent estimator of the variance of T̂A,LGREG.

6.1. Simulation Results for the Estimators Variance of T̂A,LGREG

According to Table 2, standard deviation of T̂A,GLRE is 36.22684, whereas our
estimator given by (12) is, on average, 33.601760 and standard deviation 1.344364.

Table 2: Mean, minimum, maximum, and percentiles of the variance of the estimator
T̂A,LGREG (N = 700).

Percentiles

Estimator Mean DE Minimum 25% 50% 75% Maximum

V̂ (T̂A,LGREG) 33.601 1.344 29.431 32.717 33.660 34.591 38.248

7. Discussion and Conclusions

7.1. Discussion

This paper focuses on the use of auxiliary variables as well as on models for the
random response sampling (RR) in finite populations, i.e. in populations where all
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observation units are identifiable. Furthermore, the sampling designs used were
sampling designs with no replacement due to the sensitivity of the variable of
interest.

The proposal is based on the work of Lehtonen & Veijanen (1998a), Lehtonen
& Veijanen (1998b), Estevao et al. (1999), which was developed for sampling in
finite populations. In other words, for a type of sampling where the researcher is
focused on exhaustive data collection until the process to delimit and define the
fundamental variables occurs constantly (Pandit 1996, Goulding 2002).

The use of auxiliary variables in a conventional way, i.e. when the variable of
interest is correlated with the auxiliary variable in the context of RR, does not
necessarily improve the Simple Random Sampling, at least for the Rao-Hartley-
Cochran scheme. This happens because the auxiliary information is not used
properly, as the variable of interest is a discrete variable. In fact, the proper use of
the variable of interest is through a model that assists in the problem of estimating
the population total, hence the use of the Generalized Logistic Regression Model.

7.2. Conclusions

If the logistic regression model describes the population adequately, then the
estimators GLRE and MU should be used. The results suggest that by using
this method, we will obtain a significant reduction in the estimator’s variance. It
should be noted that it is not necessary that the model is “true”, as it represents a
process in which the population being studied is generated. However, additional
simulations under different conditions should be done in order to compare them
to the results obtained in this paper. Only then specific recommendations on the
most appropriate approach can be provided.

[
Recibido: octubre de 2010 — Aceptado: julio de 2011
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Abstract

The aim of this work is to show that on certain ocasions classic deci-
sion rules used in the context of options (Stochastic Dominance criteria and
Mean-Variance rules) do not provide a selection of one specific option over
the other, therefore, the need of working with other criteria that can help
us in our choice. We place special interest in economic and financial appli-
cations.

Key words: Mean, Variance, Stochastic dominance.

Resumen

El objetivo de este trabajo es mostrar que en ocasiones las reglas clásicas
de decisión sobre inversiones (reglas de Dominancia Estocástica y reglas de
Media-Varianza) no siempre conducen a una selección de una inversión sobre
otra, surgiendo la necesidad de trabajar con otros criterios que ayudan en
dicha elección cuando los clásicos no conducen a ninguna selección concreta.
Se pone principal interés en las aplicaciones de carácter económico-financiero.

Palabras clave: dominancia estocástica, media, varianza.

1. Introducción

The use of Mean-Variance rules (MV) or Stochastic Dominance rules (SD) may
not be as useful as desired, since it might be the case that these criteria do not
lead to selection of an investment over another. For example, suppose that there
are two investments X and Y , with the following characteristics:

E(X) = 20000, σX = 20.2

E(Y ) = 1, σY = 20

aProfessor. E-mail: ealmarazluengo@mat.ucm.es
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Where E(X) and E(Y ) denote the expectations of X and Y , respectively and
σX and σY their standard deviations. Note that neither is preferred over the other
(X is not preferred over Y , and Y is not preferred over X) using MV criteria, this
is because E(X) > E(Y ) but σX > σY . But there is no doubt that almost
all investment decision-makers would select X . That is, MV rules have not been
capable of choosing one investment over another even though most decision makers
would have selected X .

This problem is not new, for example Baumol (1963) noticed this and suggested
a different approach to selecting investments known as “Expected Gain-Confidence
Limit Criterion” as a replacement for the MV decision rules. Baumol argued that
an investment with a high standard deviation σ will be relatively safe if its expected
value µ is large enough. He proposed the following index of risk: RI = µ − kσ,
where k is a positive constant that represents the level of risk aversion of the
investor. Another measure to evaluate an investment is known as Sharpe ratio,
which measures the profitability of a title independent from the market, that is,
it measures the fluctuation of the investment compared to the market.

Let us now propose the following example in which the SD rules will be applied.
Let X be the asset which provides 1 euro with probability 0.01 and provides the
value 1000000 euros with probability 0.99; and let Y be the asset which provides
2 euros with probability 1. It would not be strange to expect that nearly 100% of
investors would prefer asset X over asset Y , but the SD rules are not conclusive
in this case. For example, assume utility function:

U(x) =

{
x, if x ≤ 1

1, if x > 1

In this case, it is easily verified that, investors who have this utility function
will prefer Y over X . From this, it can be deducted that, these investors who have
an “extreme utility” do not represent the majority of investors.

For the reasons discussed above, it has been necessary to establish alternative
decision rules to help decide in cases where the above rules (SD and MV) do not
allow selection of an investment over another. These rules are known as “Almost
Stochastic Dominance rules” (ASD). With ASD rules it is possible that, given two
assets X and Y , whose distribution functions do not have any preference using SD
rules, but with a “ minor change” in the expression of the distribution functions,
reveal a preference, and it is possible to select one over another. This small change
in the distributions removes extreme preferences (profits), considering the profits
that are more common among investors. The utility function above example is a
case of extreme utility.

The advantages of ASD over SD and MV are:

1. ASD is able to rank investments in cases where SD and MV are inconclusive.

2. ASD remove from the SD efficient set, alternatives which may be worse for
most investors.
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3. ASD shed light on the efficient portfolio selection problem and the horizon
of the investment. It is possible to establish a relationship between the
percentage of equity in the efficient portfolio and the investment horizon.
That is, ASD can help investors in choosing their investment portfolio.

Let us continue with the previous example with assets X and Y described
above. Let F be the distribution function of X defined as:

F (x) =





0, if x < 1

1/100, if 1 ≤ x < 1000000

1, if x ≥ 1000000

and let G be the distribution function of Y defined as:

G(y) =

{
0, if y < 2

1, if y ≥ 2

Their representation is given in the next figure, in that, it is possible to see
how the distributions intersect, also it is representing the area between these two
distributions:

Figure 1: Distributions F and G and area between them.

Although as noted, most investors prefer would F (X) over G (Y ), technically,
and using the definition of FSD1, there is no dominance in that sense, because
the distributions intersect. Previously, this fact was shown noticing that there
are some extreme preferences (profits) which made G preferable (better) to F .

1FSD: First order Stochastic Dominance. It is said that random variable X with distribution F
dominates random variable Y with distribution G in the first order degree stochastic dominance,
if F (x) ≤ G(x) for all x and with at least one point in which the inequality is strict.
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Moreover, in this example, there is no SSD2 or MV (for more information about
SD or MV see Shaked & Shanthikumar (2007), Almaraz (2009), Almaraz (2010)
o Steinbach (2001)). ASD criteria, have come up as an extension of SD criteria
to help in these situations. Intuitively, if the area between the two distributions
which causes the violation of the FSD criterion (area A1 in the example) is very
small relative to the total area between them (area A1 + A2 in the figure), then
there is dominance of one over another for almost all investors (that is, those with
reasonable preference). Hence the name of ASD criteria.

Formally, let S be the range of possible values that both assets can take (or in
general two random variables) and S1 is defined as the range of values in which
the FSD rule is violated:

S1(F,G) = {t : G(t) < F (t)} (1)

where F and G are the distribution functions of the assets (or random variables)
under comparison. ε is defined as the quotient between the area in which FSD
criterion is violated and the total area between F and G, that is:

ε =

∫
S1
(F (t) −G(t))dt∫

S
|F (t)−G(t)|dt

(2)

Another way to write this:

ε =

∫
S1
(F (t)−G(t))dt∫

S1
(F (t)−G(t))dt +

∫
S̄1
(G(t) − F (t))dt

=
A1

A1 +A2
(3)

where S̄1 denotes the complementary set of S1 and Ai, i = 1, 2 are the areas
described previously.

For 0 < ε < 0.5, it is said that F dominates G by ε − AFSD. The lower
the value of ε the higher degree of dominance. Almost First degree Stochastic
Dominance criterion (AFSD) is:

Definition 1. Let F and G be two distribution functions with values in the range
of S. It is said that F dominates G by AFSD (for a particular ε, or also ε-AFSD)
and it is denoted F ≥AFSD G, if and only if:

∫

S1

[F (t)−G(t)]dt ≤ ε

∫

S

|F (t)−G(t)|dt (4)

where 0 < ε < 0.5.

And the definition of Almost Second degree Stochastic Dominance criterion
(ASSD) is:

2SSD: Second order Stochastic Dominance. It is said that the random variable X with dis-
tribution F dominates random variable Y with distribution G in the SSD sense if

∫
x

−∞
(G(t) −

F (t)) ≥ 0 for all x and with at least one point in which the inequality is strict.
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Definition 2. Let F and G be two distribution functions with values in the range
of S. It is said that F dominates G by ASSD (for a particular ε, or also ε-ASSD)
and it is denoted F ≥ASSD G, if and only if:

∫

S2

[F (t)−G(t)]dt ≤ ε

∫

S

|F (t)−G(t)|dt (5)

and EF (X) ≥ EG(Y ), where 0 < ε < 0.5 y S2(F,G) = {t ∈ S1(F,G) :
∫ t

inf S
G(x)dx <∫ t

inf S F (x)dx}.

It can be shown that AFSD implies condition EF (X) ≥ EG(Y ), but in (5) this
implication is not true and therefore must appear in the ASSD definition.

The paper is organized as follows: in first Section, the decision problem will be
introduced; in Section 2, principal results in the literature about Almost Stochastic
Dominance will be shown, in Section 3, examples of ASD criteria applications
in the economic context will be explained (laboratory and real examples, which
constitute the main practical contribution of the paper). Finally, in Section 4,
main conclusions of this work will be presented.

2. Main Results

In this section, the most noteworthy results about ASD will be described.

Proposition 1. Let X and Y , be two random variables with distributions F and
G respectively. Then:

1. F dominates G in the AFSD sense, if and only if, there exists a distribution
F̃ such that F̃ ≥FSD G, and it happens that:

∫

S

|F (t)− F̃ (t)|dt ≤ ε

∫

S

|F (t)−G(t)|dt (6)

2. F dominates G in the ASSD sense, if and only if, there exists a distribution
F̃ such that F̃ ≥SSD G, and it happens that:

∫

S

|F (t)− F̃ (t)|dt ≤ ε

∫

S

|F (t)−G(t)|dt (7)

That is, the difference between F and F̃ must be relatively small (0 < ε < 0.5).
Having condition ε < 0.5 ensures that it is impossible than both distributions F
and G to dominate each other according to AFSD, because if F dominates G in
AFSD sense, then EF (X) > EG(Y ) (see proposition 2).

Proof . See Leshno & Levy (2002).
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Proposition 2. Let X and Y be two random variables with distribution functions
F and G, respectively. If F dominates G in the ε-AFSD sense and F and G are
not identical, then EF (X) > EG(Y ). So, it is impossible that F dominates G in
the ε-AFSD sense and that G dominates F in the ε-AFSD sense.

Proof . See Leshno & Levy (2002).

As in the case of SD, there is also a characterization of the ASD criteria by
utility functions. To address this issue, it is necessary to define the following sets:

Definition 3. Let S be the support of the random variables X and Y , the fol-
lowing sets are defined:

• Let U1 be the set of all non-decreasing and differentiable utility functions,
U1 = {u : u′ ≥ 0}.

• Let U2 be the set of all concave and two time differentiable utility functions,
U2 = {u : u′ ≥ 0, u′′ ≤ 0}.

• U∗
1 (ε) = {u ∈ U1 : u′ ≤ inf{u′(x)}[ 1

ε
− 1], ∀x ∈ S}.

• U∗
2 (ε) = {u ∈ U2 : −u′′ ≤ inf{−u′′(x)}[ 1

ε
− 1], ∀x ∈ S}.

Theorem 1. Let X and Y be two random variables with distribution functions F
and G respectively.

1. F dominates G in the ε-AFSD sense, if and only if, for all function u ∈ U∗
1 (ε)

it happens that EF (u) ≥ EG(u).

2. F dominates G in the ε-ASSD sense, if and only if, for all function u ∈ U∗
2 (ε)

it happens that EF (u) ≥ EG(u).

Proof . See Leshno & Levy (2002).

Proposition 3. Let X and Y be two random variables with distribution functions
F and G respectively.

1. F dominates G in the FSD sense, if and only if, for all 0 < ε < 0.5, F
dominates G in the ε-AFSD sense.

2. F dominates G in the SSD sense, if and only if, for all 0 < ε < 0.5, F
dominates G in the ε-ASSD sense.

Proof . The first part of the proposition will be proven.

Let us assume that F dominates G in the FSD sense, then for all t it happens
that S1(F,G) = ∅, in this way, for all 0 < ε < 0.5:

∫

S1

[F (t)−G(t)]dt = 0 ≤ ε

∫

S

|F (t)−G(t)|dt,
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and F dominates G in the ε − AFSD sense. Let us now assume that for all
0 < ε < 0.5, F dominates G in the ε − AFSD sense. If µ(S1) = 0, where µ
denotes the Lebesgue’s measure over R, then as F and G are non-decreasing and
continuous on the right functions, for all t, F (t) ≤ G(t), that is, F dominates G
in the FSD sense. If µ(S1) > 0 and there is no FSD, it will be proven that there
is no AFSD for some ε > 0.

It will be denoted by ε0 =
∫
S1
[F (t) − G(t)]dt > 0. For ε = ε0

2
∫
S
|F (t)−G(t)|dt

,

we have ε0 = 2ε
∫
S
|F (t) − G(t)|dt > ε

∫
S
|F (t) − G(t)|dt. That is, F does not

dominate G for any ε, as intended to prove.

Part 2 is analogous.

3. Financial Applications of Almost Stochastic

Dominance

Many authors argue that as the investment horizon increases, an investment
portfolio with a higher proportion of assets will dominate, or will be preferred
over a portfolio of predominantly government bonds, although this is not in accor-
dance with SD rules, that is, in this case there is some type of dominance, ASD.
Therefore, investors prefer long-term assets over bonds, moreover, as the invest-
ment horizon increases, the set of “almost all” investors becomes the set of “all”
the investors. (See Bernstein (1976), Leshno & Levy (2002) and Bali, Demirtas,
Levy & Wolf (2009)).3

Examples of this fact will be proposed.

Example 1. Let us consider two simple investments: one bond which has an
annual return of 9% with probability 1, and one asset which annual return of −5%
with probability 0.5, and 35% with probability 0.5. The target is defining what
type of investment is more attractive for investors. The fact mentioned above, will
be confirmed, as the horizon of the investment advances, the asset will be more
clearly preferred over bonds.

Let X be the random variable which represents the annual return of the asset
and let Y be the random variable which represents the annual return of the bond.
Let F be the distribution function of X , and G the distribution function of Y .
The return of the asset in the first year is X(1) = 1 + X0, being X0 the initial
capital destined to the investment in assets and for the case of the bonds, this will
be Y (1) = 1 + Y0 with Y0 the initial capital destined to the investment in bonds.
The return after n periods (years, in this case) will be X(n) =

∏n

i=1[1 +X(i)] and
Y (n) =

∏n

i=1[1 + Y (i)] in assets and bonds, respectively.

For this example, it will be assumed, without loss of generality, that X0 =
1 = Y0. The procedure that will be followed is to calculate, for each year n,
the possible returns of the investment in assets and bonds; this will provide a
series of values for random variables with their respective probabilities. After, the

3This will be clarified later.
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associated distributions will be calculated, they will be denoted as F (n) and G(n)

for the assets and bonds, respectively.

For example, for the first year, the returns obtained for the assets are:

1 u.m.

{
1− 0.05 ∗ 1 = 0.95 u.m.

1 + 0.35 ∗ 1 = 1.35 u.m.

where u.m. denotes monetary units, and for the bonds:

1 u.m. −→ 1 + 0.09 ∗ 1 = 1.09 u.m.

In this way:

F (1)(x) =





0, if x < 0.95

0.5, if 0.95 ≤ x < 1.35

1, if x ≥ 1.35

and

G(1)(x) =

{
0, if x < 1.09

1, if x ≥ 1.09

These distributions do not verify the FSD criterion because they intercept, as
shown in the graphic:
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Figure 2: Distributions F
(1) and G

(1).

For the second year, the returns on the investment in assets are:




0.95 u.m.

{
0.9025 u.m.

1.2825 u.m.

1.35 u.m.

{
1.2825 u.m.

1.8225 u.m.
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and for bonds:
1.09 u.m. −→ 1.1881 u.m.

Then:

F (2)(x) =





0, if x < 0.9025

1/4, if 0.9025 ≤ x < 1.2825

3/4, if 1.2825 ≤ x < 1.8225

1, if x ≥ 1.8225

and

G(2)(x) =

{
0, if x < 1.1881

1, if x ≥ 1.1881

In this case the graphic is:
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Figure 3: Distributions F
(2) and G

(2).

and so on.

Horizons of 1, 2, . . . , 10, 15 and 20 years will be considered, and it will be as-
sumed that the investment began in the first of these years. For each year, the
value ε will be calculated and it will be proven that this value decreases with the
time, reason for which investors will prefer assets to bonds.
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Figure 4: Distributions F
(n) and G

(n), with n = 1, . . . , 10, 15 and 20. As observed, the
area of violation of the FSD criterion, namely, the area in which F

(n) is above
G

(n)-A1 of the ε definition-, decreases to the extent that the horizon of the
investment increases, the value of ε also decreases, that is, as time increases,
investors will prefer assets to bonds.
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Figure 4: Continuation
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Next, ε values will be shown for each horizon of the investment. As shown in
the Table 1, these values decrease with time:

Table 1: ε values for each horizon of the investment.

Number of years ε

1 0.3500

2 0.2576

3 0.2125

4 0.1856

5 0.1406

6 0.1363

7 0.1132

8 0.0972

9 0.0919

10 0.0464

15 0.0414

20 0.0247

Comments at the beginning of this subsection will be explained. As verified,
ASD criteria have been used to establish a strong argument in favor of assets
over bonds. Let us consider an investor who maximizes expected profits in a
period T . Returns are supposed to be independent and identically distributed
(i.i.d.) and the investments are supposed to be constant along through time. It
is well known that, given different investments with i.i.d. returns and a large
enough investment planning horizon, the investment which has higher geometric
mean in returns (per period) almost certainly provides a greater benefit than
those with lower geometric mean. In the long run, the distribution function of
the investment that has a higher geometric mean is almost entirely to the right of
the other distributions that represent alternatives, that is, ε decreases with time,
as discussed throughout this section. However, there is some controversy in the
economic meaning of this fact. Latané (1959), Markowitz (1976) and Leshno &
Levy (2004), argue that the decrease in the value of ε is tied to an increase in the
range of investor preferences (U∗

1 (ε)), that is, they argue that in the long term,
all reasonable preferences (profits) are considered. Levy (2009), highlights this
fact, saying that, really as time goes by ε decreases (it has been shown in example
1), but the set U∗

1 (ε) does not increase. What happens is that as the periods of
the investment increase, the set of all possible values of the random variables also
increase, that is, set S is not a fixed set. Of course, if the set S is fixed, the set
U∗
1 (ε) increases, but the fact is that S is not fixed. If the last example is observed,

set S for the first year is: [0.95, 1.35], for the second year is [0.9025, 1.8225], for
the third year is [0.857375, 2.460375], etc.

In summary, there are two facts as time progresses: first ε decreases and this
causes an increase of set U∗

1 (ε), and on the other hand, S increases, causing that
for a given ε, the set U∗

1 (ε) decreases. The total effect over set U∗
1 (ε) is a mix
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between these two effects and this depends, on the kind of utility functions that
are used.

Definition 4. Given a set S, εu is defined as the higher value of ε for which the
utility function u still belongs to the set U∗

1 (ε), that is:

εu =

[
1 +

sup{u′(x), x ∈ S}

inf{u′(x), x ∈ S}

]−1

(8)

As S increases with time, coefficient sup{u′(x),x∈S}
inf{u′(x),x∈S} increases, and therefore, εu

decreases. Observe that εu shows the higher value of the area alloweb to violate
stochastic dominance criteria, for a given utility u such that u still belongs to the
set U∗

1 (ε). If ε > εu then u 6∈ U∗
1 (ε), otherwise u ∈ U∗

1 (ε). To be part or not of
the set U∗

1 (ε) depends on the speed of decrease of ε and εu, that is, the fact that ε
decreases is not enough to choose in the long term, it also depends on the utility
function.

Let us continue with the last example. Values of εu will be calculated for
different utility functions u.

Example 2. Let us continue with example 1. Utility functions u will be considered
and the associated values of εu, will be calculated.

Table 2: Values of ε and εu for each horizon of the investment.
Number εu εu εu εu

of ε u(x) = − exp−x u(x) = ln(x) u(x) = x
1−α

1−α
u(x) =

(x−0.2)
1−α

1−α

years α = 4 α = 2

1 0.3500 0.4013 0.4130 0.1969 0.2984

2 0.2576 0.2849 0.3312 0.0567 0.1579

3 0.2125 0.1676 0.2584 0.0145 0.0780

4 0.1856 0.0754 0.1969 3.6030 ∗ 10−3 0.0373

5 0.1406 0.02389 0.1472 8.8595 ∗ 10−4 0.0176

6 0.1363 4.8769 ∗ 10−3 0.1083 2.1740 ∗ 10−4 8.2874 ∗ 10−3

7 0.1132 5.6743 ∗ 10−4 0.0787 5.3320 ∗ 10−5 3.8923 ∗ 10−3

8 0.0972 3.1390 ∗ 10−5 0.0567 1.3076 ∗ 10−5 1.8269 ∗ 10−3

9 0.0919 6.4004 ∗ 10−7 0.0406 3.2059 ∗ 10−6 8.5653 ∗ 10−4

10 0.0464 3.3717 ∗ 10−9 0.0289 7.8616 ∗ 10−7 4.0100 ∗ 10−4

15 0.0414 1.1114 ∗ 10−39 5.1121 ∗ 10−3 3.2858 ∗ 10−7 8.5647 ∗ 10−6

20 0.0247 3.8185 ∗ 10−176 8.8591 ∗ 10−4 6.1816 ∗ 10−13 1.5380 ∗ 10−7

For each representative column of values of ε and εu, the decrease mentioned
above may be observed. Now, if columns 2 and 3 are compared, it can be shown
that εu decreases faster than ε and for periods of 1 or 2 years, ε < εu, so
u(x) = − exp(−x) ∈ U∗

1 (ε), whereas periods strictly exceeding 2 years u(x) =
− exp(−x) 6∈ U∗

1 (ε). In this case, it is evidenced that the set U∗
1 (ε) does not nec-

essarily increase with time. For this type of utility functions, it is not possible to
reason as the authors previously mentioned. In case of working with log-utilities
the reasoning is analogous, but for horizons of 5 or less than 5 years, and more
than 5 years. In the case of columns 5 and 6, it is verified that ε > εu for the
analized periods, in these cases u(x) 6∈ U∗

1 (ε) for each studied period.
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Example 3. In this case, two financial data series will be considered, in particular
series of Ibex 354 and Nasdaq Composite indexes5 corresponding to years from 1926
to 2008. A similar construction as that in the previous example will be performed.
In this case, ǫ value is 0.3053, concluding that the Nasdaq series dominates Ibex
35 in a AFSD sense. The illustrative graphic is:

0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative distribution functions of Ibex 35 and Nasdaq

Ibex 35
Nasdaq

Figure 5: Distributions F
(1) and G

(1) for Ibex and Nasdaq Composite.

4. Conclusions

There are different rules in the literature for comparing investments, for exam-
ple, Stochastic Dominance rules (SD), Mean-Variance (MV) and Almost Stochastic
Dominance (ASD).

SD rules are useful in different areas of knowledge and they arise in a natural
way from the need to make comparisons between different choices, using more
information available in some situations (distribution functions, density functions,
failure rate, etc.) than the mere comparison of averages or other numerical single
data.

However, in is situations it may be useful to compare certain functional re-
lationships dependent on means, variances or other measures of uncertainty (for
example in the efficient portfolio selection or the scope of the study of the utility).
In these cases, MV rules are used.

But sometimes, the use of SD or MV rules is not conducive to a specific selection
of an investment over another, consequently, other rules (ASD) arise in response

4The official index of the Spanish Continuous Market, which is comprised of the 35 most
liquid stocks traded on the market.

5A market-capitalization weighted index of the more than 3,000 common equities listed on
the Nasdaq stock exchange. The types of securities in the index include American depositary
receipts, common stocks, real estate investment trusts (REITs) and tracking stocks. The index
includes all Nasdaq listed stocks that are not derivatives, preferred shares, funds, exchange-traded
funds (ETFs) or debentures.
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to this need for selection. These rules (ASD) are intended to be an extension of
SD rules in cases where SD does not respond and they are defined in such manner
as to be a useful guide for selection for almost all decision-makers, hence its name.

This paper presents a review of the different classical rules for investment
decisions and the importance of ASD concepts selecting some investments over
others has been highlighted in cases where there was no clear relationship according
to SD and/or MV rules. Likewise, several examples have been proposed, in which
applying ASD rules, it has been able to make a clear selection of some investments
over others. It is important to note the selection made of Nasdaq Composite Index
over the Ibex 35, for an annual series from 1926 to 2008.

[
Recibido: septiembre de 2010 — Aceptado: julio de 2011

]
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Abstract

We consider the classical ruin problem due to Cramér and Lundberg
and we generalize it. Ruin times of the considered models are studied and
sufficient conditions to usual stochastic dominance between ruin times are
established. In addition an algorithm to simulate processes verifying the
conditions under consideration is proposed.

Key words: Coupling, Markov chains, Semi-Markov process, Simulation,
Stochastic ordering.

Resumen

Se considera el problema clásico de ruina de Cramér y Lundberg y se
generaliza. Se estudian los tiempos hasta la ruina de los modelos conside-
rados y se establecen condiciones suficientes para la dominancia estocástica
en el sentido usual entre los tiempos de ruina. Por otro lado, se establecen
algoritmos de simulación de los procesos bajo estudio y de obtención de es-
timadores para las probabilidades involucradas.

Palabras clave: cadenas de Markov, dominancia estocástica, emparejamiento,
proceso semi-markovianos, simulación.

1. Introduction

The main purpose of the Ruin Theory is to obtain exact formulas or approx-
imations of ruin probabilities in different risk models, see Seal (1969), Gerber
(1995) and Ramsay (1992). Some of the most popular approximations are due
to Beekman (1969), in which a Gamma distribution is used to approximate the

aProfessor. E-mail: ealmarazluengo@mat.ucm.es
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distribution of the claims, or the approximation due to De Vylder (1996), who ap-
proximates the ruin process using a simply process in which the ruin probability
is an exponential type. A relatively recent approach to estimate the probability of
ruin is presented by Goovaerts (1990), where bounds are established through the
ordering of the risks. Another kind of approach arises from the use of nonpara-
metric techniques such as resampling (see Frees 1986) or Monte Carlo simulation
(see Beard, Pentikäinen & Pesonen 1984).

Many authors have studied the ruin problem, for example Reinhard (1984) and
Asmussen (1989). Reinhard (1984) considers a class of risk models in which the
frequency of claims and the quantities to be paid are influenced by an external
Markovian process (or environmental process), Reinhard & Snoussi (2001, 2002)
have analized the severity of ruin and the distribution of surplus prior to ruin in a
discrete semi-Markovian risk model. For more information about risk theory see
Beard et al. (1984), Latorre (1992) or Daykin (1994).

In what follows, times to ruin in certain risk models will be ordered without an
explicit expression for the probability of ruin and without the use of approxima-
tions thereof, as was classically done by Ferreira & Pacheco (2005) and Ferreira &
Pacheco (2007).

Many authors have studied these processes int he context of the Queuing The-
ory. However, they also have applicability for dynamic solvency models and sur-
vival analysis.

This paper is organized as follows: in Section 2; the classical Cramér and
Lundberg risk model is described; in Section 3, the principal concepts and notation
being used in the rest of the paper are defined; in Section 4, the generalized model
is described and the principal results are shown; finally, in Section 5 algorithms of
simulation of the processes considered in Section 4, will be proposed.

2. Classical ruin model

The Cramér-Lundberg’s classical risk model has its origin in Filip-Lundberg’s
doctoral thesis in 1903. In this work, Lundbery studied the collective reinsurance
problem and used compounded homogenous Poisson process. In 1930, Harald
Cramér re-examined Lundberg’s original ideas and formalize them in the stochastic
processes context.

The original model is:

X(t) = X(0) + ct−
Nt∑

n=1

Yn (1)

with c > 0, X(0) ≥ 0 and X(0) Being the initial capital, c the premium density,
which is assumed to be constant, Yj the amount of the j-th claim and Nt is an
homogeneous Poisson process which represents the number of claims up to time t
(independent of the interval position and the history of the process). Claims Yj
are supposed to positive independent random variables which are independent of
the process Nt, with distribution F such that F (0) = 0 and whose mean µ is finite.
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If the arrival of the n-th claim is denoted by Sn, then:

Nt = sup {n ≥ 1 : Sn ≤ t} , t ≥ 0

Note 1. The number of claims that have occurred up to time t can be approxi-
mated, in the Cramér and Lundberg’s model, from other distribution functions.

The intervals between claims Tk = Sk − Sk−1, k = 2, 3, . . . are independent
and identically distributed random variables with an exponential distribution with
parameter λ and finite mean and T1 = S1.

The aggregate claims until instant t are given by the random variable

S(t) =

Nt∑

n=1

Yn

known as compound Poisson. Its distribution is followed by

Gt(x) = P [S(t) ≤ x] =

∞∑

n=0

e−λt (λt)
n

n!
F (n)(x)

with x, t ≥ 0 and F (n) the n-th convolution of F with F (0) the distribution function
of the measure of Dirac in 0.

The time to ruin is defined as:

T = inf {t > 0 : X(t) ≤ 0} (2)

where inf ∅ = ∞.

The probability of ruin in the interval [0, t] or probability of ruin in a finite
horizon is defined as:

ψ(u, t) = P [T ≤ t|X(0) = u] (3)

and the probability of ruin in an infinite horizon or simply probability of ruin is:

ψ(u) = lim
t→∞

ψ(u, t) = lim
t→∞

P [T ≤ t|X(0) = u] = P [T <∞|X(0) = u] (4)

Note 2. In this case, the probability in an infinite horizon is usually approximated
by the Normal-Power.

