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Editorial

Leonardo Trujilloa

Departamento de Estadística, Universidad Nacional de Colombia, Bogotá,
Colombia

“Esencialmente todos los modelos están errados, pero algunos son útiles”
George Box (1919-2013)

Bienvenidos a la primera edición del volumen 36 de la Revista Colombiana de Esta-
dística. En este número hemos mantenido la característica de ser una revista publi-
cada totalmente en idioma inglés de acuerdo a los requisitos por ser los ganadores
de una convocatoria interna en la Universidad Nacional de Colombia entre otras
revistas (ver editorial de Diciembre 2011). Estamos muy orgullosos de anunciar que
hemos mantenido nuestra categorización como revista A1 según la clasificación de
Publindex (Colciencias) que clasifica las revistas del país y siendo ésta la máxima
categoría. Gracias a todos los Comités Editorial y Científico y a nuestra asistente
de la Revista, Patricia Chavez, puesto que este resultado es fruto de la continua
ayuda obtenida por parte de todos ellos. Más información se encuentra disponible
en http://201.234.78.173:8084/publindex/EnIbnPublindex/resultados.do

Los temas de este número varían sobre diversas áreas de la estadística: cuatro
artículos en Probabilidad de Martínez, Moreno y Vergara; Martínez, Vergara y
González; Ozel; y de Shahzad y Asghar; dos artículos en Análisis Multivariado
de Ortiz, Rivera y Melo y de Pardo, Ortiz y Becue; dos artículos en Análisis de
Regresión de López y de Pérez y González - Farías; un artículo en Econometría de
Ramírez y un artículo en Muestreo de Yadav y Kadilar.

El Departamento de Estadística de la Universidad Nacional de Colombia se
encuentra organizando el Simposio Internacional de Estadística desde 1990. En
la versión 2013, el evento se llevará a cabo en el Hotel AR en Bogotá y algunos
invitados internacionales incluyen a Agustín Maravall (Banco de España), Heleno
Bolfarine (Universidad de Sao Paulo, Brasil), Jeff Wu (Georgia Tech University,
USA), Jon Rao (Carleton University, Canadá), Luigi Spezia (Biomathematics and
Statistics Scotland, UK) and Peter Green (University of Bristol, UK). A través de
los años, este evento ha unido a la comunidad estadística en diferentes regiones
de Colombia y ha contado con la cooperación de diversas universidades. Algunas
veces el Simposio se ha enfocado en un área de la estadística en particular: análisis
Bayesiano, análisis de regresión, análisis multivariado, control de calidad, diseño de
experimentos, estadística no paramétrica, muestreo, series de tiempo. En los años
más recientes, se ha enfocado en más de un área. Para más información acerca del

aEditor
E-mail: ltrujilloo@unal.edu.co
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evento se puede consultar en http://www.simposioestadistica.unal.edu.co o
con Luz Mery González en lgonzalezg@unal.edu.co.

Otro evento que tendrá lugar pronto en Colombia es el XIII CLAPEM (La-
tin American Congress of Probability and Mathematical Statistics), el cual se
ha mantenido creciendo en cuanto al número de instituciones participantes y su
organización. Este evento tendrá lugar en Septiembre, 2014 por primera vez en
Colombia en el Hotel Caribe de la ciudad de Cartagena (www.hotelcaribe.com)
con la ayuda del Capítulo Latinoamericano de la Sociedad Bernoulli. CLAPEM
es la mayor conferencia que reúne a científicos en las áreas de Probabilidad y Es-
tadística Matemática en la región y tiene lugar cada dos o tres años. Ha tenido
lugar anteriormente en Argentina, Brasil, Chile, Cuba, México, Perú, Uruguay and
Venezuela. Las actividades del CLAPEM incluyen cursos dictados por investiga-
dores invitados, reuniones satélites, sesiones de contribuciones orales y por poster,
cursos cortos y sesiones temáticas. Los siguientes investigadores han confirmado
su participación como expositores de cursos cortos o conferencias plenarias: Ali-
son Etheridge (Universidad de Oxford, UK), Bin Yu (Universidad de California en
Berkeley, USA), Paul Embrechts (ETH Zurich, Suiza), Carin Ludeña (Instituto Ve-
nezolano de Investigaciones Científicas, Venezuela), Gerard Biau (Universite Pierre
et Marie Curie e Institut Universitaire, Francia), Roberto Imbuzeiro (IMPA, Bra-
sil), Sourav Chatterjee (New York University y Stanford University, USA), Tho-
mas Mikosch (Universidad de Copenhagen, Dinamarca), Víctor Rivero (CIMAT,
México). El XIII CLAPEM es organizado por la Sociedad Bernoulli, Universidad
Nacional de Colombia (sedes Bogotá y Medellín), Universidad de los Andes, Uni-
versidad de Cartagena, Universidad Industrial de Santander, Universidad Central,
Universidad Santo Tomás, Universidad Sergio Arboleda, Universidad Pedagógica
y Tecnológica de Colombia, EAFIT, Universidad del Norte, Universidad Anto-
nio Nariño y la Universidad de Antioquia. Para más detalles se puede contactar
a Ricardo Fraiman (presidente del XIII CLAPEM, fraimanricardo@gmail.com) o
Leonardo Trujillo (ltrujilloo@unal.edu.co).

El Departamento de Estadística de la Universidad Nacional de Colombia acaba
de aparecer en la lista de los 200 mejores departamentos en esta área en el mundo.
Esto según la más reciente versión del QS World University Ranking (http://www.
topuniversities.com/university-rankings/university-subject-rankings/
2013/statistics-and-operational-research). La Universidad de California en
Berkeley ocupa el primer lugar seguida por Massachusetts Institute of Techno-
logy (MIT), Stanford University, the Georgia Institute of Technology, la Uni-
versidad Nacional de Singapur y el Imperial College de Londres en Inglaterra.
Solamente seis universidades latinoamericanas aparecen en esta lista con universi-
dades de Brasil, Chile y Colombia. El QS World University Rankings by Sub-
ject 2013 evaluó 2,858 universidades alrededor del mundo y clasificó solamen-
te a 678. En el análisis y clasificación se tuvieron en cuenta variables como la
reputación de los programas entre empleadores y académicos, número de publi-
caciones y citaciones a nivel internacional en bases de datos de Scopus, entre
otras. QS es la única clasificación que toma en cuenta la opinion de los em-
pleadores de acuerdo con Ben Sowter, jefe de investigaciones de QS. Más infor-
mación acerca de los resultados para Colombia en otras áreas del conocimien-
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conocimiento se puede encontrar en http://www.eltiempo.com/vida-de-hoy/
educacion/ARTICULO-WEB-NEW_NOTA_INTERIOR-12789070.html. También esta-
mos muy orgullosos de anunciar que uno de nuestros exalumnos, Iván Díaz, obtuvo
el Premio Erich L. Lehmann Citation por su tesis doctoral en estadística teórica en
la Universidad de California en Berkeley (programa académico en el primer lugar
del ranking mencionado anteriormente).

En marzo pasado, un estadístico muy eminente falleció lamentablemente: Geor-
ge Box, sin duda una de las grandes mentes estadísticas del siglo XX. Sin embargo,
él se llamaba a sí mismo como un estadístico por accidente. Trabajó en áreas como
análisis de series de tiempo, control de calidad, diseño de experimentos, inferencia
bayesiana. Nació en Inglaterra pero desde 1960 se marchó para la Universidad de
Wisconsin-Madison (USA) donde creó el Departamento de Estadística. Estaba ca-
sado con una de las hijas de Ronald Fisher (otro de los grandes contribuidores a la
estadística). Su nombre está asociado a los modelos de Box-Jenkins, las transfor-
maciones de Box-Cox y los diseños Box-Behnken. Una nueva autobiografía “The
Accidental Statistician” se encuentra disponible en versión Kindle (http://www.
amazon.com/An-Accidental-Statistician-Memories-ebook/dp/B00BU8Z3R6).

http://www.eltiempo.com/vida-de-hoy/educacion/ARTICULO-WEB-NEW_NOTA_INTERIOR-12789070.html
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Editorial

Leonardo Trujilloa

Department of Statistics, Universidad Nacional de Colombia, Bogotá, Colombia

“Essentially all models are wrong, but some are useful ”
George Box (1919-2013)

Welcome to the first issue of the 36th volume of the Revista Colombiana de
Estadistica (Colombian Journal of Statistics). We have kept, as in recent issues,
the characteristic of being a Journal entirely published in English language as
part of the requirements of being the winners (second year in a row) of an In-
ternal Grant at the National University of Colombia among other many Journals
(see editorial of December 2011). We are also very proud to announce that the
Colombian Journal of Statistics have maintained its categorization as an A1 Jour-
nal by Publindex (Colciencias) which ranges the journals in the country, being
A1 the maximum category. Thanks to all the Editorial and Scientific Commit-
tees and Patricia Chavez, our assistant in the Journal, as this is a result of
the continuous help obtained from all of them. More information available at
http://201.234.78.173:8084/publindex/EnIbnPublindex/resultados.do

The topics in this current issue range over diverse areas of statistics: four papers
in Probability by Martínez, Moreno and Vergara; Martínez, Vergara and González;
Ozel; and by Shahzad and Asghar; two papers in Multivariate Analysis by Ortiz,
Rivera and Melo and by Pardo, Ortiz and Becue; two papers in Regression Analysis
by Lopez and by Perez and Gonzalez-Farias; one paper in Econometrics by Ramirez
and one paper in Survey Sampling by Yadav and Kadilar.

The Department of Statistics at the National University of Colombia is orga-
nizing the International Symposium in Statistics since 1990. In the 2013 version,
the event is going to be held at the AR Hotel in the capital city of Bogota and
some invited speakers include Agustin Maravall (Bank of Spain), Heleno Bolfa-
rine (University of Sao Paulo), Jeff Wu (Georgia Tech), Jon Rao (Carleton Uni-
versity), Luigi Spezia (Biomathematics and Statistics Scotland) and Peter Green
(University of Bristol). Through the years, this event has allowed the bonding of
the statistical community in different regions of Colombia and has counted with
the cooperation of other universities. Sometimes the Symposium has focused on
a single topic of interest, such as regression analysis, time series, sampling, design
of experiments, multivariate analysis, Bayesian analysis, nonparametric statistics,
Statistical Quality Control and Industrial Statistics. For the most recent events,

aEditor in Chief
E-mail: ltrujilloo@unal.edu.co
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the Symposium have spanned in more than one subject. You can find more infor-
mation about this event at http://www.simposioestadistica.unal.edu.co/ or
with Luz Mery Gonzalez at lgonzalezg@unal.edu.co.

Another event to be held in Colombia soon is the XIII CLAPEM (Latin Ame-
rican Congress of Probability and Mathematical Statistics), which keeps growing
in the number of participant institutions and its organization. This event will
be held in September, 2014 for the first time in Colombia at the Caribe Hotel
(www.hotelcaribe.com) at the city of Cartagena with the help of the Latin Ame-
rican Chapter of the Bernoulli Society. CLAPEM is the largest conference gathe-
ring scientists in the particular areas of Probability and Mathematical Statistics
in the region and takes place every two/three years. It has already been organi-
zed in Argentina, Brazil, Chile, Cuba, Mexico, Peru, Uruguay and Venezuela. The
CLAPEM activities include lectures held by invited researchers, satellite meetings,
sessions of oral and poster contributions, short courses, and thematic sessions.

The following researchers have confirmed their participation for short cour-
ses or plenary conferences: Alison Etheridge (University of Oxford, UK), Bin Yu
(University of California at Berkeley, USA), Paul Embrechts (ETH Zurich, Swit-
zerland), Carin Ludeña (Instituto Venezolano de Investigaciones Cientificas, Vene-
zuela), Gerard Biau (Universite Pierre et Marie Curie and Institut Universitaire de
France), Roberto Imbuzeiro (IMPA, Brazil), Sourav Chatterjee (New York Univer-
sity and Stanford University, USA), Thomas Mikosch (University of Copenhagen,
Denmark), Victor Rivero (CIMAT, Mexico). The XIII CLAPEM is organized by
the Bernoulli Society, Universidad Nacional de Colombia, Universidad de los An-
des, Universidad de Cartagena, Universidad Industrial de Santander, Universidad
Central, Universidad Santo Tomás, Universidad Sergio Arboleda, Universidad Pe-
dagógica y Tecnológica de Colombia, EAFIT, Universidad del Norte, Universidad
Antonio Nariño and Universidad de Antioquia. If you are interested you can also
get more details with Ricardo Fraiman (president of the XIII CLAPEM, fraiman-
ricardo@gmail.com) or Leonardo Trujillo (ltrujilloo@unal.edu.co).

The Department of Statistics at the National University of Colombia appears
in the 200 best in the world among many other universities specifically for this
subject, according to the more recent version of the QS World University Ranking
(http://www.topuniversities.com/university-rankings/university
-subject-rankings/2013/statistics-and-operational-research). The Uni-
versity of California at Berkeley is holding the first position followed by the Massa-
chusetts Institute of Technology (MIT), Stanford University, the Georgia Institute
of Technology, the National University of Singapore and the Imperial College of
London at the UK. Only six Latinoamerican universities are also in this list with
universities from Brazil, Chile and Colombia. The QS World University Rankings
by Subject 2013 evaluated 2,858 universities around the globe and classified only
678. In the analysis and classification some variables that were taken into account
were the reputation among employers and academics, number of publications and
citations in an international scale through the Scopus database, among other cri-
teria. QS is the only classification that takes into account the opinion of the em-
ployers according to Ben Sowter, chief of research at QS. More information can be
found about Colombia s results in other subjects at http://www.eltiempo.com/

http://www.simposioestadistica.unal.edu.co/
www.hotelcaribe.com
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vida-de-hoy/educacion/ARTICULO-WEB-NEW_NOTA_INTERIOR-12789070.html.
Also we are very proud to announce that one of our alumni, Ivan Diaz, just got
the Erich L. Lehmann Citation Award for an outstanding PhD. Dissertation in
theoretical statistics at the University of California at Berkeley (university at the
first place in the ranking).

Last March, a very eminent statistician has passed away: George Box, without
doubt one of the great statistical minds of the 20th century. However, he called
himself as an accidental statistician. He worked in the areas of Bayesian inference,
design of experiments, quality control and time series analysis. He was born in En-
gland but since 1960 he moved to the University of Wisconsin-Madison (USA) whe-
re he created the Department of Statistics. He was married to one of Ronald Fis-
her’s daughters (another big one contributor to statistics). His name is associated
to the Box-Jenkins models, Box-Cox transformations and Box-Behnken designs. A
new autobiography “The Accidental Statistician” is available in the Kindle version
to download (http://www.amazon.com/An-Accidental-Statistician-Memories
-ebook/dp/B00BU8Z3R6).

http://www.eltiempo.com/vida-de-hoy/educacion/ARTICULO-WEB-NEW_NOTA_INTERIOR-12789070.html
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http://www.amazon.com/An-Accidental-Statistician-Memories
-ebook/dp/B00BU8Z3R6
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A Bayesian Approach to Parameter Estimation in
Simplex Regression Model: A Comparison with

Beta Regression

Un enfoque bayesiano para la estimación de los parámetros del modelo
regresión Simplex: una comparación con la regresión Beta

Freddy Omar Lópeza

Universidad de Valparaíso, Valparaíso, Chile

Abstract

Some variables are restricted to the open interval (0, 1) and several meth-
ods have been developed to work with them under the scheme of the regres-
sion analysis. Most of research consider maximum likelihood methods and
the use of Beta or Simplex distributions.

This paper presents the use of Bayesian techniques to estimate the pa-
rameters of the simplex regression supported on the implementation of some
simulations and a comparison with Beta regression. We consider both models
with constant variance and models with variance heterogeneity. Regressions
are exemplified with heteroscedasticity.

Key words: Beta distribution, Gibbs sampler, Heterogeneous, Proportions,
Simplex distribution, Variances.

Resumen

Algunas variables están restringidas al intervalo abierto (0, 1) y para tra-
bajar con ellas se han desarrollado diversos métodos bajo el esquema del
análisis de regresión. La mayoría de ellos han sido concebidos originalmente
para ser estimados por métodos de máxima verosimilitud. Los más naturales
parecen descansar especialmente sobre las distribuciones Beta o Simplex.

En este trabajo se presenta el uso de técnicas Bayesianas para la esti-
mación de los parámetros de la regresión Simplex respaldada con la apli-
cación de algunas simulaciones y comparaciones con la regresión Beta. Se
presentan resultados para modelos de varianza constante y de varianza he-
terogénea para cada individuo. Se presenta un ejemplo con datos reales.

Palabras clave: distribución beta, distribución simplex, muestreador de
Gibbs, proporciones, varianza heterogénea.

aPhD Student. E-mail: freddy.vate01@gmail.com
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2 Freddy Omar López

1. Introduction

Researchers frequently are dealing with situations where they are interested
in modelling proportions, percentages or values within the open interval (0, 1),
according to one or several covariates, within the architecture of the regression
models. This has usually been addressed with different approaches, including:
linear regression, logistic regression, nonlinear regression, tobit regression, among
others. However, most of them are not the natural way of working with such
variables.