Definition 1. The basic Cramér-Lundberg’s process is described as

X(t) = X(0) + (1 + υ)λµt− S(t)

where λµt = E [S(t)] and υ = c
λµ

− 1 > 0 is referred to as “solvency or safety

margin”, in order to guarantee survival (defined as the set of free capital whose
purpose is to address those risks that may threaten the solvency of the company,
the latter being the capacity to face obligations).
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3. Preliminaries

In this section we introduce notation that is used throughout the paper and
we set up some definitions. The introduced definitions are general and they can
be found in several texts, for example in Müller & Stoyan (2002), Shaked (2007)
or Almaraz (2009) among others.

We let the following sets N = {0, 1, 2, . . .}, N+ = {1, 2, . . .} and R = (−∞,∞).

Definition 2. Given two random variables X and Y taking values in a countable
ordered state space I, then Y is stochastically smaller than X in the usual sense,
and it is denoted as Y ≤st X , if P (Y ≤ i) ≥ P (X ≤ i) for all i ∈ I.

Definition 3. A subset U of Rn is regarded to be as increasing if y ∈ U when
y ≥ x and x ∈ U .

Definition 4. Let X and Y be two random vectors such that P [X ∈ U ] ≤ P [Y ∈
U ] for all the increasing subsets U ⊆ R

n. Then X is stochastically smaller than
Y in the usual sense and it is denoted as X ≤st Y .

Definition 5. Let X = {X(t), t ∈ T } and Y = {Y (t), t ∈ T }, be two stochastic
processes with state space I ⊆ R and time parameter space T (usually T = [0,∞)
or T = N+). Suppose that, for all choices of an integer m and t1 < t2 < · · · < tm
en T , it happens that:

(X(t1), X(t2), . . . , X(tm)) ≤st (Y (t1), Y (t2), . . . , Y (tm))

ThenX = {X(t), t ∈ T } is said to be stochastically smaller than Y = {Y (t), t ∈ T }
in the usual sense and it is denoted as X = {X(t), t ∈ T } ≤st Y = {Y (t), t ∈ T }.

Definition 6. A finite measure matrix is a matrix with non-negative entries whose
lines are finite measure vectors.

Definition 7. Let I and J be two countable ordered sets and let A = (aij)i∈I,j∈J

and B = (bij)i∈I,j∈J be two finite measure matrix with common indices on I × J .
Then the matrix A is said to be smaller than B in the Kalmykov sense, and it is
denoted as A ≤K B, if and only if:

∑

m≥n

aim ≤
∑

m≥n

bjm, ∀i ≤ j ∀n

Also the following concepts will be necessary.

Definition 8. The counting processN = (Nt)t is an homogeneous Poisson process
with rate λ > 0 if:

1. N0 = 0, almost sure.

2. N has independent stationary increments.
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3. ∀ 0 ≤ s < t <∞, Nt −Ns ∼ P (λ(t − s)), that is,

P [Nt −Ns = k] = e−λ(t−s) (λ(t− s))k

k!
, k ∈ N

Definition 9. (Markov process (MP)). A stochastic process {Xt, t ∈ T }, is said
to be a Markov process (or Markovian process) if

P [Xtn+1 = xn+1 | Xt1 = x1, Xt2 = x2, . . . , Xtn = xn] =

= P [Xtn+1 = xn+1 | Xtn = xn]

for each n ∈ N y t1 < t2 < · · · < tn < tn+1.

This condition is known as the Markovian condition.

A Markovian process with finite state space is known as the Markov Chain and
it can be in discrete time (DTMC) or continuous time (CTMC).

Definition 10. (Markovian Renewal process (MRP)). A bivariate process (Z, S) =
(Zn, Sn)n∈N is a Markovian Renewal process with phase states (countable) I and
kernel Q = (Q(t))t∈R+ where Q(t) = (Qij(t))i,j∈I is a family of sub-distribution
functions such that

∑
j∈I Qij(t) is a distribution function, for each i ∈ I, if it is a

Markov process in I × R+ such that S0 = 0 and

Qij(t) = P [Zn+1 = j, Sn+1 − Sn ≤ t | Zn = i, Sn = s]

for each n ∈ N, i, j ∈ I and s, t ∈ R+

Definition 11. (Semi-Markovian process (SMP)) A process W = (Wt)t∈R+ is a
semi-Markovian process with state space I and kernel Q (or admitting an embed-
ded kernel (P ,F )) if

Wt = Zn, Sn ≤ t < Sn+1

for some MRP (Z, S) with phase space I and kernel Q (embedded kernel (P ,F ))

4. Stochastic dominance of ruin times in semi-Markov

modulated risk processes

Let us consider the following generalization of the classic model:

X(t) = X(0) +

∫ t

0

cJ(s)ds−
Nt∑

n=1

Yn (5)

where cj > 0 for all j, and X(0) ≥ 0.
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Where X(0) is a random variable that represents the initial capital; J(s) a
semi-Markovian process; cj the Premium density when the process J(s) is in the
state j; Yn the size of the n-th claim and Nt a counting process associated to J
that represents the number of claims up to time t.

Let (Sn,Kn) a Markovian sequence associated to the process J , where

Sn = inf {t ≥ 0 : Nt ≥ n} , n ∈ N

represents a sequence of events and

Kn = J(Sn), n ∈ N

is an irreductible and discrete Markov chain with state space I, a countable subset
of R, transition matrix P = (Pij)i,j∈I and representing the state visited in the
n-th tansistion, where

Jt = Kn, Sn ≤ t < Sn+1

Let Hn be the time between the (n− 1)-th and the n-th claim:

Hn = Sn − Sn−1, n ≥ 1 (6)
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Y1
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Figure 1: Path of the process X(t).

In classical literature, this graphical representation (Figure 1) is known as a
surplus process of ruin or process (see Bowers, Gerber, Hickman, Jones & Nesbitt
1997).

In this way, the process may be written as:

X(t) = X(0) +

Nt−1∑

n=0

cKn
Hn+1 + cKNt

(t− SNt
)−

Nt∑

n=1

Yn (7)
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where cj > 0, ∀j ∈ I.

The semi-Markovian dependence structure under consideration is of the fol-
lowing type:

P [Hn+1 ≤ x, Yn+1 ≤ y,Kn+1 = j|Kn = i, (Hr, Yr,Kr), 0 ≤ r ≤ n] =

= P [H1 ≤ x, Y1 ≤ y,K1 = j|K0 = i] = Qij(x, y) (8)

The sequence Q = (Qij)i,j∈I is the kernel of this process.

The purpose of this paper is to establish sufficient conditions for the first order
stochastic dominance between the times of ruin of two processes like described in
(5).

4.1. Stochastic processes in which the amount of the claims

depends on the environment

Let us consider the following structure of the kernel:

Qij(x, y) = pijFij(x)Gij(y) (9)

where

• pij = Qij(∞,∞) = P [Kn+1 = j|Kn = i], n ∈ N+, i, j ∈ I

• Fij is the distribution function of Hn|(Kn−1 = i,Kn = j), n ∈ N+, i, j ∈ I

• Gij is the distribution function of Yn|(Kn = i,Kn+1 = j), n ∈ N+, i, j ∈ I

This implies that (Y1, Y2, . . .) and (H1, H2, . . .) are conditionally independent
given (K0,K1, . . .) That is, the are conditionally independent given the evolution
of the process J .

The parametrization of this process is (c, P, F,G), where c = (ci)i∈I ,
P = (pij)i,j∈I , F = (Fij)i,j∈I y G = (Gij)i,j∈I .

We will denote the time to ruin of this process by:

T
(l)
ab = inf

{
t > 0 : X(l)(t) ≤ 0

}
|
(
X(l)(0) = b,K

(l)
0 = a

)

Theorem 1. Let X(1) = (X(1)(t))t≥0 and X(2) = (X(2)(t))t≥0 be two stochas-
tic processes with parametrizations (c(1), P (1), F (1), G(1)) and (c(2), P (2), F (2), G(2))
respectively, as described in (5) and (9). Let J (1)(0) ≤ J (2)(0) and X(1)(0) ≤
X(2)(0).

If

c
(1)
i ≤ c

(2)
k , ∀i ≤ k (10)

P (1) ≤K P (2) (11)
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F
(1)
ij ≤st F

(2)
kl , ∀i ≤ k, j ≤ l (12)

G
(2)
kl ≤st G

(1)
ij , ∀i ≤ k, j ≤ l (13)

then T
(1)
iu ≤st T

(2)
jv ∀i ≤ j, u ≤ v.

Proof . Let X(1) and X(2) as in the statement. We must prove that T
(1)
iu ≤st T

(2)
jv

for each i ≤ j, u ≤ v.

The Markovian renewal sequence associated to J (l), l = 1, 2 will be denoted as(
S
(l)
n ,K

(l)
n

)
.

It is defined:

T
∗(l)
iu = inf

{
S(l)
n : X

(l)

S
(l)
n

≤ 0
}
|(X(l)

S
(l)
0

= u,K
(l)
0 = i), l = 1, 2. (14)

Note that the fact of X(l), l = 1, 2, being a non-decreasing sequence in[
S
(l)
n , S

(l)
n+1

)
, denotes that:

T
(l)
iu = T

∗(l)
iu (15)

so it is enough to prove that T
∗(1)
iu ≤st T

∗(2)
jv ∀u ≤ v, i ≤ j.

Let (
X̃(1)

n , X̃(2)
n

)

be a couple of

X
(1)

S
(1)
n

|X(1)

S
(1)
0

= u and X
(2)

S
(2)
n

|X(2)

S
(2)
0

= v

on a common product probability space

Λ = Λ1 × Λ2 = (Ω,F , P ) = (Ω1 × Ω2,F1 ×F2, P1 × P2)

such that
X̃(1)

n (ω) ≤ X̃(2)
n (ω) , ∀ω ∈ Ω

and
S̃1
n(ω) ≤ S̃2

n(ω), ∀ω ∈ Ω

being S̃
(l)
n , a copy of the process S

(l)
n , l = 1, 2.

To do that, the following independent sequences of independent uniform ran-
dom variables on the interval (0, 1) will be used: (Un)n∈N+

in Λ1, (Vn)n∈N+
and

(Wn)n∈N+
in Λ2.

Let K̃
(1)
0 (ω1) = i and K̃

(2)
0 (ω1) = j.

In detail, for l = 1, 2:

K̃(l)
n (ω1) =

[
P

(l)

K̃
(l)
n−1,.

]−1

(Un(ω1))) , n ∈ N+, ω1 ∈ Ω1 (16)
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H̃(l)
n (ω) =

[
F

(l)

(K̃
(l)
n−1(ω1),K̃

(l)
n (ω1))

]−1

(Vn(ω2)), n ∈ N+, ω = (ω1, ω2) ∈ Ω (17)

Ỹ (l)
n (ω) =

[
G

(l)

(K̃
(l)
n−1(ω1),K̃

(l)
n (ω1))

]−1

(Wn(ω2)), n ∈ N, ω = (ω1, ω2) ∈ Ω (18)

Let X̃
(1)
0 = u and X̃

(2)
0 = v and:

X̃(l)
n (ω) = X̃

(l)
0 +

n−1∑

m=0

c
(l)

K̃
(l)
m

H̃
(l)
m+1(ω)−

n∑

m=1

Ỹ (l)
m (ω), (19)

n ∈ N, l = 1, 2, ω = (ω1, ω2) ∈ Ω, be the embedded Markov Process of (X
(l)

S
(l)
n

)n≥0,

l = 1, 2.

Using (11), (12) and (13) we have respectively by construction:

K̃(1)
n (ω1) ≤ K̃(2)

n (ω1), ∀ω1 ∈ Ω1, n ∈ N (20)

H̃(1)
n (ω) ≤ H̃(2)

n (ω), ∀ω = (ω1, ω2) ∈ Ω, n ∈ N (21)

and

Ỹ (1)
n (ω) ≥ Ỹ (2)

n (ω), ∀ω = (ω1, ω2) ∈ Ω, n ∈ N (22)

On the other hand, using (10), (21) and (22), we have that:

n∑

m=1

Ỹ (1)
m (ω) ≥

n∑

m=1

Ỹ (2)
m (ω), ∀ω = (ω1, ω2) ∈ Ω, n ∈ N (23)

S̃
(1)

n (ω) =
n∑

m=1

H̃
(1)

m (ω) ≤
n∑

m=1

H̃
(2)

m (ω) = S̃
(2)

n (ω), ∀ω = (ω1, ω2) ∈ Ω, n ∈ N (24)

n−1∑

m=0

c
(1)

K̃
(1)
m

H̃
(1)
m+1(ω) ≤

n−1∑

m=0

c
(2)

K̃
(2)
m

H̃
(2)
m+1(ω), ∀ω = (ω1, ω2) ∈ Ω, n ∈ N (25)

thus, leading to

X̃(1)
n (ω) ≤ X̃(2)

n (ω) ∀ω = (ω1, ω2) ∈ Ω, n ∈ N (26)

If denoted by:

T̃
∗(l)
iu = inf

{
S̃(l)
n : X̃(l)

n ≤ 0
}
| (X̃0 = u, K̃

(l)
0 = i), l = 1, 2 (27)

we have that

T̃
∗(1)
iu (ω) ≤ T̃

∗(2)
jv (ω), ∀i ≤ j, u ≤ v, ω ∈ Ω (28)

intended to prove.
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In the special case in which the environment J is Markovian, particulary a
continuous time Markov chain (CTMC), the parametrization of the process (5)
is (c, P, q,G), where P = (pij)i,j∈I , q is the vector of transition rates from states
of J and G = (Gij)i,j∈I . In this case, the previous theorem has an immediate

application, it is enough to see that the condition F
(1)
ij ≤st F

(2)
kl , ∀i ≤ k, j ≤ l is

translated in a condition to the vectors of transition rates from the states q
(2)
k ≤

q
(1)
i ∀i ≤ k, that is, the distribution function of H

(l)
n |
(
K

(l)
n−1 = i,K

(l)
n = j

)
, l =

1, 2, which was denoted as F
(l)
ij , l = 1, 2 has in this case the following expression:

F
(l)
ij (x) = q

(l)
i e−q

(l)
i

x for l = 1, 2.1

In this way, the following two processes will be considered X(1) and X(2) as de-
scribes in (5) with parametrizations (c(1), P (1), q(1), G(1)) and (c(2), P (2), q(2), G(2))
respectively and then, the result for this particular case is described in the next
corollary.

Corollary 1. Let X(1) = (X
(1)
t )t≥0 and X(2) = (X

(2)
t )t≥0 be two stochastic pro-

cesses with parameterizations (c(1), P (1), q(1), G(1)) and (c(2), P (2), q(2), G(2)) re-
spectively, as described in (5), with environments J (1) and J (2) beings CTMCs
with state space I, embedded transition probability matrices P (1) and P (2) and
vectors of transition rates from states q(1) and q(2), respectively.

Let J (1)(0) ≤ J (2)(0), and X(1)(0) ≤ X(2)(0). If

c
(1)
i ≤ c

(2)
k , ∀i ≤ k (29)

P (1) ≤K P (2) (30)

q
(2)
k ≤ q

(1)
i ∀i ≤ k (31)

G
(2)
kl ≤st G

(1)
ij , ∀i ≤ k, j ≤ l (32)

then T
(1)
iu ≤st T

(2)
jv ∀i ≤ j, u ≤ v.

Proof . It is a direct consequence of Theorem 1.

For the particular case in which the processes have the same transition matrix
P we may relax the conditions of the Theorem 1 to conditions involving only one
pair of states (i, j) such that pij > 0, in the following way.

Corollary 2. Let X(1) = (X
(1)
t )t≥0 and X(2) = (X

(2)
t )t≥0 be two stochastic pro-

cesses with parameterizations (c(1), P, F (1), G(1)) and (c(2), P, F (2), G(2)) respec-
tively, as described in (5) and (9). If

c
(1)
j ≤ c

(2)
j , ∀j (33)

1Exponential distribution with intensity q
(l)

i and the distribution decreases stochastically in
the usual sense with this intensity
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and for each pair (i, j) such that Pij > 0

F
(1)
ij ≤st F

(2)
ij (34)

G
(2)
ij ≤st G

(1)
ij (35)

then
T

(1)
iu ≤st T

(2)
iv ∀u ≤ v.

Proof . The result follows is derived from the construction used in the proof of

Theorem 1 since this construction now leads to K̃
(1)
n (ω1) = K̃

(2)
n (ω1), ∀n ∈ N, ω1 ∈

Ω1. This fact allows to conclude (21) and (22) using (34) and (35) despite of (12)
and (13). The rest of the proof is analogous.

4.1.1. A simple application

In this section, a case from the counting process Nt, identified as a semi-
Markovian process J whose state space is {0, 1, 2 . . .} and whose transition prob-
ability matrix P is deterministic, in which case the probability to go from state n
to n+ 1 is 1, is studied.

Let (S
(l)
n )n≥0 be a stochastic process with

0 = S
(l)
0 < S

(l)
1 < · · ·

such that
H(l)

n = S(l)
n − S

(l)
n−1, n ∈ N+, l = 1, 2

are independent random variables with distribution function

F (l)
n , l = 1, 2

and let
N

(l)
t = sup

{
n ≥ 0 : S(l)

n ≤ t
}
, t ≥ 0, l = 1, 2

the counting process.

Let (Y
(l)
j ), j ∈ N, l = 1, 2 be a sequence of independent random variables

with distribution function (G
(l)
j ), j ∈ N+, l = 1, 2. Let H

(l)
n , G

(l)
n be independent

∀n ∈ N+.

Let us consider the process (X(l)(t))t≥0 with parametrization (c(l), F (l), G(l))
con l = 1, 2 defined as follows:

X(l)(t) = X(l)(0) + c(l)t−
N

(l)
t∑

j=1

Y
(l)
j (36)

with c(l) > 0, X(l)(0) ≥ 0, and it is defined

T (l)
u = inf

{
t ≥ 0 : X(l)(t) ≤ 0

}
|X(l)(0) = u (37)
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Theorem 2. Let X(1) = (X(1)(t))t≥0 and X(2) = (X(2)(t))t≥0 be two stachastic
processes with parametrizations (c(1), F (1), G(1)) and (c(2), F (2), G(2)) as described
in (36), with X(1)(0) ≤ X(2)(0). If

c(1) ≤ c(2) (38)

F (1)
n ≤st F

(2)
n , ∀n ∈ N+ (39)

G(2)
n ≤st G

(1)
n , ∀n ∈ N+ (40)

then
T (1)
u ≤st T

(2)
v , ∀u ≤ v

Proof . Let X(1) and X(2) as stated. It must be proved that T
(1)
u ≤st T

(2)
u for all

u ≤ v.

It is defined:

T ∗(l)
u = inf

{
S(l)
n : X

(l)

S
(l)
n

≤ 0
}
|X(l)

S
(l)
0

= u, l = 1, 2 (41)

Note that the fact of X(l), l = 1, 2, being a non-decreasing sequence in[
S
(l)
n , S

(l)
n+1

)
, gives that:

T (l)
u = T ∗(l)

u (42)

therefore is enough to prove that T
∗(1)
u ≤st T

∗(2)
v ∀u ≤ v.

For that, couplings will be build

(
S̃(1)
n , S̃(2)

n

)
and

(
X̃(1)

n , X̃(2)
n

)

of (
S(1)
n , S(2)

n

)
and

(
X

(1)

S
(1)
n

, X
(2)

S
(2)
n

)

given
(
X

(1)

S
(1)
n

, X
(2)

S
(2)
n

)
= (u, v) such that

X̃(1)
n (ω) ≤ X̃(2)

n (ω) , ∀ω ∈ Ω, n ∈ N

and
S̃(1)
n (ω) ≤ S̃(2)

n (ω), ∀ω ∈ Ω, n ∈ N

To do that, independent sequences of independent and identically distributed
U(0, 1) random variables will be used (Un)n∈N+

and (Vn)n∈N+
, defined on a com-

mon probability space (Ω,F , P ).
Let for ω ∈ Ω and l = 1, 2:

H̃(l)
n (ω) =

[
F (l)
n

]−1

(Un(ω))) , n ∈ N+ (43)

Ỹ (l)
n (ω) =

[
G(l)

n

]−1

(Vn(ω))) , n ∈ N+ (44)
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Let for ω ∈ Ω and l = 1, 2:

X̃(l)
n (ω) = X̃

(l)
0 (ω) + c(l)

n∑

m=1

H̃(l)
m (ω)−

n∑

m=1

Ỹ (l)
m (ω), n ∈ N (45)

with X̃
(1)
0 (ω) = u and X̃

(2)
0 (ω) = v, be the embedded Markov process of (X

(l)
t )t≥0,

coupling of X
(l)

S
(l)
n

l = 1, 2.

Using (39) and (40) we have for construction that:

H̃(1)
n (ω) ≤ H̃(2)

n (ω), ∀ω ∈ Ω, n ∈ N (46)

Ỹ (1)
n (ω) ≥ Ỹ (2)

n (ω), ∀ω ∈ Ω, n ∈ N (47)

On the other hand, from (46) and (47):

S̃(1)
n (ω) =

n∑

m=1

H̃(1)
m (ω) ≤

n∑

m=1

H̃(2)
m (ω) = S̃(2)

n (ω), ∀ω ∈ Ω, n ∈ N (48)

n∑

m=1

Ỹ (1)
m (ω) ≥

n∑

m=1

Ỹ (2)
m (ω), ∀ω ∈ Ω, n ∈ N (49)

which leads with condition (38) to:

X̃(1)
n (ω) ≤ X̃(2)

n (ω) ∀ω ∈ Ω, n ∈ N (50)

If we denote:
T̃ ∗(l)
u = inf

{
S̃(l)
n : X̃(l)

n ≤ 0
}
, l = 1, 2 (51)

being T̃
∗(1)
u and T̃

∗(2)
u a coupling of (T

∗(1)
u , T

∗(2)
u ) we have using (48) and (50) that

T̃ ∗(1)
u (ω) ≤ T̃ ∗(2)

u (ω), ∀ω ∈ Ω (52)

as it was pretended.

4.2. Comparisons of ruin probabilities

An algorithm which leads to simulate processes verifying the conditions of
Theorem 1 will be described.
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Input: Independent sequences of independent random variables
U(0, 1): (Un)n∈N+ , (Vn)n∈N+ , (Wn)n∈N+ . Values x(1) y x(2), f (1) y

f (2) with x(1) ≤ x(2), f (1) ≤ f (2).
X̃

(1)

0
= x(1)

X̃
(2)

0
= x(2)

K̃
(1)

0
= f (1)

K̃
(2)

0
= f (2)

for n = 0, ..., N do

for l = 1, 2 do

K̃
(l)

n+1
=

[

P
(l)

K̃
(l)
n ,.

]
−1

(Un+1)

H̃
(l)

n+1
=

[

F
(l)

(K̃
(l)
n ,K̃

(l)
n+1)

]
−1

(Vn+1)

Ỹ
(l)

n+1
=

[

G
(l)

(K̃
(l)
n ,K̃

(l)
n+1)

]
−1

(Wn+1)

X̃
(l)
n = X̃

(l)

0
+

∑n−1

m=0
c
(l)

K̃
(l)
m

H̃
(l)

m+1
−

∑n

m=1
Ỹ

(l)
m

end for

end for

Output: Two sequences X̃(1) and X̃(2) such that
T

(1)

iu ≤st T
(2)

jv ∀i ≤ j, u ≤ v

Figure 2: Simulation of sequences of random variables as described in (5), under con-
ditions of Theorem 1.

Next algorithm consists of showing a method which allows to estimate the
difference between the ruin probabilities in a given period T , of two processes
which satisfy conditions of Theorem 1, that is, ψ(1)(u, T )−ψ(2)(u, T ) is wanted to
be estimated. For simplicity, p(l) will denote the ruin probability of the process l
under the interval of consideration, so: p(l) = ψ(l)(u, T ), for l = 1, 2.

For the above purpose, M replicas of each process will be simulated. Let X
(l)
r

be, for l = 1, 2 and r = 1, . . . ,M , the r-th replica of the process l. Let

T (l)
r = inf

{
t ≥ 0 : X(l)

r (t) ≤ 0
}

be the time to ruin of the r-th replica r of the process l, and R
(l)
r = 1{

T
(l)
r ≤T

} be

a random variable which indicates if the process X
(l)
r reaches ruin in the interval

[0, T ].

The estimator of p(l), l = 1, 2, which will be denoted as P (l), is the proportion
of replicas in which ruin has happened, that is:

P (l) =

∑M

r=1R
(l)
r

M
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and the estimator for the difference of these probabilities is:

P = P (1) − P (2)

The method used in the proof of the Theorem 1 is based on independent
simulations of random variables which gives a less variance for the estimator P :

V ar(P ) =
P · (1− P )

M

in relation to an independent simulation of the some.

For the algorithm, a control variable I
(l)
r is required, which has value 1 when

the simulation must go on or 0 in other case; l denotes the process l = 1, 2 and
r = 1, . . . ,M the number of the replica.

For l = 1, 2, P (l) represents the proportion of replicas in which ruin occurs
in process X(l) until time T . The number of replicas of the process X(l) with
l = 1, 2 in which ruin happens up to time T , has a Binomial (Bi) distribution, that

is, M · P (l) is Bi(M,p(l)). On the other hand, R
(1)
r − R

(2)
r has a Bernoulli (Be)

distribution Be(p(1) − p(2)) and so, M · P is Bi(M,P ).

As it was mentioned, the method used in Theorem 1 gives an estimator with
less variance than the estimator obtained with independent simulations of P (1)

and P (2). In fact, let

Vd =
(p(1) − p(2))(1− (p(1) − p(2)))

M

and

Vi =
p(1)(1− p(1)) + p(2)(1− p(2))

M

the variances of the estimator in the case of dependent and independent simula-
tions, respectively, and let

E =

√
Vi −

√
Vd√

Vi

The following table shows a numerical example of the reduction that is obtained
by applying a dependent simulation method. In each entry a the table there the
following three values are displayed:

√
M · Vd,

√
M · Vi and E in percentage:
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Input: Independent sequences of independent random variables identically dis-
tributed as U(0, 1): (Ur,n)n∈N+ , (Vr,n)n∈N+

for r = 1, . . . ,M do

(Wr,n)n∈N+ , r = 1, . . . ,M . Values T , x, f (1) and f (2) with f (1) ≤ f (2).

X̃
(1)

r,0 = x, X̃
(2)

r,0 = x

K̃
(1)

r,0 = f (1), K̃
(2)

r,0 = f (2)

I
(1)

r = 1, I
(2)

r = 1, n1 = 0, n2 = 0

while max
{

I
(1)

r , I
(2)

r

}

= 1 do

for l = 1, 2 do

if I
(l)
r = 1 then

K̃
(l)

r,nl+1
=

[

P
(l)

K̃l
r,n

l
,.

]
−1

(Ur,nl+1)

H̃
(l)

r,nl+1
=

[

F
(l)

(K̃
(l)
r,n

l
,K̃

(l)
r,n

l
+1)

]
−1

(Vr,nl+1)

Ỹ
(l)

r,nl+1
=

[

G
(l)

(K̃
(l)
r,n

l
,K̃

(l)
r,n

l
+1)

]
−1

(Wr,nl+1)

S̃
(l)

r,nl+1
= S̃

(l)
r,nl

+ H̃
(l)

r,nl+1

X̃
(l)

r,nl+1
= X̃

(l)
r,nl

+ c
(l)

K̃
(l)
r,n

l

H̃
(l)

r,nl+1
− Ỹ

(l)

r,nl+1

nl = nl + 1
end if

if S̃
(l)
r,nl

≤ T and X̃
(l)
r,nl

≤ 0 then R
(l)
r = 1 end if

if S̃
(l)
r,nl

> T or R
(l)
r = 1 then I

(l)
r = 0 end if

end for

end while

end for

for l = 1, 2 do

P (l) =
∑

M

r=1 R
(l)
r

M

end for

P = P (1) − P (2)

V̂d = P∗(1−P )

M

Output: Estimator P of the difference between ruin probabilities of the two pro-
cesses under consideration and its approximate variance V̂d

Figure 3: Algorithm to estimate the difference of ruin probabilities during a given time
T , of two processes which satisfy conditions of Theorem 1.
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Table 1: Reduction obtained by applying the dependent simulation method.
P
P
P
P
P
PP

p(2)
p(1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.000 0.300 0.400 0.458 0.490 0.500 0.490 0.458 0.400

0.1 0.424 0.500 0.5477 0.5745 0.5831 0.5745 0.5477 0.500 0.4243

100% 40.0% 27.0% 20.2% 16.0% 13.0% 10.6% 8.3% 5.7%

- 0.000 0.300 0.400 0.458 0.490 0.500 0.490 0.458

0.2 - 0.566 0.608 0.632 0.640 0.632 0.608 0.566 0.500

- 100% 50.7% 36.7% 28.4% 22.5% 17.8% 13.4% 8.3%

- - 0.000 0.300 0.400 0.458 0.490 0.500 0.490

0.3 - - 0.648 0.671 0.678 0.671 0.648 0.6083 0.548

- - 100% 55.3% 41.0% 31.7% 24.4% 17.8% 10.6%

- - - 0.000 0.300 0.400 0.458 0.490 0.500

0.4 - - - 0.693 0.700 0.693 0.671 0.632 0.575

- - - 100% 57.1% 42.3% 31.7% 22.5% 13.0%

- - - - 0.000 0.300 0.400 0.458 0.490

0.5 - - - - 0.707 0.700 0.678 0.640 0.583

- - - - 100% 57.1% 41.0% 28.4% 16.0%

- - - - - 0.000 0.300 0.400 0.458

0.6 - - - - - 0.693 0.671 0.632 0.574

- - - - - 100% 55.3% 36.7% 20.2%

- - - - - - 0.000 0.300 0.400

0.7 - - - - - - 0.648 0.608 0.548

- - - - - - 100% 50.7% 27.0%

- - - - - - - 0.000 0.300

0.8 - - - - - - - 0.566 0.500

- - - - - - - 100% 40.0%

- - - - - - - - 0.000

0.9 - - - - - - - - 0.424

- - - - - - - - 100%

As it can be seen, values of
√
Vi are higher than the correspondents

√
Vd ob-

tained with dependent simulation as in the proof of Theorem 1. In the particular
case in which p(1) = p(2), this method gives a big reduction, because the described
method present a value Vd = 0, while values in the independent case are strictly
positive.

With this method confidence intervals with lower amplitude can be built:

IC(1− α) =

(
P ± Φ(1− α/2) ·

√
P ∗ (1− P )

M

)

5. Conclusions

The problem of ruin was addressed from a different perspective to the tradi-
tional. Instead of setting expressions or quotations for the ruin probability of a
particular model for the selection of each other, times to ruin have been ranked.
This will allow to make a selection without knowing explicitly the expression of
the probability of ruin or an approximation thereof.
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On the other hand, simulation algorithms have been proposed for these pro-
cesses and statistical inference methods to estimate differences between the prob-
ability of ruin of the models have been considered.

This paper is a reference tool which can be used to determine the actual level of
risk assumed by insurers (sufficiency of financial resources, reserves and capital).

The problems of the minimum solvency margin and the probability of survival
of the reserves can be approached from the perspective proposed, since it allows
to model stochastic processes at groups, taking into account those risks that may
occur at the group level and not necessarily at the level of companies considered
individually.