For this type of variable, the normal assumption, underlying in most of the
mentioned techniques, it is not supported, invalidating conclusions that could be
obtained from these results. Response variable’s asymmetry and multicollinearity
are two of the most frequent problems which the normal model cannot deal with.

In this situation, some alternatives have been developed such as Beta regression
which take the general linear model advantages and the Simplex distribution,
which is part of a more general class of models, the dispersion models.

These mentioned techniques have been developed to analyze variables that
belong to the open interval (0, 1) and not to [0, 1]. This distinction has been made
by Kieschnick & McCullough (2003) in a comparative study as other authors.
They recommended to use the Beta distribution or a quasi-likelihood based model
when it is required to work with this type of variable.

As a comment to Paolino (2001), Buckley (2003) used the Bayesian paradigm
to estimate the parameters from a Beta regression through the Metropolis-Hasting
algorithm with non-informative previous distributions. This model contemplates
the posibility to manage the heterogenity, besides the mean, by using two submod-
els corresponding to the location and dispersion submodels (Smithson & Verkuilen
2006). The research done by Paolino (2001) originally used a maximum likelihood
method to estimate parameters. Ferrari & Cribari-Neto (2004) also apply this
method.

Song, Qiu & Tan (2004) developed a similar model considering two submodels
(one for a location parameter and another for a dispersion parameter) with a re-
sponse simplex variable. The method to estimate the parameters by these authors
was the generalized estimating equations (GEE).

In this work we consider a Bayesian approach for the estimation of the regres-
sion parameters and some simulations using the Gibbs sampler. Previous distri-
butions to regression parameters have been normal with a high variance. Also,
the estimation methods will be applied to a real dataset.

The main purpose of this work is to present the estimation by Bayesian methods
of the simplex regression’s parameters. Additionally, since Beta regression has the
same objective of modelling proportions and rates, both methods will be compared
some datasets generated by one or the other underlying model. We will be make
emphasis on the details of the simplex distribution given the fact that the features
of the beta distribution enjoy more fame in the literature than the simplex model.

Revista Colombiana de Estadística 36 (2013) 1–21



Bayesian Simplex Regression 3

This paper is structured as follows: in the Section 2 we present the simplex
distribution, simplex regressions and the estimation method used in this investi-
gation. Also, the beta regression and the comparison strategy in order to compare
both models. In Section 3 we present some simulations and an application to real
dataset. Finally in Section 4 some conclusions about this work.

2. Regression Models

2.1. Dispersion Models and Simplex Distribution

The simplex distribution is a distribution that belongs to the family of disper-
sion models, with location and dispersion parameters µ and σ2, respectively (also
abreviatted as DM(µ, σ2)).

The exponential dispersion family density (ED) has the form

p(y; θ, φ) = exp

{
yθ − κ(θ)

a(θ)
+ C(y, φ)

}
, y ∈ C (1)

for some functions a(·), κ(·) y C(·) with parameters θ ∈ Θ and φ > 0 and C
is the support of the density. In particular, it is known that κ is the cumulant
generating function. Note that ED is the classical exponential family of the random
component in the GLM framework.

The general form of a dispersion model is

p(y;µ, σ2) = a(y;σ2) exp

{
− 1

2σ2
d(y;µ)

}
, y ∈ C (2)

where µ ∈ Ω, σ > 0 and a ≥ 0 is a normalizer term, independent of µ. Function d
is known as the unit deviance and is defined in (y, µ) ∈ (C,Ω) and it must satisfy
some additional properties (Song 2007).

A simple advantage over the classical exponential family parametrization in
(1) is that both, mean and dispersion parameters, µ and σ2, are explicitly in the
density expression (2) whereas in (1), µ = E(Y ) = κ′(θ).

More precisely the parameter µ = E(Y ) and Var(Y ) = σ2

V (µ) , where V (µ) is
directly related with d(·; ·), i.e.

V (µ) =
2

∂2d(y;µ)
∂µ2

∣∣∣∣
y=µ

, µ ∈ Ω

This function is known as the “unit variance function”.
Specifically, if y follows a simplex distribution, that is y ∼ S−(µ;σ2), then (2)

takes the form

p(y;µ, σ2) = [2πσ2{y(1− y)}3]−
1
2 exp

{
− 1

2σ2
d(y;µ)

}
, y ∈ (0, 1), µ ∈ (0, 1) (3)
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In particular, where

a(y;σ2) = [2πσ2{y(1− y)}3]−
1
2

and

d(y;µ) =
(y − µ)2

y(1− y)µ2(1− µ)2
, y ∈ (0, 1), µ ∈ (0, 1)

It follows that E{d(Y ;µ)} = σ2, E{d′(Y ;µ)} = 0, Var{d(Y ;µ)} = 2(σ2)2.
These and others features can be studied in detail at Song (2007). Other inferential
properties can be studied in the seminal paper by Barndorff-Nielsen & Jørgensen
(1991).

The distribution can have one or two modes and can take the approximate
shape of a bell, U, J, or L (also known as reverse-J) for different combinations
of its parameters. It is important to note that the simplex distribution cannot
emulates a flat distribution as the uniform distribution on the interval (0, 1).

Figure 1 presents several examples: simplex distributions with mean values:
0.1, 0.25, 0.50, 0.75 and 0.90 with different dispersion parameters. Note that when
the second parameter is increased, the curves are becoming flatter.

2.2. Simplex Regression Model

2.2.1. Introduction

Let be Y1, . . . , Yn independent random variables following the distribution
in equation (3) with mean µi and dispersion parameter σ2

i , and let be xi =
(xi1, xi2, . . . , xip) and wi = (wi1, wi2, . . . , wiq), i = 1, . . . , n, vectors of covari-
ate information. It is important to note that covariables x and w can be identical
or they could be subsets of each other. We want to model the mean value µi and
the dispersion parameter σ2

i .
Similar to Cepeda & Gamerman (2001), Smithson & Verkuilen (2006) and Song

et al. (2004), two link functions, g and h will be considered one for each parameter
in the simplex distribution.

A convenient function g for the mean is the logit function, which ensures the
parameter µ is in the open interval (0, 1). More specifically

g(µi) = log
µi

1− µi
= x>i β (4)

where β = (β0, . . . , βp) is a vector of unknown parameters. Equation (4) is also
known as the location submodel.

The logit function has an extensive application in the statistic field. This
transformation helps to give answers in terms of the odds ratio. This is because
the odd ratio between the predictive variable and its response variable can be
found by using the relation OR = exp (βk), k = 1, . . . , p.
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Figure 1: Different shapes for the simplex distribution. The distributions have as the
mean value parameter µ = 0.1, 0.25, 0.5, 0.75, 0.9 and different values for dis-
persion. (a) σ = 1; (b) σ = 0.5; (c) σ = 2 and (d) σ = 5.

On the other hand, the dispersion parameter σ2
i must be positive and a function

h that enjoys this property is the logarithm function. So

h(σ2
i ) = log(σ2

i ) = w>i δ (5)

where δ = (δ0, . . . , δq) is a vector of unknown parameters that must be estimated.
The equation (5) is known as the dispersion submodel.

2.2.2. Parameter Estimation

Maximum Likelihood

The classical theory of maximum likelihood estimation for the exponential
family models (McCullagh & Nelder 1989) is very related with the maximum
likelihood estimation for dispersion models as a special case. In the specific case
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of simplex distribution and the general linear model the score equation (derivative
of the likelihood with respect to parameters) is a given by

n∑
i=1

xi{µi(1− µi)}δ(yi;µi) = 0 (6)

where
δ(y;µ) =

y − µ
µ(1− µ)

{
d(y;µ) +

1

µ2(1− µ)2

}
Equation (6) is solved using Newton-Raphson or quasi-Newton algorithm.
In particular, it is necessary to introduce an estimation of the dispersion pa-

rameter σ2. In this situation it is common to replace σ2 with

σ̂2 =
1

(n− p+ 1)

n∑
i=1

d(yi; µ̂i)

Interested readers are referred to Jørgensen (1997) and Song (2007) for more
details. In this paper the maximum likelihood method is not considered.

Markov Chain Monte Carlo Sampling

With the aim of estimating the parameters of equations (4) and (5), we specify
the likelihood function

L(β, δ) =

n∏
i=1

a(yi;h
−1(w>i δ)) exp

{
− 1

2h−1(w>i δ)
d(yi; g

−1(x>i β))

}
(7)

which posterior distribution is expressed as

p((β, δ) | y) ∝ L(β, δ)p(β, δ) (8)

where p(β, δ) = p(β)p(δ) are the previous distribution of parameters under the
assumption that they are independent to each other. In this work it is assumed
that each parameter βi, i = 1, . . . , p and δj , j = 1, . . . , q follow a non informative
distribution centered at 0 and a large variance (about 1, 000). With this infor-
mation, it is possible to use several Bayesian mechanisms in order to estimate
the parameters. We have chosen a Gibbs sampling approach due to because the
relative ease to be implemented.

In order to define the Bayesian regression modelling framework, we specify

yi | µi, σ2
i ∼ S−(µi, σ

2
i )

g(µi) = x>i β

h(σ2
i ) = w>i δ

(9)

It is important to note that the models in this section are applicable to response
variables y which range strictly in the open interval (0, 1). However, in some
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situations, it is possible to have data where y = 0 or y = 1 (for instance, it can be
the case where none person support the candidate’s management; or that 100%
of individuals under observation in a clinical trial have had reacted positively to
certain stimuli). This situation can be addressed with different strategies. One of
them is to replace all values 0 by a very small quantity ε > 0 and all 1 values by
1− ε respectively. In other situations, when the theorical maximum and minimum
values, β and α, are known the followings can be used

ynew =
(n− 1)(y − α)

(β − α)n
+

1

2n
(10)

where n is the length of y. These approximations have been considered in the
context of Beta regression by Smithson & Verkuilen (2006), Zimprich (2010),
Verkuilen & Smithson (2011) and Eskelson, Madsen, Hagar & Temesgen (2011).
This approach is not considered in this work.

2.3. Comparison to the Beta Regression Model

Beta regression has been studied with much interest on the last years (Ferrari
& Cribari-Neto 2004, Ospina & Ferrari 2010, Cribari-Neto & Zeileis 2010, Cepeda
& Garrido 2011, Cepeda 2012). In order to model proportions and rates.

The probability density function of a Beta distribution is given by

p(y; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1, 0 < y < 1

where Γ is the gamma function.

Considering µ = p
p+q and φ = p + q this produces p = µφ and q = (1 − µ)φ.

This will be the parametrization used in this work. A different parametrization
based on mean and variance is studied by Cepeda (2012).

The shape of this distribution could have a variety of options. At most, it
could have a single mode or a single antimode; it can show a bell-shaped, J and
L-shaped and, among its particular cases, are the triangular distribution, uniform
distribution and power function distribution (Johnson, Kotz & Balakrishnan 1994).

Beta regression is the most adequate model to be compared to the simplex re-
gression because it is possible to model individual dispersion on the data (Cribari-
Neto & Zeileis 2010).

It has been estimated traditionally using maximum likelihood methods but also
Bayesian methods (Buckley 2003, Branscum, Johnson & Thurmond 2007, Cepeda
& Garrido 2011, Cepeda 2012). In this work Bayesian methods will be used in
order to estimate the parameters for Simplex and Beta regressions.
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2.4. Model Comparison

2.4.1. Deviance Information Criterion

A way to compare models from the Bayesian perspective is through the DIC
measure (Spiegelhalter, Best, Carlin & van der Linde 2002, Gelman, Carlin, Stern
& Rubin 2003). This measure uses the deviance which is defined in its general
form as

D(y, θ) = −2 log p(y|θ)

where p(y | θ) is the likelihood of the data and θ are the parameters of the model.
This measure depend both upon θ as y.

A measure which depend only of data y is Dθ̂(y) = D(y, θ̂(y)), which uses
a point estimator of θ and is computed from simulations. The average over the
posterior distribution is given by Davg = E(D(y, θ) | y), whose estimator is

D̂avg(y) =
1

n

n∑
i=1

D(y, θi)

Another important measure, known as the effective number of parameters is
defined as

pD = D̂avg(y)−Dθ̂(y)

Finally, the deviance information criterion (DIC) is defined by

DIC = 2D̂avg(y)−Dθ̂(y)

with smaller values suggesting a better-fitting model.

2.4.2. Comparison of Ordered Simulated Data Against Ordered
Observed Data

A strategy to compare the performance of the models is simulate replicated
data yrep, and compare it with the real data, y. The comparison can be done
ordering the simulated values, yrep(i) , and displaying it against the real ordered
data, y(i). If at the moment of plotting, they are close to an identity function,
then we have evidences of a good model. Moreover, we can appreciate values that
can be outliers.

To create simulated data, yrep, samples are taken following a model with the
parameters θ̂, estimated using real data (in this case, it will be sampled from
Simplex and Beta distribution). To gain precision, it is usual to simulate several
datasets and at the moment of plotting, to display empirical confidence intervals
for each point of the observed data y(i).
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3. Data Analysis

The following sections will show the performance of the simplex and beta re-
gression. The simulation was followed using a similar scheme like the one by Song
et al. (2004).

In each Section of 3.1 two types of dataset will be simulated. One, keeping a
constant dispersion and another varying the dispersion cross the individuals. In
Section 3.1.1 all data follow a simplex distribution and simplex and beta models are
considered. In a similar way, data in the Section 3.1.2 lie under a beta distribution
and the models used to these data are beta and simplex.

All simulations and computations were done using the R software (R Develop-
ment Core Team 2011). Bayesian estimation was done using the Gibbs sampling
using the R2OpenBUGS and rjags libraries (Sturtz, Ligges & Gelman 2005, Martyn
2011). All chains have the minimum requirements to think they have converged
(i.e. Geweke diagnostic, Gelman-Rubin diagnostic, autocorrelation).

3.1. Simulation Study

3.1.1. Simulating Simplex Data

Firstly 450 independent observation yi, i = 1, . . . , 450 were obtained, belonging
to a Simplex distribution with parameters (µi, σ

2) with the following specifications{
logit(µi) = β0 + β1Ti + β2Si
log(σ2) = δ0

(11)

where the variable T ∈ {−1, 0, 1} emulates the level of some drug and S ∈
{0, . . . , 6} suggests the illness severity. To each level of T 150 individuals were
taken and from S a random sample based on a binomial distribution was taken
with parameters n = 7 y p = 0.5.

Parameters of equation (11) have been fixed to emulate various shapes of y (for
instance: bell-shaped, J, L, U). Some of these shapes are plotted on figure 2.

After applying the model strategy in (9) the results can be appreciated in
Table 1 and some of its realizations can be seen in Figure 3. All parameters were
estimated with a four-chain run of 30,000 iterations length. Four chains of 30,000
length each were estimated and there its first 15,000 values were discarded from
each one of them. It is important to note that in general, simplex estimation of
parameters is close to real values, however, it seems there is a tendency when δ0
increases then βj , j = 0, 1, 2 are distant from real values. Moreover, we note that
when y variable is bell-shaped then the estimated location parameters using beta
or simplex model are very similar. Coefficients marked with a † symbol means
that its Bayesian confidence interval includes the 0 value.
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Figure 2: Simulations under homogeneous simplex models: (a) Bell-shaped (β0 = 0.1,
β1 = −0.1, β2 = 0.1, σ = 0.5); (b) J-shaped (β0 = −0.5, β1 = 0.5, β2 = −0.5,
σ =

√
15); (c) L-shaped (β0 = 0.1, β1 = −0.1, β2 = 0.1, σ = 0.5); and, (d)

U-shaped (β0 = 0.1, β1 = −0.1, β2 = 0.1, σ = 0.5).

Additionally, DIC measures suggests both models are very competitive. Values
estimated for the location submodels reach the greatest differences from real values
when the shape of data y have form of U; in all cases the parameter of dispersion
was estimated with high precision.

Second, several models were estimated varying the dispersion submodel ac-
cording to the following specifications{

logit(µi) = β0 + β1Ti + β2Si
log(σ2

i ) = δ0 + δ1Ti
(12)

where the parameters value βj , j = 0, 1, 2 have been kept as in the previous exercise
and δj , j = 0, 1 have been varied as shows Table 2 to preserve shapes similar to
those shown in Figure 2.
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Figure 3: Simulation of some chains for the homogeneous simplex model with U shaped:
β0 = 0.1, β1 = −0.1, β2 = 0.1, σ2 = 150: (a) and (b) are summaries for
parameter β0; (c) and (d) for β1; (e) and (f) for β2; (g) and (h) for δ0.

In the same way, the results from a four-chain run of 30,000 iterations (15,000
burn-in) are presented in Table 2. Additionally, when the shape of the distribution
is like a bell, estimated parameters of the location submodel in simplex and beta
model are extremely similar and according to DIC, the superiority of a model over
the other is not pronounced. However, these estimated values are clearly distant
from its true values. When the shape of the distribution is like a J or L then the
estimated location parameters are closer to true values. Estimation of dispersion
parameters were also close to its true values.