[
Recibido: septiembre de 2010 — Aceptado: julio de 2011

]
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Abstract

In this article, we study several properties such as marginal and condi-
tional distributions, joint moments, and mixture representation of the bivari-
ate generalization of the Kummer-Beta distribution. To show the behavior of
the density function, we give some graphs of the density for different values
of the parameters. Finally, we derive the exact and approximate distribu-
tion of the product of two random variables which are distributed jointly as
bivariate Kummer-Beta. The exact distribution of the product is derived as
an infinite series involving Gauss hypergeometric function, whereas the beta
distribution has been used as an approximate distribution. Further, to show
the closeness of the approximation, we have compared the exact distribution
and the approximate distribution by using several graphs. An application of
the results derived in this article is provided to visibility data from Colombia.

Key words: Beta distribution, Bivariate distribution, Dirichlet distribution,
Hypergeometric function, Moments, Transformation.

Resumen

En este artículo, definimos la función de densidad de la generalización bi-
variada de la distribución Kummer-Beta. Estudiamos algunas de sus propie-
dades y casos particulares, así como las distribuciones marginales y condi-
cionales. Para ilustrar el comportamiento de la función de densidad, mostra-
mos algunos gráficos para diferentes valores de los parámetros. Finalmente,
encontramos la distribución del producto de dos variables cuya distribución
conjunta es Kummer-Beta bivariada y utilizamos la distribución beta como
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una aproximación. Además, con el fin de comparar la distribución exacta
y la aproximada de este producto, mostramos algunos gráficos. Se presenta
una aplicación a datos climáticos sobre niebla y neblina de Colombia.

Palabras clave: distribución Beta, distribución bivariada, distribución Dirich-
let, función hipergeométrica, momentos, transformación.

1. Introduction

The beta random variable is often used for representing processes with natural
lower and upper limits. For example, refer to Hahn & Shapiro (1967). Indeed,
due to a rich variety of its density shapes, the beta distribution plays a vital role
in statistical modeling. The beta distribution arises from a transformation of the
F distribution and is typically used to model the distribution of order statistics.
The beta distribution is useful for modeling random probabilities and proportions,
particularly in the context of Bayesian analysis. Varying within (0, 1) the standard
beta is usually taken as the prior distribution for the proportion p and forms
a conjugate family within the beta prior-Bernoulli sampling scheme. A natural
univariate extension of the beta distribution is the Kummer-Beta distribution
defined by the density function (Gupta, Cardeño & Nagar 2001, Nagar & Gupta
2002, Ng & Kotz 1995),

Γ(a+ c)

Γ(a)Γ(c)

xa−1(1− x)c−1 exp (−λx)

1F1(a; a+ c;−λ)
(1)

where a > 0, c > 0, 0 < x < 1, −∞ < λ < ∞ and 1F1 is the confluent hypergeo-
metric function defined by the integral (Luke 1969),

1F1(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1 − t)c−a−1 exp(zt) dt,

Re(c) > Re(a) > 0

(2)

The Kummer-Beta distribution can be seen as bimodal extension of the Beta
distribution (on a finite interval) and thus can help to describe real world phe-
nomena possessing bimodal characteristics and varying within two finite bounds.
The Kummer-Beta distribution is used in common value auctions where posterior
distribution of “value of a single good” is Kummer-Beta (Gordy 1998). Recently,
Nagar & Zarrazola (2005) derived distributions of product and ratio of two inde-
pendent random variables when at least one of them is Kummer-Beta.

The random variables X and Y are said to have a bivariate Kummer-Beta
distribution, denoted by (X,Y ) ∼ KB(a, b; c;λ), if their joint density is given by

f(x, y; a, b; c;λ) = C(a, b; c;λ)xa−1yb−1 (1− x− y)c−1 exp[−λ(x+ y)] (3)

where x > 0, y > 0, x+ y < 1, a > 0, b > 0, c > 0, −∞ < λ <∞ and

C(a, b; c;λ) =
Γ(a+ b+ c)

Γ(a)Γ(b)Γ(c)
{1F1(a+ b; a+ b+ c;−λ)}−1 (4)
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For λ = 0, the density (3) slides to a Dirichlet density with parameters a, b and
c. In Bayesian analysis, the Dirichlet distribution is used as a conjugate prior dis-
tribution for the parameters of a multinomial distribution. However, the Dirichlet
family is not sufficiently rich in scope to represent many important distributional
assumptions, because the Dirichlet distribution has few number of parameters. We
provide a generalization of the Dirichlet distribution with added number of param-
eters. Several other bivariate generalizations of Beta distribution are available in
Mardia (1970), Barry, Castillo & Sarabia (1999), Kotz, Balakrishnan & Johnson
(2000), Balakrishnan & Lai (2009), Hutchinson & Lai (1991), Nadarajah & Kotz
(2005), and Gupta & Wong (1985).

The matrix variate generalization of Beta and Dirichlet distributions have been
defined and studied extensively. For example, see Gupta & Nagar (2000).

It can also be observed that bivariate generalization of the Kummer-Beta dis-
tribution defined by the density (3), belongs to the Liouville family of distributions
proposed by Marshall & Olkin (1979) and Sivazlian (1981), (also see Gupta & Song
(1996), Gupta & Richards (2001) and Song & Gupta (1997)).

In this article we study several properties such as marginal and conditional dis-
tributions, joint moments, correlation, and mixture representation of the bivariate
Kummer-Beta distribution defined by the density (3). We also derive the exact
and approximate distribution of the product XY where (X,Y ) ∼ KB(a, b; c;λ).
Finally, an application of the results derived in this article is provided to visibility
data about fog and mist from Colombia.

2. Properties

In this section we study several properties of the bivariate Kummer-Beta dis-
tribution defined in Section 1.

Using the Kummers relation,

1F1(a; c;−z) = exp(−z)1F1(c− a; c; z) (5)

the density given in (3) can be rewritten as

C(a, b; c;λ) exp(−λ)xa−1yb−1 (1− x− y)
c−1

exp[λ(1− x− y)] (6)

Expanding exp[λ(1 − x − y)] in power series and rearranging certain factors,
the joint density of X and Y can also be expressed as

{1F1(c; a+ b+ c;λ)}−1
∞∑

j=0

Γ(a+ b+ c)Γ(c+ j)

Γ(a+ b+ c+ j)Γ(c)

λj

j!

xa−1yb−1 (1− x− y)
c+j−1

B(a, b, c+ j)

where

B(α, β, γ) =
Γ(α)Γ(β)Γ(γ)

Γ(α+ β + γ)

Revista Colombiana de Estadística 34 (2011) 497–512



500Paula Andrea Bran-Cardona, Johanna Marcela Orozco-Castañeda & Daya Krishna Nagar

Thus the bivariate Kummer-Beta distribution is an infinite mixture of Dirichlet
distributions.

In Bayesian probability theory, if the posterior distributions are in the same
family as the prior probability distribution, the prior and posterior are then called
conjugate distributions, and the prior is called a conjugate prior. In case of multi-
nomial distribution, the usual conjugate prior is the Dirichlet distribution. If

P (r, s, f |x, y) =

(
r + s+ f

r, s, f

)
xrys(1− x− y)f

and

p(x, y) = C(a, b; c;λ)xa−1yb−1 (1− x− y)
c−1

exp[−λ(x + y)]

where x > 0, y > 0, and x+ y < 1, then

p(x, y | r, s, f) = C(a+ r, b+ s; c+ f ;λ)

× xa+r−1yb+s−1 (1− x− y)
c+f−1

exp[−λ(x+ y)]

Thus, the bivariate family of distributions considered in this article is the con-
jugate prior for the multinomial distribution.

A distribution is said to be negatively likelihood ratio dependent if the density
f(x, y) satisfies

f(x1, y1)f(x2, y2) ≤ f(x1, y2)f(x2, y1)

for all x1 > x2 and y1 > y2 (see Lehmann (1966)). In the case of bivariate
generalization of the Kummer-Beta distribution the above inequality reduces to

(1− x1 − y1)(1 − x2 − y2) < (1− x1 − y2)(1 − x2 − y1)

which clearly holds. Hence, the bivariate distribution defined by the density (3) is
negatively likelihood ratio dependent.

If (X,Y ) ∼ KB(a, b; c;λ), then Ng & Kotz (1995) have shown that Y/(X +
Y ) and X + Y are mutually independent, Y/(X + Y ) ∼ B(b, a) and X + Y ∼
KB(a + b; c;λ). Here we give a different proof of this result based on angular
transformation.

Theorem 1. Let (X,Y ) ∼ KB(a, b; c;λ) and define X = R2 cos2 Θ and Y =
R2 sin2 Θ. Then, R2 and Θ are independent, R2 ∼ KB(a + b; c;λ) and sin2 Θ ∼
B(b, a).

Proof . Using the transformation X = R2 cos2 Θ and Y = R2 sin2 Θ with the
Jacobian J(x, y → r2, θ) = 2r2 cos θ sin θ, in the joint density of X and Y , we
obtain the joint density of R and Θ as

C(a, b; c;λ)(r2)a+b(1− r2)c−1 exp(−λr2)(cos θ)2a−1(sin θ)2b−1, (7)

where 0 < r2 < 1 and 0 < θ < π/2. From (7), it is clear that R2 and Θ are
independent. Now, transforming S = R2 and U = sin2 Θ with the Jacobian
J(r2, θ → s, u) = J(r2 → s)J(θ → u) = (4s)−1[u(1 − u)]−1/2, above we get the
desired result.
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We derive marginal and conditional distributions as follows.

Theorem 2. If (X,Y ) ∼ KB(a, b; c;λ), then the marginal density of X is given
by

C1(a, b; c;λ) exp(−λx)x
a−1(1 − x)b+c−1

1F1(b; b+ c;−λ(1− x)) (8)

where 0 < x < 1 and

C1(a, b; c;λ) =
Γ(a+ b+ c)

Γ(a)Γ(b+ c)
{1F1(a+ b; a+ b+ c;−λ)}−1

Proof . To find the marginal pdf of X , we integrate (3) with respect to y to get

C(a, b; c;λ) exp(−λx)xa−1

∫ 1−x

0

exp(−λy)yb−1 (1− x− y)
c−1

dy

Substituting z = y/(1− x) with dy = (1− x) dz above, one obtains

C(a, b; c;λ)xa−1 exp(−λx)(1 − x)b+c−1

∫ 1

0

exp[−λ(1− x)z]zb−1 (1− z)c−1 dz (9)

Now, the desired result is obtained by using (2).

Using the above theorem, the conditional density function of X given Y = y,
0 < y < 1, is obtained as

Γ(a+ c)

Γ(a)Γ(c)

exp(−λx)xa−1(1 − x− y)c−1

(1− y)a+c−1
1F1(a; a+ c;−λ(1− y))

, 0 < x < 1− y

Graphs 1–6 of the density function for several values of a, b, c and λ correspond-
ing to six rows of Table 1, depicted in Figure 1, show a wide range of densities.
For example, large values of a, b, c give a density similar to a bivariate normal
density, whereas for small values of a, b, c the density is close to a uniform density.

Table 1: Density functions for different values of a, b, c and λ.

Graph a b c λ

1 2 1 1.5 −5.0

2 2 2 5.0 −5.0

3 5 3 2.0 −5.0

4 2 1 2.0 −0.5

5 5 3 9.0 0.5

6 3 2 1.5 3.0
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Figure 1: Density functions for different values of the parameters.

Further, using (3), the joint (r, s)-th moment is obtained as

E(XrY s) = C(a, b; c;λ)

∫ 1

0

∫ 1−x

0

exp[−λ(x+ y)]xa+r−1yb+s−1 (1− x− y)
c−1

dy dx

=
C(a, b; c;λ)

C(a+ r, b+ r; c;λ)

=
Γ(a+ r)Γ(b + s)Γ(d)

Γ(a)Γ(b)Γ(d + r + s)
1F1(a+ b+ r + s; d+ r + s;−λ)

1F1(a+ b; d;−λ)

where d = a+ b+ c, a+ r > 0 and b+ s > 0. Now, substituting appropriately, we
obtain

E(X) =
a

d
1F1(a+ b+ 1; d+ 1;−λ)

1F1(a+ b; d;−λ)

E(Y ) =
b

d
1F1(a+ b+ 1; d+ 1;−λ)

1F1(a+ b; d;−λ)

Revista Colombiana de Estadística 34 (2011) 497–512



Bivariate Kummer-Beta Distribution 503

E(X2) =
a(a+ 1)

d(d+ 1)
1F1(a+ b+ 2; d+ 2;−λ)

1F1(a+ b; d;−λ)

E(Y 2) =
b(b+ 1)

d(d+ 1)
1F1(a+ b+ 2; d+ 2;−λ)

1F1(a+ b; d;−λ)

E(XY ) =
ab

d(d+ 1)
1F1(a+ b+ 2; d+ 2;−λ)

1F1(a+ b; d;−λ)

E(X2Y 2) =
ab(a+ 1)(b+ 1)

d(d + 1)(d+ 2)(d+ 3)
1F1(a+ b+ 4; d+ 4;−λ)

1F1(a+ b; d;−λ)

Var(X) =
a

d

[
a+ 1

d+ 1
1F1(a+ b+ 2; d+ 2;−λ)

1F1(a+ b; d;−λ)
−
a

d

{
1F1(a+b+1; d+1;−λ)

1F1(a+ b; d;−λ)

}2 ]

Var(Y ) =
b

d

[
b+ 1

d+ 1
1F1(a+ b+ 2; d+ 2;−λ)

1F1(a+ b; d;−λ)
−
b

d

{
1F1(a+b+1; d+1;−λ)

1F1(a+ b; d;−λ)

}2 ]

and

Cov(X,Y ) =
ab

d

[
1F1(a+ b+ 2; d+ 2;−λ)

(d+ 1)1F1(a+ b; d;−λ)
−

1

d

{
1F1(a+b+1; d+1;−λ)

1F1(a+ b; d;−λ)

}2 ]

Notice that E(XY ), E(X2), E(Y 2), E(X) and E(Y ) involve 1F1(α;µ;−λ) which
can be computed using Mathematica by providing values of α, µ and λ. Table 2
provides correlations between X and Y for different values of a, b, c and λ. All the
tabulated values of correlation are negative because X and Y satisfy x+y < 1. As
can be seen, the choices of a, b small and c, λ large yield correlations close to zero,
whereas large values of a or b and small values of c or λ give small correlations.
Further, for fixed values of a, b and c, the correlation decreases as the value of λ
increases. Likewise, for fixed values of a, b and λ, the correlation decreases as c
increases.

3. Entropies

In this section, exact forms of Renyi and Shannon entropies are determined for
the bivariate Kummer-Beta distribution defined in this article.

Let (X ,B,P) be a probability space. Consider a pdf f associated with P , dom-
inated by σ−finite measure µ on X . Denote by HSH(f) the well-known Shannon
entropy introduced in Shannon (1948). It is define by

HSH(f) = −

∫

X

f(x) log f(x) dµ (10)
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Table 2: Correlation for values of a, b, c and λ.
a b c λ = −5.000 −2.000 −1.000 −0.500 0.000 0.500 1.000 2.000 5.000

3.0 2.0 0.5 −0.936 −0.888 −0.862 −0.846 −0.828 −0.808 −0.785 −0.731 −0.494

1.0 2.0 1.0 −0.848 −0.717 −0.653 −0.616 −0.577 −0.536 −0.493 −0.406 −0.172

3.0 2.0 1.5 −0.819 −0.716 −0.670 −0.644 −0.617 −0.589 −0.559 −0.497 −0.304

5.0 3.0 2.0 −0.799 −0.723 −0.690 −0.673 −0.655 −0.635 −0.616 −0.573 −0.433

0.5 1.0 1.5 −0.736 −0.499 −0.406 −0.360 −0.316 −0.275 −0.237 −0.171 −0.055

1.0 2.0 2.0 −0.712 −0.543 −0.477 −0.442 −0.408 −0.374 −0.341 −0.279 −0.135

0.5 1.0 2.0 −0.654 −0.414 −0.332 −0.294 −0.258 −0.225 −0.195 −0.144 −0.054

1.0 2.0 3.0 −0.598 −0.429 −0.371 −0.343 −0.316 −0.290 −0.265 −0.219 −0.118

2.0 4.0 5.0 −0.535 −0.428 −0.391 −0.374 −0.356 −0.339 −0.322 −0.290 −0.204

2.0 2.0 5.0 −0.494 −0.365 −0.324 −0.305 −0.286 −0.267 −0.250 −0.218 −0.141

1.0 0.5 5.0 −0.322 −0.185 −0.151 −0.136 −0.123 −0.111 −0.100 −0.082 −0.046

One of the main extensions of the Shannon entropy was defined by Rényi
(1961). This generalized entropy measure is given by

HR(η, f) =
logG(η)

1− η
(for η > 0 and η 6= 1) (11)

where

G(η) =

∫

X

fηdµ

The additional parameter η is used to describe complex behavior in probability
models and the associated process under study. Rényi entropy is monotonically
decreasing in η, while Shannon entropy (10) is obtained from (11) for η ↑ 1.
For details see Nadarajah & Zografos (2005), Zografos and Nadarajah (2005) and
Zografos (1999).

First, we give the following lemma useful in deriving these entropies.

Lemma 1. Let g(a, b, c, λ) = limη→1 h(η), where

h(η) =
d

dη
1F1(η(a+ b− 2) + 2; η(a+ b+ c− 3) + 3;−λη) (12)

Then,

g(a, b, c, λ) =

∞∑

j=1

Γ(a+ b+ j)Γ(a+ b+ c)

Γ(a+ b)Γ(a+ b+ c+ j)

(−λ)j

j!

[
j + (a+ b− 2)ψ(a+ b+ j)

+ (a+ b+ c− 3)ψ(a+ b+ c)− (a+ b− 2)ψ(a+ b)

− (a+ b+ c− 3)ψ(a+ b+ c+ j)
]

(13)

where ψ(α) = Γ′(α)/Γ(α) is the digamma function.
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Proof . Expanding 1F1 in series form, we write

h(η) =
d

dη

∞∑

j=0

∆j(η)
(−λ)j

j!
=

∞∑

j=0

[
d

dη
∆j(η)

]
,
(−λ)j

j!
(14)

where

∆j(η) =
Γ[η(a+ b− 2) + 2 + j]Γ[η(a+ b+ c− 3) + 3]

Γ[η(a+ b− 2) + 2]Γ[η(a+ b+ c− 3) + 3 + j]
ηj

Now, differentiating the logarithm of ∆j(η) w.r.t. to η, one obtains

d

dη
∆j(η) = ∆j(η)

[ j
η
+ (a+ b− 2)ψ(η(a+ b− 2) + 2 + j)

+(a+ b+ c− 3)ψ(η(a+ b+ c− 3) + 3)

−(a+ b− 2)ψ(η(a+ b− 2) + 2)

−(a+ b+ c− 3)ψ(η(a+ b+ c− 3) + 3 + j)
]

(15)

Finally, substituting (15) in (14) and taking η → 1, one obtains the desired
result.

Theorem 3. For the bivariate Kummer-Beta distribution defined by the pdf (3),
the Rényi and the Shannon entropies are given by

HR(η, f) =
1

1− η

[
η logC(a, b; c;λ) + log Γ[η(a− 1) + 1]

+ logΓ[η(b − 1) + 1] + log Γ[η(c− 1) + 1]

− log Γ[η(a+ b+ c− 3) + 3]

+ log 1F1(η(a+ b− 2) + 2; η(a+ b+ c− 3) + 3;−λη)

]
(16)

and

HSH(f) = − logC(a, b; c;λ)− [(a− 1)ψ(a) + (b− 1)ψ(b) + (c− 1)ψ(c)

−(a+ b+ c− 3)ψ(a+ b+ c)]−
g(a, b, c, λ)

1F1(a+ b; a+ b+ c;−λ)
, (17)

respectively, where ψ(α) = Γ′(α)/Γ(α) is the digamma function and g(a, b, c, λ) is
given by (13).
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Proof . For η > 0 and η 6= 1, using the joint density of X and Y given by (3), we
have

G(η) =

∫ 1

0

∫ 1−x

0

fη(x, y; a, b; c;λ)dxdy

= [C(a, b; c;λ)]η
∫ 1

0

∫ 1−x

0

xη(a−1)yη(b−1)

(1− x− y)
η(c−1)

exp[−ηλ(x + y)] dxdy

=
[C(a, b; c;λ)]η

C(η(a− 1) + 1, η(b− 1) + 1; η(c− 1) + 1;λ)

=
Γη(a+ b+ c)Γ[η(a− 1) + 1]Γ[η(b− 1) + 1]Γ[η(c− 1) + 1]

Γη(a)Γη(b)Γη(c)Γ[η(a+ b+ c− 3) + 3]

×
1F1(η(a+ b− 2) + 2; η(a+ b+ c− 3) + 3;−λη)

{1F1(a+ b; a+ b+ c;−λ)}η
,

where the last line has been obtained by using (4). Now, taking logarithm of G(η)
and using (11) we get (16). The Shannon entropy is obtained from (16) by taking
η ↑ 1 and using L’Hopital’s rule.

4. Exact and Approximate Distribution of the

Product

If (X,Y ) ∼ KB(a, b; c;λ), then Ng & Kotz (1995) have shown that X/(X+Y )
and X+Y are mutually independent, X/(X+Y ) ∼ B(a, b) and X+Y ∼ KB(a+
b; c;λ). In this section we derive the density of XY when (X,Y ) ∼ KB(a, b; c;λ).
The distribution of XY , where X and Y are independent random variables, X ∼
KB(a1, b1, λ1) and Y ∼ KB(a2, b2, λ2) has been derived in Nagar & Zarrazola
(2005). In order to derive the density of the product we essentially need the integral
representation of the Gauss hypergeometric function given by Luke (1969),

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− zt)−b dt,

Re(c) > Re(a) > 0, | arg(1− z)| < π. (18)

Theorem 4. If (X,Y ) ∼ KB(a, b; c;λ), then the pdf of W = XY is given by

√
πC(a, b; c;λ) exp(−λ)

2a+c−b−1

wb−1(1− 4w)c−1/2

(
1 +

√
1− 4w

)b+c−a

×
∞∑

i=0

Γ(c+ i)

Γ(c+ 1/2 + i) 2i i!

(
1− 4w

1 +
√
1− 4w

)i

×2F1

(
c+ i, c+ b− a+ i; 2c+ 2i;

2
√
1− 4w

1 +
√
1− 4w

)
, 0 < w <

1

4
. (19)
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Proof . Making the transformation W = XY with the Jacobian J(x, y → x,w) =
x−1 in (3), we obtain the joint density of X and W as

C(a, b; c;λ) exp(−λ)
wb−1(−x2 + x− w)c−1

xb+c−a
exp

[
λ(−x2 + x− w)

x

]

where p < x < q with

p =
1−

√
1− 4w

2
, q =

1 +
√
1− 4w

2
,

and 0 < w < 1/4. Now, expanding exp
[
λ(−x2 + x− w)/x

]
in power series and

integrating x in the above expression, we obtain the marginal density of W as

C(a, b; c;λ) exp(−λ)wb−1

∫ q

p

[(x− p)(q − x)]
c−1

xb+c−a
exp

(
λ(x− p)(q − x)

x

)
dx

= C(a, b; c;λ) exp(−λ)wb−1
∞∑

i=0

(q − p)2i+2c−1λi

qi+b+c−a i!

∫ 1

0

tc+i−1(1− t)c+i−1 dt

[1− t (1−p/q)]b+c−a+i

where we have used the substitution t = (q − x)/(q − p). Now, evaluating the
above integral using (18) and simplifying the resulting expression, we get the
desired result.

In the rest of this section, we derive the approximate distribution of the product
XY . It is clear from Theorem 4, that the random variable 4W = 4XY has
support on (0, 1). We, therefore, are motivated to use the Beta distribution of two
parameters as an approximation to the exact distribution. Equating the first and
the second moments of 4W , with those of the Beta distribution with parameters
α and β, it is easy to see that

α =
E(W )[E(W )− 4E(W 2)]

E(W 2)− (E(W ))2
(20)

and

β =
[E(W )− 4E(W 2)][1− 4E(W )]

4[E(W 2)− (E(W ))2]

The moments E(W ) and E(W 2) are available in Section 2, and can be computed
numerically for given values of a, b, c and λ. To demonstrate the closeness of the
approximation we, in Figure 2, graphically compare the exact and approximated
pdf of 4W . First, for different values of the parameters (a, b, c, λ) we compute the
corresponding estimates for (α, β), using (20) and (21). These estimates are given
in Table 3, and corresponding graphics are given in Figure 2, showing comparison
between exact and approximate densities. The exact pdf corresponds to the solid
curve and approximate pdf corresponds to the broken curve. It is evident that the
approximate density is quite close to the exact density.
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Table 3: Estimated values of α and β.

Figure a b c λ α β

1 3.0 1.0 0.5 0.5 0.9567 1.0527

2 3.0 1.0 3.0 0.5 0.9514 3.7098

3 3.0 3.0 1.0 0.5 2.6239 1.5259

4 0.5 0.5 1.0 1.0 0.2646 1.8184

5 3.0 3.0 1.0 1.0 2.5250 1.5410

6 3.0 3.0 0.5 3.0 2.2502 1.0365
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Figure 2: Graphics of the exact density function (solid curve) and the approximate
(broken curve).

5. Application

In this section, we consider the data of fog and mist collect from five Colombian
airports and present an application of the model given by (3).

Fog or mist is a collection of water droplets or ice crystals suspended in the
air at or near the Earth’s surface. The only difference between mist and fog is
visibility. The phenomenon is called fog if the visibility is one kilometer or less;
otherwise it is known as mist.
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We consider data available at the website of IDEAM (Institute Hydrology,
Meteorology and Environmental Studies, Colombia) collected from the following
5 major Colombian airports regarding the fog and mist:

• Ernesto Cortissoz Airport (Barranquilla)

• El Dorado Airport (Bogota)

• Alfonso Bonilla Aragón Airport (Cali)

• Rafael Núñez Airport (Cartagena)

• José María Córdova Airport (Medellin)

The data comprises average number of days each month in which mist or fog
appeared during the period from 1975 to 1991. We consider the following variables:

X : the proportion of days with mist (the phenomenon weather provides a
visibility of more than 1 km)

Y : proportion of days with fog (the phenomenon weather provides a visibility
of 1 km or less)

In addition the following variables are of interest:

X + Y : proportion of days with the weather phenomenon (mist or fog)

X/(X + Y ): proportion of days with visibility greater than 1 km with respect
to the total proportion of days exhibiting the phenomenon (mist or fog)

Y/(X + Y ): proportion of days with visibility less than 1 km with respect to
the total proportion of days exhibiting the phenomenon (mist or fog)

Table 4, gives the estimates of a, b, c and λ, which were obtained using the
maximum likelihood method, and by implementing Fisher scoring method (Kotz
et al. (2000), p. 504). Table 5, gives estimated values of the moments E[X/(X +
Y )], E[Y/(X + Y )] and E(X + Y ) for five airports.

Table 4: Estimated values of a, b, c and λ.

Airport a b c λ

Barranquilla 0.620 0.266 153.00 −176.0

Bogota 8.290 3.370 3.82 12.3

Cali 0.303 0.088 70.80 −94.4

Cartagena 0.206 0.091 396.00 −407.0

Medellin 12.300 6.580 3.41 18.5

6. Conclusions of the Application

As conclusions, we can say that the proportion of days with visibility less than 1
km with respect to the total number of days presenting the phenomenon is similar
for Barranquilla, Bogota and Cartagena airports. This ratio is a little lower for
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Table 5: Estimated values of the moments.

Airport E[X/(X + Y )] E[Y/(X + Y )] E(X + Y )

Barranquilla 0.700 0.300 0.129

Bogotá 0.711 0.289 0.572

Cali 0.775 0.225 0.221

Cartagena 0.695 0.305 0.023

Medellín 0.651 0.349 0.675

the Cali and Medellin airports, the value of this ratio is higher. For example, we
can say that the airport at Barranquilla has 30% of total days (with phenomenon)
with fog. For Medellin, this percentage corresponds to 34.9% and for Cali to
22.5%. The proportion of days with phenomenon (mist or fog) is higher for the
Medellin airport followed by the Bogota airport. Cartagena airport presents the
lower proportion.

[
Recibido: agosto de 2010 — Aceptado: agosto de 2011

]
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Abstract

A martingale estimator for the expected discounted warranty cost process
of a minimally repaired coherent system under its component level observa-
tion is proposed. Its asymptotic properties are also presented using the
Martingale Central Limit Theorem.

Key words: Expected cost, martingale central limit theorem, reliability,
repairable system, semimartingale, stochastic point process.

Resumen

En este trabajo modelamos los costos de garantía descontados para un
sistema coherente reparado mínimamente a nivel de sus componentes y pro-
ponemos un estimador martingalas para el costo esperado para un período
de garantía fijo, también probamos sus propiedades asintóticas mediante el
Teorema del Limite Central para Martingalas.

Palabras clave: confiabilidad, costo esperado, proceso puntual estocástico,
semi-martingalas, sistema reparable, teorema de límite central para martin-
galas.

1. Introduction

Warranties for durable consumer products are common in the market place.
Its primary role is to offer a post sale remedy for consumers when a product fails

aAssociate professor. E-mail: ngonzale@unal.edu.co
bAssociate professor. E-mail: bueno@ime.usp.br
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to fulfill its intended performance during the warranty period and generally, they
also limit the manufacturer’s liability for out-of-warranty product failure.

Manufacturers offer many types of warranties which have become an important
promotional tool for their products. A discussion about various issues related to
warranty policies can be found in Murthy (1990), Blischke & Murthy (1992a),
Blischke & Murthy (1992b), Blischke & Murthy (1992c), Mitra & Patankar (1993),
Blischke & Murthy (1994), Blischke & Murthy (1996).

Although warranties are used by manufacturers as a competitive strategy to
boost their market share, profitability and image, they may cost a substantial
amount of money and, from a manufacturer’s perspective, the cost of a warranty
program should be analyzed and estimated accurately.

A discounted warranty cost policy incorporates the time and provides an ad-
equate measure for warranties because, in general, warranty costs can be treated
as random cash flows in the future. Warranty issuers do not have to spend all
the money at the stage of warranty planning, instead, they can allocate it along
the life cycle of warranted products. Another reason why one should consider
the time value is for the purpose of determining the warranty reserve, a fund set
up specifically to meet future warranty claims. It is well known that the present
value of warranty liabilities or rebates to be paid in the future are less than the
face value and it is desirable to determine the warranty reserve according to the
present value of the total warranty liability. Related issues to discounted war-
ranty costs and warranty reserves have been studied by Mamer (1969), Mamer
(1987), Patankar & Mitra (1995) and Thomas (1989), from both manufacturer
and customer’s perspectives for single-component products, either repairable or
nonrepairable.