3.1.2. Simulating Beta Data

Also, several models following equations (11) and (12) were considered where
the support distribution is beta. The structures were estimated with beta and
simplex models and results are shown in Tables 3 y 4.

It can be appreciated in Table 3 that in some cases, when beta distribution is
bell-shaped, some estimations (beta and simplex) tend to be similar in its location
submodel. The beta estimation seems, however, to be more distant from its true
parameters values; for instance, when the distribution has shape of U given that
most of its location parameters include the 0 value inside its empirical highest
posterior density.

The heterogeneous case (see Table 4) was not very different. Estimated param-
eters are more distant from its true values in most of the cases (shapes). In several
of them, the DIC measure point out that the preferred model is the simplex one.
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Table 1: Homogeneous simplex models: Results after fitting Simplex and Beta regres-
sion models.

Bell− shaped

Simplex Beta Simplex Beta Simplex Beta
β0 (0.1) 0.13 0.13 β0 (0.1) 0.10 0.10 β0 (0.1) 0.11 0.10
β1 (-0.1) -0.11 -0.11 β1 (-0.1) -0.10 -0.10 β1 (-0.1) -0.10 -0.10
β2 (0.1) 0.10 0.10 β2 (0.1) 0.10 0.10 β2 (0.1) 0.11 0.11
δ0(log 0.1) -2.32 10.30 δ0(log 0.01) -4.64 14.93 δ0(log 0.25) -1.45 8.59
DIC -1673 -1677 DIC -2712 -2713 DIC -1293 -1290

J

Simplex Beta Simplex Beta Simplex Beta
β0 (-0.5) -0.44 -0.45 β0 (-0.5) -0.52 -0.34 β0 (-0.5) -0.60 -0.23†

β1 (0.5) 0.49 0.49 β1 (0.5) 0.51 0.43 β1 (0.5) 0.54 0.38
β2 (-0.5) -0.51 -0.49 β2 (-0.5) -0.46 -0.40 β2 (-0.5) -0.59 -0.44
δ0(log 1) 0.03† 6.90 δ0(log 5) 1.60 4.19 δ0(log 15) 2.77 2.63
DIC -1298 -1142 DIC -748.40 -611 DIC -685 -481

L

Simplex Beta Simplex Beta Simplex Beta
β0 (0.5) 0.60 0.56 β0 (0.5) 0.45 0.25 β0 (0.5) 0.37 0.04†

β1 (-0.5) -0.53 -0.51 β1 (-0.5) -0.49 -0.41 β1 (-0.5) -0.45 -0.32
β2 (0.5) 0.47 0.44 β2 (0.5) 0.47 0.42 β2 (0.5) 0.48 0.37
δ0(log 1) 0.00† 6.91 δ0(log 5) 1.62 4.48 δ0(log 15) 2.72 2.74
DIC -1246 -1123 DIC -815 -699 DIC -598 -457

U

Simplex Beta Simplex Beta Simplex Beta
β0 (0.1) 0.46 0.39 β0 (0.1) 0.19 0.13† β0 (0.1) 0.18 0.06†

β1 (-0.1) -0.22 -0.18 β1 (-0.1) -0.11 -0.07† β1 (-0.1) -0.12 -0.08†

β2 (0.1) 0.10 0.12† β2 (0.1) 0.13 0.09† β2 (0.1) 0.13 0.12
δ0(log 50) 3.89 0.58 δ0(log 100) 4.51 0.08 δ0(log 150) 4.96 -0.31†

DIC -300 -125 DIC -386 -201 DIC -688 -385

3.2. Example with Real Data

In this section we study the relationship between the amount people of in
poverty and the government form they have elected in some geographical region.
We want to determine if some variables, traditionally indicators of poverty (number
of people indeed poverty, suicide rate, Human Development Index) are associated
with a political option in electoral preferences terms.

The relationship between these variables has been studied previously. For
instance, it is documented that for some countries, suicide rates increases when a
specific political party is in the government. Blakely & Collings (2002) commented
that “suicide rates were indeed higher during periods of conservative government”
for the investigation done with Australian data carried out by Page, Morrell &
Taylor (2002). Shaw, Dorling & Smith (2002) analyzed data from England and
Wales and reached similar conclusions to the point to add the subtitle to their
investigation: Do conservative governments make people want to die?

Also there have been findings there exists out a significant association between
general mortality and political preferences (Smith & Dorling 1996).

Data analyzed in this paper correspond to 322 of 335 municipalities in Venezuela
(the position of Amazonas’ Governor and others municipalities were not available
for that election date). These data were taken from the website of the National
Electoral Council, (CNE 2008) and the National Statistical Office, (INE 2008).
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Table 2: Heterogeneous simplex models: Results after fitting Simplex and Beta regres-
sion models.

Bell− shaped

Simplex Beta Simplex Beta Simplex Beta
β0 (0.1) -0.05† -0.06† β0 (0.1) 0.12† 0.12† β0 (0.1) -0.03† -0.03†

β1 (-0.1) -0.06 -0.06 β1 (-0.1) -0.10 -0.10 β1 (-0.1) -0.07 -0.07
β2 (0.1) 0.07† 0.07† β2 (0.1) 0.12 0.12 β2 (0.1) 0.06 0.06
δ0(1) 1.06 4.13 δ0(0.1) 0.15 5.57 δ0(0.3) 0.29 5.33
δ1(1) 1.19 -1.90 δ1(0.1) 0.03† -0.13† δ0(0.2) 0.20 -0.36
DIC -394 -374 DIC -639 -634 DIC -588 -584

J

Simplex Beta Simplex Beta Simplex Beta
β0 (-0.5) -0.42 -0.41 β0 (-0.5) -0.71 -0.48 β0 (-0.5) -0.47 -0.05†

β1 (0.5) 0.49 0.48 β1 (0.5) 0.54 0.45 β1 (0.5) 0.49 0.34
β2 (-0.5) -0.45 -0.45 β2 (-0.5) -0.49 -0.52 β2 (-0.5) -0.57 -0.59
δ0(1) 0.99 5.58 δ0(2) 2.01 3.95 δ0(3) 3.01 2.65
δ1(1) 0.99 -2.29 δ1(1) 1.01 -2.15 δ0(1) 1.07 -2.00
DIC -994 -896 DIC -783 -647 DIC -808 -601

L

Simplex Beta Simplex Beta Simplex Beta
β0 (0.5) 0.60 0.50 β0 (0.5) 0.33 0.23 β0 (0.5) 0.30 -0.03†

β1 (-0.5) -0.52 -0.47 β1 (-0.5) -0.46 -0.41 β1 (-0.5) -0.43 -0.30
β2 (0.5) 0.49 0.51 β2 (0.5) 0.52 0.55 β2 (0.5) 0.51 0.50
δ0(1) 1.02 5.28 δ0(2) 1.99 4.08 δ0(3) 3.04 2.49
δ1(1) 1.03 -2.34 δ1(1) 1.12 -2.39 δ0(1) 1.01 -1.67
DIC -946 -818 DIC -782 -668 DIC -623 -483

U

Simplex Beta Simplex Beta Simplex Beta
β0 (0.1) 0.25 0.32 β0 (0.1) 0.13† 0.18† β0 (0.1) 0.26† 0.19†

β1 (-0.1) -0.13 -0.13 β1 (-0.1) -0.10 -0.09 β1 (-0.1) -0.13 -0.12
β2 (0.1) 0.14 0.18 β2 (0.1) 0.12 0.12† β2 (0.1) 0.07† 0.03†

δ0(3) 2.98 1.59 δ0(4) 4.04 0.58 δ0(5) 4.98 -0.22
δ1(1) 1.20 -1.36 δ1(1) 1.00 -0.89 δ0(1) 1.06 -0.75
DIC -188 -98 DIC -252 -142 DIC -728 -446

The response variable is the proportion of people who support with their votes the
political proposal lead by Hugo Chávez.

Several models were adjusted to these data and the results can be seen in Table
5. In this Table, three models for the two underlying distributions were considered.
The first of them (ms0 andmb0) are the saturated models andms1 andmb1 are the
null models. Searching over additive structures in function of DIC give us as best
models those labeled as ms2 y mb2 . For both, the same variables are significant
for location and dispersion submodels. Note that, in general terms, coefficients for
location submodels are very similar. This can be expected because the shape of
the variable % Chávez is symmetric (see Figure 5 (b)).
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Table 3: Homogeneous beta models: Results after fitting Beta and Simplex regression
models.

Bell− shaped

Beta Simplex Beta Simplex Beta Simplex
β0 (0.1) -0.07† -0.15† β0 (0.1) 0.05† 0.07† β0 (0.1) 0.17 0.17
β1 (-0.1) -0.06 -0.05† β1 (-0.1) -0.09 -0.09† β1 (-0.1) -0.13 -0.13
β2 (0.1) 0.13 0.15 β2 (0.1) 0.12 0.12 β2 (0.1) 0.09 0.09
δ0(log 30) 3.29 1.65 δ0(log 50) 3.80 1.25 δ0(log 200) 5.36 0.30
DIC -205 -176 DIC -286 -285 DIC -597 -593

J

Beta Simplex Beta Simplex Beta Simplex
β0 (-0.5) -0.09 -0.30† β0 (-0.5) -0.25† -0.99 β0 (-0.5) -0.20† -0.16†

β1 (0.5) 0.28 0.35 β1 (0.5) 0.35 0.61 β1 (0.5) 0.38 0.44
β2 (-0.5) -0.24 -0.07† β2 (-0.5) -0.35 -0.27 β2 (-0.5) -0.42 -0.55
δ0(log 1) 0.52 5.12 δ0(log 5) 1.51 4.46 δ0(log 15) 2.81 3.60
DIC -690 -861 DIC -533 -467 DIC -538 -347

L

Beta Simplex Beta Simplex Beta Simplex
β0 (0.5) 0.11† 0.79 β0 (0.5) 0.24† 0.12† β0 (0.5) 0.25† 0.36†

β1 (-0.5) -0.31 -0.59 β1 (-0.5) -0.40 -0.45 β1 (-0.5) -0.42 -0.51
β2 (0.5) 0.24 0.34 β2 (0.5) 0.44 0.60 β2 (0.5) 0.40 0.46
δ0(log 1) 0.71 5.02 δ0(log 5) 1.85 4.59 δ0(log 15) 2.74 3.78
DIC -752 -949 DIC -625 -472 DIC -587 -399

U

Beta Simplex Beta Simplex Beta Simplex
β0 (0.1) 0.03† -0.02† β0 (0.1) 0.08† -0.01† β0 (0.1) -0.13† -0.20†

β1 (-0.1) -0.09† -0.08 β1 (-0.1) -0.07† -0.04† β1 (-0.1) -0.03† -0.01†

β2 (0.1) 0.06 0.14† β2 (0.1) 0.12† 0.08† β2 (0.1) -0.02† -0.02†

δ0(log 1) 0.29 5.21 δ0(log 0.5) -0.25 5.62 δ0(log 0.25) -0.60 5.81
DIC -177 67 DIC -352 -289 DIC -571 -756

A sample of predicted values for all models can be appreciated in Figure 5 (a).
Note that the models give a linear prediction, that is, crossing the approximate
mean of data for each value of variable Mortality according to its linear nature.
Both models are quite similar and its fitting is displayed in Figure 5 (a). Figures
5 (c) and (d) show the average predicted values (and its empirical error bar) for
each yi point. There were simulated 100 datasets.
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Figure 4: Simulation of some chains for the heterogeneous beta model with L shaped:
β0 = 0.5, β1 = 0.5, β2 = 0.5, δ0 = 3, δ1 = 2: (a) and (b) describes results
for parameter β0; (c) and (d) for β1; (e) and (f) for β2; (g) and (h) for δ0; (i)
and (j) for δ1.
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Table 4: Heterogeneous beta models: Results after fitting Beta and Simplex regression
models.

Bell-shaped
Beta Simplex Beta Simplex Beta Simplex

β0 (0.1) 0.13† 0.34 β0 (0.1) 0.08† 0.08† β0 (0.1) 0.11 0.11
β1 (-0.1) -0.11 -0.19 β1 (-0.1) -0.10 -0.10 β1 (-0.1) -0.10 -0.10
β2 (0.1) 0.01† 0.03† β2 (0.1) 0.15 0.16 β2 (0.1) 0.09 0.09
δ0(3) 2.84 2.23 δ0(5) 5.09 0.48 δ0(10) 9.97 -2.12
δ1(1) 0.97 -0.93 δ1(1) 1.08 -0.69 δ1(5) 5.12 -2.66
DIC -152 -34 DIC -544 -542 DIC -1605 -1608

J
Beta Simplex Beta Simplex Beta Simplex

β0 (-0.5) -0.17† -0.35 β0 (-0.5) -0.55 -0.46 β0 (-0.5) -0.34 -0.41
β1 (0.5) 0.37 0.51 β1 (0.5) 0.44 0.41 β1 (0.5) 0.46 0.49
β2 (-0.5) -0.50 -0.45 β2 (-0.5) -0.23 -0.09† β2 (-0.5) -0.49 -0.44
δ0(1) 1.56 4.55 δ0(1) 2.29 3.98 δ0(3) 3.45 3.32
δ1(1) 0.18 -0.55 δ1(5) 2.73 -2.76 δ1(2) 1.50 -1.80
DIC -703 -757 DIC -884 -980 DIC -783 -678

L
Beta Simplex Beta Simplex Beta Simplex

β0 (0.5) -0.17† -5.72 β0 (0.5) 0.55 0.87 β0 (0.5) 0.58 -3.16
β1 (-0.5) 0.37 -1.06 β1 (-0.5) -0.43 -0.55 β1 (-0.5) -0.55 -0.58
β2 (0.5) -0.50 7.68 β2 (0.5) 0.15 0.18 β2 (0.5) 0.62 4.49
δ0(1) 1.56 36.77 δ0(1) 2.18 3.94 δ0(3) 3.27 16.11
δ1(1) 0.18 -27.85 δ1(5) 2.87 -2.64 δ1(2) 1.80 -12.65
DIC -4121 11948 DIC -824 -924 DIC -1408 3936

U
Beta Simplex Beta Simplex Beta Simplex

β0 (0.1) 0.20† -0.62 β0 (0.1) 0.20† 0.51 β0 (0.1) 0.01† 1.37
β1 (-0.1) -0.13 -0.21 β1 (-0.1) -0.14 -0.22 β1 (-0.1) -0.04† -0.45
β2 (0.1) 0.14 0.61 β2 (0.1) 0.24 0.19 β2 (0.1) 0.13 0.43†

δ0(0.1) 0.36 7.98 δ0(0.1) 0.40 4.92 δ0(0.01) -0.11† 9.06
δ1(0.1) 0.13† -1.97 δ1(0.5) 0.21† -0.44 δ1(0.05) 0.02† 0.08†
DIC -169 1358 DIC -201 -63 DIC -274 1450

Table 5: Parameter estimates using simplex and Bbeta regression for venezuelan elec-
tion data (2008).

Simplex model Beta model
ms0 ms1 ms2 mb0 mb1 mb2

Location submodel
Intercept 0.91 0.08 0.10 0.90 0.08 0.09
Suicides 0.03 0.02
General Mortality -0.10 -0.08 -0.07 -0.07
Households in poverty -0.03 0.08
IDH -1.00 -1.04
Dispersion submodel
Intercept -9.21 0.13 -12.23 15.53 5.84 24.31
Suicides -0.18 -0.19 0.42 0.27
General Mortality -0.03 -0.22
Households in poverty -1.69 3.44
IDH 12.01 15.11 -13.03 -22.62
DIC -469.03 -435.31 -476.23 -505.49 -489.87 -511.87
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Figure 5: (a) Adjusted values for Simplex and Beta models; lines are nearly super-
imposed; (b) histogram of proportion of percentage of people that support
Chávez; (c) ordered Chavism vs. ordered prediction based on Simplex model;
(d) ordered Chavism vs. ordered prediction based on Beta model
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4. Conclusions

This paper has shown how the Bayesian estimation can be applied on simplex
model regression and, in addition, several simulations were performed to compare
Simplex and Beta regressions. It was found that the estimation strategy produces
better results when the true model is homogeneous. In particular, when the true
model is homogeneous simplex, the estimates are closer to the true value param-
eters than the Beta model. Similar situations were found with the heterogeneous
models. Most of the time, dispersion submodel parameters were estimated quite
well even in the case where none parameter for the location submodel was near to
its true value. Methodology was exemplified with a real dataset. For this, point
estimates were pretty similar for both models: Simplex and Beta.

Further research could consider the natural extension to the (longitudinal)
mixed models similar to those presented by Verkuilen & Smithson (2011) and
Zimprich (2010) from the Bayesian perspective and supported by underlying sim-
plex distribution assumption. Song et al. (2004) propose a simplex longitudinal
data analysis in its marginal version.