More recently, Jain & Maheshwari (2006) proposed a hybrid warranty model for
renewing pro-rata warranties assuming constant failure rate and constant prod-
ucts maintenance and replacement costs. They derive the expected total dis-
counted warranty costs for different lifetime distributions and determine the op-
timal number and optimal period for preventive maintenance after the expiry of
the warranty; Jack & Murthy (2007) consider the costs for extended warranties
offered after a base warranty and investigate optimal pricing strategies and op-
timal maintenance/replacement strategies; Hong-Zhong, Zhie-Jie, Yanfeng, Yu &
Liping (2008) consider the cash flows of warranty reserve costs during the product
lifecycle and estimate the expected warranty cost for reparable and non repara-
ble products with both, the free replacement warranty and the pro-rata warranty
policy. They also consider the case where the item has a heterogeneous usage
intensity over the lifecicle and its usage is intermitent; Chattopadhyay & Rahman
(2008) study lifetime warranties where the warranty coverage period depends on
the lifetime of the product, they develop lifetime warranty policies and models
for predicting failures and estimating costs; Jung, Park & Park (2010) consider
optimal system maintenance policies during the post warranty period under the
renewing warranty policy with maintenance costs dependent on life cycle.

In practice, most products are composed of several components. If warranties
are offered for each component separately, then warranty models for single-component
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products can be applied directly. However, sometimes warranty terms are defined
upon an entire system. For such warranties, it is necessary to consider the system
structure as well as the component level warranty service cost (Thomas 1989).
Warranty analysis for multi-component systems based on the system structure
has been addressed in a few papers: Ritchken (1986) provides an example of a
two-component parallel system under a two-dimensional warranty; Chukova &
Dimitrov (1996) derive the expected warranty cost for two-component series sys-
tem and parallel system under a free-replacement warranty; Hussain & Murthy
(1998) also discuss warranty cost estimation for parallel systems under the setting
that uncertain quality of new products may be a concern for the design of war-
ranty programs; Bai & Pham (2006) obtained the first two centered moments of
the warranty cost of renewable full-services warranties for complex systems with
series-parallel and parallel-series structures. A Markovian approach to the analy-
sis of warranty cost for a three-component system can be found in Balachandran,
Maschmeyer & Livingstone (1981); Ja, Kulkarni, Mitra & Patankar (2002) study
the properties of the discounted warranty cost and total warranty program costs
for non renewable warranty policy with non stationary processes.

There are many ways to model the impact of repair actions on system fail-
ure times. For complex systems, repair is often assumed to be minimal, which
restores its failure rate. For a review about modeling failure and maintenance
data from repairable systems, see Li & Shaked (2003) and Lindqvist (2006). For
a generalization of minimal repair to heterogeneous populations, i.e., when the
lifetime distribution is a mixture of distributions, see Finkelstein (2004). Nguyen
& Murthy (1984) present a general warranty cost model for single-component re-
pairable products considering as-good-as-new-repair, minimal repair and imperfect
repair, but the value of time is not addressed. In Ja et al. (2002), several warranty
reserve models for single-component products are derived for non stationary sale
processes. Ja, Kulkarni, Mitra & Patankar (2001) analyze a warranty cost model
on minimally repaired single-component systems with time dependent costs. Bai
& Pham (2004) consider the free-repair warranty and the pro-rata warranty poli-
cies to derive some properties of a discounted warranty cost for a series system
of repairable and independent components using a non homogeneous Poisson pro-
cess. Recently, Duchesne & Marri (2009) consider, the same problem by analyzing
some distributional properties (mean, variance, characteristic function) of the cor-
responding discounted warranty cost and using a general competing risk model
to approach system reliability; Sheu & Yu (2005) propose a repair-replacement
warranty policy which splits the warranty period into two intervals where only
minimal repair can be undertaken and a middle interval in which no more than
one replacement is allowed. Their model applies to products with bathtub failure
rate considering random minimal repair costs. Other work about repair strategies,
including imperfect and minimal repair, which consider their effects on warranty
costs, can be found in Yun, Murthy & Jack (2008), Chien (2008), Yeo & Yuan
(2009) and Samatliy-Pac & Taner (2009).

For a series system with components which do not have common failures, sys-
tem failures coincide with component failures and warranty models for single-
component products can be applied directly. In this paper, we consider a dis-
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counted warranty cost policy of a repairable coherent system under a minimal
repair process on its component level. In this case, the system is set up as a series
system with its components that survive to their critical levels, that is, the time
from which a failure of a component would lead to system failure and, therefore,
it is seen as a series system. We use the Martingale Central Limit Theorem to
approximate the warranty cost distribution for a fixed warranty period of length
w, and to estimate the warranty cost through the component failure/repair point
processes.

In the Introduction of this paper we survey the recent developments in warranty
models. In Section 2, we consider the dependent components lifetimes, as they
appear in time through a filtration and use the martingale theory, a natural tool to
consider the stochastic dependence and the increasing information in time. In Sec-
tion 3, we consider independent copies of a coherent system, and its components,
as given in Section 2 and develop a statistical model for the discounted warranty
cost. Also, in this Section, we give an example. The paper is self contained but
a mathematical basis of stochastic processes applied to reliability theory can be
found in Aven & Jensen (1999). The extended proofs are in the Appendix.

2. The Warranty Discounted Cost Model of a

Coherent System on its Component Level

We consider the vector S = (S1, S2, . . . , Sm) representing component lifetimes
of a coherent system, with lifetime T , which are positive random variables in
a complete probability space (Ω,F , P ). The components can be dependent but
simultaneous failures are ruled out, that is, for all i, j with i 6= j, P (Si = Sj) = 0.
We observe the system on its component level throughout a filtration, a family of
sub σ-algebras of F , (Ft)t≥0

Ft = σ{1{T>s}, 1{Si>s} : s ≤ t, 1 ≤ i ≤ m},

which is increasing, right-continuous and complete. Clearly, the Si, 1 ≤ i ≤ n
are (P,Ft)-stopping time.

An extended and positive random variable τ is an (P,Ft)-stopping time if,
and only if, {τ ≤ t} ∈ ℑt, for all t ≥ 0; an (P,Ft)-stopping time τ is called
predictable if an increasing sequence (τn)n≥0 of (P,Ft)-stopping time, τn < τ ,
exists such that limn→∞ τn = τ ; an (P,Ft)-stopping time τ is totally inaccessible
if P (τ = σ < ∞) = 0 for all predictable (P,Ft)-stopping time σ.

In what follows, to simplify the notation, we assume that relations such as
⊂,=,≤, <, 6= between random variables and measurable sets, respectively, always
hold “P-almost surely”, i.e., with probability one, which means that the term P -
a.s., is suppressed.
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2.1. Component Minimal Repair

For each i, 1 ≤ i ≤ m, we consider the simple counting process N i
t = 1{Si≤t},

i.e., the counting process corresponding to the simple point process (Si,n)n≥1 with
Si = Si,1 and Si,n = ∞, for n ≥ 2. We use the Doob-Meyer decomposition

N i
t = Ai

t +M i
t , M i ∈ M2

0, i = 1, . . . ,m, (1)

where M2
0 represents the class of mean zero and square integrable (P,Ft)-martingales

which are right-continuous with left-hand limits. Ai
t is a unique nondecreasing right

continuous (P,Ft)-predictable process with Ai
0 = 0, called the (P,Ft)-compensator

of N i
t .

We assume that the component lifetime Si, 1 ≤ i ≤ m is a totally inaccessible
(P,Ft)-stopping time, which is a sufficient condition for the absolutely continuity
of Ai

t. It follows that

Ai
t =

∫ t

0

1{Si>s}λ
i(s)ds < ∞, i = 1, . . . ,m, (2)

where λi(t) is the (P,Ft)-failure rate of component i, a deterministic function
of t.

Initially, consider the minimal repair process of component i. If we do a mini-
mal repair at each failure of component i, the corresponding minimal repair count-

ing process in (0, t] is a non homogeneous Poisson process Ñ i
t =

∞∑
n=1

1{Si,n≤t}, with

Doob-Meyer decomposition given by,

Ñ i
t =

∫ t

0

λi(s)ds+ M̃ i
t , M̃ i ∈ M2

0, (3)

and therefore the expected number of minimal repairs of component i is E[Ñ i
t ] =∫ t

0 λ
i(s) ds.

Let Hi(t) be a deterministic, continuous (predictable) bounded and integrable
function in (0, t], corresponding to the minimal repair discounted cost of compo-

nent i at time t, such that
∫ t

0
Hi(s)λ

i(s)ds < ∞, 0 ≤ t < ∞.

The minimal repair cost process of component i is B̂i
t =

Ñi
t∑

j=1

Hi(Sij) =

∫ t

0 Hi(s)dÑ
i
s, where Sij is the j-th minimal repair time of component i and Si1 =

Si.

Since Hi(s) is predictable, the process
∫ t

0
Hi(s)dM̃

i
s is a mean zero and square

integrable (P,Ft)-martingale and therefore, the (P,Ft)-compensator of B̂i
t is Bi

t

which is given by

Bi
t =

∫ t

0

Hi(s)λ
i(s)ds < ∞, ∀ 0 ≤ t < ∞ (4)
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Barlow and Proschan (1981) define the system lifetime T

T = Φ(S) = min
1≤j≤k

max
i∈Kj

Si

where Kj , 1 ≤ j ≤ k are minimal cut sets, that is, a minimal set of components
whose joint failure causes the system to fail. Aven & Jensen (1999) define the
critical level of component i as the (P,Ft)-stopping time Yi, 1 ≤ i ≤ m which
describes the time when component i becomes critical for the system, i.e., the
time from which the failure of component i leads to system failure. If either the
system or component i fail before the latter becomes critical (T ≤ Yi or Si ≤ Yi)
we assume that Yi = ∞. Therefore, as in Aven & Jensen (1999) we can write

T = min
i:Yi<∞

Si (5)

Therefore, concerning the system minimal repairs at the component level, it
is sufficient to consider the component minimal repairs after its critical levels. In
what follows we consider the set C i = {ω ∈ Ω : Si(ω) > Yi(ω)}, where Yi is the
critical level of component i, and the minimal repair point process restricted to
C i, that is, the process N i∗

t , defined as

N i∗
t = 1C iN i

t (6)

which counts the failures of component i when it is critical, implying system
failure.

Theorem 1. (González 2009) The (P,Ft)−compensator process of the indicator
process N i

t = 1{Si≤t} in C i is

Ai∗
t =

∫ t

Yi

1{Si>s}λ
i(s)ds =

∫ t

0

1{Si>s}1{Yi<s}λ
i(s)ds < ∞, ∀ 0 ≤ t < ∞ (7)

Note 1. Note that

E[N i
t |Si > Yi] = E[Ai∗

t |Si > Yi] = E
[∫ t

Yi

1{Si>s}λ
i(s)ds

∣∣∣Si > Yi

]
(8)

From Theorem 1 the next Corollary follows easily.

Corollary 1. Let Ñ i
t be the minimal repair counting process for the component

i. Let Hi(t) be a deterministic, continuous (predictable), bounded and integrable
function in [0, t], corresponding to the discounted warranty cost of component i at

time t, such that
∫ t

0
Hi(s)λ

i(s)ds < ∞, 0 ≤ t < ∞. In C i we have

i. The (P,Ft)-compensator of Ñ i
t is the process

Ãi∗
t =

∫ t

Yi

λi(s)ds =

∫ t

0

1{Yi<s}λ
i(s)ds < ∞, ∀ 0 ≤ t < ∞ (9)
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ii. The (P,Ft)-compensator of the minimal repair cost process of component i,

B̂i
t =

Ñi
t∑

j=1

Hi(Sij) is the process

Bi∗
t =

∫ t

Yi

Hi(s)λ
i(s)ds =

∫ t

0

1{Yi<s}Hi(s)λ
i(s)ds < ∞, ∀ 0 ≤ t < ∞ (10)

Note 2. For each i = 1, . . . ,m and ω ∈ C i, the process Bi
t(ω) given in (4), is

equal to the process Bi∗
t (ω).

2.2. Coherent System Minimal Repair

Now we are going to define the minimal repair counting process and its corre-
sponding coherent system cost process.

Let Nt = 1{T≤t} be the system failure simple counting process and its (P,Ft)-
compensator process At, with decomposition

Nt = At +Mt, M ∈ M2
0 (11)

and

At =

∫ t

0

1{T>s}λs ds < ∞ (12)

where the process (λt)t≥0 is the coherent system (P,Ft)-failure rate process.

Since we do not have simultaneous failures the system will failure at time t
when the first critical component for the system at t− failures at t.

Under the above conditions Arjas (1981) proves that the (P,Ft)-compensator
of Nt is

At =

m∑

i=1

[
Ai

t∧T −Ai
Yi

]+
(13)

and from (2) and (13) we get

At =

m∑

i=1

∫ t

0

1{Si>s}1{Yi<s<T}λ
i(s) ds =

∫ t

0

1{T>s}

m∑

i=1

1{Yi<s}λ
i(s) ds (14)

From compensator unicity, it becomes clear that the (P,Ft)-failure rate process
of system is given by

λt =

m∑

i=1

1{Yi<t}λ
i(t) (15)

If the system is minimally repaired on its component level, its (P,Ft)-failure
rate process λt is restored at its condition immediately before failure and therefore
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the critical component that fails at the system failure time is minimally repaired.
Therefore, the number of minimal repairs of the system on its component level, is

Ñt =
∞∑
n=1

1{Tn≤t}, with Doob-Meyer decomposition given by

Ñt =

∫ t

0

λsds+ M̃t =

m∑

i=1

∫ t

0

1{Yi<s}λ
i(s)ds+ M̃t. M̃ ∈ M2

0

Definition 1. For a fixed ω ∈ Ω let CΦ(ω) = {i ∈ {1, . . . ,m} : Si(ω) > Yi(ω)}
be the set of components surviving its corresponding critical levels. For each
i = 1, . . . ,m, let Ci be the indicator variable

Ci(ω) =

{
1 if i ∈ CΦ(ω)

0 otherwise
(16)

Then, the minimal repair counting process of the coherent system is

Ñt(ω) =
∑

i∈CΦ(ω)

Ñ i
t (ω) =

m∑

i=1

Ci(ω)Ñ i
t (ω) (17)

with corresponding cost process

B̂t(ω) =
∑

i∈CΦ(ω)

B̂i
t(ω) =

m∑

i=1

Ci(ω)B̂i
t(ω) (18)

Note 3. Note that Ci(ω) = 1 ⇔ ω ∈ C i and in each realization ω ∈ Ω, the indi-
cator variables Ci(ω), i = 1, . . . ,m, are constant in [0, t]. Therefore, if Ci(ω) = 0,

then B̂i
s = 0, ∀ 0 ≤ s ≤ t. It means that in each realization of the system re-

pair/failure process, we only observe the repair/cost processes of components which
fail after their corresponding critical levels. Therefore, in each realization, the re-
pair/cost process for the system with structure Φ is equivalent to the repair/cost
process for a series system of components which are critical for the initial system
in such realization.

2.3. Martingale Estimator of the Warranty Cost

In the following results and definitions, for each realization w, the minimal
repair costs of a coherent system is the sum of the minimal repair costs of its
critical components in a given realization ω.

Suppose
m∑

i=1

∫ t

0

Hi(s)λ
i(s)ds < ∞, ∀ 0 ≤ t < ∞ (19)
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For a fixed ω ∈ Ω, let Bt(ω) be the process

Bt(ω) =
∑

i∈CΦ(ω)

Bi
t(ω) =

m∑

i=1

Ci(ω)Bi
t(ω) (20)

Following Karr (1986), for each i = 1, . . . ,m, i ∈ C i, the (P,Ft)-martingale
estimator for the process Bi

t , is the process

B̂i
t(ω) =

∫ t

0

Hi(s)dÑ
i
s(ω), in C

i (21)

respectively.

Definition 2. For each ω ∈ Ω, the process B̂t(ω) given in (18) is the (P,Ft)-
martingale estimator for the process Bt given in (20).

Proposition 1. Let Hi(t), i = 1, . . . ,m, be a bounded and continuous functions
in [0, t], such that

m∑

i=1

∫ t

0

H2
i (s)λ

i(s)ds < ∞, ∀ 0 ≤ t < ∞ (22)

Then, for each realization ω and each i ∈ CΦ(ω), the processes (B̂i−Bi)t≥0, are
orthogonal, mean zero, and square integrable (P,Ft)martingales with predictable

variation processes (〈B̂i −Bi〉)t≥0 given by

〈B̂i −Bi∗〉t =

∫ t

Yi

H2
i (s)λ

i(s)ds =

∫ t

0

H2
i (s)1{Yi<s}λ

i(s)ds (23)

respectively.

Proof . Note that ∀ i ∈ CΦ(ω) we have ω ∈ C i. Therefore, from Corollary

1, the (P,Ft)-compensator of B̂i
t =

Ñi
t∑

j=1

Hi(Sij) =
∫ t

0
Hi(s)dÑ

i
s is the process

Bi∗
t =

∫ t

Yi
Hi(s)λ

i(s)ds =
∫ t

0
Hi(s)1{Yi<s}λ

i(s)ds which represents Bi
t in C i (see

Note 2).

So, for all i ∈ CΦ(ω), the predictable variation process of the martingale

(B̂i
t −Bi

t) is the predictable variation process of the martingale (B̂i
t −Bi∗

t ),

〈B̂i −Bi∗〉t =

∫ t

0

H2
i (s)d〈M̃

i∗〉s =

∫ t

0

H2
i (s)1{Yi<s}λ

i(s) ds

Otherwise, since P (Si = Sj) = 0 P-a.s. for all i, j with i 6= j, the processes

N i
t and N j

t do not have simultaneous jumps and so are Ñ i
t and Ñ j

t . Then, for

all i,∈ CΦ(ω), the (P,Ft)-martingales M̃∗i
t and M̃∗j

t are orthogonal and square

integrable, so that for i 6= j, the martingales (B̂i
t − Bi∗

t ) and (B̂j
t − Bj∗

t ) are also
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orthogonal and square integrable. It follows that, for all i ∈ CΦ(ω), the predictable
covariation process

〈B̂i −Bi, B̂j −Bj〉t = 〈B̂i −Bi∗, B̂j −Bj∗〉t = 0

that is, for all i ∈ CΦ(ω), (B̂i−Bi)(B̂j−Bj) is a mean zero (P,Ft)-martingale.

Corollary 2. Let Hi(t), i, 1 ≤ i ≤ m be bounded and continuous functions in [0, t]

satisfying the condition in (22), and the processes (B̂t)t≥0, (Bt)t≥0 as were given
in (18) and (20), respectively. Then, for a realization ω ∈ Ω and the corresponding

set CΦ(ω), the process (B̂ − B)t≥0 is a mean zero and square integrable (P,Ft)-

martingale with predictable variation process (〈B̂ −B〉)t≥0 given by

〈B̂ −B〉t =
∑

i∈CΦ(ω)

∫ t

Yi

H2
i (s)λ

i(s)ds =

m∑

i=1

Ci(ω)

∫ t

0

H2
i (s)1{Yi<s}λ

i(s) ds (24)

Proof . For all i ∈ CΦ(ω) and from Proposition 1, the processes (B̂i − Bi)t≥0 =

(B̂i − Bi∗)t≥0, 1 ≤ i ≤ m, are orthogonal, mean zero, and square integrable

(P,Ft)−martingales with predictable variation processes given by 〈B̂i − Bi∗〉t =∫ t

0
H2

i (s)1{Yi<s}λ
i(s)ds, respectively. Therefore,

B̂t(ω)−Bt(ω) =
∑

i∈CΦ(ω)

(B̂i
t(ω)−Bi

t(ω))

=
∑

i∈CΦ(ω)

∫ t

0

Hi(s)M̃
i∗
s (ω) ∈ M2

0

(25)

and 〈B̂i −Bi, B̂j − Bj〉 = 0, ∀ i 6= j . From (23) we have

〈B̂ −B〉t =
∑

i∈CΦ(ω)

〈B̂i −Bi∗〉t =
m∑

i=1

Ci(ω)

∫ t

0

H2
i (s)1{Yi<s}λ

i(s) ds

Note 4. From (24) we have that the expected value of the predictable variation
process of the system warranty cost process is

E[〈B̂ −B〉t] =
m∑

i=1

P (Si > Yi)E
[∫ t

Yi

H2
i (s)λ

i(s)ds
∣∣∣Si > Yi

]
(26)

3. Statistical Model

3.1. Preliminary

We intend to estimate the expected minimal repair cost E[B̂t], over the inter-
val [0, t]. First, we need asymptotic results for the estimator of each component
expected warranty costs.
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From Definitions 1, 2 and Corollary 2 we have

E[B̂t] = E
[ ∑

i∈CΦ(ω)

Bi
t

]
=

m∑

i=1

P (Si > Yi)E
[∫ t

Yi

Hi(s)λ
i(s)ds

∣∣∣Si > Yi

]

= E[Bt]

(27)

where P (Si > Yi)E[
∫ t

Yi
Hi(s)λ

i(s)|Si > Yi] corresponds to the system minimal
repairs expected cost related to the component i.

We consider the sequences (B̂
i(j)
t , Ci(j), i = 1, . . . ,m)t≥0, 1 ≤ j ≤ n, of n inde-

pendent and identically distributed copies of the m−variate process (B̂i
t , C

i, i =
1, . . . ,m)t≥0.

For j = 1, . . . , n let C Φ(j) = {i ∈ {1, . . . ,m} : S
(j)
i > Y

(j)
i } be the set of critical

components for the j−th observed system, where S
(j)
i is the first failure time of

component i and Y
(j)
i its critical level. Then, the minimal repairs expected cost

for the j−th system is

B̂
(j)
t =

∑

i∈CΦ(j)

B̂
i(j)
t =

m∑

i=1

Ci(j)B̂
i(j)
t (28)

and its compensator process is (from Corollary 2)

B
(j)
t =

∑

i∈CΦ(j)

B
i(j)
t =

m∑

i=1

Ci(j)

∫ t

Y
(j)
i

Hi(s)λ
i(s) ds (29)

For n copies we consider the mean processes

B̂
(n)

t =
1

n

n∑

j=1

B̂
(j)
t =

1

n

n∑

j=1

m∑

i=1

Ci(j)

∫ t

0

Hi(s)dÑ
i(j)
s (30)

B
(n)

t =
1

n

n∑

j=1

B
(j)
t =

1

n

n∑

j=1

m∑

i=1

Ci(j)

∫ t

Y
(j)
i

Hi(s)λ
i(s) ds (31)

Let

B̂
i(n)

t =
1

n

n∑

j=1

Ci(j)B̂
i(j)
t and B

i(n)

t =
1

n

n∑

j=1

Ci(j)B
i(j)
t (32)

Then, from (30) and (31), we also have

B̂
(n)

t =
m∑

i=1

B̂
i(n)

t and B
(n)

t =
m∑

i=1

B
i(n)

t (33)

For each i = 1, . . . ,m we propose B̂
i(n)

t as the estimator for the system minimal
repairs expected cost related to the component i.
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Theorem 2. For each i = 1, . . . ,m let Bi∗(t) be

Bi∗(t) = P (Si > Yi)E
[∫ t

Yi

Hi(s)λ
i(s)ds

∣∣∣Si > Yi

]
(34)

Then, under conditions in Proposition 1, B̂
i(n)

t is a consistent and unbiased
estimator for the minimal repairs expected cost related to component i, Bi∗(t).

Proof . See Appendix A.

3.2. The Central Limit Theorem

In what follows we prove that the m-variate error process of the proposed

estimators, (B̂
i(n)

t − Bi∗(t), i = 1, . . . ,m), conveniently standardized, satisfies the
Martingale Central Limit Theorem, as in Karr (1986).

Theorem 3. (Karr 1986, Theorem 5.11). For fixed m and for each n, n ≥ 1, let

(M
i(n)
t , i = 1, . . . ,m) be a sequence of orthogonal, mean zero and square integrable

martingales with jumps,at time t, ∆M
i(n)
t = M

i(n)
t − M

i(n)−
t , where M

i(n)−
t =

lim
h↓0

M
i(n)
t−h . For each i, i = 1, . . . ,m let Vi(t) be a continuous and non decreasing

function with Vi(0) = 0. If

(a) ∀ t ≥ 0 and i = 1, . . . ,m

〈M i(n)〉t
D

−−−−→
n→∞

Vi(t) (35)

(b) There is a sequence (cn)n≥1, such that cn −−−−→
n→∞

0 and

P (sup
s≤t

| △M i(n)
s | ≤ cn) −−−−→

n→∞
1 (36)

Then exist an m-variate Gaussian continuous process, M = (M i, i = 1, . . . ,m)
where M i is a martingale with

〈M i,Mk〉t = 1{i=k}Vi(t) (37)

such that M(n) = (M1(n), . . . ,Mm(n))
D

−−−−→
n→∞

M = (M1, . . . ,Mm) in D[0, t]m

Note 5. In the above theorem the conditions (a) and (b) are sufficient to prove the
convergence of the finite-dimensional distributions and tightness of the sequence
M

(n) in the m-dimensional space D[0, t]m of the right-continuous functions with
left limits, in [0, t] (Karr 1986).

Revista Colombiana de Estadística 34 (2011) 513–543



Discounted Warranty Cost of a Minimally Repaired Coherent System 525

Corollary 3. Suppose that for each i, i = 1, . . . ,m,
∫ t

0
H2

i (s)λ
i(s)ds < ∞ and let

V ∗
i (t) be the function

V ∗
i (t) = P (Si > Yi)E

[∫ t

Yi

H2
i (s)λ

i(s)ds
∣∣∣Si > Yi

]
(38)

Let B̂
(n)

t =

(
B̂

1(n)

t , . . . , B̂
m(n)

t

)
and B

(n)

t =
(
B

1(n)

t , . . . , B
m(n)

t

)
be m-variate

processes. Then, the process M(n) =
√
n(B̂

(n)

−B
(n)

)
D

−−−−→
n→∞

M in D[0, t]m, where

M is an m-variate Gaussian continuous process with martingales components.

Proof . We establish the conditions (a) and (b) of Theorem 3. Denote M
i(n)
t =

√
n

(
B̂

i(n)

t −B
i(n)

t

)
, i = 1, . . . ,m. As P (Si = Sj) = 0 for all i, j with i 6= j, from

Proposition 1
(
B̂

i(n)

t −B
i(n)

t

)
=

1

n

n∑

j=1

Ci(j)
(
B̂

i(j)
t −B

i(j)
t

)
, 1 ≤ i ≤ m,

are orthogonal, mean zero and square integrable (P,Ft)-martingales, for each
n ≥ 1.

Therefore, for all n ≥ 1 and i 6= j, 〈M i(n),M j(n)〉t = 0, from the Strong Law
of Large Numbers and (60), for all i, 1 ≤ i ≤ m

〈M i(n)〉t = n
n∑

j=1

Ci(j)
[ 1

n2

∫ t

Y
(j)
i

H2
i (s)λ

i(s)ds
]
=

1

n

n∑

j=1

Ci(j)
[∫ t

Y
(j)
i

H2
i (s)λ

i(s)ds
]

−−−−→
n→∞

P (Si > Yi)E
[∫ t

Yi

H2
i (s)λ

i(s) ds
∣∣∣Si > Yi

]
= V ∗

i (t) < ∞ (39)

and we have 〈M i(n)〉t
D

−−−−→
n→∞

V ∗
i (t), for all t ≥ 0.

Furthermore, the jumps of M i(n) arise only from
√
nB̂

i(n)

t and they are of size

△M
i(n)
t =

Hi(t)√
n

. By hypothesis, Hi(t) is continuous and bounded in [0, t], say by

a constant Γ < ∞. Taking cn = Γn− 1
4 , the condition (b) of Theorem 3 is satisfied.

Therefore, M(n) D
−−−−→
n→∞

M, where M is an m-variate Gaussian continuous process,

M = (M i, i = 1, . . . ,m), with martingale components M i, i = 1, . . . ,m such that
〈M i,Mk〉t = 1{i=k}V

∗
i (t).

Proposition 2. Let Z
(n)
t be the m-variate process Z

(n)
t =

(
Z

1(n)
t , . . . , Z

m(n)
t

)

where Z
i(n)
t =

√
n(B

i(n)

t − Bi∗(t)), i = 1, . . . ,m and suppose that for all i, 1 ≤
i ≤ m and t ≥ 0,

σ2i∗(t) = Var[CiBi
t ] = E

[
Ci
(∫ t

Yi

Hi(s)λ
i(s)ds

)2]
− (Bi∗(t))2 < ∞. (40)
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Then Z
(n)
t

D
−−−−→
n→∞

Zt, where Zt is an m-variate Normal random vector with

mean zero and covariance matrix Σ(t) such that Σij(t) = 1{i=j}σ
2i∗(t).

Proof . See Appendix B.

Theorem 4. Let µ(t) = (B1∗(t), . . . , Bm∗(t)), δ2i∗(t) = Var[CiB̂i
t ] < ∞, i =

1, . . . ,m and suppose that the conditions of Corollary 3 and Proposition 2 holds.

Then, the process E
(n)
t =

√
n(B̂

(n)

t − µ(t))
D

−−−−→
n→∞

Wt in D[0, t]m, where Wt =

(W 1
t , . . . ,W

m
t ) is an m-variate Gaussian process with mean zero and covariance

matrix U(t) with Uij(t) = 1{i=j}δ
2i∗(t).

Proof . See Appendix C.

Note 6. In order to apply Theorem 4 we must estimate for fixed t, the variances
δ2i∗(t), i = 1, . . . ,m, which can be done through the sample estimator of the
variance.

For t ≥ 0 we consider n independent and identically distributed copies of the
m−variate process ((B̂i

t , C
i), i = 1, . . . ,m), with covariance matrix given by

U(t) =




δ21∗(t) 0 0 · · · 0

0 δ22∗(t) 0 · · · 0
...

. . .
...

0 0 0 · · · δ2m∗(t)


 (41)

We propose as estimator of U(t) to the sample covariance matrix, S
(n)(t),

where S
(n)
ij (t) = 1{i=j}S

2i(n)
t , that is

S
(n)(t) =




S
21(n)
t 0 0 · · · 0

0 S
22(n)
t 0 · · · 0

...
. . .

...

0 0 0 · · · S
2m(n)
t




(42)

with

S
2i(n)
t =

( n

n− 1

)[ 1
n

n∑

j=1

(
Ci(j)B̂

i(j)
t −Bi∗(t)

)2
−
(
B̂

i(n)

t −Bi∗(t)
)2]

(43)

Therefore, for each i, 1 ≤ i ≤ m and fixed t ≥ 0 , we calculate the corresponding

sample estimator of variance, S
2i(n)
t , which satisfies the properties enunciated in

the following proposition.