Although, in the applications considered here, all data were inside the open
interval (0, 1); it is possible to model variables inside the closed interval [0, 1] and
there exist more adequate models such as those proposed by Cook, Kieschnick &
McCullough (2008) and Ospina & Ferrari (2010).

Furthermore, it is important to investigate another alternatives for the link
functions. As pointed out by Eskelson et al. (2011), the logit transformation is
used because it offers an easy interpretation in terms of odds ratio but it is also
possible to use the non-transformed variable. In relation with the beta regression,
Giovanetti (2007) explores another alternatives to link functions and studies the
empirical consequences having an incorrect specification.

In relation with Simplex regression residuals, Santos (2011) considers the situ-
ation when the parameters are estimated using the maximum likelihood method.
Miyashiro (2008) proposes some diagnostic measures and performs comparisons
with two real datasets estimating its parameters under Beta and Simplex assump-
tions. Results for those particular cases are very similar for location submodels. In
that investigation, Miyashiro only studied homogeneous models using maximum
likelihood.
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Abstract

The main objective in this paper is to obtain reliable long-term and short-
term elasticities estimates of the beef demand in Colombia using quarterly
data since 1998 until 2007. However, complexity on the decision process of
consumption should be taken into account, since expenditure on a particular
good is sequential. In the case of beef demand in Colombia, a Multi-Stage
process is proposed based on an Almost Ideal Demand System (AIDS). The
econometric novelty in this paper is to estimate simultaneously all the stages
by the Generalized Method of Moments to obtain a joint covariance matrix
of parameter estimates in order to use the Delta Method for calculating the
standard deviation of the long-term elasticities estimates. Additionally, this
approach allows us to get elasticity estimates in each stage, but also, total
elasticities which incorporate interaction between stages. On the other hand,
the short-term dynamic is handled by a simultaneous estimation of the Error
Correction version of the model; therefore, Monte Carlo simulation exercises
are performed to analyse the impact on beef demand because of shocks at
different levels of the decision making process of consumers. The results in-
dicate that, although the total expenditure elasticity estimate of demand for
beef is 1.78 in the long-term and the expenditure elasticity estimate within
the meat group is 1.07, the total short-term expenditure elasticity is merely
0.03. The smaller short-term reaction of consumers is also evidenced on price
shocks; while the total own price elasticity of beef is -0.24 in the short-term,
the total and within meat group long-term elasticities are −1.95 and −1.17,
respectively.

Key words: Cointegration, Delta method, Demand system, Generalized
method of moments, Monte Carlo Simulation.

aAssociate professor. E-mail: aramir21@eafit.edu.co

23



24 Andrés Ramírez

Resumen

El objetivo más importante de este artículo es obtener estimaciones con-
fiables de las elasticidades de la demanda de carne de res en Colombia para el
largo y corto plazo utilizando información trimestral desde 1998 hasta 2007.
Sin embargo, las decisiones que toman los consumidores se enmarcan en un
ambiente complejo, puesto que el gasto en un bien particular se realiza de
forma secuencial. En el caso particular de la demanda de carne de res en la
economía colombiana, se propone un Sistema Casi Ideal de Demanda Multi-
nivel. La novedad econométrica en este artículo es estimar simulatáneamente
todos los niveles del modelo mediante el Método Generalizado de los Mo-
mentos; esto permite obtener una matriz conjunta de covarianzas de todos
los parámetros, y así utilizar el Método Delta para calcular las desviaciones
estándar de las elasticidades estimadas de largo plazo. Adicionalmente, este
enfoque nos permite obtener estimaciones de las elasticidades en cada nivel,
pero también, elasticidades totales que incorporan la interacción entre los
niveles. Por otra parte, la dinámica de corto plazo se estudia a través de la
estimación conjunta de la versión en Corrección de Errores del modelo; de
esta forma, ejercicios de simulación Monte Carlo son reaizados para analizar
el impacto sobre la demanda de carne de res debido a perturbaciones en
diferentes niveles del proceso de toma de decisiones de los consumidores.
Los resultados indican que aunque en el largo plazo la elasticidad estimada
de la demanda de carne de res con respecto al gasto total es 1.78, y la elas-
ticidad estimada de la demanda con respecto al gasto en cárnicos es 1.07,
la elasticidad de la demanda con respecto al gasto total en el corto plazo es
solo 0.03. La reducida reacción en el corto plazo también está presente ante
perturbaciones en el precio; mientras que la elasticidad precio propia total de
la demanda de carne de res es −0.24 en el corto plazo, las elasticidades total
y al interior del grupo de cárnicos para el largo plazo son −1.95 y −1.17,
respectivamente.

Palabras clave: cointegración, método delta, método generalizado de los
momentos, simulación Monte Carlo, sistema de demanda.

1. Introduction

Colombian beef demand is important for a number of reasons. Historically
consumers have generally preferred beef to other types of meat. Beef accounted
for approximately 60% of the total meat budget, compared to only 30% for poul-
try and 10% for pork. In addition, the beef sector is an important component
of the Colombian economy, accounting for 3.4% of Gross Domestic Product in
2007 and providing 1.4 million jobs (DANE 2007). Moreover, the beef sector is a
significant component of the Colombian exports to Venezuela, one of Colombia’s
most important trading partners. Approximately, 15% of Colombian beef produc-
tion is exported to Venezuela. Recently, the Venezuelan Government decided to
stop imports from Colombia as a result of political tensions. This trade restric-
tion policy of Venezuela has generated preoccupation among specialists due to its
consequences for the beef sector. Additionally, Colombia is currently negotiating
international trade agreements with the United States and the European Union.
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The implication is that the Colombian beef sector would have international com-
petition from countries with high subsidies, as a consequence, given the trading
conditions, the internal beef price would decrease. On the other hand, there is
an asymmetric aspect that is necessary to take into account, the Colombian beef
sector does not have international certification on phytosanitary aspects while the
United States and the European Union accomplish this requirement. This implies
that Colombia cannot export beef while the latter countries can do it. All these
changes would, in turn, affect internal beef demand. So on the whole, understand-
ing beef demand is necessary for the Colombian agricultural policy.

Although the beef sector is important for the Colombian economy, little effort
has been made to estimate demand elasticities and simulate different scenarios
that impact on the sector. Therefore from an economic point of view, the ob-
jective of this study is to obtain reliable estimates of Colombian meat demand,
and make some simulation exercises in order to evaluate the impact of different
shocks on beef demand. Given that policy evaluations and simulations require reli-
able estimates of demand responsiveness to price and expenditure (Wahl, Hayes &
Williams 1991), the methodology used to estimate elasticities is the Almost Ideal
Demand System (AIDS), because

“. . . gives an arbitrary first-order approximation to any demand sys-
tem; it satisfies the axioms of choice exactly; it aggregates perfectly
over consumers without invoking parallel linear Engel curves; it has
a functional form which is consistent with known household-budget
data; it is simple to estimate, largely avoiding the need for non-linear
estimation; and it can be used to test the restriction of homogeneity
and symmetry through linear restrictions on fixed parameters.”

(Deaton & Muellbauer 1980a, pp 312)

Specifically, we use a Multi-Stage AIDS model due to consumers following
multiple steps when acquiring goods in the market. This approach allows us to
estimate long-term elasticities in each stage, and also, total elasticities which incor-
porate interaction between levels. Additionally from an econometric perspective,
it is well known that the level of uncertainty associated with elasticities estimates
is very important; therefore, a simultaneous estimation procedure permits us to
estimate a joint covariance matrix which can be used to calculate the standard
deviation of the elasticities through the Delta Method. This is the methodological
novelty of our paper. In particular, we use the Generalized Method of Moments
to estimate the complete system.

Referring to short-term dynamics, we estimate an Error Correction version
of the Multi-Stage Almost Ideal Demand System, and then, we simulate shocks
at different levels of the decision making process of the consumers and measure
their impacts. This strategy allows us to calculate, the short-term impact on beef
demand associated with changes in the consumer’s total expenditure and prices of
beef, poultry and pork.

There is extensive empirical literature on the demand for meat. In most of this
literature, the demand is estimated using the AIDS methodology (Asatryan 2003,
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Clark 2006, Fuller 1997, Galvis 2000, Holt & Goodwin 2009, Sulgham & Zapata
2006). Even though there have been efforts in Colombia to determine beef demand
elasticities (Caraballo 2003, Galvis 2000) most of the literature is focused on North
America and Asia. Due undoubtedly to widely varying economic conditions across
countries, the estimates of the elasticities of demand vary greatly. For example,
the expenditure elasticity of beef consumption varies between 0.23 and 1.68. In
the wealthier countries in the West, it is often below 1.0 (Barreira & Duarte 1997,
Clark 2006, MAFF 2000, Sulgham & Zapata 2006), while in the poorer countries
in the East it is generally above 1.0 (Liu, Parton, Zhou & Cox 2008, Chern,
Ishibashi, Taniguchi & Tokoyama 2003, Ma, Huang, Rozelle & Rae 2003, Rastegari
& Hwang 2007). The own-Marshallian price demand elasticity is between −1.19
and −0.10, usually less than -1 (Fousekis & Revell 2000, Galvis 2000, Golan, Perloff
& Shen 2000). The compensated price elasticities show that changes in price does
not affect the demand for beef as much.

In the specific case of Colombia, Galvis (2000) estimated the elasticities of de-
mand for beef, poultry, and pork using the Seemingly Unrelated Regression (SUR)
technique. He estimated an expenditure elasticity of demand for beef between 0.67
and 0.79, while the Marshallian (own price) elasticity is between −1.19 and −1.41.
The cross-price elasticity of poultry prices on beef demand is between 0.27 and
0.96, and the cross-price elasticity of pork on beef demand is between 1.08 and
1.37. However, Galvis (2000) did not perform unit root tests, so the regressions
might be spurious in the event that the variables are not cointegrated.

The empirical results in this article indicate that the long-term total and within
meat group uncompensated price elasticities are −1.95 and −1.17, respectively.
The total and within group compensated price elasticities are −1.78 and −0.52,
and the total consumer expenditure elasticity of demand is 1.78. The results also
indicate that consumers substitute beef for poultry, but not beef for pork. The
short-term elasticities, calculated through Monte Carlo simulations, are smaller.
They indicate that an increase of 1% in the price of beef decreases its demand by
0.24%, while increasing total expenditure by 1% has no significant impact on the
demand for beef in Colombia.

The paper is organized as follows. Section 2 provides the methodology, Section
3 presents the long-term results, Section 4 presents some Monte Carlo simulation
exercises, and Section 5 concludes.

2. Methodology

The methodology used in this paper is based on a Multi-Stage model which
replicates the decision making process of the consumers when they buy beef
(Gao, Eric, Gail & Cramer 1996, Michalek & Keyzer 1992, Shenggen, Wailes &
Cramer 1995). Necessary and sufficient conditions for estimating a Multi-Stage
budgeting process are that the direct utility function must be additively separa-
ble and the specific satisfaction functions in each stage should be homogeneous.
Gorman (1957) provided conditions for this procedure to be optimal subject to
the condition that must have more than two groups in each stage. Blackorby &
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Russell (1997), extends Gorman’s classic result to encompass the two-group cases
that he did not take into account. These conditions are very restrictive, and must
be in general considered implausible. However, Edgerton (1997) showed that a
Multi-Stage budgeting process will lead to an approximately correct allocation if
preferences are weakly separable and the group price indices being used do not
vary too greatly with utility level. This means that a change in price of a com-
modity in one group affects the demand for all commodities in another group in
the same manner. Also that the group price indices do not vary too greatly with
expenditure level.

In particular, we estimate a Multi-stage Ideal Demand System of three levels to
obtain the long-term elasticities in each level, and also, the total elasticities. The
complete system is estimated using the Generalized Method of Moments. Follow-
ing this strategy, the resulting three problems will be smaller and more tractable
from an empirical point of view than the original problem, because including all
goods prices in each of the equations is often faced with the problem of having too
many variables (Segerson & Mount 1985). The long-term estimation is based on
equation (1).

In order to simulate shocks in the short-term at different levels of the decision
making process of consumers, we estimate the Error Correction version of the
Multi-Stage AIDS model. This strategy allow us to calculate by Monte Carlo
simulations, the short-term impact on beef demand associated with changes in
the consumer’s total expenditure and the prices of beef, poultry and pork. This
estimation is based on equation (11).

This strategy considers the complex decision process through which an individ-
ual makes consumption decisions. Specifically, there are three levels: The upper
one determines the aggregate level of food consumption; the middle one, condi-
tioned by the upper one, determines the consumption of meat, and the lower level,
conditioned by the other two, determines the beef, poultry, and pork demand.

In order to handle each stage budgeting process, an Almost Ideal Demand Sys-
tem is introduced (Deaton & Muellbauer 1980a). The mathematical specification
of the AIDS model is the following,

wit = αi +

N∑
j=1

γij ln(pjt) + βiln(Xt/Pt) + eit (1)

for i = 1, 2, . . . , N , j = 1, 2, . . . , N and t = 1, 2, . . . , T where N is the number of
goods, T is the temporal length, and the share in the total expenditure of the good
i (wit) is a function of the prices (pjt), real expenditure(Xt/Pt) and an error (eit).
The general price index is usually represented by a nonlinear equation which is, in
most cases, replaced by the Stone price index

ln(PSt ) =

N∑
i=1

witln(pit) (2)

However, the Stone index typically used in estimating Linear AIDS is not invariant
to changes in units of measurement, which may seriously affect the approximation
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properties of the model and can result in biased parameter estimates (Pashardes
1993, Moschini 1995). To overcome this problem other specifications for the price
index can be used, such as the Paasche (3) or Laspeyres (4) index:

ln(PPt ) =

N∑
i=1

witln(pit/p
0
i ) (3)

ln(PLt ) =

N∑
i=1

w0
i ln(pit) (4)

where the superscript represents a base period.
It is worth noting the constraints (additivity, homogeneity and symmetry) that

are imposed by the microeconomic theory:

N∑
i=1

αi = 1,

N∑
i=1

γij = 0,

N∑
i=1

βi = 0 (5)

N∑
j=1

γij = 0 (6)

γij = γji (7)

From the above specification the following long-term elasticities in each level
can be calculated:

ηit = 1 + βi/wit (8)

εMijt = −IA + γij/wit − βi(wjt/wit) (9)

εHijt = −IA + γij/wit + wjt (10)

where IA = 1 if i = j.
Where ηit, ε

M
ijt and εHijt are expenditure, Marshallian (uncompensated) and

Hicksian (compensated) elasticities, respectively.
It is required to investigate the time series properties of the data used in order to

specify the most appropriate dynamic form of the model and to find out if the long-
term demand relationships provided by equation (1) are economically meaningful
or they are merely spurious. If all variables in equation (1) are cointegrated, the
Error Correction Linear AIDS is given by the following form:

∆wit =

N∑
j=1

δij∆wjt−1 +

N∑
j=1

γij∆ln(pjt) + βi∆ln(Xt/Pt) + λêi,t−1 + µit, (11)

for i = 1, 2, . . . , N , j = 1, 2, . . . , N y t = 1, 2, . . . , T , where ∆ refers to the difference
operator, êi,t−1 represents the estimated residuals from the cointegrated equation
(1), −1 < λ < 0 is the velocity of convergence, and µit is the error term. Intertem-
poral consistency requires that

∑N
i=1 δij = 0 (Anderson & Blundell 1983) and

identification of the lagged budget shares requires
∑N
j=1 δij = 0 (Edgerton 1997).
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Once the cointegrated equations are estimated, we can calculate the long-term
total demand elasticities. Edgerton (1997) provide expressions to get elasticities
associated with the lower level and we adapt these equations as follows:

η
(T )
it = ηit × ηMeat,t × ηFood,t (12)

ε
M(T )
ijt = εHijt + wjt × ηit × εHMeat,t + wjt × wMeat,t × ηit × ηMeat,t × εMFood,t (13)

ε
H(T )
ijt = εHijt + wjt × ηit × εHMeat,t + wjt × wMeat,t × ηit × ηMeat,t × εHFood,t (14)

where superscript, i, j = beef, pork, poultry.

The total expenditure elasticity of beef demand, η(T )
it , is a product of the

expenditure elasticity of food, the food expenditure elasticity of meat and the
meat expenditure elasticity of beef. The total price elasticities, εM(T )

ijt and εH(T )
ijt ,

are the result of a direct effect within the meat group, but also of the reallocation
effects of meat within food, and food within total consumption. Finally, we obtain
standard deviations for the total elasticities with the Delta Method where this
method establishes that given Z = (Z1, Z2, . . . , Zk), a random vector with mean
θ = (θ1, θ2, . . . , θk), if g(Z) is a differentiable function, we can approximate its
variance by

V arθg(Z) ≈
k∑
i=1

(g′i(θ))
2V arθ(Zi) + 2

∑
i>j

g′i(θ)g
′
j(θ)Covθ(Zi, Zj)

where g′i(θ) = ∂
∂zi
g(z)|z1=θ1,z2=θ2,...,zk=θk .