Proposition 3. For each i, 1 ≤ i ≤ m, S
2i(n)
t is an unbiased and uniformly

consistent estimator for δ2i∗(t) and therefore, S
(n)(t) and

m∑
i=1

S
2i(n)
t are unbiased

and uniformly consistent estimator for U(t) and
m∑
i=1

δ2i∗(t), respectively.
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Proof . For each i, 1 ≤ i ≤ m and t ≥ 0 we have E[CiB̂i
t ] = E[B̂

i(n)

t ] = Bi∗(t)

and δ2i∗(t) = E[(CiB̂i
t −Bi∗(t))2]. As the copies are independent and identically

distributed from (43) we get

E[S
2i(n)
t ] =

( n

n− 1

)[
δ2i∗(t)−

1

n
δ2i∗(t)

]
= δ2i∗(t), and therefore,

E[S(n)(t)] = U(t) and E
[ m∑

i=1

S
2i(n)
t

]
=

m∑

i=1

δ2i∗(t) (44)

Also, we apply the Strong Law of Large Number to obtain, for all t ≥ 0,

1

n

n∑

j=1

(
Ci(j)B̂

i(j)
t −Bi∗(t)

)2
−−−→
n↑∞

δ2i∗(t)

From the Strong Law of Large Number and the Continuous Mapping Theorem
(See, Billingsley 1968), we have,

(
B̂

i(n)

t −Bi∗(t)
)2

−−−→
n↑∞

0

and
(

n
n−1

)
−−−→
n↑∞

1. From the above results and (43), for all i, 1 ≤ i ≤ m we

conclude
S
2i(n)
t −−−→

n↑∞
δ2i∗(t), ∀ t ≥ 0

Then
S2i(n)
s −−−→

n↑∞
δ2i∗(s), ∀ s ≤ t, sup

s≤t

|S2i(n)
s − δ2i∗(s)| −−−→

n↑∞
0

and therefore,

sup
s≤t

(
S2i(n)
s − δ2i∗(s)

)2
−−−→
n↑∞

0

It follows from the above results that

E
[
sup
s≤t

(
S2i(n)
s − δ2i∗(s)

)2]
−−−→
n↑∞

0 (45)

This result gives the uniformly consistence of the estimators S
2i(n)
t and

m∑
i=1

S
2i(n)
t ,

which also warranties the consistence of the estimator S
(n)(t) given in (42).

3.3. Estimation of the Expected Warranty Cost for a Fixed

Warranty Period of Length w

From (27) and (34), the expected warranty cost for a fixed period of length w

is B∗(w) = E[B̂w] =
m∑
i=1

Bi∗(w) = E[Bw]. In this section we obtain a (1−α)100%

confidence interval from results in Section 2.3 to Section 3.2.
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Let 1m = (1, 1, . . . , 1) be the m-dimensional unit vector and (A)t the transpose
of corresponding vector or matrix A. From (33) and Theorem 2 an estimator of

B∗(w) is B̂∗(w) = B̂
(n)

w
, which can be write as

B̂
(n)

w
=

m∑

i=1

B̂
i(n)

w
= 1m

(
B̂

(n)

w

)t
= B̂

(n)

w

(
1m

)t
(46)

where B̂

(n)

w
= (B̂

1(n)

w
, . . . , B̂

m(n)

w
) Also, we can write the expected warranty cost

B∗(w) as

B∗(w) =
m∑

i=1

Bi∗(w) = 1m

(
µ(w)

)t
= µ(w)

(
1m

)t
(47)

with µ(w) = (B1∗(w), . . . , Bm∗(w)) as defined in Theorem 4.

Theorem 5.

i. B̂
(n)

w
is a consistent and unbiased estimator for B∗(w).

ii. A consistent and unbiased estimator for Var[B̂
(n)

w
] is V̂ar[B̂

(n)

w
] = 1

n

m∑
i=1

S
2i(n)
w .

iii. An approximate (1− α)100% confidence interval for B∗(w), is

B̂
(n)

w
± Z1−α/2

√√√√ 1

n

m∑

i=1

S
2i(n)
w (48)

where Zγ is the γ-quantile of the standard normal distribution.

Proof .

i. For each i, 1 ≤ i ≤ m, from Theorem 2, B̂
i(n)

w
is a consistent and unbiased esti-

mator for Bi∗(w). Then, B̂
(n)

w
=

m∑
i=1

B̂
i(n)

w
is a consistent and unbiased estimator

for B∗(w).

ii. Since for i 6= j the processes B̂i
w

and B̂j
w

do not have simultaneous jumps,
we have

Var[B̂
(n)

w
] =

1

n

m∑

i=1

δ2i∗(w) =
1

n
1mU(w)

(
1m

)t
=

1

n
Var[

(
B̂1

w
, . . . , B̂m

w

)(
1m

)t
]

Therefore, from Proposition 3, (42) and (44), an unbiased and consistent esti-

mator for Var[B̂
(n)

w
] is

V̂ar[B̂
(n)

w
] =

1

n

m∑

i=1

S2i(n)
w

=
1

n
1mS

(n)(w)
(
1m

)t
(49)
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iii. As a consequence of Theorem 4, and the Crámer-Wold procedure (See,
Fleming & Harrington 1991, Lemma 5.2.1) we have

1m

(
E

(n)
w

)t
= E

(n)
w

(
1m

)t
=

m∑

i=1

Ei(n)
w

D
−−−−→
n→∞

1m

(
Ww

)t
= Ww

(
1m)t ∼ N(0,1mU(w)

(
1m

)t
) = N

(
0,

m∑

i=1

δ2i∗(w)

)

then
m∑
i=1

E
i(n)
w

√
m∑
i=1

δ2i∗(w)

D
−−−−→
n→∞

N(0, 1) (50)

From Proposition 3 and the Slutzky Theorem,

m∑
i=1

E
i(n)
w

√
m∑
i=1

S
2i(n)
w

=

√
n

m∑
i=1

(B̂
i(n)

w
−Bi∗(w))

√
m∑
i=1

S
2i(n)
w

=

√
n(B̂

(n)

w
−B∗(w))√

m∑
i=1

S
2i(n)
w

D
−−−−→
n→∞

N(0, 1)

(51)

From the last equation we get

lim
n→∞

P





√
n|B̂

(n)

w
−B∗(w)|√

m∑
i=1

S
2i(n)
w

≤ Z1−α/2





≥ P
{
|Z| ≤ Z1−α/2

}
= 1− α

and a (1− α)100% approximate pointwise confidence interval for B∗(w), is

B̂
(n)

w
± Z1−α/2

√√√√ 1

n

m∑

i=1

S
2i(n)
w

The confidence interval for B∗(w) given in (48) can have negative values and
it is not acceptable. We propose to build a confidence interval through a con-
venient bijective transformation g(x) such that d

dx
g(x)

∣∣
x=B∗(w)

6= 0, which does

not contain negative values. Conveniently, we consider g(x) = log x, x > 0 with
d
dx
g(x) = 1/x, x > 0.
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Corollary 4. Suppose that for a fixed w > 0, B∗(w) > 0 and B̂
(n)

w
> 0. Then

B̂
(n)

w
× exp



±Z1−α/2

√√√√
m∑

i=1

S
2i(n)
w

/
n
[
B̂

(n)

w

]2


 (52)

is an approximate (1− α)100% confidence interval for B∗(w).

Proof . Using the Delta Method (See, Lehmann 1999, Section 2.5) and formula
(50) we get

√
n[log(B̂

(n)

w
)− log(B∗(w))]

D
−−−−→
n→∞

N
(
0, [B∗(w)]−2

m∑

i=1

δ2i∗(w)
)

(53)

From literal i in Theorem 5, Proposition 3, and the Continuous Mapping The-
orem (Billingsley 1968),

B̂
(n)

w√
m∑
i=1

S
2i(n)
w

−−−−→
n→∞

B∗(w)√
m∑
i=1

δ2i∗(w)

, (54)

Therefore, for fixed w, from (53), (54) and using Slutsky Theorem, we have

√
nB̂

(n)

w√
m∑
i=1

S
2i(n)
w

[log(B̂
(n)

w
)− log(B∗(w))]

D
−−−−→
n→∞

N(0, 1) (55)

From the last equation, an approximate (1 − α)100% confidence interval for
log(B∗(w)) is

log(B̂
(n)

w
)± Z1−α/2

√√√√
m∑

i=1

S
2i(n)
w

/
n
[
B̂

(n)

w

]2
(56)

from which, applying the inverse transformation, that is, exp(x), we obtain
(52).

3.4. Example

To illustrate the results we simulated the minimal repair warranty cost pro-
cess for a parallel system of three independent components with lifetimes Si ∼
Weibull(θi, βi), i = 1, 2, 3, respectively, where θi is the scale parameter and βi is

the shape parameter, that is, with survival function F
i
(t) = exp[−(t/θi)

βi ] and

hazard rate function λi(t) = (βi/θ
βi

i )tβi−1, t > 0.
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We use two possible cost functions: the first one is Hi(t) = Cie
−δt and the

second one is Hi(t) = Ci

(
1− t

w

)
e−δt, 0 ≤ t ≤ w, with δ = 1 in both cases.

Clearly they are bounded and continuous functions in [0, t]. The parameter values
are indicated in Table 1, w = 5 is the fixed warranty period and the sample sizes
are n = 30, 50, 100, 500, 1000, 2000, 5000, 10000.

The critical levels of the components for the system under minimal repair are

Yi =




max
j 6=i

Sj if max
j 6=i

Sj < Si,

∞ if max
j 6=i

Sj ≥ Si,
i = 1, 2, 3 (57)

Therefore, if the component failure times are observed in order S2, S3, S1, then
T = max{S1, S2, S3} = min

{Yi<∞}
Si = S1, and, in this case, component 1, is the only

one critical for the system. Therefore, after the second component failure time,
S3, the system is reduced to component 1, which is minimally repaired in each
observed failure over the warranty period.

Table 1: Parameter values.

i θi βi Ci

1 1 1.5 3

2 1 1.5 3

3 2 2.0 5

The simulation results considering the cost function as Hi(t) = Cie
−δt are:

In Table 2, the limits correspond to the confidence interval defined in (52), with
confidence level of α = 0.05. In Figure 1, we show the 95% approximate pointwise
confidence intervals for sample size of n = 100 and w ∈ (0, 5].

Table 2: Estimations for some sample sizes, Hi(t) = Cie
−δt, w = 5, α = 0.05.

n B̂∗(w)
3∑

i=1

S
2i(n)

w

3∑

i=1

S
2i(n)

w /n Lower limit Upper limit

30 1.90 2.30 0.07654 1.430 2.529

50 1.89 2.96 0.05921 1.471 2.435

100 1.85 2.95 0.02954 1.543 2.221

500 1.83 2.84 0.00568 1.685 1.980

1000 1.81 2.76 0.00276 1.712 1.918

2000 1.85 2.84 0.00142 1.780 1.928

5000 1.84 2.83 0.00057 1.794 1.887

10000 1.86 2.90 0.00029 1.825 1.891

Table 3, presents the theoretical values for the expected cost for a warranty
period of length w = 5, where E[Bi

w
] =

∫
w

0 Hi(s)λ
i(s) ds (that is, when the com-

ponent i is minimally repaired at each observed failure) and E[Bi
w

| Si > Yi] =

E
[∫

w

Yi
Hi(s)λ

i(s)ds | Si > Yi

]
. Based on these results, we can conclude that for

the considered system, the estimated values are closer to the expected values for
sample sizes greater than n = 50.
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Figure 1: 95% Approximate pointwise confidence intervals using limits in (52) with
simulated samples and Hi(t) = Cie

−δt.

Table 3: Expected costs, Hi(t) = Cie
−δt, w = 5.

i E[Bi
w
] E[Bi

w
| Si > Yi] P (Si > Yi) P (Si > Yi)E[Bi

w
| Si > Yi]

1 3.9138 2.14648 0.1620753 0.348

2 3.9138 2.14648 0.1620753 0.348

3 2.3989 1.70345 0.6758494 1.151

System cost 1.847

The following results correspond to the Monte Carlo simulations in which we
got the mean cost for w = 5 and 1000 samples of size n = 100 and n = 200,
respectively. Table 4, presents several statistics and the Shapiro Wilk normality
test. In Figure 2, we show the histograms of mean costs.

Table 4: Statistics of Monte Carlo simulation, Hi(t) = Cie
−δt, w = 5.

n Xn S2
n X̃n P2.5 P25 P75 P97.5 S.Wilk P-value

100 1.848 0.01574 1.848 1.612 1.761 1.936 2.091 0.9990 0.8576

200 1.843 0.00851 1.841 1.666 1.782 1.905 2.036 0.9987 0.7200

From results in Tables 2 to 4, and Figures 1 and 2, we observe that the mean
cost is approximately 1.85 for a warranty period of length w = 5. Also, the sample
variance and the 2.5th and 97.5th sample percentiles for the mean costs from
samples of size n = 100 showed in Table 4. They are close to the corresponding

values in Table 2 for
3∑

i=1

S
2i(n)
w /n and the confidence limits, respectively, and it

becomes clear that, in this case, the normal approximation is already achieved
with samples of size 100.
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Figure 2: Histograms of mean costs, Hi(t) = Cie
−δt, n = 100, 200.

The results related to the minimal repair costs with functions given by Hi(t) =
Ci

(
1− t

w

)
e−δt are showed in Tables 5, 6 and 7 and Figures 3 and 4. The conclu-

sions are similar to the previous case.

Table 5: Estimations for different sample sizes, Hi(t) = Ci

(
1− t

w

)
e
−δt, w = 5, α =

0.05.

n B̂∗(w)
3∑

i=1

S
2i(n)

w

3∑

i=1

S
2i(n)

w
/n Lower limit Upper limit

30 1.16 1.35 0.04516 0.811 1.662

50 1.10 1.27 0.02544 0.827 1.460

100 1.04 1.23 0.01232 0.847 1.286

500 1.08 1.30 0.00259 0.985 1.185

1000 1.02 1.22 0.00122 0.953 1.090

2000 1.03 1.25 0.00063 0.978 1.076

5000 1.04 1.27 0.00025 1.007 1.069

10000 1.04 1.26 0.00013 1.014 1.058

Table 6: Expected costs, Hi(t) = Ci

(
1− t

w

)
e
−δt, w = 5.

i E[Bi
w
] E[Bi

w
| Si > Yi] P (Si > Yi) P (Si > Yi)E[Bi

w
| Si > Yi]

1 2.8076 1.26053 0.1620753 0.204

2 2.8076 1.26053 0.1620753 0.204

3 1.5236 0.93862 0.6758494 0.634

System cost 1.043

Table 7: Statistics of Monte Carlo simulation, Hi(t) = Ci

(
1− t

w

)
e
−δt, w = 5.

n X̂n S2
n X̃n P2.5 P25 P75 P97.5 S.Wilk P-value

100 1.038 0.00925 1.037 0.846 0.973 1.100 1.227 0.9987 0.6595

200 1.042 0.00418 1.040 0.917 0.996 1.085 1.171 0.9985 0.5533
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Figure 3: 95% Approximate pointwise confidence intervals using limits in (52) with
simulated samples and Hi(t) = Ci

(
1− t

w

)
e
−δt.
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Figure 4: Histograms of mean costs, Hi(t) = Ci

(
1− t

w

)
e
−δt, n = 100, 200.

4. Conclusions

A martingale estimator for the expected discounted warranty cost process of
a minimally repaired coherent system under its component level observation was
proposed. Its asymptotic properties were also presented using the Martingale
Central Limit Theorem.
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Appendix A. Proof of Theorem 2

If i ∈ CΦ(ω), from Proposition 1 and the martingale property we have

E[B̂i
t |Si > Yi] = E

[∫ t

0

Hi(s)dÑ
i
s

∣∣∣Si > Yi

]
= E

[∫ t

Yi

Hi(s)λ
i(s)ds

∣∣∣Si > Yi

]

Since the sequences (B̂
i(j)
t , Ci(j), 1 ≤ i ≤ m), 1 ≤ j ≤ n, are independent and

identically distributed copies of the m-variate process (B̂i
t , C

i, 1 ≤ i ≤ m), from
(32) we have

E[B̂
i(n)

t ] =
1

n

n∑

j=1

P (Si > Yi)E
[∫ t

Yi

Hi(s)λ
i(s)ds

∣∣∣Si > Yi

]

and therefore, E[B̂
i(n)

t ] = 1
n

n∑
j=1

Bi∗(t) = Bi∗(t) = E[B̂
i(n)
t ].

To set the consistency of proposed estimator we have to prove that

E[sup
s≤t

(B̂
i(n)

s −Bi∗(s))2] −−−→
n↑∞

0 (58)

First, from (32) and Proposition 1 and for fixed n we have

B̂
i(n)

t −B
i(n)

t =
1

n

n∑

j=1

Ci(j)(B̂
i(j)
t −B

i(j)
t ) =

1

n

n∑

j=1

Ci(j)(B̂
i(j)
t −B

i∗(j)
t ) (59)

is a mean zero and square integrable (P,Ft)-martingale. Furthermore, from the
independence conditions and (23) we have

〈B̂
i(n)

− B̂i(n)〉t =
1

n
×
[ 1
n

n∑

j=1

Ci(j)

∫ t

Y
(j)
i

H2
i (s)λ

i(s)ds
]

(60)

By hypothesis, for each i = 1, . . . ,m

E
[
Ci

∫ t

Yi

H2
i (s)λ

i(s)ds
]
= P (Si > Yi)E

[∫ t

Yi

H2
i (s)λ

i(s)ds
∣∣∣Si > Yi

]
< ∞ (61)

and, therefore, using the Strong Law of Large Numbers we have

1

n

n∑

j=1

Ci(j)

∫ t

Y
(j)
i

H2
i λ

i(s)ds −−−→
n↑∞

P (Si > Yi)E
[∫ t

Yi

H2
i (s)λ

i(s)ds
∣∣∣Si > Yi

]
(62)

Using (60) and (62) we conclude that

〈B̂
i(n)

−B
i(n)

〉t −−−−→
n→∞

0× P (Si > Yi)E
[∫ t

Yi

H2
i (s)λ

i(s)ds
∣∣∣Si > Yi

]
= 0 (63)
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Furthermore, we have (Lipster & Shiryaev 2001, Theorem 2.4)

E[sup
s≤t

(B̂
i(n)

s − B̂i(n)
s )2] ≤ 4E[(B̂

i(n)

t −B
i(n)

t )2] = 4E[〈B̂
i(n)

−B
i(n)

〉t] (64)

where the last equality is because (B̂
i(n)

t −B
i(n)

t ) is a mean zero and square inte-
grable (P,Ft)-martingale. From (63) and (64), we have

E[sup
s≤t

(B̂
i(n)

s −B
i(n)

s )2] −−−→
n↑∞

0 (65)

Also, from the Strong Law of Large Numbers and continuity in t, we get

(B
i(n)

s −Bi∗(s)) −−−−→
n→∞

0, ∀s ≤ t and therefore, sup
s≤t

|B
i(n)

s −Bi∗(s)| −−−−→
n→∞

0

then, we conclude

sup
s≤t

(B
i(n)

s −Bi∗(s))2 −−−−→
n→∞

0

and
E[sup

s≤t

(B
i(n)

s −Bi∗(s))2] −−−−→
n→∞

0 (66)

Furthermore, we have

E[sup
s≤t

(B̂
i(n)

s −Bi∗(s))2] ≤ E[sup
s≤t

(B̂
i(n)

s −B
i(n)

s )2] + E[sup
s≤t

(B
i(n)

s −Bi∗(s))2]

and taking limits in the above inequality, from (65) and (66) we get

lim
n→∞

E[sup
s≤t

(B̂
i(n)

s −Bi∗(s))2] = 0 (67)

and (58) is proved.

Appendix B. Proof of Proposition 2

First, as the sequences (B̂
i(j)
t , Ci(j), 1 ≤ j ≤ n) are independent and identically

distributed copies of (B̂i
t , C

i), we have that, for all t ≥ 0 and i = 1, . . . ,m,

E[B
i(n)

t ] =
1

n

n∑

j=1

P (Si > Yi)E

[∫ t

Yi

Hi(s)λ
i(s)ds

∣∣∣Si > Yi

]
= Bi∗(t)

and B
i(n)

t is an unbiased estimator for Bi∗(t).

Furthermore, from the Strong Law of Large Numbers, B
i(n)

t converges almost
surely to Bi∗(t).
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Otherwise, as (Z
(n)
t )n≥1 is a sequence of independent and identically distributed

random vectors and the components do not have simultaneous failures, the pro-

cesses B
i(n)

t and B
j(n)

t are uncorrelated in [0, t], for all i, j, i 6= j, all n and

COV [Z
i(n)
t , Z

j(n)
t ] = COV [

√
n B

i(n)

t ,
√
n B

j(n)

t ] = COV [CiBi
t, C

jBj
t ] = 0 (68)

Consequently

Var[Z
i(n)
t ] = Var[

√
n B

i(n)

t ] = Var[CiBi
t ] = σ2i∗(t) (69)

Therefore, applying the Central Limit Theorem for a sequence of independent
and identically distributed random vectors with mean µ(t) = (B1∗(t), . . . , Bm∗(t))
and finite covariance matrix Σ(t), where Σij(t) = 1{i=j}σ

2i∗(t), we obtain that

Z
(n)
t

D
−−−−→
n→∞

Zt, where Zt is an m-variate Normal random vector with mean zero

and covariance matrix Σ(t). In what follows we prove the convergence of the
finite-dimensional distributions of the process Z

(n). For that we consider:

(a) Since ∀ t ≥ 0, n ≥ 1, i 6= j, COV [Z
i(n)
t , Z

j(n)
t ] = COV [CiBi

t , C
jBj

t ] = 0, we

have ∀ tk ≤ tl, tk, tl ∈ [0, t], COV [Z
i(n)
tk

, Z
j(n)
tl

] = COV [CiBi
tk
, CjBj

tl
] = 0;

(b) From the above, we can prove the convergence of the finite-dimensional dis-
tributions of the process Z

(n) using the Crámer-Wold procedure: proving
the convergence for each component Zi(n), for all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ t,
we prove that ∀ ail arbitrary constants,

m∑

i=1

k−1∑

l=1

ail(Z
i(n)
tl+1

− Z
i(n)
tl

)
D

−−−−→
n→∞

m∑

i=1

k−1∑

l=1

ail(Z
i
tl+1

− Zi
tl
) (70)

which, using the Cramer-Wold procedure, is equivalent to

(Z
(n)
t1

,Z
(n)
t2

, . . . ,Z
(n)
tk

)
D

−−−−→
n→∞

(Zt1 ,Zt2 , . . . ,Ztk)

Now, for each i, 1 ≤ i ≤ m and t1 ≤ t2 ∈ [0, t], consider n independent and
identically distributed copies of (CiBi

t1
, CiBi

t2
). Then, for each n and i = 1, . . . ,m

we get the random vector (Z
i(n)
t1

, Z
i(n)
t2

). Therefore

E(Z
i(n)
t1

, Z
i(n)
t2

) = (0, 0), ∀ n ≥ 1, i = 1, . . . ,m.

Furthermore, since the copies Ci(j)B
i(j)
t1

B
i(j)
t2

, j = 1, . . . , n are independent and
identically distributed and as, for independent copies j and k, the random variables

Ci(j)B
i(j)
t1

and Ci(k)B
i(k)
t2

are also independent, we have

COV [Z
i(n)
t1

, Z
i(n)
t2

] = E[CiBi
t1
Bi

t2
]−Bi∗(t1)B

i∗(t2) = σi∗(t1, t2) < ∞. (71)

Revista Colombiana de Estadística 34 (2011) 513–543



Discounted Warranty Cost of a Minimally Repaired Coherent System 541

From (69), Var[Z
i(n)
t1

] = σ2i∗(t1) and Var[Z
i(n)
t2

] = σ2i∗(t2). Then, from the
Central Limit Theorem for a sequence of independent and identically distributed
random vectors, with finite mean vector and finite covariance matrix, we have

(Z
i(n)
t1

, Z
i(n)
t2

)
D

−−−−→
n→∞

(Zi
t1
, Zi

t2
), ∀ t1 ≤ t2 ∈ [0, t] (72)

where (Zi
t1
, Zi

t2
) is a bivariate normal vector with mean zero and covariance matrix

Σ
i(t1, t2),

Σ
i(t1, t2) =

[
σ2i∗(t1) σi∗(t1, t2)

σi∗(t1, t2) σ2i∗(t2)

]
(73)

Using an induction argument we can generalize the above result for all partition
0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ t, of the interval [0, t] and we get for all i, 1 ≤ i ≤ m,

(Z
i(n)
t1

, Z
i(n)
t2

, . . . , Z
i(n)
tk

)
D

−−−−→
n→∞

(Zi
t1
, Zi

t2
, . . . , Zi

tk
)

where (Zi
t1
, Zi

t2
, . . . , Zi

tk
) is a k-variate Normal vector with mean zero and finite

covariance matrix.

Finally, we analyze Stone’s tightness condition in D[0, t]m (Fleming & Harrington
1991), that is: If for each i, 1 ≤ i ≤ m and for all ǫ > 0,

lim
δ↓0

lim sup
n↑0

P
{

sup
|s−u|<δ
0≤s,u≤t

∣∣∣Zi(n)
s − Zi(n)

u

∣∣∣ > ǫ
}
= 0 (74)

Since Z
i(n)
s is continuous and monotone in [0, t], we have

P
{

sup
|s−u|<δ
0≤s,u≤t

∣∣∣Zi(n)
s − Zi(n)

u

∣∣∣ ≤ ǫ
}

≤ P
{∣∣∣Zi(n)

s − Zi(n)
u

∣∣∣ ≤ ǫ, for s and u fixed: 0 ≤ s, u ≤ t, |s− u| < δ
}

(75)

From (72) and (73), for all 0 ≤ s ≤ u

(Zi(n)
s −Zi(n)

u )
D

−−−−→
n→∞

N(0, γ2(s, u)), γ2(s, u) = σ2i∗(s)+σ2i∗(u)−2σi∗(s, u). (76)

Finally, from (69) and (71) it is clear that lim
δ↓0

γ2(s, u) = 0, |s − u| < δ, 0 ≤

s, u ≤ t. Then, from (75) we have

lim
δ↓0

lim
n→∞

P
{

sup
|s−u|<δ
0≤s,u≤t

∣∣∣Zi(n)
s − Zi(n)

u

∣∣∣ ≤ ǫ
}
≤ lim

δ↓0
2Φ

(
ǫ√

γ2(s, u)

)
− 1

= 2Φ(∞)− 1 = 1 �
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Appendix C. Proof of Theorem 4

From Theorem 2 we have E[E
(n)
t ] = 0 for all n ≥ 1 and t ≥ 0.

Let M
(n)
t =

√
n(B̂

(n)

t −B
(n)

t ) and Z
(n)
t =

√
n(B

(n)

t − µ(t)). Note that

E
(n)
t =

√
n(B̂

(n)

t − µ(t)) = M
(n)
t + Z

(n)
t (77)

Now, for all t ≥ 0 and 1 ≤ i ≤ m we are going to calculate the asymptotic

variance for the processes E
i(n)
t =

√
n(B̂

i(n)

t −Bi∗(t)) = M
i(n)
t + Z

i(n)
t . For fixed

t,

Var[E
i(n)
t ] = Var[M

i(n)
t ] + Var[Z

i(n)
t ] + 2 COV [M

i(n)
t , Z

i(n)
t ] (78)

Since the copies are independent and identically distributed, from Corollary 3

and for all t ≥ 0, we have that Var[M
i(n)
t ] corresponds to

E[〈M i(n)〉t] = E
[ 1
n

n∑

j=1

Ci(j)

∫ t

Y
(j)
i

H2
i (s)λ

i(s)ds
]
= E[Ci(B̂i

t −Bi
t)

2] = V ∗
i (t);

(79)

and Var[Z
i(n)
t ] is given by (69).

In order to calculate COV [M
i(n)
t , Z

i(n)
t ], we use the covariance definition, the

martingale property, the fact that for independent copies j and l, Ci(j)B̂
i(j)
t and

Ci(l)B
i(l)
t are also independent, concluding

COV [M
i(n)
t , Z

i(n)
t ] = E[CiB̂i

tB
i
t ]− E[Ci(Bi

t)
2] (80)

Therefore, from (69), (79) and (80), we obtain in (78) that, for all n ≥ 1 and t ≥ 0

Var[E
i(n)
t ] = E[Ci(B̂i

t)
2]− (Bi∗(t))2

In addition,we have E[CiB̂i
t ] = Bi∗(t) and then,

Var[E
i(n)
t ] = Var[CiB̂i

t ] = δ2i∗(t) (81)

We also calculate COV [E
i(n)
t , E

j(n)
t ] for n ≥ 1 and i 6= j, and since processes

B̂i
t and B̂j

t do not have simultaneous jumps, we obtain,

COV [E
i(n)
t , E

j(n)
t ] = COV [CiB̂i

t , C
jB̂j

t ] = 0 (82)

From results (81) and (82) we conclude that the asymptotic covariance for the

process E
(n)
t is U(t) where Uij(t) = 1{i=j}δ

2i∗(t). Next, we set the asymptotic

normality of E
(n)
t by considering the results from its asymptotic covariance struc-

ture and the convergence in distribution of the processes M
(n)
t (Corollary 3) and

Z
(n)
t (Proposition 2):
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As the processes M(n) and Z
(n) satisfy the tightness condition in D[0, t]m and

their finite-dimensional distributions converge to Gaussian continuous processes,

such that ∀ tk, tl ∈ [0, t], COV [E
i(n)
tk

, E
j(n)
tl

] = 0, the process E
(n) = M

(n) + Z
(n)

also satisfies the tightness condition.

Also, its finite-dimensional distributions converge to Gaussian continuous pro-
cesses and for all partition 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ t, we can prove that,

∀ ail arbitrary constants,

m∑

i=1

k−1∑

l=1

ail(E
i(n)
tl+1

−E
i(n)
tl

) =

m∑

i=1

k−1∑

l=1

ail(M
i(n)
tl+1

−M
i(n)
tl

) +

m∑

i=1

k−1∑

l=1

ail(Z
i(n)
tl+1

−Z
i(n)
tl

)

D
−−−−→
n→∞

m∑

i=1

k−1∑

l=1

ail(M
i
tl+1

−M i
tl
) +

m∑

i=1

k−1∑

l=1

ail(Z
i
tl+1

− Zi
tl
) =

m∑

i=1

k−1∑

l=1

ail(W
i
tl+1

−W i
tl
) �

which, using the Cramer-Wold procedure, is equivalent to

(E
(n)
t1

,E
(n)
t2

, . . . ,E
(n)
tk

) = (M
(n)
t1

,M
(n)
t2

, . . . ,M
(n)
tk

) + (Z
(n)
t1

,Z
(n)
t2

, . . . ,Z
(n)
tk

)
D

−−−−→
n→∞

(Mt1 ,Mt2 , . . . ,Mtk) + (Zt1 ,Zt2 , . . . ,Ztk) = (Wt1 ,Wt2 , . . . ,Wtk)
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Abstract

The univariate compound Poisson distribution has many applications in
various areas such as biology, seismology, risk theory, forestry, health science,
etc. In this paper, a bivariate compound Poisson distribution is proposed
and the joint probability function of this model is derived. Expressions
for the product moments, cumulants, covariance and correlation coefficient
are also obtained. Then, an algorithm is prepared in Maple to obtain the
probabilities quickly and an empirical comparison of the proposed probability
function is given. Bivariate versions of the Neyman type A, Neyman type B,
geometric-Poisson, Thomas distributions are introduced and the usefulness
of these distributions is illustrated in the analysis of earthquake data.

Key words: Bivariate distribution, Coefficient of correlation, Compound
Poisson distribution, Cumulant, Moment.

Resumen

La distribución compuesta de Poisson univariada tiene muchas aplica-
ciones en diversas áreas tales como biología, ciencias de la salud, ingeniería
forestal, sismología y teoría del riesgo, entre otras. En este artículo, una
distribución compuesta de Poisson bivariada es propuesta y la función de
probabilidad conjunta de este modelo es derivada. Expresiones para los
momentos producto, acumuladas, covarianza y el coeficiente de correlación
respectivos son obtenidas. Finalmente, un algoritmo preparado en lenguaje
Maple es descrito con el fin de calcular probabilidades asociadas rápidamente
y con el fin de hacer una comparación de la función de probabilidad prop-
uesta. Se introducen además versiones bivariadas de las distribuciones tipo
A y tipo B de Neyman, geométrica-Poisson y de Thomas y se ilustra la util-
idad de estas distribuciones aplicadas al análisis de datos de terremoto.

Palabras clave: coeficiente de correlación, conjuntas, distribución bivari-
ada, distribución compuesta de Poisson, momento.
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1. Introduction

Bivariate discrete random variables taking integer non-negative values, have
received considerable attention in the literature, in an effort to explain phenom-
ena in various areas of application. For an extensive account of bivariate dis-
crete distributions one can refer to the books by Kocherlakota & Kocherlakota
(1992), Johnson, Kotz & Balakrishnan (1997) and the review articles by Papa-
georgiou (1997) and Kocherlakota & Kocherlakota (1997). There is however, a
variety of applications, e.g. in an accident or family studies (see Cacoullos &
Papageorgiou 1980, Sastry 1997). The bivariate Poisson distribution (BPD) is
probably the best known bivariate discrete distribution (Holgate 1964). It is ap-
propriate for modeling paired count data exhibiting correlation. Paired count data
arise in a wide context including marketing (number of purchases of different prod-
ucts), epidemiology (incidents of different diseases in a series of districts), accident
analysis (number of accidents in a site before and after infrastructure changes),
medical research (the number of seizures before and after treatment), sports (the
number of goals scored by each one of the two opponent teams in soccer), econo-
metrics (number of voluntary and involuntary job changes).

Bivariate compound distributions can be especially used in actuarial science
to model a business book containing bivariate claim count distributions and bi-
variate claims severities (Ambagaspitiya 1998). In most actuarial studies, the
assumption of independence between classes of business in an insurance business
book containing is made. However this assumption is not verified in practice. For
example, in the case of a catastrophe such as an earthquake, the damages covered
by homeowners and private passenger automobile insurance can not be considered
independent (Cossette, Gaillardetz, Marceau & Rioux 2002). In this situation,
bivariate compound Poisson distribution (BCPD) is useful when the claim count
distribution is bivariate Poisson and the claim size distribution is bivariate.

Although the case of BPD has attracted some attention in the literature, BCPD
has not been systematically studied. The studies on such a distribution are sparse
due to computational problems involved in its implementation. Hesselager (1996)
studied the BCPD but mainly from the recursive evaluation of its joint probability
function. On the other hand, non-existence of explicit probabilities and algorithm
of the BCPD hinders its use in probability theory itself and its applications in
seismology, actuarial science, survival analysis, etc. (see Ozel & Inal 2008, Wienke,
Ripatti, Palmgren & Yashin 2010). Consequently, since relative results are sparse
and case oriented, the aim of this study is to obtain a general technique for deriving
the probabilistic characteristics and obtain an algorithm for the computation of
probabilities.

The rest of the paper is organised as follows. In Section 2, some preliminary
results are given. In Section 3, the probabilistic characteristics of the BCPD
are proposed based on the derivation of the joint probability generating function
(pgf). This pgf enables us to obtain the joint probability function of the BCPD. In
addition, explicit expressions for the product moments, cumulants, covariance and
correlation coefficient are obtained. Then numerical examples and an application
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to earthquakes in Turkey are presented in Section 4, by means of the proposed
algorithm in Maple. The conclusion is given in Section 5.

2. Some Preliminary Results

Let N be a Poisson random variable with parameter λ > 0 and let Xi, i =
1, 2, . . . be i.i.d. non-negative, integer-valued random variables, independent of N .
S has a compound Poisson distribution (CPD), when defined as

S =

N∑

i=1

Xi (1)

If E(X) and V (X) are the common mean and variance of the random variables
X1, i = 1, 2, . . ., then, the moments of S are given by

E(S) = λE(X), V (S) = λ[V (X) + [E(X)]2] (2)

The probability function of S is given by

pS(s) = P (S = s) =
∞∑

n=0

P (X1 +X2 + · · ·+Xn = s | N = n)P (N = n), s = 0, 1, 2 . . . (3)

However, it is not easy to yield an explicit formula for the probability function of
S from (3), and this obstructs use of the CPD completely (see, for example Bruno,
Camerini, Manna & Tomassetti 2006, Rolski, Schmidli, Schmidt & Teugels 1999).
Panjer (1981) described a procedure for recursive evaluation of the CPD when N
is Poisson distributed.

Let N be a Poisson distributed random variable with parameter λ and let S
be a compound Poisson distributed random variable. Panjer (1981) showed that
when N satisfies a recursion in the form pN(n) = λ

n
pN (n− 1), n = 1, 2, 3 . . . than

S satisfies

pS(0) = e−λ[1−pX(0)]

pS(s) = λ
s∑

i=1

i

s
pX(i)pS(s− i), s = 1, 2, 3 . . .

(4)

where pX(x) is the common probability function of Xi, i = 1, 2, 3 . . . Since
(4) is based on a recursive scheme, it causes difficulties in computation time and
computer memory for the large values of s (Rolski et al. 1999). The explicit
probabilities of S are obtained by Ozel & Inal (2010) as in (6) by using (5).

Let Xi, i = 1, 2, 3 . . ., be i.i.d. discrete random variables with the probabilities
P (Xi = j) = pj , j = 0, 1, 2 . . . and let define the parameters λj = λpj . The
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common probability generating function (pgf) of Xi, i = 1, 2, 3 . . ., is given by
gX(s) =

∑∞
j=0 pjs

j = p0 + p1s+ p2s
2 + · · · and the pgf of S is given by

gS(z) =

∞∑

n=0

e−λλ
n

n!
[gX(z)]n = e−λ

[
1 +

λgX(z)

1!
+

(λgX(z))2

2!
+ · · ·

]

= eλ[gX (z)−1] = eλ[(p0+p1z+···+pmzm)−1]

= e−λ(1−p0)eλ1z+λ2z
2+···+λmzm

(5)

Let N be a Poisson distributed random variable with parameter λ > 0 and
λj = λpj , j = 1, 2, . . . ,m. Then, the explicit formula for the probability function
of S is determined by using (5) as follows:

P (S = 0) = e−λ(1−p0)

P (S = 1) = e−λ(1−p0)
λ1

1!

P (S = 2) = e−λ(1−p0)

[
λ2
1

2!
+

λ2

1!

]

P (S = 3) = e−λ(1−p0)

[
λ3
1

3!
+

λ1λ2

1!1!
+

λ3

1!

]

P (S = 4) = e−λ(1−p0)

[
λ4
1

4!
+

λ2
1λ2

2!1!
+

λ1λ3

1!1!
+

λ2
2

2!
+

λ4

1!

]

P (S = 5) = e−λ(1−p0)

[
λ5
1

5!
+

λ3
1λ2

3!1!
+

λ2
1λ3

2!1!
+

λ1λ
2
2

1!2!
+

λ1λ4

1!1!
+

λ2λ3

1!1!
+

λ5

1!

]

...

(6)

According to the above probabilities for s = 1, 2, . . ., the on the right terms
depend on how s can be partitioned into different forms using integers 1, 2, . . .,m.
For example, if s = 5, it is partitioned in seven ways and all the partitions of five
are {1, 1, 1, 1, 1}, {1, 1, 1, 2}, {1, 2, 2}, {1, 1, 3}, {2, 3}, {1, 4}, {5}. Note that S has
a Neyman type A distribution if Xi, i = 1, 2, . . . are Poisson distributed in (1).
Similarly, if Xi, i = 1, 2, . . . are truncated Poisson distributed, S has a Thomas
distribution. S has a Neyman type B distribution if Xi, i = 1, 2, . . ., are binomial
distributed. If Xi, i = 1, 2, . . . are geometric distributed, S has a geometric-
Poisson (Pólya-Aeppli) distribution. Let us point out that (6) is also extended
by Ozel & Inal (2011) for these special cases of the CPD and by Ozel & Inal
(2008) for the compound Poisson process with an application for earthquakes in
Turkey. There has also been an increasing interest in bivariate discrete probability
distributions and many forms of these distributions have been studied (see, for
example, Kocherlakota & Kocherlakota 1992, Johnson et al. 1997). The BPD has
been constructed by Holgate (1964) as in (7) using the trivariate reduction method.

Let M0,M1,M2 be independent Poisson variables with parameters λ0, λ1, λ2,
respectively. Then, N1 = M0 + M1 and N2 = M0 + M1 follow a BPD and the
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joint probability function is given by

pN1,N2(n1, n2) = P (N1 = n1, N2 = n2) =

e−(λ0+λ1+λ2)

min(n1,n2)∑

i=0

λn1−i
1 λn2−i

2 λi
0

(n1 − i)!(n2 − i)!i!
, n1, n1 = 0, 1, 2, . . . (7)

The formula in (7), allows positive dependence between N1 and N2. Marginally,
each random variable follows a Poisson distribution with E(N1) = V (N1) = λ0+λ1

and E(N2) = V (N2) = λ0 + λ2. Moreover, Cov(N1, N2) = λ0, and hence λ0 is a
measure of dependence between the two random variables. Then, the correlation
coefficient of N1 and N2 is given by

ρ =
λ0√

(λ0 + λ1)(λ0 + λ2)

This implies that λ0 = 0 is a necessary and sufficient condition for N1 and N2

to be independent. Also, λ0 = 1, if and only if, N1 and N2 are linearly dependent.

In Section 3, the concept of the CPD is extended to the bivariate case.

3. Main Results

3.1. The Joint Probability Function

Let M0,M1,M2 be independent Poisson variables with parameters λ0, λ1, λ2,
respectively, and let N1 = M0+M1, N2 = M0+M2 be bivariate Poisson distributed
random variables with parameters λ0+λ1 and λ0+λ2. Then, (S1, S2) has a BCPD
when defined as (

S1 =

N1∑

i=1

Xi, S2

N2∑

i=1

Yi

)
(8)

where Xi and Yi, i = 1, 2, . . . i.i.d. integer-valued random variables and indepen-
dent of N1 and N2.

In particular, if Xi and Yi, i = 1, 2, . . . are Poisson distributed with parameters
µ1 and µ2 in (8), S1 and S2 have a bivariate Neyman type A distribution. If
Xi and Yi, i = 1, 2, . . . are binomial distributed with parameters (m1, p1) and
(m2, p2), S1 and S2 have a bivariate Neyman type B distribution. Let Xi and
Yi, i = 1, 2, . . . are truncated Poisson distributed with the probability functions

pj = P (Xi = j) = e−α1
α

j−1
1

(j−1)! , j = 1, 2, 3, . . . and qk = P (Yi = k) = e−α2
α

j−1
2

(j−1)! ,

k = 1, 2, 3, . . . for α1, α2 > 0, respectively. Then, the pair of (S1, S2) has a bivariate
Thomas distribution. If Xi and Yi, i = 1, 2, . . . are geometric distributed with
parameters θ1 and θ2, S1 and S2 have a bivariate geometric-Poisson distribution.
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The joint probability function of S1 and S2 takes the following form

pS1,S2(s1, s2) =
∞∑

n1

∞∑

n2

p(n1, n2)P (X1 + · · ·+Xn1 = s1 | N1 = n1)

P (Y1 + · · ·+ Yn2 = s2 | N2 = n2), s1, s2 = 0, 1, . . . (9)

where pS1,S2(s1, s2) = P (S1 = s1, S2 = s2). Since the probability function given
in (9) contains a summation over i from 0 to ∞, it is not suitable to obtain
probabilities quickly (Ambagaspitiya 1998). More generally, for large n1 and n2,
it is difficult to use (9) because of the high order of convolutions involved.

Hesselager (1996), in his pioneering work on recursive computation of the bi-
variate compound distributions, considered three classes of Poisson distributions
and related compound distributions. A brief description of related recursive rela-
tions is given as follows:

Let M0,M1,M2 be independent Poisson variables with parameters λ0, λ1, λ2.
Let pX(x) and pY (y) be the common probability function of Xi, Yi, i = 1, 2, . . ., re-
spectively. Then, the joint probability function of S1 and S2 satisfies the recursive
relations

pS1,S2(s1, s2) =
λ1

s1

s1∑

x=1

xpX(x)pS1,S2(s1 − x, s2)+

λ0

s1

s1∑

x=1

s2∑

y=0

xpX(x)pY (y)pS1,S2(s1 − x, s2 − y)

pS1,S2(s1, s2) =
λ2

s1

s1∑

x=1

ypY (y)pS1,S2(s1, s2 − y)+

λ0

s2

s1∑

x=0

s2∑

y=1

ypX(x)pY (y)pS1,S2(s1 − x, s2 − y)

s1, s2 = 1, 2, . . .

(10)

Although the use of these recursions considerably reduces the number of com-
putations to obtain probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . . compared
with the traditional method based on convolutions in (9), these computations are
still time consuming since each probability depends on all the preceding ones. It
occurs in underflow problems which are not always easy to overcome and therefore
restrict its applicability further (Sundt 1992). Thus, it can be applied only in some
practical circumtances or in an approximate manner.

Finally to establish the probabilistic characteristics of the BCPD. We first
compute the joint pgf of S1 and S2 as follows:

Let Xi, Yi, i = 1, 2, . . . be i.i.d. discrete random variables with the probabilities
P (Xi = j) = pj , j = 0, 1, 2, . . . ,m and P (Yi = k) = qk, k = 0, 1, 2, . . . , r. Then,
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the joint pgf of S1 and S2 is found to be

gS1,S2(z1, z2) =

∞∑

s1

∞∑

s2

P

(
N1∑

i=1

Xi = s1,

N2∑

i=1

Yi = s2

)
zs11 zs22

=

∞∑

s1

∞∑

s2

∞∑

n1

∞∑

n2

P

(
n1∑

i=1

Xi = s1,

n2∑

i=1

Yi = s2 | N1 = n1, N2 = n2

)

pN1,N2(n1, n2)z
s1
1 zs22

=

∞∑

n1

∞∑

n2

pN1,N2(n1, n2)

∞∑

s1

∞∑

s2

P

(
n1∑

i=1

Xi = s1,

n2∑

i=1

Yi = s2 | N1 = n1, N2 = n2

)
zs11 zs22

Since Xi, Yi, i = 1, 2, . . . are i.i.d. random variables, we have

gS1,S2(z1, z2) =

∞∑

n1

∞∑

n2

pN1,N2(n1, n2)

∞∑

s1

P (X1 + · · ·+Xn1 = s1)z
s1
1

∞∑

s2

P (Y1 + · · ·+ Yn2 = s1)z
s2
2

=

∞∑

n1

∞∑

n2

pN1,N2(n1, n2)gX1+···+Xn1
(z1)gY1+···+Yn2

(z2)

=

∞∑

n1

∞∑

n2

pN1,N2(n1, n2)[gX(z1)]
n1 [gY (z2)]

n2

= gN1,N2 [gX(z1), gY (z2)]

(11)

where gX(z1), gY (z2) are the common pgfs of Xi, Yi, i = 1, 2, . . ., respectively.

Let N1 = M0 +M1, N2 = M0 +M2 be a BPD with parameters λ0 + λ1 and
λ0 + λ2, then the joint pgf of N1 and N2 is given by

gN1,N2(z1, z2) = gM0+M1,M0+M2(z1, z2)

= E(zM0+M1
1 zM0+M2

2 )

= E(zM1

1 )E(zM2

2 )E(z1z2)
M0

= exp[λ1(z1 − 1) + λ2(z2 − 1) + λ0(z1z2 − 1)]

(12)
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From (11) and (12), the joint pgf of S1 and S2 is obtained by the following
expression

gS1,S2(z1, z2) = exp
(
λ1[gX(z1)− 1] + λ2[gY (z2)− 1]

+ λ0[gX(z1)gY (z2)− 1]
)

= exp
(
λ1[p0 + p1z1 + p2z

2
1 + · · ·+ pmzm1 − 1]

+ λ2[q0 + q1z1 + q2z
2
2 + · · ·+ qrz

r
2 − 1]

+ λ0

[
(p0 + p1z2 + p2z

2
1 + · · ·+ pmzm1 )

(q0 + q1z2 + q2z
2
2 + · · ·+ qrz

r
2)− 1

])

= exp
(
−(λ0 + λ1 + λ2)

)

exp
(
λ1(p0 + p1z1 + · · ·+ pmzm1 )

+ λ2(q0 + q1z2 + · · ·+ qrz
r
2)

+ λ0[(p0 + p1z1 + · · ·+ pmzm1 )(q0 + q1z2 + · · ·+ qrz
r
2)]
)

(13)

Now we are interested in studying the joint probability function of the pair
S1 and S2. The joint pgf in (13) can be differentiated any number of times with
respect to s1 and s2 and evaluated at (0, 0) yielding

P (S1 = 0, S2 = 0) = gS1,S2(0, 0)

P (S1 = s1, S2 = s2) =

∂S1+S2gS1,S2(z1,z2)

∂z
s1
1 z

s2
2

∣∣∣
z1=z2=0

s1!s2!
, s1s2 = 0, 1, 2, . . .

(14)

Differentiating the joint pgf given by (13) and substituting in (14) and after
some algebraic manipulations, the probabilities pS1,S2(s1, s2) = P (S1 = s1, S2 =
s2), s1s2 = 0, 1, 2, . . . are obtained as

pS1,S2(0, 0) = e−(λ0+λ1+λ2)e(λ1p0+λ2q0+λ0p0q0)

pS1,S2(1, 0) = pS1,S2(0, 0)

[
p1

Λx

1!

]

pS1,S2(2, 0) = pS1,S2(0, 0)

[
p21

Λ2
x

2!
+ p2

Λx

1!

]

pS1,S2(3, 0) = pS1,S2(0, 0)

[
p31

Λ3
x

3!
+ p1p2

Λ2
x

2!
+ p3

Λx

1!

]

pS1,S2(0, 1) = pS1,S2(0, 0)

[
q1

Λy

1!

]
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pS1,S2(0, 2) = pS1,S2(0, 0)

[
q21

Λ2
y

2!
+ q2

Λy

1!

]

pS1,S2(0, 3) = pS1,S2(0, 0)

[
q31

Λ3
y

3!
+ q1q2

Λ2
y

2!
+ q3

Λy

1!

]

pS1,S2(1, 1) = pS1,S2(0, 0)

[
p1q1

(
ΛxΛy

1!1!
+ λ0

)]

pS1,S2(1, 2) = pS1,S2(0, 0)

[
p1q

2
1

(
ΛxΛ

2
y

1!2!
+

Λy

1!

)
+ p1q2

(
ΛxΛy

1!1!
+ λ0

)]

pS1,S2(1, 3) = pS1,S2(0, 0)

[
p1q

3
1

(
ΛxΛ

3
y

1!3!
+

Λ2
y

2!

)
+ p1q1q2

(
ΛxΛ

2
y

1!2!
+

Λy

1!

)

+ p1q3

(
ΛxΛy

1!1!
+ λ0

)]

pS1,S2(2, 1) = pS1,S2(0, 0)

[
p21q1

(
Λ2
xΛy

1!2!
+

Λx

1!

)
+ p2q1

(
ΛxΛy

1!1!
+ λ0

)]

pS1,S2(2, 2) = pS1,S2(0, 0)

[
p21q

2
1

(
Λ2
xΛ

2
y

2!2!
+

ΛxΛy

1!1!
+ λ2

0

)

+ p21q2

(
Λ2
xΛy

2!1!
+

Λx

2!1!

)
+ p2q

2
1

(
ΛxΛ

2
y

1!2!
+

Λy

1!

)

+ p2q2

(
ΛxΛy

1!1!
+ λ0

)]

pS1,S2(2, 3) = pS1,S2(0, 0)

[
p21q

3
1

(
Λ2
xΛ

3
y

2!3!
+

ΛxΛ
2
y

1!2!
+

Λy

1!

)

+ p21q1q2

(
Λ2
xΛ

2
y

2!2!
+

ΛxΛy

1!1!
+ λ2

0

)

+ p2q
3
1

(
ΛxΛ

3
y

3!1!
+

Λ2
y

2!

)
+ p2q1q2

(
ΛxΛ

2
y

1!2!
+

Λ2
y

2!
+

Λy

1!

)

+ p21q3

(
Λ2
xΛy

2!1!
+

Λx

1!

)
+ p2q3

(
ΛxΛy

1!1!
+ λ0

)]

(15)

where Λx = (λ1 + λ0q0) and Λy = (λ2 + λ0p0). According to above probabilities
P (S1 = s1, S2 = s2), s1, s2 = 1, 2, 3, . . . the on the right side terms pj , j =
1, 2, . . . ,m and qk, k = 1, 2, . . . , r depend on how s1 and s2 can be partitioned into
different forms using integers 1, 2, . . . Similarly, the terms Λx and Λy also have an
order related with the powers of pj, j = 1, 2, . . . ,m and qk, k = 1, 2, . . . , r based
on the integer partitions. Furthermore, the denominators of Λx and Λy suitable
to these partitions. For example, if (s1 = 1, s2 = 3), the partitions of pj for j = 1
and qk, k = 1, 2, 3 are (p1, q

3
1), (p1, q1q2), (p1, q3) and the partitions of Λx and Λy
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are
[(

Λx

1! ,
Λ3

y

3! ,
Λ2

y

2!

)]
for p1, q

3
1 ,
[(

Λx

1! ,
Λ2

y

2! ,
Λy

1!

)]
for p1, q1q2,

[(
Λx

1! ,
Λ1

y

1!

)]
for p1, q3.

Using these properties, an algorithm is prepared in Maple for the joint probability
function of the BCPD.

A general formula is given in (15) for the joint probability function of the
BCPD. P (Xi = j) = pj, j = 0, 1, 2, . . . .m and P (Yi = k) = qk, k = 0, 1, 2, . . . , r
are defined in (15) to obtain joint probabilities of bivariate Neyman type A and
B, Thomas and geometric-Poisson distribution respectively,

pj = e−µ1µj
1/j!, j = 0, 1, 2, . . .

qk = e−µ2µk
2/k!, k = 0, 1, 2, . . .

pj =

(
m1

j

)
pj1(1− p1)

m1−j, j = 0, 1, 2, . . . ,m1

qk =

(
m2

k

)
pk2(1− p2)

m2−k, k = 0, 1, 2, . . . ,m2

pj = e−α1α
(j−1)
1 /(j − 1)!, j = 1, 2, . . .

qk = e−α2α
(k−1)
2 /(k − 1)!, k = 1, 2, . . .

pj = θ1(1 − θ1)
j , j = 0, 1, 2, . . .

qk = θ2(1 − θ2)
k, k = 0, 1, 2, . . .

3.2. Joint Moment Characteristics

We turn now to the consideration of moments and coefficient of correlation for
the BCPD. As far as we know, product moments, cumulants, coefficient of corre-
lation and covariance of the BCPD have never been investigated before (Homer
2006). We start with finding (a, b)-th product moment µ′(a, b) = E(Sa

1S
b
2). We de-

rive the product moments of S1 and S2 by calculating the joint moment generating
function

M(z1, z2) = exp(−(λ0 + λ1 + λ2)) exp
(
λ1[p0 + p1 exp(z1) + · · ·+ pm exp(zm1 )]

+ λ2[q0 + q1 exp(z2) + · · ·+ qr exp(z
r
2)]

+ λ0[(p0 + p1 exp(z1) + · · ·+ pm exp(zm1 ))

(q0 + q1 exp(z2) + · · ·+ qr exp(z
r
2))]
)
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Differentiating M(z1, z2) at z1 = z2 = 0, the (a, b)-th product moments are
given by

µ′(1, 1) = µ
[1]
X µ

[1]
Y (Λ1 + Λ2 + Λ0)

µ′(2, 1) =
(
µ
[1]
X

)2
µ
[1]
Y (Λ2

1Λ2 + Λ1) + µ
[2]
X µ

[1]
Y (Λ1Λ2 + Λ0)

µ′(3, 1) =
(
µ
[1]
X

)3
µ
[1]
Y (Λ3

1Λ2 + Λ2
1) + µ

[1]
X µ

[2]
X µ

[1]
Y (Λ2

1Λ2 + Λ1)

+ µ
[3]
X µ

[1]
Y (Λ1Λ2 + Λ0)

µ′(2, 2) =
(
µ
[1]
X

)2 (
µ
[1]
Y

)2
(Λ2

1Λ
2
2 + Λ1Λ2 + Λ2

0)

+ µ
[2]
X

(
µ
[1]
Y

)2
(Λ1 + Λ2

2 + Λ2) +
(
µ
[1]
X

)2
µ
[2]
Y (Λ2

1Λ2 + Λ1)

+ µ
[2]
X µ

[2]
Y (Λ1Λ2 + Λ0)

µ′(2, 3) =
(
µ
[2]
X

)2 (
µ
[1]
Y

)3
(Λ2

1Λ
3
2 + Λ1Λ

2
2 + Λ2)

+ µ
[2]
X

(
µ
[1]
Y

)3
(Λ1Λ

3
2 + Λ2

2) +
(
µ
[1]
X

)2
µ
[1]
Y µ

[2]
Y (Λ2

1Λ
2
2 + Λ1Λ2 + Λ2

0)

+ µ
[2]
X µ

[1]
Y µ

[2]
Y (Λ1Λ

2
2 + Λ2)

+
(
µ
[1]
X

)2
µ
[3]
Y (Λ2

1Λ2 + Λ1)µ
[2]
X µ

[3]
Y (Λ1Λ2 + Λ0)

(16)

3.3. Cumulants

The joint cumulant generating function of S1 and S2 is the logarithm of the
joint moment generating function M(z1, z2) and is given by

κS1,S2(z1, z2) = −(λ0 + λ1 + λ2)λ1[p0 + p1 exp(z1) + · · ·+ pm exp(zm1 )]

+ λ2[q0 + q1 exp(z2) + · · ·+ qr exp(z
r
2)] + λ0[(p0 + p1 exp(z1) + · · ·+ pm exp(zm1 ))

(q0 + q1 exp(z2) + · · ·+ pr exp(z
r
2))] (17)

From (17) we have

κ1,1 = λ1µX + λ2µY + λ0µXµY

κ1,2 = λ1µX + λ2µ
2
Y + λ0µXµ2

Y

κ2,2 = λ1µ
2
X + λ2µ

2
Y + λ0µ

2
Xµ2

Y

κ2,3 = λ1µ
2
X + λ2µ

3
Y + λ0µ

2
Xµ3

Y

where µX and µY are the expected values of Xi and Yi, i = 1, 2, . . ., respectively.
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3.4. Independence of S1 and S2

The covariance of S1 and S2 is obtained using (2) and (16)

Cov(S1, S2) = E(S1S2)− E(S1)E(S2)

= E(X)E(Y )[(λ0 + λ1)(λ0 + λ2) + λ0]

− [(λ0 + λ1)E(X)][(λ0 + λ2)E(Y )]

= λ0E(X)E(Y )

(18)

Let σs1 and σs2 be standard deviations of the random variables S1 and S2,
then the coefficient of correlation of S1 and S2 is obtained from (2) and (18) as
follows

ρ = Corr(S1, S2) =
Cov(S1, S2)

σs1σs2

=
λ0E(X)E(Y )√

(λ0 + λ1)[V (X) + [E(X)]2](λ0 + λ2)[V (Y ) + [E(Y )]2]

(19)

Note that the correlation of S1 and S2 assumes only positive values. This
implies that ρ = 0 is a necessary condition for S1 and S2 to be independent. Also,
ρ = 1 if and only if S1 and S2 are linearly dependent.

3.5. Asymptotics

If (λ0 + λ1) → ∞, (λ0 + λ2) → ∞, then

(Z1, Z2) =

(
S1 − (λ0 + λ1)E(X)√

(λ0 + λ1)[V (X) + [E(X)]2]
,

S2 − (λ0 + λ2)E(Y )√
(λ0 + λ2)[V (Y ) + [E(Y )]2]

)
(20)

follows a standardized normal bivariate distribution and asymptotically,
(Z2

1−2ρZ1Z2+Z2
2)

1−ρ2 is a Chi-squared distribution with two degrees of freedom.

4. Some Numerical Examples

As an illustration of the BCPD and algorithm, a variety of special cases for the
BCPD is considered. An algorithm is prepared in Maple for the joint probability
function of the BCPD. This algorithm can also be used for the special cases of the
BCPD. The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . . are presented
in Table 1, which are calculated from (15) for the bivariate Neyman type A dis-
tribution. In these calculations, Xi, i = 1, 2, . . . have a Poisson distribution with
parameter µ1 = 0.35 and Yi, i = 1, 2, . . . have a Poisson distribution with parame-
ter µ2 = 0.65; M0,M1,M2 are independent Poisson distributed random variables
with parameters λ0 = 0.5, λ1 = 0.7, λ2 = 0.1, respectively.

Table 2 presents P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . . for the bivariate
Neyman type B distribution where Xi, i = 1, 2, 3, . . . are binomial distributed with
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Table 1: The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . ., with the parameters
(µ1 = 0.35, µ2 = 0.65) and (λ0 = 0.5, λ1 = 0.7, λ2 = 0.1).

s1
s2 0 1 2 3 4 5

0 0.2836 0.1163 0.0674 0.0436 0.0212 0.0192

1 0.0985 0.0776 0.0167 0.0091 0.0149 0.0064

2 0.0867 0.0113 0.0095 0.0074 0.0097 0.0052

3 0.0065 0.0095 0.0074 0.0037 0.0087 0.0049

4 0.0042 0.0082 0.0062 0.0019 0.0063 0.0037

5 0.0038 0.0075 0.0057 0.0011 0.0041 0.0024

parameters (m1 = 5, p1 = 0.02) and Yi, i = 1, 2, . . . are binomial distributed with
parameters (m2 = 15, p2 = 0.3); M0,M1,M2 are independent Poisson distributed
random variables with parameters λ0 = 0.4, λ1 = 0.6, λ2 = 0.2, respectively.

Table 2: The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . ., with the parameters
(m1 = 5, p1 = 0.02), (m2 = 15, p2 = 0.3) and (λ0 = 0.4, λ1 = 0.6, λ2 = 0.2).

s1
s2 0 1 2 3 4 5

0 0.2836 0.1163 0.0674 0.0436 0.0212 0.0192

1 0.0985 0.0776 0.0167 0.0091 0.0149 0.0064

2 0.0867 0.0113 0.0095 0.0074 0.0097 0.0052

3 0.0065 0.0095 0.0074 0.0037 0.0087 0.0049

4 0.0042 0.0082 0.0062 0.0019 0.0063 0.0037

5 0.0038 0.0075 0.0057 0.0011 0.0041 0.0024

The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . . are shown in Table 3,
for the bivariate Thomas distribution. In these calculations Xi, i = 1, 2, 3, . . ., have
a truncated Poisson distribution with parameter α1 = 0.75 and Yi, i = 1, 2, 3, . . .
have a truncated Poisson distribution with parameter α2 = 2; M0,M1,M2 are
independent Poisson distributed random variables with parameters λ0 = 0.5, λ1 =
0.4, λ2 = 0.2, respectively.