Let g(Z) = η
(T )
i = ηi × ηMeat × ηFood, the total expenditure elasticity in the

lower stage. We approximate its variance by

V arθη
(T )
i ≈

(
1

wi
(ηMeatηFood)

)2

V ar(βi)

+

(
1

wMeat
(ηiηFood)

)2

V ar(βMeat)

+

(
1

wFood
(ηiηMeat)

)2

V ar(βFood)

+ 2

(
1

wiwMeat
(ηiηMeat)(ηFood)

2

)
Cov(βi, βMeat)

+ 2

(
1

wiwFood
(ηiηFood)(ηMeat)

2

)
Cov(βi, βFood)

+ 2

(
1

wMeatwFood
(ηMeatηFood)(ηi)

2

)
Cov(βMeat, βFood)

where θ = (βi, βMeat, βFood), and i, j = beef, pork, poultry.

Revista Colombiana de Estadística 36 (2013) 23–42



30 Andrés Ramírez

It must be observed that we need the covariance between the expenditure
parameters at different stages. Therefore, we have to estimate the three levels
simultaneously.

Now let g(Z) = ε
M(T )
ijt = εHijt+wjt×ηit×εHMeat,t+wjt×wMeat,t×ηit×ηMeat,t×

εMFood,t i.e.,

ε
M(T )
ij = (−IA + γij/wi + wj)

+ wj(1 + βi/wi)(−1 + γMeat/wMeat + wMeat)

+ wjwMeat(1 + βi/wi)(1 + βMeat/wMeat)(−1 + γFood/wFood − βFood)

We can approximate the variance of the Marshallian total price demand elas-
ticity by

V arθε
M(T )
ij ≈

(
1

wi

)2

V ar(γij)

+

(
wj
wi
εHMeat +

wjwMeat

wi
ηMeatε

M
Food

)2

V ar(βi)

+

(
wj

wMeat
ηi

)2

V ar(γMeat)

+
(
wjηiε

M
Food

)2
V ar(βMeat)

+

(
wjwMeat

wFood
ηiηFood

)2

V ar(γFood)

+ (−wjwMeatηiηFood)
2
V ar(βFood)

+ 2

(
wj

(wi)2
εHMeat +

wjwMeat

(wi)2
ηMeatε

M
Food

)
Cov(γij , βi)

+ 2

(
wj

wiwMeat
ηi

)
Cov(γij , γMeat)

+ 2

(
wj
wi
ηiε

M
Food

)
Cov(γij , βMeat)

+ 2

(
wjwMeat

wiwFood
ηiηFood

)
Cov(γij , γFood)

+ 2

(
−wjwMeat

wi
ηiηFood

)
Cov(γij , βFood)

+ 2

(
wj
wi
εHMeat +

wjwMeat

wi
ηMeatε

M
Food

)(
wj

wMeat
ηi

)
Cov(βi, γMeat)

+ 2

(
wj
wi
εHMeat +

wjwMeat

wi
ηMeatε

M
Food

)(
wjηiε

M
Food

)
Cov(βi, βMeat)

+ 2

(
wj
wi
εHMeat +

wjwMeat

wi
ηMeatε

M
Food

)(
wjwMeat

wFood
ηiηFood

)
Cov(βi, γFood)
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+ 2

(
wj
wi
εHMeat +

wjwMeat

wi
ηMeatε

M
Food

)
(−wjwMeatηiηFood)Cov(βi, βFood)

+ 2

(
wj

wMeat
ηi

)(
wjηiε

M
Food

)
Cov(γMeat, βMeat)

+ 2

(
wj

wMeat
ηi

)(
wjwMeat

wFood
ηiηFood

)
Cov(γMeat, γFood)

+ 2

(
wj

wMeat
ηi

)
(−wjwMeatηiηFood)Cov(γMeat, βFood)

+ 2
(
wjηiε

M
Food

)(wjwMeat

wFood
ηiηFood

)
Cov(βMeat, γFood)

+ 2
(
wjηiε

M
Food

)
(−wjwMeatηiηFood)Cov(βMeat, βFood)

+ 2

(
wjwMeat

wFood
ηiηFood

)
(−wjwMeatηiηFood)Cov(γFood, βFood)

where θ = (γij , βi, γMeat, βMeat, γFood, βFood). Again, we ought to estimate the
three levels simultaneously because we need the covariances between parameters
at different stages.

Finally, let g(Z) = ε
H(T )
ijt = εHijt + wjt × ηit × εHMeat,t + wjt × wMeat,t × ηit ×

ηMeat,t × εHFood,t, i.e.,

ε
H(T )
ij = (−IA + γij/wi + wj)

+ wj(1 + βi/wi)(−1 + γMeat/wMeati + wMeat)

+ wjwMeat(1 + βi/wi)(1 + βMeat/wMeat)(−1 + γFood/wFood + wFood)

We can approximate the variance of the Hicksian total price elasticity by

V arθε
H(T )
ij ≈

(
1

wi

)2

V ar(γij)

+

(
wj
wi
εHMeat +

wjwMeat

wi
ηMeatε

H
Food

)2

V ar(βi)

+

(
wj

wMeat
ηi

)2

V ar(γMeat)

+
(
wjηiε

H
Food

)2
V ar(βMeat)

+

(
wjwMeat

wFood
ηiηFood

)2

V ar(γFood)

+ 2

(
wj

(wi)2
εHMeat +

wjwMeat

(wi)2
ηMeatε

H
Food

)
Cov(γij , βi)
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+ 2

(
wj

wiwMeat
ηi

)
Cov(γij , γMeat)

+ 2

(
wj
wi
ηiε

H
Food

)
Cov(γij , βMeat)

+ 2

(
wjwMeat

wiwFood
ηiηFood

)
Cov(γij , γFood)

+ 2

(
wj
wi
εHMeat +

wjwMeat

wi
ηMeatε

H
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)(
wj

wMeat
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)
Cov(βi, γMeat)
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wjwMeat

wi
ηMeatε

H
Food

)(
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H
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H
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ηi

)(
wjηiε

H
Food

)
Cov(γMeat, βMeat)
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(
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wMeat
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)
Cov(γMeat, γFood)

+ 2
(
wjηiε

H
Food

)(wjwMeat

wFood
ηiηFood

)
Cov(βMeat, γFood)

3. Results

The model is estimated using quarterly data for the period 1998-2007. The
time series data for prices and per-capita consumption of beef, poultry and pork
are taken from Federación Colombiana de Ganaderos (FEDEGAN). Data for per-
capita expenditures are obtained from the Colombian National Accounts (DANE
2007). Prices are built from the implicit price indices formed as the ratio between
nominal and real expenditures, i.e., Paasche indices.

We should use the True Cost of Living index, but Deaton & Muellbauer (1980b)
considered Taylor’s expansion of the cost function to show that a first order ap-
proximation to the True Cost of Living index will be the Paasche like index (see
equation 3). An empirical evidence that supports this argument is that most price
indices are highly correlated (Edgerton 1997).

Table (1) indicates that food expenditure is 25% of per-capita expenditure,
of which expenditure on meat is 30%, and finally beef expenditure is 60% of the
latter. Thus, beef consumption accounts for 4.5% of per-capita expenditure.

Historical data indicate that meat budget shares of the various types of meat
have not changed. Between 1998 and 2007 average quarterly consumption of beef
declined from 5.75 to 4.44 kg/capita, while poultry consumption rose from 2.92
to 5.49 kg/capita and pork consumption increased from 0.63 to 0.92 kg/capita.
It seems likely that this shift in consumption has been caused by changes in the
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Table 1: Descriptive Statistics: Colombian beef demand, 1998:I-2007:IV.
Variable Mean Standard Deviation Jarque-Bera Test∗

Upper level
XTotalExpenditure 880,923 228,820 0.27
wFood 0.25 0.0068 0.09
pFood 114.42 20.78 0.35
pNoFood 112.53 20.10 0.31

Middle level
XFoodExpenditure 218,812 50,975 0.33
wMeat 0.30 0.02 0.09
pMeat 128.28 29.87 0.36
pOtherFood 104.01 16.28 0.33

Lower level
wBeef 0.60 0.27 0.67
pBeef 8,598 2,672 0.15
wPork 0.08 0.01 0.13
pPork 8,007 1,802 0.29
wPoultry 0.32 0.02 0.71
pPoultry 5,299 726 0.15
∗ p-value
Source: Author’s Estimations

relative prices of the different kinds of meat, as the data indicate that over the
period, the price index of beef rose by 200%, while the price index of poultry
increased by only 47% and the index of pork 110% (see Figures 1 and 2).

Unit root tests (Kwiatkowski, Phillips, Schmidt & Shin 1992, Ng & Perron
2001) were carried out, which indicate that all of the data series are I(1) (See
Table 2). In order to account for endogeneity, the Johansen (1988) cointegration
test was carried out at each budgeting allocation level based on equations (1).1 As
can be seen in Table 3, we cannot reject the null hypothesis of one cointegration
vector in each equation. On the other hand, we use Hayes, Wahl & Williams
(1990) statistical tests for testing weak separability on the second stage, i.e. meat
decision. We use a Wald test under the null hypothesis of weak separability, and
we cannot reject it, the p-value is 0.17.

We estimate simultaneously long-term system equations (1) for the three stages
through Generalized Method of Moments.2 In all stages, the Laspeyres index is
used to build moment conditions, because of endogeneity caused due to the Stone
index uses shares in its construction and it is not invariant to changes in units of

1Information criteria was used to select VEC order and deterministic components of the
cointegration test.

2Residuals are normal and homoscedastic, but because of autocorrelation, we estimate the
covariance matrix through consistent process (Newey & West 1987). Outcomes can be seen in
Table 4.
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Figure 1: Meat per-capita annual consumption: Colombia, 1998:I-2007:IV.
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Figure 2: Meat’s price index: Colombia, 1998:I-2007:IV.

measurement. We imposed homogeneity and symmetry conditions due to these
conditions being important for demand theory, and not always being treated as
verifiable conditions (Parikh 1988).
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Table 2: Unit root tests: Colombian beef demand, 1998:I-2007:IV.
Variable KPSSa Critical Ng − Perronb Critical

Value (5%) Value (5%)
Upper level

wFood 0.625 0.463 -6.712 -8.100
∆wFood 0.306 0.463 -14.062 -8.100

Log(X/P ) 0.168 0.146 -2.835 -2.910
∆Log(X/P ) 0.134 0.146 −2.116c -2.910

Log(pFood/PNoFood) 0.192 0.146 -0.886 -2.910
∆Log(pFood/PNoFood) 0.144 0.146 -2.919 -2.910

Middle level
wMeat 0.482 0.463 -1.193 -8.100

∆wMeat 0.288 0.463 -13.205 -8.100
Log(XFood/PFood) 0.173 0.146 -0.363 -2.910

∆Log(XFood/PFood) 0.100 0.146 -3.004 -2.910
Log(pMeat/pNoMeat) 0.165 0.146 -2.619 -2.910

∆Log(pMeat/pNoMeat) 0.075 0.146 -2.956 -2.910
Lower level

wBeef 0.667 0.463 -3.629 -8.100
∆wBeef 0.096 0.463 -18.851 -8.100
wPork 0.652 0.463 -2.552 -8.100

∆wPork 0.114 0.463 -13.998 -8.100
Log(XMeat/PMeat) 0.185 0.146 -1.589 -2.910

∆Log(XMeat/PMeat) 0.089 0.146 −2.713c -2.910
Log(pBeef/pPoultry) 0.660 0.463 -1.760 -2.910

∆Log(pBeef/pPoultry) 0.186 0.463 -3.079 -2.910
Log(pPork/pPoultry) 0.830 0.463 −3.566c -2.910

∆Log(pPork/pPoultry) 0.400 0.463 -4.116 -2.910
Notes: a Null hypothesis stationarity. b Null hypothesis unit root.
c We use the MZd

t statistic. However, the 5% critical value of the MPT d statistic is 5.480
while its values are equal to 10.161, 6.205 and 3.754 for ∆Log(X/P ), ∆Log(XMeat/PMeat)

and Log(pPork/pPoultry), respectively. Additionally, the 5% critical value of the MSBd

statistic is 0.168 while its values are equal to 0.235, 0.182 and 0.136 for ∆Log(X/P ),
∆Log(XMeat/PMeat) and Log(pPork/pPoultry), respectively.
Source: Author’s Estimations

Long-term elasticities associated with each level are calculated using equations
(8), (9) and (10). Equations (12), (13) and (14) are used to calculate total long-
term elasticities. As can be seen in Table (5), beef, pork and poultry are luxuries,
although this is not the result obtained for poultry if one only looked at within
meat group elasticity. On the other hand, meat expenditure elasticity is 2.16, but
its total expenditure elasticity is 1.65.3 Although it is less than one, the food
expenditure elasticity is still high at 0.76.

The partial beef expenditure elasticity is 1.07 in the Colombian economy (see
Table 5). This value is smaller than the elasticity found in Mexico which is 1.30
(Golan et al. 2000). In general, the wealthier countries in the West have expen-
diture elasticities of beef below 1.0 (Clark 2006, Barreira & Duarte 1997, MAFF
2000, Sulgham & Zapata 2006), while the poorer countries in the East have elas-

3This is calculated as 2.16 (within expenditure elasticity) × 0.76 (food expenditure elasticity).

Revista Colombiana de Estadística 36 (2013) 23–42



36 Andrés Ramírez

Table 3: Cointegration tests: Colombian beef demand, 1998:I-2007:IV.
Equation Ho: CE(s) Max. Eigenvaluea Critical Traceb Critical

Value (5%) Value (5%)
Upper Level

Food Demandc r=0* 43.72 24.25 57.76 35.01
r=1 9.85 17.14 14.03 18.39
r=2* 4.18 3.84 4.18 3.84

Middle Level
Meat Demandc r=0* 33.87 24.25 51.82 35.01

r=1 11.98 17.14 17.94 18.39
r=2* 5.95 3.84 5.95 3.84

Lower Level
Beef Demandd r=0* 36.24 24.15 57.09 40.17

r=1 13.08 17.79 20.84 24.27
r=2 5.36 11.22 7.75 12.32
r=3 2.39 4.12 2.39 4.12

Pork Demandd r=0* 32.51 24.15 51.14 40.17
r=1 11.86 17.79 18.62 24.27
r=2 6.20 11.22 6.76 12.32
r=3 0.56 4.12 0.56 4.12

a Null hypothesis: the number of cointegrating vectors is r against the alternative of r + 1
b Null hypothesis: the number of cointegrating vectors is less than or equal to r against
general alternative
c There is a constant and a deterministic trend in the cointegrated equations.
Schwarz criterion supports these outcomes.
d There is not a constant nor a deterministic trend in the cointegrated equations.
Schwarz criterion supports these outcomes.
* Denotes rejection of the hypothesis at the 5% level
Source: Author’s estimations.

ticities above 1.0 (Chern et al. 2003, Liu et al. 2008, Ma et al. 2003, Rastegari &
Hwang 2007).

Table 4: Residuals tests: Colombian beef demand, 1998:I-2007:IV.
Equation Jarque-Beraa Breusch-Pagan-Godfreyb Breusch-Godfreyc

Upper Level
Food Demand 1.61 3.31 36.21*

Middle Level
Meat Demand 2.34 8.70 27.82*

Lower Level
Beef Demand 1.24 6.66 24.53*
Pork Demand 2.75 5.72 30.26*
a The null hypothesis is normality
b The null hypothesis is homocedasticity
c The null hypothesis is not autocorrelation
* Denotes rejection of the hypothesis at the 5% level
Source: Author’s estimations.

As can be seen in Table (6), there is substitution of poultry for beef within
the meat group, but this effect is not present if taking into account that a change
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Table 5: Expenditure elasticities for the three levels: Colombian beef demand, 1998:I-
2007:IV.

Upper level
Food Other goods
0.76* 1.07*
(0.034) (0.011)

Middle level
Meat Other food
2.16* 0.48*
(0.291) (0.129)

Lower level
Within meat group

Beef Pork Poultry
1.07* 1.78* 0.64*
(0.145) (0.367) (0.268)

Total
Beef Pork Poultry
1.78* 2.95* 1.05*
(0.378) (0.687) (0.166)
Standard deviation are calculated with Delta method.
∗ Significant at 5%
Source: Author’s estimations

of poultry price implies reallocation effects of meat within food and food within
total consumption. With regard to total uncompensated and compensated own-
price elasticities, we can see that beef is quite elastic, and the differences between
within meat group and total elasticities are large. This fact can be misleading if
the within elasticities are used for making policy judgements.4

The partial own-Marshallian price demand elasticity is −1.17 in Colombia (see
Table 6). This value is similar to elasticities that are internationally found (Galvis
2000, Golan et al. 2000, Fousekis & Revell 2000). Usually, this elasticity is less than
−1. With regard to the partial compensated price elasticity, it is found a value
equal to −0.52 in the Colombian economy (see Table 6). The partial own-Hicksian
price demand elasticity is −0.59 in Mexico (Golan et al. 2000). This elasticity
internationally has a range between −0.23 and −1.63. The highest elasticity in
absolute value is found in Nigeria (Osho & Nazemzadeh 2005), while the lowest is
found in U.S. (Asatryan 2003).