The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . . are presented in
Table 4, for the bivariate geometric-Poisson distribution. In these calculations, Xi,
i = 1, 2, 3, . . . have a geometric distribution with parameter θ1 = 0.25 and Yi, i =
1, 2, 3, . . ., have a geometric distribution with parameter θ2 = 0.5; M0,M1,M2 are
independent Poisson distributed random variables with parameters λ0 = 0.9, λ1 =
0.5, λ2 = 0.2, respectively.

The results are also illustrated with an analysis of the earthquake data in
Turkey. The data is obtained from the database of the Kandilli Observatory,
Turkey. Earthquakes are an unavoidable natural disasters for Turkey since a sig-
nificant portion of Turkey is subject to frequent destructive mainshocks, their
foreshock and aftershock sequences. In this study, mainshocks that occured in
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Table 3: The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . ., with the parameters
(α1 = 0.75, α2 = 2) and (λ0 = 0.5, λ1 = 0.4, λ2 = 0.2).

s1
s2 0 1 2 3 4 5 6

0 0.4266 0.0540 0.0533 0.0306 0.0225 0.0094 0.0082

1 0.0707 0.0288 0.0131 0.0090 0.0061 0.0085 0.0069

2 0.0468 0.0114 0.0096 0.0074 0.0056 0.0067 0.0053

3 0.0421 0.0094 0.0089 0.0052 0.0042 0.0052 0.0047

4 0.0019 0.0061 0.0072 0.0043 0.0035 0.0048 0.0034

5 0.0003 0.0043 0.0064 0.0038 0.0027 0.0032 0.0028

6 0.0002 0.0036 0.0056 0.0029 0.0018 0.0025 0.0019

Table 4: The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . ., with the parameters
(θ1 = 0.25, θ2 = 0.5) and (λ0 = 0.9, λ1 = 0.5, λ2 = 0.2).

s1
s2 0 1 2 3 4 5 6 7

0 0.3122 0.0374 0.0430 0.0449 0.0387 0.0212 0.0145 0.0093

1 0.0285 0.0173 0.0323 0.0146 0.0214 0.0109 0.0098 0.0086

2 0.0097 0.0115 0.0237 0.0099 0.0138 0.0093 0.0083 0.0074

3 0.0149 0.0092 0.0116 0.0084 0.0097 0.0082 0.0045 0.0062

4 0.0099 0.0083 0.0092 0.0063 0.0085 0.0073 0.0037 0.0053

5 0.0076 0.0064 0.0092 0.0055 0.0073 0.0064 0.0021 0.0047

6 0.0068 0.0035 0.0086 0.0048 0.0062 0.0056 0.0001 0.0036

7 0.0052 0.0023 0.0062 0.0027 0.0053 0.0043 0.0001 0.0027

Turkey between 1900 and 2010, having surface wave magnitudes Ms ≥ 5.0, their
foreshocks within five days with Ms ≥ 3.0 and aftershocks within one month with
Ms ≥ 4.0, are considered. In this area, 132 mainshocks with surface magnitude
Ms ≥ 5.0 have occured between 1900 and 2010.

(Kocyigit & Ozacar 2003)

A BCPD is constructed to explain the total number of foreshocks and af-
tershocks in Turkey. For this purpose, the neotectonic subdivision of Turkey is
considered for the first time with the BCPD. To better understand the neotec-
tonic features and active tectonics of Turkey, the simplied tectonic map of Turkey
is given in Figure 1.

As seen in Figure 1, Turkey is divided into three main neotectonic domains:
area of extensional neotectonic regime, area of strike-slip neotectonic regime with
normal component and area of strike-slip neotectonic regime with thrust compo-
nent. The mainshocks in Turkey are separated according to these neotectonic
zones to obtain more reliable results. Let M0 be the number of mainshocks in
the area of extensional neotectonic regimes, M1 be the number of mainshocks
in the area of strike-slip neotectonic regime with normal component and M2

be the area of strike-slip neotectonic regime with thrust component. Then Xi,
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Figure 1: Neotectonic subdivision of Turkey and adjacent areas (Kocyigit & Ozacar
2003).

i = 1, 2, 3, . . . are defined as the number of foreshocks of ith mainshock and Yi,
i = 1, 2, 3, . . . are defined as the number of aftershocks of ith mainshock. Hence,(
S1 =

∑N1

i=1 Xi, S2 =
∑N2

i=1 Yi

)
shows the total number of foreshocks and after-

shocks for the mainshocks. If the following conditions hold, the pair of (S1, S2)
has a BCPD:

Condition 1 Fit of the Poisson distribution to the mainshocks: Several studies
have modelled earthquakes in Turkey as a Poisson distribution (Kalyoncuoglu
2007, Ozel & Inal 2008). The test for goodness of fit is performed to com-
pare the observed frequency distributions of the mainshocks to the theo-
retical Poisson distribution. Chi-square values of M0,M1,M2 are calcu-
lated as (0.082 with df = 9, p-value= 0.248), (0.068 with df = 15, p-value
= 0.563 ), and (0.875 with df = 10, p-value = 0.351, respectively. These val-
ues indicate that M0,M1,M2 fit the Poisson distribution with parameters
λ0 = 2.83, λ1 = 0.862, λ2 = 0.145 at the level of 0.05, respectively.

Condition 2 Independency tests of the random variables N1, N2, Xi and Yi,
i = 1, 2, . . .: Previous studies have indicated that there is no correlation
between the number of mainshocks, foreshocks and aftershocks (Agnew &
Jones 1991). Spearman’s ρ test verifies the absence of correlation between N1

and Xi, i = 1, 2, . . . (Spearman’s ρ = 0.092; p-value = 0.759). No correlation
is also found between N2 and Yi, i = 1, 2, . . . (Spearman’s ρ = 0.017; p-
value = 0.473). Similarly, it is shown that there is no statistically significant
dependence between Xi and Yi, i = 1, 2, . . . (Spearman’s ρ = 0.098; p-value
= 0.764).

Condition 3 Fit of the binomial distribution to the foreshocks: As discussed in
Jones (1985), if the occurrence of foreshock sequences is assumed as inde-
pendent from the occurrence of mainshocks without foreshocks, then the
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distribution of foreshocks in the set of all earthquakes can be treated as a
binomial distribution. The percentage, p, of foreshocks is an estimate of the
probability that a future earthquake will be a foreshock. After obtaining the
frequency distribution of foreshocks and the result of the test for goodness of
fit (χ2 = 1.437, with df = 36, p-value = 0.925), it is seen that Xi, i = 1, 2, . . .
have a binomial distribution with parameters m = 35, p = 0.953 at the level
of 0.05.

Condition 4 Fit of the geometric distribution to the aftershocks: It is pointed
that in the literature the number of aftershocks of a shock has a geometric
distribution (Christophersen & Smith 2000). The test for goodness of fit is
carried out to compare the theoretical geometric distribution to the exper-
imental geometric distribution for the number of aftershocks. The test for
goodness of fit (χ2 = 1.184, with df = 30, p-value = 0.273) shows that Yi,
i = 1, 2, . . . have a geometric distribution with parameter θ = 0.086.

Because all conditions hold, it can be written
(
S1 =

∑N1

i=1 Xi, S2 =
∑N2

i=1 Yi

)

and suggested that (S1, S2) has a BCPD. Then, P (S1 = s1, S2 = s2), s1, s2 =
0, 1, 2, . . . are computed using (15) for the parameters λ0 = 2.83, λ1 = 0.862, λ2 =
0.145; (m = 35, p = 0.953); θ = 0.086 and presented in Table 5.

Table 5: The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . ., with the parameters
θ = 0.086 and (m = 35, p = 0.953) and (λ0 = 2.83, λ1 = 0.862, λ2 = 0.145).

s1
s2 0 1 2 3 4 5 6 7 8 9 10

0 0.3630 0.0071 0.0001 0.0049 0.0041 0.0040 0.0037 0.0026 0.0013 0.0010 0.0009

1 0.0075 0.0063 0.0053 0.0045 0.0038 0.0036 0.0035 0.0034 0.0013 0.0009 0.0009

2 0.0001 0.0056 0.0048 0.0041 0.0034 0.0035 0.0034 0.0032 0.0012 0.0008 0.0007

3 0.0058 0.0050 0.0043 0.0037 0.0031 0.0035 0.0032 0.0032 0.0009 0.0008 0.0006

4 0.0051 0.0044 0.0037 0.0033 0.0022 0.0021 0.0021 0.0019 0.0009 0.0007 0.0005

5 0.0041 0.0040 0.0034 0.0031 0.0020 0.0019 0.0019 0.0017 0.0008 0.0006 0.0005

6 0.0035 0.0032 0.0031 0.0030 0.0019 0.0019 0.0016 0.0015 0.0006 0.0005 0.0003

7 0.0021 0.0020 0.0020 0.0029 0.0016 0.0015 0.0014 0.0014 0.0006 0.0004 0.0003

8 0.0018 0.0018 0.0013 0.0015 0.0015 0.0013 0.0009 0.0011 0.0004 0.0003 0.0001

9 0.0013 0.0013 0.0009 0.0013 0.0010 0.0009 0.0007 0.0009 0.0004 0.0003 0.0001

10 0.0010 0.0008 0.0008 0.0009 0.0008 0.0008 0.0007 0.0098 0.0002 0.0001 0.0001

It can be seen from Table 5 that the joint probability recurrence of zero fore-
shock and zero aftershock is approximately 0.363. The expected values, variances,
joint moments, cumulants for S1 and S2 are given in Table 6.

Table 6: Expected values, variances and some joint moments and cumulants of S1 and
S2.

E(S1) E(S2) V (S1) V (S2) µ′(1, 1) µ′(2, 1) κ1,1 κ1,2

123.14 34.59 4113.34 804.49 6384.32 22430.97 1128.05 12811.28

As shown in Table 6 that approximately to 123 foreshocks with Ms ≥ 3.0
and 35 aftershocks with Ms ≥ 4.0 are expected in Turkey. It can be concluded
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from Table 5 that the expected value of total number of foreshocks is less than
the expected value of total number of aftershocks. The coefficient of correlation
between S1 and S2 is found as 0.60 using (19). This result seemed to indicate
that increases on the incidence of foreshocks might lead to a more occurences of
aftershocks.

5. Conclusion

In this paper the joint probability function, moments, cumulants, covariance
and coefficient of correlation of BCPD are obtained. It is concluded that P (S1 =
s1, S2 = s2), s1, s2 = 0, 1, 2, . . . can be computed easily for the BCPD if pj ,
j = 1, 2, . . . ,m and qk, k = 1, 2, . . . , r are known. As seen in Section 3, (9) and (10)
need long and tedious computations but P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . .
can be computed accurately from (15) and its proposed algorithm in Maple. Then,
some important probabilistic characteristics such as moments, cumulants, covari-
ance, and correlation coefficient of the BCPD are provided. Some numerical ex-
amples and an application to the earthquake data have been also presented to
illustrate the usage of the bivariate geometric-Poisson, Thomas, Neyman type A
and B distributions. The results can be informative regarding BCPD and its
applications

Acknowledgements

The author wishes to thank the editor Leonardo Trujillo and anonymous refer-
ees for their constructive comments on an earlier version of this manuscript which
resulted in this improved version.

[
Recibido: febrero de 2011 — Aceptado: septiembre de 2011

]

References

Agnew, D. C. & Jones, L. M. (1991), ‘Prediction probabilities from foreshocks’,
Journal of Geophysical Research 96(11), 959–971.

Ambagaspitiya, R. (1998), ‘Compound bivariate Lagrangian Poisson distribu-
tions’, Insurance: Mathematics and Economics 23(1), 21–31.

Bruno, M. G., Camerini, E., Manna, A. & Tomassetti, A. (2006), ‘A new method
for evaluating the distribution of aggregate claims’, Applied Mathematics and
Computation 176, 488–505.

Cacoullos, T. & Papageorgiou, H. (1980), ‘On some bivariate probability models
applicable to traffic accidents and fatalities’, International Statistical Review
48, 345–346.

Revista Colombiana de Estadística 34 (2011) 545–566



562 Gamze Özel

Christophersen, A. & Smith, E. G. C. (2000), A global model for aftershock be-
haviour, Proceedings of the 12th World Conference on Earthquake Engineer-
ing, Auckland, New Zealand. Paper 0379.

Cossette, H., Gaillardetz, P., Marceau, E. & Rioux, J. (2002), ‘On two dependent
individual risk models’, Insurance: Mathematics and Economics 30, 153–166.

Hesselager, O. (1996), ‘Recursions for certain bivariate counting distributions and
their compound distributions’, ASTIN Bulletin 26, 35–52.

Holgate, P. (1964), ‘Estimation for the bivariate Poisson distribution’, Biometrika
51, 241–245.

Homer, D. L. (2006), Aggregating bivariate claim severities with numerical fourier
inversion, Report, CAS Research Working Party on Correlations and Depen-
dencies among all Risk Sources. 205-230.

Johnson, N. L., Kotz, S. & Balakrishnan, N. (1997), Discrete Multivariate Distri-
butions, Wiley, New York.

Jones, L. M. (1985), ‘Foreshocks and time-dependent earthquake hazard assess-
ment in Southern California’, Bulletin of the Seismological Society of America
75, 1669–1679.

Kalyoncuoglu, Y. (2007), ‘Evaluation of seismicity and seismic hazard parameters
in turkey and surrounding area using a new approach to the Gutenberg-
Richter relation’, Journal of Seismology 11, 31–148.

Kocherlakota, S. & Kocherlakota, K. (1992), Bivariate Discrete Distributions, Mar-
cel Decker, New York.

Kocherlakota, S. & Kocherlakota, K. (1997), Bivariate discrete distributions, in
S. Kotz, C. B. Read & D. L. Banks, eds, ‘Encyclopedia of Statistical Sciences-
Update’, Vol. 2, Wiley, New York, pp. 68–83.

Kocyigit, A. & Ozacar, A. (2003), ‘Extensional neotectonic regime through the ne
edge of the outher isparta angle, SW Turkey: New field and seismic data’,
Turkish Journal of Earth Sciences 12, 67–90.

Ozel, G. & Inal, C. (2008), ‘The probability function of the compound Poisson
process and an application to aftershock sequences’, Environmetrics 19, 79–
85.

Ozel, G. & Inal, C. (2010), ‘The probability function of a geometric Poisson dis-
tribution’, Journal of Statistical Computation and Simulation 80, 479–487.

Ozel, G. & Inal, C. (2011), ‘On the probability function of the first exit time for
generalized Poisson processes’, Pakistan Journal of Statistics 27(4). In press.

Panjer, H. (1981), ‘Recursive evaluation of a family of compound distributions’,
ASTIN Bulletin 12, 22–26.

Revista Colombiana de Estadística 34 (2011) 545–566



Bivariate Compound Poisson 563

Papageorgiou, H. (1997), Multivariate discrete distributions, in C. B. Kotz,
S. Read & D. L. Banks, eds, ‘Encyclopedia of Statistical Sciences-Update’,
Vol. 1, Wiley, New York, pp. 408–419.

Rolski, T., Schmidli, H., Schmidt, V. & Teugels, J. (1999), Stochastic Processes
for Insurance and Finance, John Wiley and Sons.

Sastry, N. (1997), ‘A nested frailty model for survival data with an application
to the study of child survival in Northeast Brazil’, Journal of the American
Statistical Association 92(438), 426–435.

Sundt, B. (1992), ‘On some extensions of Panjer’s class of counting distributions’,
ASTIN Bulletin 22, 61–80.

Wienke, A., Ripatti, S., Palmgren, J. & Yashin, A. (2010), ‘A bivariate survival
model with compound Poisson frailty’, Statistics in Medicine 29(2), 275–283.

Revista Colombiana de Estadística 34 (2011) 545–566



564 Gamze Özel

Appendix A. Maple Code for the Joint Probability

Function of the BCPD

# $Source: /u/maple/research/lib/bcpd/jpf, v $

bcpd/jpf‘:=proc(L::{set,nvl},q::posint)

local p0, q0, i, lambda1,lambda2, f_final, R, F,

LambdaP_i, LambdaP_n, j, S1, S2, subscript, k, a, b, c,

n, p, m, z, us, say, y_denom, denom v;

Partitionproduct := proc( n, f, g, statistic) local j, R, visit;

visit:= proc(L) local i, A, S, U, V, W;

A:= add(pow (x, L[i]), i= 1.. nops (L));

S:= [seq(coeff (A,x,i), i=1..n)];

V:= mul (pow (f(i), S[i],i=1,..,n);

W:= mul (pow (g(i), S[i])*S[i]!, i=1..n);

U:= abs (n!*V/W);

i statistic = "sum" then R := R+U

elif statistic = "part" then R := [op (R), U]

elif statistic = "len" then R [nops (L)] := R[nops (L)] + U

elif statistic = "big" then R [L(1)] := R[ K[1]] + U;

fi;

end;

if n = 0 then if statistic = "sum"

then RETURN (1) else RETURN ([1]) fi fi;

if statistic = "sum" then R := 0

elif statistic = "part" then R : = []

else R := [ seq (0, j=1..n)] fi;

GeneratePartitions (n, visit);

R end:

F0 := exp(-lambda1);

if k =1 then

F := lambda1;

else

i := k-2;

n := 2;

F := lambda1^k/k!;

W := lambda2^k/k!;

else

F := F + (lambda1^i/i!)* (LambdaP_n);

W := W + (lambda2^i/i!)* (LambdaP_n);

i := i-1;

n := n+1;

fi;

if i < 0

fi;
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F := 0;

k := k+1;

if k > = subscript then k := 4 ;

else

i := k-2;

m := 1;

n := 2;

nL := nops (L);

F := LambdaP_i * LambdaP_n;

nL := n;

us := 1;

if i =n then us := us+1;

else

y_denom := seq(us!,1);

if F >0 then

do b = nvl(b,0) + F/y_denom while denom =k

m := m+1;

fi

fi;

for z from 1 to n do

p:=0;

if subscript >0 then

p:=p+1;

fi

z:=z-1;

elif z=1 or p>0;

od;

if p=0 then

subscript := F

F := p*LambdaP_n;

denom := subscript/(n+1);

y_denom:= denom*denom!/(denom-1)!

if F and w>0 then

do b = NVL(b,0) + F/y_denom while denom =k

y_denom :=1;

m:=m+1;

fi

fi;

i := i-1;

n := n+1;

p := 0;

while i < k-trunc(k/2)

k := k + 1;

while k > :fNumber;

F := 0;

i := 1;
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fi

j := i-1;

n := 1;

for j from 1 to n do

F := F + lambda1^n/n!;

W := W + lambda1^n/n!;

od;

j := j-1;

n := n+1;

while j < 3;

fi

F := 0;

W := 0;

i := i+1;

while i > :say

set value=nvl(nvl (a,0)+ nvl(b,0)+nvl(c,0),0)*F0

while denom> 0;

end:

return F

for i from 1 to n do

f_final:= 1;

f_final:= f_final*i;

i:=i+1;

while i>n

fi

return f_final

fi;

say :=0;

for i from 1 to n do

v_value(i):=substr (p_string, i, 1);

if v_value(i):=p_string then

say :=say+1;

fi

i:= i+1;

while i-1> length(p);

od;

fi

end:

#savelib(’‘bcpd/jpf‘’):
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Abstract

Accurate measures of the volatility matrix and its inverse play a central
role in risk and portfolio management problems. Due to the accumulation
of errors in the estimation of expected returns and covariance matrix, the
solution to these problems is very sensitive, particularly when the number of
assets (p) exceeds the sample size (T ). Recent research has focused on de-
veloping different methods to estimate high dimensional covariance matrixes
under small sample size. The aim of this paper is to examine and com-
pare the minimum variance optimal portfolio constructed using five different
estimation methods for the covariance matrix: the sample covariance, Risk-
Metrics, factor model, shrinkage and mixed frequency factor model. Using
the Monte Carlo simulation we provide evidence that the mixed frequency
factor model and the factor model provide a high accuracy when there are
portfolios with p closer or larger than T .

Key words: Covariance matrix, High dimensional data, Penalized least
squares, Portfolio optimization, Shrinkage.

Resumen

Medidas precisas para la matriz de volatilidad y su inversa son herramien-
tas fundamentales en problemas de administración del riesgo y portafolio.
Debido a la acumulación de errores en la estimación de los retornos esperados
y la matriz de covarianza la solución de estos problemas son muy sensibles, en
particular cuando el número de activos (p) excede el tamaño muestral (T ).

aAssistant professor. E-mail: kgomezp@unal.edu.co
bAssistant professor. E-mail: santiagog@udea.edu.co
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La investigación reciente se ha centrado en desarrollar diferentes métodos
para estimar matrices de alta dimensión bajo tamaños muestrales pequeños.
El objetivo de este artículo consiste en examinar y comparar el portafolio
óptimo de mínima varianza construido usando cinco diferentes métodos de
estimación para la matriz de covarianza: la covarianza muestral, el RiskMet-
rics, el modelo de factores, el shrinkage y el modelo de factores de frecuencia
mixta. Usando simulación Monte Carlo hallamos evidencia de que el mod-
elo de factores de frecuencia mixta y el modelo de factores tienen una alta
precisión cuando existen portafolios con p cercano o mayor que T .

Palabras clave: matrix de covarianza, datos de alta dimension, mínimos
cuadrados penalizados, optimización de portafolio, shrinkage.

1. Introduction

It is well known that the volatility and correlation of financial asset returns
are not directly observed and have to be calculated from return data. An accu-
rate measure of the volatility matrix and its inverse is fundamental in empirical
finance with important implications for risk and portfolio management. In fact,
the optimal portfolio allocation requires solving the Markowitz’s mean-variance
quadratic optimization problem, which is based on two inputs: the expected (ex-
cess) return for each stock and the associated covariance matrix. In the case of
portfolio risk assessment, the smallest and highest eigenvalues of the covariance
matrix are referred to as the minimum and maximum risk of the portfolio, respec-
tively. Additionally, the volatility itself has also become an underlying asset of the
derivatives that are actively traded in the financial market of futures and options.

Consequently, many applied problems in finance require a covariance matrix
estimator that is not only invertible, but also well-conditioned. A symmetric
matrix is well-conditioned if the ratio of its maximum and minimum eigenvalues is
not too large. Then it has full-rank and can be inverted. An ill-conditioned matrix
has a very large ratio and is close to being numerically non-invertible. This can be
an issue especially in the case of large-dimensional portfolios. The larger number
of assets p with respect to the sample size T , the more spread out the eigenvalues
obtained from a sample covariance matrix due to the imprecise estimation of this
input (Bickel & Levina 2008).

Therefore, the optimal portfolio problem is very sensitive to errors in the esti-
mates of inputs. This is especially true when the number of stocks under consid-
eration is large compared to the return history in the sample. Traditionally the
literature, the inversion matrix maximizes the effects of errors in the input assump-
tions and, as a result, practical implementation is problematic. In fact, those can
produce the allocation vector that we get based on the empirical data can be very
different from the allocation vector we want based on the theoretical inputs, due
to the accumulation of estimation errors (Fan, Zhang & Yu 2009). Also, Chopra &
Ziemba (1993) showed that small changes in the inputs can produce large changes
in the optimal portfolio allocation. These simple arguments suggest that severe
problems might arise in the high-dimensional Markowitz problem.
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Covariance estimation for high dimensional vectors is a classical difficult prob-
lem, sometimes referred as the “curse of dimensionality”. In recent years, different
parametric and nonparametric methods have been proposed to estimate a high
dimensional covariance matrix under small sample size. The most usual candidate
is the empirical sample covariance matrix. Unfortunately, this matrix contains se-
vere estimation errors. In particular, when solving the high-dimensional Markowitz
problem, one can be underestimating the variance of certain portfolios, that is the
optimal vectors of weights (Chopra & Ziemba 1993).

Other nonparametric methods such as 250-day moving average, RiskMetrics
exponential smoother and exponentially weighted moving average with differ-
ent weighting schemes have long been used and are widely adopted particularly
for market practitioners. More recently, with the availability of high frequency
databases, the technique of realized covariance proposed by Barndorff-Nielsen &
Shephard (2004) has gained popularity, given that high frequency data provides
opportunities for better inference of market behavior.

Parametric methods have been also proposed. Multivariate GARCH models
–MGARCH– were introduced by Bollerslev, R. & Wooldridge (1988) with their
early work on time-varying covariance in large dimensions, developing the diagonal
vech model and later the constant correlation model (Bollerslev 1990). In general,
this family model captures the temporal dependence in the second-order moments
of asset returns. However, they are heavily parameterized and the problem be-
comes computationally unfeasible in a high dimension system, usually for p ≥ 100
(Engle, Shephard & Sheppard 2008).

A useful approach to simplifying the dynamic structure of the multivariate
volatility process is to use a factor model. Fan, Fan & Lv (2008) showed that the
factor model is one of the most frequently used effective ways to achieve dimension-
reduction. Given that financial volatilities move together over time across assets
and markets is reasonable to impose a factor structure (Anderson, Issler & Vahid
2006). The three factor model of Fama & French (1992) is the most widely used
in financial literature. Another approach that has been used to reduce the noise
inherent in covariance matrix estimators is the shrinkage technique by Stein (1956).
Ledoit & Wolf (2003) used this approach to decrease the sensitivity of the high-
dimensional Markowitz-optimal portfolios to input uncertainty.

In this paper we examine and compare the minimum variance optimal portfolios
constructed using five methods of estimating high dimensional covariance matrix:
the sample covariance, RiskMetrics, shrinkage estimator, factor model and mixed
frequency factor model. These approaches are widely used both by practitioners
and academics. We use the global portfolio variance minimization problem with
the gross exposure constraint proposed by Fan et al. (2009) for two reasons: i) to
avoid the effect of estimation error in the mean on portfolio weights and ii) the
error accumulation effect from estimation of vast covariance matrices.

The goal of this study is to evaluate the performance of the different methods
in terms of their precision to estimate a covariance matrix in the high dimensional
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minimum variance optimal portfolios allocation context.1 The simulated Fama-
French three factor model was used to generate the returns of p = 200 and p = 500
stocks over a period of 1 and 3 years of daily and intraday data. Using the Monte
Carlo simulation we provide evidence than the mixed frequency factor model and
the factor model using daily data show a high accuracy when there are portfolios
with p closer or larger than T .

The paper is organized as follows. In Section 2, we present a general review of
different methods to estimate high dimensional covariance matrices. In Section 3,
we describe the global portfolio variance minimization problem with the gross ex-
posure constraint proposed by Fan et al. (2009), and the optimization methodology
used to solve it. In Section 4, we compare the minimum variance optimal portfolio
obtained using simulated stocks returns and five different estimation methods for
the covariance matrix. Also in this section we include an empirical study using the
data of 100 industrial portfolios by Kenneth French web site. Finally, in Section
5 we conclude.

2. General Review of High Dimensional Covariance

Matrix Estimators

In this Section, we introduce different methods to estimate the high dimen-
sional covariance matrix which is the input for the portfolio variance minimization
problem. Let us first introduce some notation used throughout the paper. Con-
sider a p-dimensional vector of returns, rt = (r1t, . . . , rpt)

′, on a set of p stocks
with the associated p× p covariance matrix, Σt, t = 1, . . . , T .

2.1. Sample Covariance Matrix

The most usual candidate for estimating Σ is the empirical sample covariance
matrix. Let R be a p × T matrix of p returns on T observations. The sample
covariance matrix is defined by

Σ̂ =
1

T − 1
R

(
I −

1

T
ıı′
)
R′ (1)

where ı denotes a T × 1 vector of ones and I is the identity matrix of order T .2

The (i, j)th element of Σ is Σij = (T − 1)−1
∑T

t=1

(
rit − r̄i

)
(rjt − r̄i) where rit and

rjt are the ith and jth returns of the assets i and j on t = 1, . . . , T , respectively;
and r̄i is the mean of the ith return.

1Other authors have compared a set of models which are suitable to handle large dimensional
covariance matrices. Voev (2008) compares the forecasting performance and also proposes a
new methodology which improves the sample covariance matrix. Lam, Fung & Yu (2009) also
compare the predictive power of different methods.

2When p ≥ T the rank of Σ̂ is T − 1 which is the rank of the matrix I − 1

T
ıı′, thus it is not

invertible. Then, when p exceeds T − 1 the sample covariance matrix is rank deficient, (Ledoit
& Wolf (2003)).
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Although the sample covariance matrix is always unbiased estimator is well
known that the sample covariance matrix is an extremely noisy estimator of the
population covariance matrix when p is large (Dempster 1979).3 Indeed, estima-
tion of covariance matrix for samples of size T from a p-variate Gaussian distribu-
tion, Np(µ,Σp), has unexpected features if both p and T are large such as extreme
eigenvalues of Σp and associated eigenvectors (Bickel & Levina 2008).4

2.2. Exponentially Weighted Moving Average Methods

Morgan’s RiskMetrics covariance matrix, which is very popular among market
practitioners, is just a modification of the sample covariance matrix which is based
on an exponentially weighted moving average method. This method attaches
greater importance on the more recent observations while further observations on
the past have smaller exponential weights. Let us denote ΣRM the RiskMetrics
covariance matrix, the (i, j)th element is given by

Σ
ij
RM = (1− ω)

T∑

t=1

ωt−1
(
rit − r̄i

) (
rjt − r̄j

)
(2)

where 0 < ω < 1 is the decay factor. Morgan (1996) suggest to use a value of 0.94
for this factor. It can be write also as follows:

ΣRM,t = ωrt−1r
′
t−1 + (1 − ω)ΣRM,t−1

which correspond a BEKK scalar integrated model by Engle & Kroner (1995).

Other straightforward methods such as rolling averages and exponentially weighted
moving average using different weighting schemes have long been used and are
widely adopted specially among practitioners.

2.3. Shrinkage Method

Regularizing large covariance matrices using the Stein (1956) shrinkage method
have been used to reduce the noise inherent in covariance estimators. In his seminal
paper Stein found that the optimal trade-off between bias and estimation error can
be handled simply taking properly a weighted average of the biased and unbiased
estimators. This is called shrinking the unbiased estimator full of estimation error
towards a fixed target represented by the biased estimator.

This procedure improved covariance estimation in terms of efficiency and ac-
curacy. The shrinkage pulls the most extreme coefficients towards more central
values, systematically reducing estimation error where it matters most. In sum-
mary, such method produces a result to exhibit the following characteristics: i) the

3There is a fair amount of theoretical work on eigenvalues of sample covariance matrices of
Gaussian data. See Johnstone (2001) for a review.

4For example, the larger p/T the more spread out the eigenvalues of the sample covariance
matrix, even asymptotically.
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estimate should always be positive definite, that is, all eigenvalues should be dis-
tinct from zero and ii) the estimated covariance matrix should be well-conditioned.