4Uncompensated own-price elasticities of poultry and pork are −1.020 and −0.028, respec-
tively.
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Table 6: Uncompensated and compensated beef price elasticities: Colombian beef de-
mand, 1998:I-2007:IV.

Marshallian Hicksian
Beef Pork Poultry Beef Pork Poultry

Within -1.17* -0.04 0.14* -0.52* 0.04* 0.47*
(0.142) (0.033) (0.043) (0.063) (0.001) (0.003)

Total -1.95* -0.09 -0.03 -1.78* -0.08 8E-03
(0.278) (0.047) (0.111) (0.262) (0.045) (0.103)

Standard deviation are calculated with Delta method.
∗ Significant at 5%
Source: Author’s estimations

Table 7: Short-term beef elasticities: Colombian beef demand, 1998:I-2007:IV.
Beef demand

Total expenditure Beef price Pork price Poultry price
0.034 -0.247 -0.025 0.103

Source: Author’s estimations

4. Simulations

In order to calculate short-term elasticities, Seemingly Unrelated Regression
Equations are used for estimating an Error Correction Linear AIDS with the three
stages simultaneously. Monte Carlo simulation exercises are done based on the
estimated model in order to analyse the short-term dynamics of beef demand. The
algorithm used solves the model for each observation in the solution sample, using
a recursive procedure to compute values for the endogenous variables. The model
is solved repeatedly for different draws of the stochastic components (coefficients
and errors). During each repetition, errors are generated for each observation in
accordance with the residual uncertainty in the model. The three stages are linked
by prices and expenditures; for example, a shock on consumption expenditure
causes a direct effect on food demand, which implies an expenditure effect on
meat demand, and as consequence a reallocation within the group. On the other
hand, a change of beef price implies a direct effect within the meat group, but also
affects meat within food and food within consumption.

The simulation results suggest a good fit for each equation in the model; during
the period analysed observed data fell inside the 95% prediction interval (outcomes
upon author’s request).

We analyse transitory effects associated with a positive shock on total expendi-
ture, and increases in beef, poultry and pork prices. We use our simulated model
to measure the impact on beef demand by comparing in-sample forecasted beef
demand with and without the shocks for the first quarter of 2007. Given that
a comparison is being performed, the same set of random residuals is applied to
both scenarios during each repetition. This is done so that the deviation between
the different scenarios is based only on differences in the exogenous variables, not
on differences in random errors.

Revista Colombiana de Estadística 36 (2013) 23–42



Multi-Stage AIDS for Beef Demand in Colombia 39

The first exercise evaluates the short-term effect on beef demand associated
with a positive shock on total expenditure. Specifically, we increase the consumer
expenditure by 1%, and compare this scenario with the baseline scenario (without
shock). We find that there is an increase in beef demand by only 0.034%. On
the other hand, we evaluate the short-term effects in beef demand associated with
transitory increases in beef, pork and poultry prices. It can be seen on Table 7,
that an increase of 1% in beef price reduces its own demand by 0.24%. Finally,
there is a substitution effect of poultry for beef, because an increases of 1% on
poultry price causes an increase in beef demand by 0.1%, while an increase in
pork price causes very little effect on beef demand.

5. Conclusions

The results in the long-term indicate that the expenditure elasticity of food is
less than one, supporting the idea of a normal good. On the other hand, meat is
a luxury good because its expenditure elasticity is greater than one. In the lower
level, the cross price elasticities indicate that there is a bigger substitution effect
of beef for poultry than beef for pork. Although the total expenditure elasticity of
demand for beef is 1.78 in the long-term, the short-term expenditure elasticity is
merely 0.034. The smaller short-term reaction of the consumers is also evidenced
in price shocks; while the own price elasticity of beef is −0.24 in the short-term,
the long-term total elasticity is −1.95. These differences between elasticities obey
the small velocities of convergence in the three levels of the model. Specifically,
the velocities of convergence are 2%, 10% and 17% on the beef, meat and food
demand equations.

Colombian real per-capita total expenditure has grown at 2.1% per annum from
2000 to 2007; therefore, given a 1.5% population growth rate per annum, the total
expenditure beef elasticity implies beef demand growing at 5.3% a year.5 However,
Colombian beef production has grown at −0.51% per annum in the same period,
this difference has caused Colombian beef price to increase by 14.7% per annum.
Recently, Colombia has been negotiating international trade agreements with the
United States and the European Union. This implies that the Colombian beef
sector would have international competition from countries with high subsidies,
and as a consequence, the internal beef price would decrease. These facts would
have important effects on domestic producers, which ought to improve productivity
in order to stay as an important sector in the Colombian economy and make good
use of the new market opportunities.

[
Recibido: abril de 2012 — Aceptado: abril de 2013

]
5This is calculated as 1.5% (population growth rate per annum) + 2.1% (per-capita total

expenditure growth per annum) * 1.78 (total expenditure elasticity).
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Abstract

We present a new set of distributions for positive data based on a skew-
normal alpha-power (PSN) model including a new parameter which in turn
makes the log-skew-normal alpha-power (LPSN) model more flexible than
both the log-normal (LN) model and log-skew-normal (LSN) model. The
LPSN model contains the LN model and LSN model as special cases. Fur-
thermore, it models positive data with asymmetry and kurtosis larger than
the one permitted by the LN distribution. Precipitation data illustrates the
usefulness of the LPSN model being less influenced by outliers.

Key words: Asymmetry, Fisher information matrix, Kurtosis, Likelihood
ratio test, Maximum likelihood estimator.

Resumen

Presentamos una nueva familia de distribuciones para datos positivos
basada en el modelo skew-normal alpha-power (PSN), incluyendo un nuevo
parámetro el cual hace el modelo log-skew-normal alpha-power (LPSN) más
flexible que los modelos log-normal (LN) y log-skew-normal (LSN). El
modelo LPSN contiene el modelo LN y el modelo LSN como casos par-
ticulares. Además, modela datos positivos con asimetría y curtosis más allá
de lo permitido por la distribución LN. Datos de precipitación ilustran la
utilidad del modelo LPSN siendo menos influenciado por outliers.
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1. Introduction

The log-normal (LN) distribution obtained as a transformation of the normal
distribution has been widely used to model different types of information including
income in economics and material lifetimes. In of different fields of knowledge,
asymmetry and kurtosis of the data are outside of the range allowed by the LN
distribution so it is necessary to use another distribution that can take into account
these issues. In the same way that Azzalini (1985), we introduce the skew-normal
(SN) distribution to conform data with a range of asymmetry and kurtosis outside
the range allowed by the normal distribution, Lin & Stoyanov (2009) present the
log-skew-normal (LSN) distribution which is an extension for positive data of the
LN distribution in order to conform data with asymmetry and kurtosis outside
the range allowed by the LN distribution. The probability density function of this
model is given by

ϕLSN (y; ξ, η, λ) =
2

ηy
φ

(
log(y)− ξ

η

){
Φ

(
λ

log(y)− ξ
η

)}
=

1

y
φSN (log(y); ξ, η, λ) , y ∈ R+

(1)

where
φSN (x; ξ, η, λ) =

2

η
φ

(
x− ξ
η

){
Φ

(
λ
x− ξ
η

)}
denotes the density function of the SN distribution with parameters of location (ξ),
scale (η), and shape (λ). The LSN model [Y ∼ LSN(ξ, η, λ)] given by (1) contains
the parameters of location (ξ), scale (η), and shape (λ) that control the asymmetry
of the data. φ(.) and Φ(.) denote the density and cumulative distribution function
of standard normal distribution, N(0,1). Based on the SN of Azzalini (1985) and
generalized Gaussian (PN) of Durrans (1992), Martínez-Flórez (2011) introduce
and studies the main features of the asymmetric distribution called skew-normal
alpha-power (PSN) distribution with probability density function given by

φPSN (z;λ, α) = αφSN (z;λ) {ΦSN (z;λ)}α−1 (2)

where z, λ ∈ R, α ∈ R+, φSN (z;λ) = φSN (z; 0, 1, λ) as defined in (1) and ΦSN (z;λ)
in (3). The PSN model [X ∼ PSN(λ, α)] given by (2) considers parameters of
shape λ and α with

ΦSN (z;λ) =

∫ z

−∞
φSN (t;λ)dt = Φ(z)− 2T (z, λ) (3)

being the cumulative distribution function of skew-normal distribution, Azzalini
(1985), and T (., λ) the Owen’s (1956) function.

In (2), λ = 0 and α = 1 corresponds to the standard normal case, i.e.,
φSN (.; 0, 1, 0) = φPSN (z; 0, 1) = φSN (.; 0) = φ(.) and ΦSN (.; 0) = Φ(.). The
model is an extension of the PN model, Durrans (1992) and the Gupta & Gupta
(2008) exponential model
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ϕα(z;α) = αφ(z){Φ(z)}α−1, z ∈ R (4)

replacing the normal density by the skew-normal density.
Martínez-Flórez (2011) demonstrate that the expected information matrix of

the PSN model is nonsingular in the neighborhood of the skewness parameters
λ = 0 and α = 1 contrary to the case of Azzalini (1985) whose expected information
matrix is singular in the neighborhood of λ = 0. Table 1 shows the intervals
of asymmetry and kurtosis coefficients for the PSN, SN, and PN models. The
PSN model has greater asymmetry and the distribution is more platikurtic or
leptokurtic than the Azzalini (1985) and Durrans (1992) models. This shown an
advantage of the model (2) over the φSN (z;λ) and ϕα(z;α) models.

Table 1: Intervals of asymmetry (
√
β1) and kurtosis (β2) coefficients, defined in (7), for

the PSN, SN, and PN models given by Martínez-Flórez, G. (2011).
Model

√
β1 β2

Skew-normal alpha-power (PSN) model [-1.4676 ; 0.9953) [1.4672 ; 5.4386]
Skew-normal (SN) model (-0.9953 ; 0.9953) [3 ; 3.8692)
Generalized gaussian (PN) model [-0.6115 ; 0.9007] [1.7170 ; 4.3556]

Figures 1(a) show corresponding and 1(b), the parameters λ and α of asym-
metry and kurtosis of the PSN distribution a more flexible model than Azzalini
(1985) and Durrans (1992) yielding.
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Figure 1: Probability density function of the skew-normal alpha-power distribution.

Other work on this type of distribution was studied by Arnold & Beaver (2002)
and Gupta & Gupta (2004). We present a new set of distributions based on the
PSN distribution that corresponds to the log-skew-normal alpha-power (LPSN)
distribution.
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In Section 2, we describe the LPSN distribution, its observed information ma-
trix and the expected information matrix. We also perform an application of the
proposed model to data by IDEAM (2006) in which the coefficients of skewness
and kurtosis of the model justify the use of the LPSN model. We conclude with a
brief discussion in Section 3.

2. Log-Skew-Normal Alpha-Power (LPSN) Model

The LPSN distribution is a new alternative for family distribution of positive
data with a range of asymmetry and/or kurtosis outside of the range permitted
by the LN and LSN distributions.

Definition 1. The positive random variable Y in the R+ has a univariate log-
skew-normal alpha-power distribution with parameters λ and α if the transformed
variable Z = log(Y ) has a PSN distribution with parameters λ and α. This
is denoted by Y ∼ LPSN(λ, α). The probability density function of a random
variable Y with distribution LPSN(λ, α) is given by

ϕLPSN (y;λ, α) =
α

y
φSN (log(y);λ) {ΦSN (log(y);λ)}α−1

, y, α ∈ R+ and λ ∈ R

The cumulative distribution function of the LPSN model is given by

FY (y;λ, α) = {ΦSN (log(y);λ)}α, y ∈ R+ (5)

According to equation (5), the inversion method can be used to generate a
random variable with distribution LPSN(λ, α). Thus, if U is a uniform random
variable in (0,1) the random variable Y = exp{ΦISN (U1/α;λ)} has LPSN distri-
bution of the parameters λ and α where ΦISN represents the inverse function of
the SN distribution, ΦSN (.;λ), whose values can be obtained in many statistical
packages (R Development Core Team 2011).

When α = 1, the LPSN distribution is identical to the LSN distribution
[ϕLPSN (y;λ, 1) = ϕLSN (y; 0, 1, λ)] and when λ = 0 and α = 1, the LPSN dis-
tribution is identical to the log-normal (LN) distribution. So LPSN distribution is
more flexible than LN and LSN distributions (see, for example, Figures 2(a) and
2(b)).

2.1. Moments of the Distribution

The r-th moment of the random variable Y with LPSN distribution can be
written as,

µr = E(Y r) = α

∫ 1

0

{exp [rΦISN (y;λ)]} yα−1dy (6)

Let µ′r = E(Y − E(Y ))r, r = 2, 3, 4,

µ′2 = µ2 − µ2
1, µ′3 = µ3 − 3µ2µ1 + 2µ3

1 and µ′4 = µ4 − 4µ3µ1 + 6µ2µ
2
1 − 3µ4

1
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Figure 2: Probability density function of the log-skew-normal alpha-power distribution.

The variance, coefficient of variation, skewness and kurtosis are given by:

σ2
Y = V ar(Y ) = µ′2, CV =

√
σ2
Y

µ1
,
√
β1 =

µ′3
[µ′2]3/2

and β2 =
µ′4

[µ′2]2
(7)

2.2. Scale-Location

Let PSN(ξ, η, λ, α) denotes a location-scale transformation of PSN(λ, α) where
ξ ∈ R, η ∈ R+ and Y = ξ + ηZ.

Definition 2. If X has a distribution of localization-scale parameters PSN(ξ, η,
λ, α) then the extension of scale-location to the LPSN distribution follows the
transformation X = log(Y ), where ξ ∈ R and η ∈ R+. Then, the density of Y is
given by

ϕLPSN (y; ξ, η, λ, α) = αϕLSN (y; ξ, η, λ)

{
ΦSN

(
log(y)− ξ

η
;λ

)}α−1

(8)

y, α ∈ R+, and λ ∈ R

where ϕLSN (y; ξ, η, λ) is defined in (1) and ΦSN (.;λ), in (3)

We use the notation Y ∼ LPSN(ξ, η, λ, α). So LPSN(λ, α) = LPSN(0, 1, λ, α).

A special case in the model (8) is when λ = 0, obtaining the density,

ϕLPSN (y; ξ, η, 0, α) =
α

ηy
φ

(
log(y)− ξ

η

){
Φ

(
log(y)− ξ

η

)}α−1

, y ∈ R+
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This is denoted Y ∼ LPSNλ=0(ξ, η, α). Like the model LSN model, this distri-
bution is also a generalization of the LN model which we will call the generalized
LN distribution.

The following result is an extension of the LN and LSN distributions.

Theorem 1. For any λ ∈ R and α ∈ R+, the random variable Y ∼ LPSN(ξ, η, λ, α)
does not have a moment generating function (MGF).

Proof . As λ = 0 and α = 1 in the LPSN model, we have the case of the LN
distribution, which does not have a moment generating function. Since MGF
satisfies the property,

MaY+b(t) = exp(bt)MY (at)

then it is sufficient to consider the standard case LPSN(λ, α).

For fixed values α = α0 > 0 and λ = λ0, the MGF of Y can be written as

MY (t) = E(ety)

=

∫ ∞
0

etyϕLPSN (y;λ0, α0)dy

=

∫ ∞
0

α0

y
etyφSN (log(y);λ0) {ΦSN (log(y);λ0)}α0−1

dy

=

∫ ∞
0

h(y, t, λ0, α0)g(y, λ0, α0)dy, y ∈ R+

with
h(y, t, λ0, α0) =

2α0

y
etyφ(log(y)){Φ(λ0 log(y))} > 0

and
g(y, λ0, α0) = {ΦSN (log(y);λ0)}α0−1

to all y > 0.
When t > 0 is fixed, we prove that

J(λ0,α0) =

∫ ∞
0

h(y, t, λ0, α0)g(y, λ0, α0)dy =∞

for all λ0 ∈ R and α0 ∈ R+.

If λ0 > 0 according to Lin & Stoyanov (2009)

lim inf
y→∞

{Φ(λ0 log(y))} ≥ 1

2

therefore h(y, t, λ0, α0) → ∞ when y → ∞. Now, g(y, λ0, α0) → 1 when y → ∞,
then we conclude that J(λ0,α0) →∞ when y →∞.

According to Lin & Stoyanov (2009), if λ0 < 0 then

lim
y→∞

− log (Φ(−y))

y2
=

1

2
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Therefore, when y →∞, we have the asymptotic approximation,

log (Φ(λ0 log(y))) ≈ 1

2
(λ0 log(y))

2

Then, we assume that log(α0) <∞, where y →∞ must be

log (h(y, t, λ0, α0))−log(α0) ≈ 1

2
log

(
2

π

)
− log(y) + ty − 1

2
(λ2

0 + 1)(log(y))2 →∞

Now, since g(y, λ0, α0) → 1, when y → ∞, then we conclude that J(λ0,α0) → ∞
when y →∞.

2.3. Inference

The maximum likelihood estimation and observed and expected matrix infor-
mation for the parameters of the LPSN(ξ, η, λ, α) model are studied. For a ran-
dom sample of size n, Y1, Y2, . . . , Yn, with Yi ∼ LPSN(ξ, η, λ, α), the log-likelihood
function of θ = (ξ, η, λ, α)′ given Y , can be expressed by

`(θ,Y) = n (log(α)− log(η))−
n∑
i=1

log(yi)−
1

2

n∑
i=1

z2
i

+

n∑
i=1

log {Φ(λzi)}+ (α− 1)

n∑
i=1

log {ΦSN (zi;λ)}

where zi = log(yi)−ξ
η . The elements of the score function are given by

U(ξ) =
1

η

n∑
i=1

zi −
λ

η

n∑
i=1

wi −
α− 1

η

n∑
i=1

w1i

U(η) = −n
η

+
1

η

n∑
i=1

z2
i −

λ

η

n∑
i=1

ziwi −
α− 1

η

n∑
i=1

w1izi

U(λ) =

n∑
i=1

ziwi −
√

2

π

(α− 1)

1 + λ2

n∑
i=1

wi(λ)

and

U(α) =
n

α
+

n∑
i=1

log {ΦSN (zi;λ)}

where w = φ(λz)
Φ(λz) , w1 = φSN (z)

ΦSN (z;λ) and w(λ) =
φ(
√

1+λ2z)
ΦSN (z;λ) . The score equations are

obtained by equating these partial derivatives to zero. The maximum likelihood
estimators (MLEs) are the solutions to the score equations. These solutions are
usually obtained by iterative numerical methods.
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2.3.1. Observed Information Matrix

The elements of the observed information matrix are defined without the second
derivative of the log-likelihood function with respect to parameter denoted by
jξξ, jηξ, . . . , jαα which can be written as

jξξ =
n

η2
+
λ2

η2

n∑
i=1

λziwi +
λ2

η2

n∑
i=1

w2
i

+
α− 1

η2

n∑
i=1

w1i(zi + w1i)−
√

2

π

λ(α− 1)

η2

n∑
i=1

wi(λ)

jηξ =
2

η2

n∑
i=1

zi +
λ3

η2

n∑
i=1

z2
iwi +

λ2

η2

n∑
i=1

ziw
2
i −

λ

η2

n∑
i=1

wi

−
√

2

π

λ(α− 1)

η2

n∑
i=1

ziwi(λ) +
α− 1

η2

n∑
i=1

w1i(−1 + z2
i + ziw1i)

jλξ =
1

η

n∑
i=1

[
wi − λ2z2

iwi − λziw2
i

]
+

√
2

π

α− 1

η

n∑
i=1

wi(λ)

[
zi +

1

1 + λ2
w1i

]
, jαξ =

1

η

n∑
i=1

w1i

jηη = − n

η2
+

3

η2

n∑
i=1

z2
i −

2λ

η2

n∑
i=1

ziwi +
λ3

η2

n∑
i=1

z3
iwi +

λ2

η2

n∑
i=1

z2
iw

2
i

−
√

2

π

λ(α− 1)

η2

n∑
i=1

z2
iwi(λ) +

α− 1

η2

n∑
i=1

ziw1i

[
−2 + z2

i + ziw1i

]

jλη =
1

η

n∑
i=1

ziwi −
λ2

η

n∑
i=1

z3
iwi −

λ

η

n∑
i=1

z2
iw

2
i

+

√
2

π

α− 1

η

n∑
i=1

ziwi(λ)

[
zi +

1

1 + λ2
w1i

]

jλλ =

n∑
i=1

z2
i (λziwi + w2

i )−
√

2

π

2λ(α− 1)

(1 + λ2)2

n∑
i=1

wi(λ)

+ 2(α− 1)

n∑
i=1

[
−
√

1

2π

λ

1 + λ2
z2
iwi(λ) +

1

π

1

(1 + λ2)2
w2
i (λ)

]
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and

jαη =
1

η

n∑
i=1

ziw1i, jαλ =

√
2

π

1

1 + λ2

n∑
i=1

wi(λ), jαα =
n

α2

2.3.2. Expected Information Matrix

The elements of the expected information matrix are the expected values of the
elements of the observed information matrix; let iξξ, iηξ, . . . , iαα be the elements
of the observed information matrix multiplied by n−1, calling ajk = E(zjwk),
a1jk = E(zjwk1 ) and ajk(λ) = E(zjwk(λ)). The elements of the expected informa-
tion matrix can be written as

iξξ =
1

η2
+
λ3

η2
a11 +

λ2

η2
a02 −

√
2

π

λ(α− 1)

η2
a01(λ) +

α− 1

η2
(a111 + a102)

iηξ =
2

η2
a10 +

λ3

η2
a21 +

λ2

η2
a12 −

λ

η2
a10 −

√
2

π

λ(α− 1)

η2
a11(λ)

+
α− 1

η2
(−a101 + a121 + a112)

iλξ =
1

η

[
a01 − λ2a21 − λa12

]
+

√
2

π

α− 1

η

[
a11(λ)

+
1

1 + λ2
E(w1w(λ))

]
, iαξ =

1

η
a101

iηη = − 1

η2
+

3

η
a20 −

2λ

η2
a11 +

λ3

η
a31 +

λ2

η2
a22 −

√
2

π

λ(α− 1)

η2
a21(λ)

+
α− 1

η2
(−2a111 + a131 + a122)

iλη =
1

η

[
a11 − λ2a31 − λa22

]
+

√
2

π

α− 1

η

[
a21(λ)+

1

1 + λ2
E(zw1w(λ))

]
, iαη =

1

η
a111
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iλλ = λa31 + a22 −
√

2

π

2λ(α− 1)

(1 + λ2)2
a01(λ) +

√
2

π
(α− 1)

[
− λ

1 + λ2
a21(λ)

+

√
2

π

1

(1 + λ2)2
a02(λ)

]

iαλ =

√
2

π

1

1 + λ2
a01(λ), iαα =

1

α2

For λ = 0 and α = 1 use the approximation

1

π

φ(z)√
Φ(z)[1− Φ(z)]

≈ 1√
2π(π/2)

exp

(
− z2

2(π2/4)

)
given in Chaibub-Neto & Branco (2003). The expected information matrix is

IF (θ) =



1
η2

0
√

2
π

1
η

√
π
2

1
η

0 2
η2

0 1
4η

π2√
8+π2√

2
π

1
η

0 2
π

√
1
2

√
π
2

1
η

1
4η

π2√
8+π2

√
1
2

1

 (9)

whose determinant |IF (θ)| = 0.

Therefore, we conclude that the expected information matrix of the model is
singular for the special case of a LN distribution. The upper 3 × 3 submatrix is
the expected information matrix from the log-skew-normal distribution.

As in (9) the third column (respectively, row) is equal to first column (respec-

tively, row) multiply by η
√

2
π , IF (θ) is singular. Using results from Rotnitzky,

Cox, Bottai & Robins (2000) we find the asymptotic distribution of the maxi-
mum likelihood estimator of θ. DiCiccio & Monti (2004) explains: “(Rotnitzky
et al. 2000) derived the asymptotic distribution of the MLE θ̂ = (θ̂1, θ̂2, . . . , θ̂q)
under two conditions: a single component of the score function, say Sθ1 , vanishes
at some point θ = θ∗, and some higher-order derivatives of Sθ1 taken with respect
to θ1 are possibly 0 at that point but the first nonzero derivative is not a linear
combination of the other score function components Sθ2 , . . . , Sθq ”.

Using an iterative process suggested by Rotnitzky et al. (2000), we find a new
parameterization to PSN model that fulfill the two conditions in the same way
that Chiogna (1998) and DiCiccio & Monti (2004) for the skew-normal distribution
and the skew exponential power distribution, respectively. Let θ∗ = (ξ∗, η∗, 0, 1)
denote the vector parameter of interest. For θ = θ∗, let Sθ(θ∗, Y ) = ∂`/∂θ∗ =
(S∗ξ , S

∗
η , S

∗
λ, S

∗
α) denote the score vector, so

Sθ(θ∗, Y ) =

(
Z∗

η∗
,
Z∗2 − 1

η∗
,

√
2

π
Z∗, 1 + log(Φ(Z∗))

)
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whit Z∗ = Y−ξ∗
η∗ . After some calculations we take the new parameterization

θ̃ = θ̃(θ) = (ξ̃, η̃, λ, α) with ξ̃ = ξ +
√

2
πη
∗λ and η̃ = η − η∗ λ

2

π .

Making use of Theorem 3 in Rotnitzky et al. (2000) with the new parameteri-
zation we can conclude that:

1. The MLE of θ is unique with probability tending to 1, and it is consistent.

2. The likelihood ratio statistic for testing the simple null hypothesis
H0 : θ = θ∗ converges in distribution to the χ2 distribution with four degrees
of freedom.

3. The random vector(
n1/2(ξ̃ − ξ +

√
2
πη
∗λ), n1/2(η̃ − η − η∗ λ

2

π ), n1/6λ̂, n1/2(α̂− 1)
)

converges to (Y1, Y2, Y
1/3
3 , Y4), where (Y1, Y2, Y3, Y4) is a normal random vec-

tor with mean zero and covariance matrix equals to the inverse of the co-
variance matrix



1
η2

0 2−π√
2π3

1
η

√
π
2

1
η

0 2
η2

0 1
4η

π2√
8+π2

2−π√
2π3

1
η

0 5π2−28π+44
6π3

√
1
2

√
π
2

1
η

1
4η

π2√
8+π2

√
1
2

1



−1

2.4. Illustration

Precipitation data (measured in inches) were collected from the Colombian
Institute of Hydrology, Meteorology and Environmental Studies in Córdoba, Colom-
bia (IDEAM 2006). Descriptive statistics for the variable under study are provided

in Table 2. The quantities
√
β̂1 =

√
b1 and β̂2 = b2, where β1 and β2 defined in

(7), indicate the asymmetry and kurtosis coefficients respectively.

Table 2: Descriptive statistics of the precipitation variable
Variables n Mean Variance

√
b1 b2

Y 273 4.8360 9.7871 0.4632 2.6035
log(Y ) 273 1.2219 1.1155 -1.5608 5.5276

The asymmetry and kurtosis coefficients are different from the corresponding
values expected for LN model and normal model. Precipitation data are fitted
using the LPSN model.

The LPSN model is compared to the LN model as well as the LSN model to the
LPSNλ=0 model. The maximum likelihood method for estimating the parameters
is used and the Akaike information criterion (AIC), (Akaike 1974), is applied for
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contrast. Firstly, the LN model is compared to the LPSN model by the hypothesis
tests

H0 : (λ, α) = (0, 1) versus H1 : (λ, α) 6= (0, 1)

Using the likelihood ratio statistic,

Λ =
`LN (θ̂)

`LPSN (θ̂)

we obtain
−2 log(Λ) = −2(−735.4023 + 670.2293) = 130.346

which is greater than the value of the χ2
2,95% = 5.99. Then the LPSN model is

a good alternative for fitting the precipitation data. The LPSN model is also
compared to the LPSNλ=0 model and the LSN models by the hypothesis tests

H01 : λ = 0 versus H11 : λ 6= 0, and H02 : α = 1 versus H12 : α 6= 1

respectively, using the likelihood ratio statistics

Λ1 =
`LPSNλ=0(θ)

`LPSN (θ)
and Λ2 =

`LSN (θ)

`LPSN (θ)

After numerical evaluations, we obtain

−2 log(Λ1) = 61.5960 and − 2 log(Λ2) = 15.5056

which is greater than the value of the χ2
1,95% = 3.84. The best fit, with respect to

the other models, is shown by the LPSN model. Table 3 presents the MLEs and the
estimated standard errors (in parentheses) for LN, LSN, LPSN and models. Figure
3 shows the histogram of precipitacion data and fitted curves for the proposed
models in which the LPSN model presents the better fit of asymmetry and kurtosis
with respect to the other models.

Table 3: Parameters and estimated standard errors of the log-normal (LN), log-skew-
normal (LSN), log-skew-normal alpha-power λ = 0 (LPSNλ=0), and the log-
skew-normal alpha-power (LPSN) distributions.

Parameter Log-normal LSN LPSNλ=0 LPSN
Loglik -735.4023 -677.9821 -701.0273 -670.2292
AIC 1474.8050 1361.964 1408.0550 1348.5490
ξ 1.2219(0.0638) 2.4217(0.0392) 2.8280(0.0817) 2.2647(0.0529)
η 1.0542(0.0451) 1.5971(0.0763) 0.1668(0.0507) 4.8760(0.3363)
λ – -10.0515(2.2917) – -19.2702(2.4450)
α – – 0.0144(0.0008) 4.8579(0.5925)

The Figure 4 shows the qqplots for LN, LSN and LPSN models. The LPSN
model shows better fit with respect to the LN and LSN models.
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Figure 3: Histogram of the precipitation data. Densities are estimated by maximum
likelihood.
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Figure 4: Q-Qplot: (a) log-normal model, (b) log-skew-normal model, and (c) log-skew-
normal alpha-power model.
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3. Conclusion

In this paper we propose a more flexible model than LN and LSN models
fit data with greater asymmetry and more platikurtic or leptokurtic than Azzalini
(1985) and Durrans (1992) models. General expressions for the moments are found,
maximum likelihood estimators are studied, observed and expected information
matrix are found, and also an asymptotic distribution of a MLEs vector is found.
Finally, an illustration is presented (see Figure 4). We contrast the LN, LSN,
and LPSN models through some precipitation data. According to AIC selection
criterion, the LPSN model makes the better fit with respect to the other models
considered. [

Recibido: junio de 2012 — Aceptado: abril de 2013
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Abstract

The univariate and bivariate compound Poisson process (CPP and BCPP,
respectively) ensure a better description than the homogeneous Poisson pro-
cess for clustering of events. In this paper, new explicit representations of
the moment characteristics (general, central, factorial, binomial and ordinary
moments, factorial cumulants) and some covariance structures are derived
for the CPP and BCPP. Then, the skewness and kurtosis of the univariate
CPP are obtained for the first time and special cases of the CPP are studied
in detail. Applications to two real data sets are given to illustrate the usage
of these processes.

Key words: Bivariate distribution, Compound Poisson process, Cumulant,
Factorial moments, Moment.

Resumen

Los procesos univariados y bivariados compuestos de Poisson (CPP y BC-
CPP, por sus siglas en inglés respectivamente) permiten una mejor descrip-
ción que los procesos homogéneos de Poisson para agrupamiento de eventos.
En este artículo, se muestran específicamente las representaciones de las car-
acterísticas de momentos (general, central, factorial, momentos binomiales y
ordinarios, acumuladas factoriales) y algunas estructuras de covarianza para
los CPP y BCPP. Adicionalmente, el sesgo y la curtosis de los procesos uni-
variados CPP son presentados y casos especiales son estudiados en detalle.
La aplicación a dos conjuntos de datos reales es usada con el fin de ilustrar
el uso de estos procesos.

Palabras clave: acumuladas factoriales, conjuntas, distribución bivariada,
distribución compuesta de Poisson, momento.

aLecturer. E-mail: gamzeozl@hacettepe.edu.tr
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1. Introduction

Let {Nt, t ≥ 0} be a homogeneous Poisson process with parameter λ > 0 and let
Xi, i = 1, 2, . . ., be identically and independent distributed (i.i.d.) non-negative,
integer-valued random variables, independent of {Nt, t ≥ 0}. Then, {St, t ≥ 0}
has a univariate CPP if it is defined as

St =

Nt∑
i

Xi (1)

The univariate CPP has many applications in various areas such as transport,
ecology, radiobiology, quality control, telecommunications (see Ata & Özel 2012,
Chen, Randolph & Tian-Shy 2005, Gudowska-Nowak, Lee, Nasonova, Ritter &
Scholz 2007, Özel & Inal 2008, Robin 2002, Rosychuk, Huston & Prasad 2006).
However, the investigation of the properties of the univariate CPP mixtures is
much more complicated than the homogeneous Poisson process. The applications
of the univariate CPP often run into the obstacle of numerical evaluation of the
corresponding probability functions. Hence, moment characteristics of the uni-
variate CPP play a very important role in the probability theory.