Ledoit & Wolf (2003) used this approach to decrease the sensitivity of the high-
dimensional Markowitz-optimal portfolios to input uncertainty. Let us denote ΣS

the shrinkage estimators of the covariance matrix, which generally have the form

ΣS = αF + (1 − α)Σ̂ (3)

where α ∈ [0, 1] is the shrinkage intensity optimally chosen, F corresponds to a

positive definite matrix which is the target matrix and Σ̂ represents the sample
covariance matrix.

The shrinkage intensity is chosen as the optimal α with respect to a loss function
(risk), L(α), defined as a quadratic measure of distance between the true and the
estimated covariance matrices based on the Frobenius norm. That is

α∗ = argminE

[∥∥∥αF + (1− α)Σ̂−Σ

∥∥∥
2
]

Given that α∗ is non observable, Ledoit & Wolf (2004) proposed a consistent
estimator of α for the case when the shrinkage target is a matrix in which all pair-
wise correlations are equal to the same constant. This constant is the average value
of all pairwise correlations from the sample covariance matrix. The covariance ma-
trix resulting from combining this correlation matrix with the sample variances,
known as equicorrelated matrix, is the shrinkage target.

Ledoit & Wolf (2003) also proposed to estimate the covariance matrix of stock
returns by an optimally weighted average of two existing estimators: the sample
covariance matrix with the single-index covariance matrix or the identity matrix.5

An alternative method frequently used proposes banding the sample covariance
matrix or estimating a banded version of the inverse population covariance matrix.
A relevant assumption, in particular for time series data, is that the covariance
matrix is banded, meaning that the entries decay based on their distance from
the diagonal. Thus, Furrer & Bengtsson (2006) proposed to shrink the covariance
entries based on this distance from the diagonal. In other words, this method
keeps only the elements in a band along its diagonal and gradually shrinking the
off-diagonal elements toward zero.6 Wu & Pourahmadi (2003) and Huang, Liu,
Pourahmadi & Liu (2006) estimate the banded inverse covariance matrix by using
thresholding and L1penalty, respectively.7

2.4. Factor Models

The factor model is one of the most frequently used effective ways for dimen-
sion reduction, and a is widely accepted statistical tool for modeling multivariate

5The single-index covariance matrix corresponds to a estimation using one factor model given
the strong consensus about the use of the market index as a natural factor.

6This method is also known how “tapering” the sample covariance matrix.
7Thresholding a matrix is to retain only the elements whose absolute values exceed a given

value and replace others by zero.
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volatility in finance. If few factors can completely capture the cross sectional vari-
ability of data then the number of parameters in the covariance matrix estimation
can be significatively reduced (Fan et al. 2008). Let us consider the p× 1 vector
rt. Then the K-factor model is written as

rt = Λf t + νt =

K∑

k=1

λk · fkt + νt (4)

where f t = (f1t, . . . , fKt)
′ is theK-dimensional factor vector, Λ is a p×K unknown

constant loading matrix which indicates the impact of the kth factor over the ith
variable, and νt is a vector of idiosyncratic errors. f t and νt are assumed to satisfy

E(f t | ℑt−1) = 0, E(f tf
′
t | ℑt−1) = Φt = diag {φ1t, . . . , φKt} ,

E(νt | ℑt−1) = 0, E(νtν
′
t | ℑt−1) = Ψ = diag{ψ1, . . . , ψp},

E(f tν
′
t | ℑt−1) = 0.

where ℑt−1 denotes the information set available at time t− 1.

The covariance matrix of rt is given by

ΣF,t = E(rtr
′
t | ℑt−1) = ΛΦtΛ

′ +Ψ =

K∑

k=1

λkλ
′
kφkt +Ψ (5)

where all the variance and covariance functions depend on the common movements
of fkt.

The multi-factor model which utilizes observed market returns as factors has
been widely used both theoretically and empirically in economics and finance. It
states that the excessive return of any asset rit over the risk-free interest rate
satisfies the equation above. Fama & French (1992) identified three key factors
that capture the cross-sectional risk in the US equity market, which have been
widely used. For instance, the Capital Asset Pricing Model −CAPM− uses a
single factor to compare the excess returns of a portfolio with the excess returns
of the market as a whole. But it oversimplifies the complex market. Fama and
French added two more factors to CAPM to have a better description of market
behavior. They proposed the “small market capitalization minus big” and “high
book-to-price ratio minus low” as possible factors. These measure the historic
excess returns of small caps over big caps and of value stocks over growth stocks,
respectively. Another choice is macroeconomic factors such as: inflation, output
and interest rates; and the third possibility are statistical factors which work under
a purely dimension-reduction point of view.

The main advantage of statistical factors is that it is very easy to build the
model. Fan et al. (2008) find that the major advantage of factor models is in the
estimation of the inverse of the covariance matrix and demonstrate that the factor
model provides a better conditioned alternative to the fully estimated covariance
matrix. The main disadvantage is that there is no clear meaning for the factors.
However, a lack of interpretability is not much of a handicap for portfolio optimiza-
tion. Peña & Box (1987), Chan, Karceski & Lakonishok (1999), Peña & Poncela
(2006), Pan & Yao (2008) and Lam & Yao (2010) among others have studied the
covariance matrix estimate based on the factor model context.
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2.5. Realized Covariance

More recently, with the availability of high frequency databases, the technique
of realized volatility introduced by Andersen, Bollerslev, Diebold & Labys (2003)
in a univariate setting has gain popularity. In a multivariate setting, Barndorff-
Nielsen & Shephard (2004) proposed the realized covariance −RCV−, which is
computed by adding the cross products of the intra-day returns of two assets.
Dividing day t into M non-overlapping intervals of length ∆ = 1/M , the realized
covariance between assets i and j can be obtained by

Σ
∆
RCV,t =

M∑

m=1

rit,mr
j
t,m (6)

where rit,m is the continuously compounded return on asset i during the mth
interval on day t.

The RCV based on the synchronized discrete observations of the latent process
is a good proxy or representative of the integrated covariance matrix. Barndorff-
Nielsen & Shephard (2004) showed that this is true in the low dimensional case.
However, in the high dimensional case, i.e. when the dimension p is not small
compared with T , it is in general not a good proxy (Zheng & Li 2010). This
is a consequence of several issues related with non-synchronous trading, market
microstructure noise and spurious intra-day dependence.

Indeed, estimating high dimensional integrated covariance matrix has been
drawing more attention. Several solutions have been proposed that are robust to
these frictions. Bannouh, Martens, Oomen & van Dijk (2010) propose a Mixed-
Frequency Factor Model −MFFM− for estimating the daily covariance matrix
for a vast number of assets, which aims to exploit the benefits of high-frequency
data and a factor structure. They proposed to obtain the factor loadings in the
conventional way by linear regression using daily stock information, and calculated
the factor covariance matrix and residual variances with high precision from intra-
day data. Using this approach they can avoid non-synchronicity problems inherent
in the use of high frequency data for individual stocks.

Considering the same linear factor structure specified in (4), the covariance
matrix can be defined as before:

ΣMFFM = ΛΠΛ
′ +Θ (7)

where Π = E(FF ′) is the realized covariance matrix obtained using F high-
frequency factor return observations. Λ denotes the factor loadings, and Θ the
idiosyncratic residuals, which are obtained using ν = R − ΛF where R denotes
the high-frequency matrix return observations.

This methodology has several advantages over the realized covariance matrix.
First, the advantages of dimension reduction in the context of the factor model
based purely on daily data continue to hold in the MFFM. Second, the MFFM
makes efficient use of high-frequency factor data while bypassing potentially severe
biases induced by microstructure noise for the individual assets. Third, we can
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easily expand the number of assets in the MFFM approach while this is more
difficult with the RC matrix for which the inverse does not exist when the number
of assets exceeds the number of return observations per asset. For additional
details see Bannouh et al. (2010).

Wang & Zou (2009) also develop a methodology for estimating large volatility
matrices based on high frequency data. The estimator proposed is constructed in
two stages: first, they propose to calculate the average of the realized volatility
matrices constructed using tick method and pre sampling frequency, which is called
ARVM estimator. Then, regularize ARVM estimator to yield good consistent
estimators of the large integrated volatility matrix. Other proposal have been
introduced by Barndorff-Nielsen, Hansen, Lunde & Shephard (2010), Zheng & Li
(2010), among others.

3. Portfolio Variance Minimization Problem with

the Gross Exposure Constraint

In this section, we start recalling the portfolio variance minimization problem
proposed by Fan et al. (2009). The noteworthy innovation in their proposal is
to relax the gross exposure constraint in order to enlarge the pools of admissi-
ble portfolios generating more diversified portfolios.8 Moreover, they showed that
there is no accumulation of estimation errors thanks to the gross exposure con-
straint. We also present, in a different subsection, the LARS algorithm developed
by Efron, Hastie, Johnstone & Tibshirani (2004), which permits to find efficiently
the solution paths to the constrained variance minimization problem.

3.1. The Variance Minimization Problem with Gross

Exposure Constraint

Following the proposal of Fan et al. (2009), we suppose a portfolio with p assets
and corresponding returns r = (r1, . . . , rp)

′ to be managed. Let Σ be its associated
covariance matrix, and w be its portfolio allocation vector. as a consequence, the
variance of the portfolio return w′r is given by w′

Σw. Considering the variance
minimization problem with gross-exposure constraint as follows:

min
w

Γ (w,Σ) = w′
Σw,

subject to: w′ı = 1 (Budget constraint) (8)

‖w‖1 ≤ c (Gross exposure constraint)

where ‖w‖1 is the L1 norm. The constraint ‖w‖1 ≤ c prevents extreme positions
in the portfolio. Notice that when ‖w‖1 = 1, ie c = 1, no short sales are allowed
as studied by Jagannathan & Ma (2003); when c = ∞, there is no constraint on

8The portfolio optimization with the gross-exposure constraint bridges the gap between the
optimal no-short-sale portfolio studied by Jagannathan & Ma (2003) and no constraint on short-
sale in the Markowitz’s framework.
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short sales as in Markowitz (1952). Thus, the proposal of Fan et al. (2009) is a
generalization to the work of them.9

The solution to the optimization problem w∗ depends sensitively on the input
vectors Σ and its accumulated estimation errors, but under the gross-exposure
constraint, with a moderate value of c, the sensitive of the problem is bounded
and these two problems disappear. The upper bounds on the approximation errors
is given by ∣∣∣Γ (w,Σ)− Γ

(
w, Σ̂

)∣∣∣ ≤ 2anc
2 (9)

where Γ (w,Σ) and Γ(w, Σ̂) correspond to the theoretical and empirical portfolio

risks, an = ||Σ̂−Σ||∞ and Σ̂ is an estimated covariance matrix based on the data
with sample size T .

They point out that this holds for any estimation of covariance matrix. However
as long as each element is estimated precisely, the theoretical minimum risk and
the empirical risk calculated from the data should be very close, thanks to the
constraint on the gross exposure.

3.2. The Optimization Methodology

The risk minimization problem described in the equation (8) takes the form
of the Lasso problem developed by Tibshirani (1996). For a complete study of
Lasso (Least Absolute Shrinkage and Selection Operator) method see Buhlmann
& van de Geer (2011). The connection between Markowitz problem and Lasso
is conceptually and computationally useful. The Lasso is a constrained version
of ordinary least squares −OLS−, which minimize a penalized residual sum of
squares. Markowitz problem also can be viewed as a penalized least square problem
given by

w∗
Lasso = argmin

T∑

t=1

(
yt − b−

p−1∑

j=1

xtjwj

)2

subject to

p−1∑

j=1

|wj | ≤ d (L1 penalty)

(10)

where yt = rtp, xtj = rtp − rtj with j = 1, . . . , p − 1 and d = c −
∣∣∣1−

∑p−1
j=1 w

∗
j

∣∣∣.
Thus, finding the optimal weight w is equivalent to finding the regression coeffcient
w∗ = (w1, . . . , wp−1)

′ along with the intercept b to best predict y.

Quadratic programming techniques can be used to solve (8) and (10). How-
ever, Efron et al. (2004) proposed to compute the Lasso solution using the LARS
algorithm which uses a simple mathematical formula that greatly reduced the

9Let w+ and w− be the total percent of long and short positions, respectively. Then, under
w+−w− = 1 and w+−w− ≤ c, we have w+ = (c+1)/2 and w− = (c− 1)/2. These correspond
to percentage of long and short positions allowed. The constraint on ‖w‖

1
≤ c is equivalent to

the constraint on w−, which is binding when the portfolio is optimized.
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computational burden. Fan et al. (2009) showed that this algorithm provides an
accurate solution approximation of problem (8).

The LARS procedure works roughly as follows. Given a collection of possible
predictors, we select the one having largest absolute correlation with the response
y, say xj1 ,and perform simple linear regression of y on xj1. This leaves a residual
vector orthogonal to xj1 , which now is considered to be the response. We project
the other predictors orthogonally to xj1 and repeat the selection process. Doing
the same procedure after s steps this produce a set of predictors xj1 , xj2 , . . . , xjs
that are then used in the usual way to construct a s-parameter linear model (Efron
et al. (2004)). For more details, the LARS algorithm steps are summarized in the
Appendix A

The LARS algorithm applied to the problem (10) produces the whole solution
path w∗(d), for all d ≥ 0. The number of non-vanishing weights varies as d ranges
from 0 to 1. It recruits successively one stock, two stocks, and gradually all the
stocks of the portfolio. When all stocks are recruited, the problem is the same
as the Markowitz risk minimization problem, since no gross-exposure constraint is
imposed when d is large enough (Fan et al. 2009).

4. Comparison of Minimum Variance Optimal

Portfolios

In this section, we compare the minimum variance optimal portfolio con-
structed using five different estimation methods for the covariance matrix: the
sample covariance, RiskMetrics, factor model, mixed frequency factor model and
shrinkage method.

4.1. Dataset

We use a simulated return of p stocks considering 1 and 3 years of daily data,
this is T = 252, 756. The simulated Fama-French three factor model is used to
generate the returns of p = 200 and p = 500 stocks, using the specification in
(4) and following the procedure employed by Fan et al. (2008). We carry out the
following steps:

1. Generate p factor loading vectors λ1, . . . ,λp as a random sample of size
p from the trivariate normal distribution N(µλ, covλ). This is kept fixed
during the simulation.

2. Generate a random sample of factors f1, f2 and f3 of size T from the
trivariate normal distribution N(µf , covf ).

3. Generate p standard deviations of the errors ψ1, . . . , ψp as a random sample
of size p from a gamma distribution with parameters α = 3.3586 and β =
0.1876. This is also kept fixed during the simulation.
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4. Generate a random sample of p idiosyncratic noises ν1, . . . ,νp with size T
from the p-variate normal distribution N(0,Ψ), and also from Student’s t
distribution t-Stud(6,Ψ).

5. Calculate a random sample of returns rt, t = 1, . . . , T using the model (4)
and the information generated in steps 1, 2 and 4.

6. By means of this simulated returns we calculated the following covariance
matrix using: the sample covariance, RiskMetrics, factor model and shrink-
age method, as was discussed in Section 2.

The parameters used in steps 1, 2 and 3, were taken from Fan et al. (2008)
who fit three-factor model using the three-year daily data of 30 Industry Portfolios
from May 1, 2002 to August 29, 2005, available at the Kenneth French website.
They calculated the sample means and sample covariance matrices of f and λ

denoted by (µf , covf ) and (µλ, covλ). These values are reported in Appendix B,
Table 4.

Additionally, to implement the Mixed-Frequency Factor Model we simulated, as
proposed by Bannouh et al. (2010), five minutes high frequency factor data F from
a trivariate Gaussian distribution, N(0, covf ) and high frequency idiosyncratic
noises from a p-variate normal distribution N(0,Ψ). In practice high-frequency
financial asset prices bring problems such as non-synchronous trading and are
contaminated by market microstructure noise.

We implement non-synchronous trading by assuming trades arrive following a
Poisson process with an intensity parameter equal to the average number of daily
trades for the S&P500.10 Also, we include a microstructure noise component in
the model, η ∼ N(0,∆) where ∆ = (1/4τ)(ΛΠΛ

′+Θ) with τ the high frequency
sample size returns. Using this we also calculate the random sample of high
frequency returns R = ΛF + ν + η and by means of these returns we calculate
(7).

Finally, from the estimated covariance matrices obtained using the different
methods, we find an approximately optimal solution to problem (8) using the
LARS algorithm. For this calculation, we take the no short sale constraint optimal
portfolio as dependent variable in (10). Thus, having the optimal portfolio weights
and the estimated covariance matrix we calculate the theoretical and empirical
minimum variance optimal risk. In this paper, the risk of each optimal portfolio

is referring to the standard deviation of the quantities Γ (w,Σ) and Γ
(
ŵ, Σ̂

)
,

calculated as the square-root thereof.

4.2. Simulation results

Fan et al. (2009) showed that the unknown theoretical minimum risk, Γ (w,Σ),

and the empirical minimum risk, Γ
(
ŵ, Σ̂

)
, of the invested portfolio are approx-

imately the same as long as: i) the c is not too large and ii) the accuracy of

10This value corresponds to 19.385 which is the average number of daily trades over the period
November 2006 through May 2008 (Bannouh et al. (2010)Z).
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estimated covariance matrix is not too low. Based on this result, we are going to
compare the theoretical solution path of the minimum variance optimal portfolios
with the solution path obtained using five different estimation methods for high
dimensional covariance matrix: the sample covariance, RiskMetrics, factor model,
shrinkage and mixed frequency factor model.

We first examine the results in case of p = 200 with 100 replications. In Table
1, we present the mean value of the minimum variance optimal portfolio in three
cases: i) when no short sales are allowed, that is c = 1, as studied by Jagannathan
& Ma (2003), ii) under a gross exposure constraint equal to c = 1.6 as proposed
by Fan et al. (2009), which correspond to a typical choice and iii) when c = ∞,
that is, no constraint on short sales as in Markowitz (1952).11

The results show that the empirical minimum portfolio risk obtained using the
covariance matrix estimated from mixed frequency factor model method has the
smaller difference with respect to the theoretical risk. Thus, the MFFM method
produces the better relative estimation accuracy among the competing estimators.
The gains come from the fact that this model exploits the advantages of both high
frequency data and the factor model approach. The factor model also permits a
precise estimation of the covariance matrix, which is closer to the MFFM. The
accuracy of the covariance matrix estimated from the shrinkage method is also
fairly similar to the factor models and slightly superior to the sample covariance
matrix.12 Finally, all estimation methods overcome the RiskMetrics, especially
when no short sales are allowed. We have the same results when we used three
years of daily returns, presented at the bottom of Table 1.

Table 1: Theoretical and empirical risk of the minimum variance optimal portfolio
High dimensional case (p = 200).
True covariance matrix Competing estimators

c Σ Σ̂ ΣRM ΣS ΣF ΣMFFM

T = 252

1 21.23 19.16 16.65 19.72 19.88 20.12

1.6 7.64 6.76 5.92 7.29 7.35 7.42

∞ 1.32 0.88 0.85 0.93 1.03 1.01

T = 756

1 19.84 18.53 15.53 19.01 19.15 19.45

1.6 5.85 3.82 3.05 4.95 5.05 5.53

∞ 1.25 0.69 0.61 0.87 0.94 0.98

As we can see in Table 1, in all cases the theoretical risk is greater than the
empirical risk, although in some cases the difference is slim. The intuition of

11The corresponding values for parameter d in each case is: 0, 0.7, and 12.8.
12We used as target matrix the identity which works well as was shown by Ledoit & Wolf (2003)

and also the shrinkage target actually proposed by them. The practical problem in applying the
shrinkage method is to determine the shrinkage intensity. Ledoit & Wolf (2003) showed that
it behaves like a constant over the sample size and provide a way to consistently estimate it.
Following the Ledoit & Wolf (2003) proposal we found α∗ = 0.7895. However, we check the
stability of the results using different values for α chosen ad hoc. The results show that the
as long as the shrinkage intensity is lower than α∗ the methods tends to underestimate a little
bit more the risk. However, this method maintains his superiority with respect to sample and
RiskMetrics estimated covariance matrices. Detailed results are available upon request.
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these results is that having to estimate the high dimensional covariance matrix at
stake here leads to risk underestimation. In other words, in general the covariance
matrix estimation leads to overoptimistic conclusions about the risk. The most
dramatic case occurs with the RiskMetrics portfolio, which shows the lower risk.

Additionally, the results show that constrained short sale portfolios are not
diversified enough, as also was found by Fan et al. (2009). For instance, the risks
can be improved by relaxing the gross exposure constraint, which implies allowing
some short positions. However, allowing the possibility of extreme short or long
positions in the portfolio we can get a lower optimal risk; extremely negative
weights are difficult to implement in practice. Actually, practical portfolio choices
always involve constraints on individual assets such as the allocations are no larger
than certain percentages of the median daily trading volume of an asset. This
result is true no matter what method is used to estimate the covariance matrix
and which sample size is used.

Figure 1, shows the whole path solution of the risk for a selected portfolio as
a function of LARS steps. The path solution was calculated for each of the five
competing methods and the true covariance matrix, using the LARS algorithm.
This figure illustrates the decrease in optimal risk when we move from a portfolio
with no short sale to allowed short sale portfolio, which is more diversified and
therefore less risky. In other words, the graph suggests that the optimal risk
decreases as soon as in each step the parameter d is growing. This occurs as long
as the LARS algorithm progresses.13 This implies that the higher value of optimal
risk is reached in the case of no short sale.

Steps

R
is

k

0 20 40 60 80 100

0.05

0.10

0.15

0.20

Theoretical
Riskmetrics
Shrinkage
Factor
MFFM
Sample

Figure 1: LARS solution path of the optimal risk for each minimum variance portfolio

13The number of steps required to complete the algorithm and have the entire solution path
can be different in each case
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In consequence, once the gross exposure constraint is relaxed the number of
selected stocks increases and the portfolio becomes more diversified. In fact, at the
first step when d is relaxed the LARS algorithm identifies the stock that permit
reduction of the minimum optimal risk under no short sale restriction, permitting
this stock to enter into the optimal portfolio allocation with a weight that can be
positive or negative. This process is continued until the entire set of stocks are
examined and as result in each step you will have a decreasing optimal risk but
increasing short percentage. This process is illustrated in Figure 2. Each graph
in the panel corresponds to a profile of optimal portfolio weights obtained solving
the problem (10) using the true covariance matrix and each estimated covariance
matrix.
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Figure 2: Estimated optimal portfolio weights via the Lasso. The abscissae correspond
to the standardized Lasso parameter, s = d/

∑
p−1

j=1
|wj |.

The figure shows the optimal portfolio weights as a function of the standardized
Lasso parameter s = d/

∑p−1
j=1 |wj |. Each curve represents the optimal weight of a

particular stock in the portfolio as s is varied. We start with no short sale portfolio
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at s = 0. The stocks begin to enter in the active set sequentially as d increases,
allowing us to have a more diversified portfolio. Finally, at s = 1, the graph shows
the stocks that are included in the active stock set where short sales are allowed
with no restriction. The number of some of them are labeled on the right side in
each graph.14

We now examine the results in case of p = 500, again with 100 replications.
The results, considering this very high dimensional case, are presented in Table
2. Similarly, this table contains the mean value of the minimum variance optimal
portfolio risk using different estimation methods for covariance matrix. First of
all, as we can see, sampling variability for the case with 500 stocks is smaller than
the case involuing 200 stocks. These are due to the fact that with more stocks, the
selected portfolio is generally more diversified and hence the risks are generally
smaller. This result is according with the founded results by Fan et al. (2009).

Table 2: Theoretical and empirical risk of the minimum variance optimal portfolio
Very high dimensional case (p = 500).
True covariance matrix Competing estimators

c Σ Σ̂ ΣRM ΣS ΣF ΣMFFM

T = 252

1 15.49 13.89 12.85 14.28 14.07 14.16

1.6 4.91 1.89 1.22 4.17 4.04 4.14

∞ 1.21 0.40 0.38 1.11 0.98 1.09

T = 756

1 14.04 13.03 12.23 13.71 13.11 13.55

1.6 3.58 1.32 1.00 3.05 1.55 3.68

∞ 1.01 0.17 0.01 0.89 0.64 0.78

Additionally, simulation results show that the shrinkage method offers an es-
timated covariance matrix with superior estimation accuracy. This is reflected in
the fact that the minimum optimal portfolio risk using this method is just a little
different with respect to the theoretical risk. The mixed frequency factor model
and the factor model using daily data also have a high accuracy. However, as can
be seen, the factor model, the MFFM and shrinkage method offer a quite close
estimation accuracy of the covariance matrix. Finally, all estimation methods
overcome the sample covariance matrix, however, its performance is quite similar
to the RiskMetrics.

4.3. Empirical Results

In the same way than Fan et al. (2009), data from Kenneth French was obtained
is website from January 2, 1997 to December 31, 2010. We use the daily returns
of 100 industrial portfolios formed on size and book to market ratio, to estimate
according to four estimators, the sample covariance, RiskMetrics, factor model and

14The active stock set refers to the stocks with weight different from zero. This set changes as
the LARS algorithm progresses. Actually, it can increase or decrease in each step depending if
a particular stock is added or dropped from the active set. This is the reason why in Figure 2,
some curves at the last step are at zero.
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the Shrinkage, the covariance matrix of the 100 assets using the past 12 months’
daily returns data.15 These covariance matrices, calculated at the end of each
month from 1997 to 2010, are then used to construct optimal portfolios under three
different gross exposure constraints. The portfolios are then held for one month
and rebalanced at the beginning of the next month. Different characteristics of
these portfolios are presented in Table 3.

Table 3: Returns and Risks based on Fama French Industrial Portfolios, p = 100.
c Mean Standard deviation Sharpe ratio Min weight Max weight

Sample covariance

1 20.89 12.03 1.80 0.00 0.30

1.6 22.36 8.06 2.22 −0.05 0.28

∞ 15.64 7.13 1.86 −0.11 0.25

Factor model

1 21.49 12.09 1.82 0.00 0.29

1.6 22.56 8.26 2.24 −0.04 0.24

∞ 16.73 7.40 1.90 −0.11 0.22

Shrinkage

1 21.34 11.90 1.79 0.00 0.29

1.6 22.46 8.06 2.23 −0.05 0.23

∞ 15.94 7.16 1.88 −0.11 0.22

RiskMetrics

1 17.07 9.23 1.43 0.00 0.46

1.6 18.89 7.83 1.56 −0.07 0.44

∞ 15.80 6.87 1.48 −0.13 0.42

We found that the optimal no short sale portfolio is not diversified enough. It is
still a conservative portfolio that can be improved by allowing some short positions.
In fact, when c = 1, the risk is greater than when we allowed short positions.
These results hold using all covariance matrices measures. Also, we found that the
portfolios selected by using the RiskMetrics have lower risk which coincides with
Fan et al. (2009) results. Thus, according our simulation and empirical results,
RiskMetrics give us the most overoptimistic conclusions about the risk.

Finally, the Sharpe ratio is a more interesting characterization of a security
than the mean return alone. It is a measure of risk premium per unit of risk
in an investment. Thus the higher the Sharpe Ratio the better. Because of the
low returns showed by Riskmetrics, it has also a lower Sharpe ratio. Although
differences between the other three methods are not important, the factor model
has the higher Sharpe ratio. This result indicates that the return of the portfolio
better compensates the investor for the risk taken.

5. Conclusions

When p is small, an estimate of the covariance matrix and its inverse can
easily obtained. However, when p is closer or larger than T , the presence of

15We do not include the mixed frequency factor model because of the impossibility to have
access to high frequency data.
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many small or null eigenvalues makes the covariance matrix not positive definite
any more and it can not be inverted as it becomes singular. That suggests that
serious problems may arise if one naively solves the high-dimensional Markowitz
problem. This paper evaluates the performance of the different methods in terms
of their precision to estimate a covariance matrix in the high dimensional minimum
variance optimal portfolios allocation context. Five methods were employed for
the comparison: the sample covariance, RiskMetrics, factor model, shrinkage and
realized covariance.

The simulated Fama-French three factor model was used to generate the returns
of p = 200 and p = 500 stocks over a period of 1 and 3 years of daily and intraday
data. Thus using the Monte Carlo simulation we provide evidence than the mixed
frequency factor model and the factor model using daily data show a high accuracy
when we have portfolios with p closer or larger than T . This is reflected in the
fact that the minimum optimal portfolio risk using these methods is just a little
different with respect to the theoretical risk. The superiority of the MFFM, comes
from the fact that this model offers a more efficient estimation of the covariance
matrix being able to deal with a very large number of stocks (Bannouh et al. 2010).

Simulation results also show that the accuracy of the covariance matrix es-
timated from shrinkage method is also fairly similar to the factor models with
slightly superior estimation accuracy in a very high dimensional situation. Fi-
nally, as have been found in the literature all these estimation methods overcome
the sample covariance matrix. However, RiskMetrics shows a low accuracy and in
both studies (simulation and empirical) leads to the most overoptimistic conclu-
sions about the risk.

Finally, we discuss the construction of portfolios that take advantage of short
selling to expand investment opportunities and enhance performance beyond that
available from long-only portfolios. In fact, when long only constraint is present
we have an optimal portfolio with some associated risk exposure. When shorting
is allowed, by contrast, a less risky optimal portfolio can be achieved.
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Appendix A.

In this appendix we present the LAR algorithm with the Lasso modification
proposed by Efron et al. (2004), which is an efficient way of computing the solution
to any Lasso problem, especially when T ≪ p.

Algorithm. LARS: Least Angle Regression algorithm to calculate the entire
Lasso path

1. Standardize the predictors to have mean zero and unit norm. Start with the
residual r = y − ȳ, and wj = 0 for j = 1, . . . , p− 1.

2. Find the predictor xj most correlated with r.

3. Move wj from 0 towards its least-squares coefficient 〈xj , r〉, until some other
competitor xk has as much correlation with the current residual as does xj .

4. Movewj and wk in the direction defined by their joint least squares coefficient
of the current residual on (xj , xk), until some other competitor xl has as much
correlation with the current residual. If a non-zero coefficient hits zero, drop
its variable from the active set of variables and recompute the current joint
least squares direction.

5. Continue in this way until all p predictors have been entered. After a num-
ber of steps no more than min(T − 1, p), we arrive at the full least-squares
solution.

Source: Hastie, Tibshirani & Friedman (2009)
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Appendix B.

Table 4: Parameters used in the simulation.
Parameters for factor loadings Parameters for factor returns

µλ covλ µf covf

0.7828 0.029145 0.023558 1.2507

0.5180 0.023873 0.053951 0.012989 −0.0349 0.31564

0.4100 0.010184 −0.006967 0.086856 0.020714 −0.2041 −0.0022526 0.19303

Source: Fan et al. (2008).
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Vargas, José Alberto Véase Guevara, Rubén Daŕıo
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loǵıas o técnicas estad́ısticas aplicadas en diferentes campos del saber. Únicamente
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Tablas y gráficas
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das dentro del texto mediante el número correspondiente. Las tablas deben ser
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arbitraje por pares especializados en el tema respectivo. El arbitraje es “doble
ciego” (árbitros anónimos para los autores y viceversa). El Comité Editorial de-
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