Bivariate stochastic processes have also received considerable attention in the
literature, in an effort to explain phenomena in various areas of application (see
Kocherlakota & Kocherlakota 1997, Özel 2011a, Wienke, Ripatti, Palmgren &
Yashin 2010, Wienke 2011). Paired count data in time arise in a wide context
including marketing (number of purchases of different products), epidemiology
(incidents of different diseases in a series of districts), accident analysis (the number
of accidents in a site before and after infrastructure changes), medical research (the
number of seizures before and after treatment), sports (the number of goals scored
by each one of the two opponent teams in soccer) and econometrics (number of
voluntary and involuntary job changes). In this study we consider the following
BCPP. Let {Nt, t ≥ 0} be a homogeneous Poisson process and let Xi, Yi, i =
1, 2, . . ., be independent of the process {Nt, t ≥ 0} Then the BCPP is defined as(

S
(1)
t =

Nt∑
i

Xi, S
(2)
t =

Nt∑
i

Yi

)
(2)

where Xi, Yi, i = 1, 2, . . ., are mutually independent random variables.
The CPP is studied in Özel & Inal (2008) but mainly from the evaluation of

its probability function. The recursive formulas for the joint probability functions
of the BCPP in (2) are derived by Hesselager (1996) and Sundt (1992). Özel &
Inal (2008) defined a different kind of BCPP and obtained the joint probability
function, moments and cumulants. On the other hand, non-existence of moment
characteristics obstacles usage of them in probability theory itself and its applica-
tions in seismology, actuarial science, survival analysis, etc. Consequently, since
relative results are sparse and case oriented, the aim of this study is to obtain
the moment characteristics and covariance structures of the univariate CPP and
BCPP.
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The paper is organised as follows. In Section 2, moments, cumulants and some
relationships are derived for the first time and special cases are obtained for the
univariate CPP. In Section 3, new explicit expressions for the moments, cumulants,
covariances, and correlation coefficients of the BCPP are derived. In Section 4,
the results are illustrated on two real data sets. The conclusion is given in Section
5.

2. The Univariate Compound Poisson Process

2.1. Moments of the Univariate CPP

The moment generating function (mgf) makes it possible to compute general
(raw) moments of {St, t ≥ 0}. Let Xi, i = 1, 2, . . ., be i.i.d. discrete random
variables in (1) with the probabilities P (Xi = j) = pj , j = 0, 1, . . . The common

mgf of Xi, i = 1, 2, . . ., is given by Mx(u) =
∞∑
j=0

pju
j = p0 + p1u+ p2u

2 + · · · and

the mgf of {St, t ≥ 0} is given by

MSt
(u) =

∞∑
n=0

exp(−λt) (λt)
n

n!
[Mx(u)]

n

= exp(−λt)

[
1 +

λtMx(u)

1!
+

[λtMx(u)]
2

2!
+ · · ·

]
= exp(λt [Mx(u)− 1])

(3)

Let us assume that the random variable X takes finite values j = 0, 1, . . . ,m.
Define the parameters λj = λpj , j = 0, 1, . . . ,m, then we have

MSt(u) = exp [−λt(1− p0)] exp [λ1t exp(u) + . . .+ λmt exp(u
m)] (4)

Thus, the rth general moment of the univariate CPP can be obtained by differ-

entiating (4) with respect to u and substituting in µ′r = E (Srt ) =
dr

dur
MSt

(u)

∣∣∣∣
u=0

,

r = 1, 2, . . . , n, after some algebraic manipulations, the general moments of {St, t ≥
0} are obtained as follows:

µ′1 = (λtξ1)

µ′2 = (λtξ1)
2
+ (λtξ2)

µ′3 = (λtξ1)
3
+ 3 (λtξ1) (λtξ2) + (λtξ3)

µ′4 = (λtξ1)
4
+ 6(λtξ1)

2
(λtξ2) + 4 (λtξ3) (λtξ1) + 3(λtξ2)

2
+ (λtξ4)

µ′5 = (λtξ1)
5
+ 10(λtξ1)

3
(λtξ2) + 10 (λtξ3) (λtξ1)

2
+ 15 (λtξ1) (λtξ2)

2

+ 5 (λtξ4) (λtξ1) + 10 (λtξ2) (λtξ3) + (λtξ5)

(5)

where ξr = E(xr), r = 1, 2, . . . , n, is the rth general moment of Xi, i = 1, 2, . . .,
and {Nt, t ≥ 0} is a homogeneous Poisson process with parameter λ > 0 in (1).
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A recursive formula for the factorial moments of {St, t ≥ 0} is derived from
(3). For this aim, we observe that

dMSt(u)

du
= λtMSt(u)

dMX(u)

du

so that applying the Leibniz differentiation rule for r ≥ 1 we obtain

µ′r = λt
dr−1

dur−1

[
exp [λt(Mx(u)− 1)]

dMx(u)

du

]∣∣∣∣
u=0

= λt

r−1∑
k=0

(
r − 1

k

)
dkMSt

(u)

duk
dr−kMX(u)

dur−k

∣∣∣∣
u=0

Then, the following recursive formula for the general moments of {St, t ≥ 0} is
given by

µ′r = λt

r−1∑
k=0

(
r − 1

k

)
µ′k ξr−k

where ξr, r = 1, 2, . . . , n, is the rth general moment of Xi, i = 1, 2, . . ., in (1).
Now consider the central moments µr of {St, t ≥ 0}. The generating function

GSt
(u) of µr, if the rth central moment exists, is defined by the relation

GSt
(u) = E [exp(u(St − µ))] = exp(−uµ)MSt

(u) (6)

where µ′r = µ = E (St) = λtξ1. Then, rth central moment of {St, t ≥ 0} can be
obtained by

µr = E(St − µ)r =
dr

dur
GSt

(0) =
dr

dur
exp(−uµ)MSt

(u)

∣∣∣∣
u=0

(7)

From (4) and (7), we have

µ1 = (µ+ λtξ1)

µ2 = (µ+ λtξ1)
2
+ (λtξ2)

µ3 = (µ+ λtξ1)
3
+ 3 (µ+ λtξ1) (λtξ2) + (λtξ3)

µ4 = (µ+ λtξ1)
4
+ 6(µ+ λtξ1)

2
(λtξ2) + 4 (µ+ λtξ1) (λtξ3)

+ 3(λtξ2)
2
+ (λtξ4)

µ5 = (µ+ λtξ1)
5
+ 10(µ+ λtξ1)

3
(λtξ2) + 10(µ+ λtξ1)

2
(λtξ3)

+ 15 (µ+ λtξ1) (λtξ2)
2
+ 5 (µ+ λtξ1) (λtξ4) + 10 (λtξ2) (λtξ3) + (λtξ5)

(8)

where ξr, r = 1, 2, . . . , n, is the rth general moment of Xi, i = 1, 2, . . .

Commonly used indices of the shape of a distribution are the moment ratios
such as skewness and kurtosis. Since {St, t ≥ 0} has finite moments of orders up
to the third, then the skewness of St is defined as√

β1 = E

(
St − µ
σ

)3

=
µ3

µ
3/2
2

(9)
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where σ is the standard deviation of St. From (9), the skewness of {St, t ≥ 0} is
obtained using the central moments in (8) as follows:

√
β1 =

(µ+ λtξ1)
3
+ 3 (µ+ λtξ1) (λtξ2) + (λtξ3)[

(µ+ λtξ1)
2
+ (λtξ2)

]3/2 (10)

Similarly, the kurtosis of {St, t ≥ 0} is obtained from (8) as

β2 = E

[
St − µ
σ

]4
− 3 =

µ4

µ2
2

− 3

=
4 (µ+ λtξ1) (λtξ3)− 2(µ+ λtξ1)

4
+ (λtξ4)[

(µ+ λtξ1)
2
+ (λtξ2)

]2 (11)

Since MSt
(u) is exponential form in (4), it is useful to consider the cumulants

(semi invariants) κr, defined formally as the coefficients of the Taylor expansion
of the logarithm of the characteristic function ϕSt(u) and having the cumulant
generating function

CSt
(u) = lnϕSt

(u) =

∞∑
r=1

κr
(iu)r

r!
(12)

where i denotes the imaginary number (i2 = −1) and the characteristic function
of {St, t ≥ 0} is given by ϕSt

(u) = exp [λt(ϕX(u)− 1)]. Here, ϕX(u) the common
characteristic function of Xi, i = 1, 2, . . . Then, if X takes finitely many values
j = 0, 1, . . . ,m, we get

CSt
(u) = λt [ϕX(u)− 1]

= λt [p0 + p1 exp(iu) + p2 exp(2iu) + · · ·+ pm exp(miu)]− λt
= λt [(p0 − 1) + p1 exp(iu) + p2 exp(2iu) + · · ·+ pm exp(miu))]

(13)

Using Taylor series expansion, we obtain a cumulant generating function from
(13) as

CSt(u) = λt

[
p1

(
(iu)

1!
+ · · ·

)
+ p2

(
(2iu)

1!
+ · · ·

)
+ · · ·

+ pm

(
(miu)

1!
+ · · ·

)]
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=

[
(iu)

1!
{λt(p1 + · · · )}+

(iu)2

2!
{λt(p1 + · · · )}+ · · ·

+
(iu)m

m!
{λt(p1 + · · · )}

]

=

∞∑
r=1

λt ∞∑
j=1

rjpj

 (iu)r

r!

=

∞∑
r=1

λtE(Xr)
(iu)r

r!

(14)

Then, for every r = 1, 2, . . . , n we have

κr = λtξr (15)

Here, ξr = E(Xr), r = 1, 2, . . . n, is the rth general moment of Xi, i = 1, 2, . . .
We also obtain a relationship between the general moments and the ordinary
cumulants of {St, t ≥ 0} as follows:

µ′1 = κ1

µ′2 = κ21 + κ2

µ′3 = κ31 + 3κ1κ2 + κ3

µ′4 = κ41 + 6κ21κ2 + 4κ1κ3 + 3κ22 + κ4

µ′5 = κ51 + 10κ31κ2 + 10κ21κ3 + 15κ1κ
2
2 + 5κ1κ4 + 10κ2κ3 + κ5

(16)

In problems with discrete random variables one often uses the factorial mo-
ments. Let µ[r] be the rth factorial moment of {St, t ≥ 0} in (1). µ[r] can be ob-
tained by inverting the factorial moment generating function (fmgf) of {St, t ≥ 0}

µ[r] =
dr

dur
PSt

(1 + u)

∣∣∣∣
u=0

(17)

where fmgf of {St, t ≥ 0} is

PSt
(1 + u) = exp[−λt(1− p0)] exp[λ1t exp(1 + u) + λ2t exp((1 + u)2)

+ · · ·+ λmt exp((1 + u)m)] (18)

Here, the random variable X has finite values j = 0, 1, . . .m. Differentiating
(18) and substituting in (17), after some manipulations, we obtain the factorial
moments as follows:
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µ[1] = (λtξ[1])

µ[2] = (λtξ[1])
2 + (λtξ[2])

µ[3] = (λtξ[1])
3 + 3(λtξ[1])(λtξ[2]) + (λtξ[3])

µ[4] = (λtξ[1])
4 + 6(λtξ[1])

2(λtξ[2]) + 4(λtξ[3])(λtξ[1]) + 3(λtξ[2])
2 + (λtξ[4])

µ[5] = (λtξ[1])
5 + 10(λtξ[1])

3(λtξ[2]) + 10(λtξ[3])(λtξ[1])
2 + 15(λtξ[1])(λtξ[2])

2

+ 5(λtξ[4])(λtξ[1]) + 10(λtξ[2])(λtξ[3]) + (λtξ[5])

(19)

where ξ[r] = E[(X)(X − 1) · · · (X − (r − 1))], r = 1, 2, . . . , n, is the rth factorial
moment of Xi, i = 1, 2, . . . If E(Xr) < ∞, factorial moments of {St, t ≥ 0} can
also be calculated recursively. We observe that

dgSt
(u)

du
= λt exp[λt(gX(u)− 1)]

dgX(u)

du
= λtgSt

(u)
dgX(u)

du

Now using the Leibniz formula for the derivatives of higher orders, we get

drgSt(u)

dur
= λt

r−1∑
k=0

(
r − 1

k

)
dr−k−1gSt(u)

dur−k−1
dk+1gX(u)

duk+1
(20)

From (21) and the relations µ[r] =
drgSt

(u)

dur

∣∣∣∣
u=1

, ξr =
drgX(u)

dur

∣∣∣∣
u=1

, we have

µ[r] = λt

r−1∑
k=0

(
r − 1

k

)
µ[r−k−1]ξ[k+1] (21)

The logarithm of the fmgf is called factorial cumulant generating function
(fcgf). The coefficient of ur/r! in the Taylor expansion of this function is the rth

factorial cumulant κ[r]. The fcgf is given by lnP (1 + u) =
∞∑
r=1

κ[r]u
r

r!
where κ[r]

denotes the rth factorial cumulant. Then, the factorial cumulants of {St, t ≥ 0}
are given by

κ[r] = λtξ[r] (22)

where ξ[r] = E[(X)(X − 1) . . . (X − (r − 1))], r = 1, 2, . . . , n, is the rth factorial
moment of Xi, i = 1, 2, . . ..

Let us point out that the factorial cumulants are related to the ordinary cumu-
lants in the same way as the factorial moments are related to the general moments
for {St, t ≥ 0}. A relationship of the factorial cumulants with the ordinary cumu-
lants is also obtained for {St, t ≥ 0} as follows:

κ[1] = κ1

κ[2] = κ2 − κ1
κ[3] = κ3 − 3κ2 + 2κ1

κ[4] = κ4 − 6κ3 + 11κ2 − 6κ1

κ[5] = κ5 − 10κ4 + 35κ3 − 50κ2 + 24κ1

(23)
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The binomial moments, closely connected with µ[r], are defined as Br =

E
(
St

r

)
=

1

r!
µ[r]. The binomial moment generating function is BSt(u) =

∑
j=0

Bju
j =

∑
j=0

µ[r]
uj

j!
= PSt(1 + u), so that, if MSt(u) exists, then

Br =
1

r!

dr

dur
PSt

(1 + u)

∣∣∣∣
u=0

Hence, rth binomial moments of {St, t ≥ 0} is obtained as follows:

B1 =
(λtξ[1])

1!
,

B2 =

[
(λtξ[1])

2 + (λtξ[2])
]

2!

B3 =

[
(λtξ[1])

3 + 3(λtξ[1])(λtξ[2]) + (λtξ[3])
]

3!

B4 =

[
(λtξ[1])

4 + 6(λtξ[1])
2(λtξ[2]) + 4(λtξ[3])(λtξ[1]) + 3(λtξ[2])

2 + (λtξ[4])
]

4!

B5 =

[
(λtξ[1])

5 + 10(λtξ[1])
3(λtξ[2]) + 10(λtξ[3])(λtξ[1])

2 + 15(λtξ[1])(λtξ[2])
2
]

5!

+

[
5(λtξ[4])(λtξ[1]) + 10(λtξ[2])(λtξ[3]) + (λtξ[5])

]
5!

(24)

where ξ[r] = E[(X)(X − 1) . . . (X − (r − 1))], r = 1, 2, . . . , n, is the rth factorial
moment of Xi, i = 1, 2, . . ..

2.2. The Covariance Structure of CPP

In this section, we derived the covariance between {Nt, t ≥ 0} and {St, t ≥ 0}
(1) for the case that {Nt, t ≥ 0} is a homogeneous Poisson process with parameter
λ > 0 and Xi, i = 1, 2, . . .. are discrete random variables with finite values
j = 0, 1, . . . The characteristic function of the random vector Nt, St is defined as

ϕNt,St(u, v) = E [exp(iuNt + ivSt)] = E [E(exp(iuNt + ivSt)|Nt)] (25)

where i is the imaginary number. (25) can be written as

ϕNt,St
(u, v) = E

[
E(exp(iuNt + iv

Nt∑
i=1

Xi )|Nt = n)

]

= E

[
exp(iuNt)

n∏
i=1

exp(ivXi)

]

= E

[
exp(iuNt)

(
n∏
i=1

ϕX(v)

)]
= E [exp(iuNt)ϕ

n
X(v)]

(26)
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where ϕX(v) is the characteristic function of Xi, i = 1, 2, . . . Since {Nt, t ≥ 0} has
a homogeneous Poisson process with parameter λ, we get

ϕNt,St
(u, v) = exp(−λt)

∞∑
k=0

[λtϕX(v) exp(iu)]
k

k!

= exp[λt(ϕX(v) exp(iu)− 1)]

(27)

To derive the covariance, we have E(Nt) = λt and E(St) = λtE(X). In order
to complete the derivation of the covariance of Nt and St, we need to evaluate

E(NtSt) =
∂2ϕNt,St

(u, v)

∂u∂v

∣∣∣∣
u=v=0

. The derivative of ϕNt,St(u, v) with respect to

u is
∂ϕNt,St(u, v)

∂u
= iλtϕX(u)ϕNt,St

(u, v) and the derivative of the latter with
respect to v is

∂2ϕNt,St(u, v)

∂u∂v
= iλtϕX(v)λt exp(iu)ϕ′X(v)ϕNt,St(u, v) + iλtϕ′X(v)ϕNt,St(u, v)

= iλtϕNt,St
(u, v)ϕ′X(v) [ϕX(v)λt exp(iu) + 1]

Since ϕNt,St
(0, 0) = ϕX(0) = 1 and ϕ′X(0) = iE(X), it follows that

∂2ϕNt,St(u, v)

∂u∂v

∣∣∣∣
u=v=0

= i2λt(λt+ 1)E(X)

Therefore, E(Nt, St) = λt(λt + 1)E(X) and the covariance of {Nt, t ≥ 0} and
{St, t ≥ 0} is given by

Cov(Nt, St) = λtE(X) = λtξ1 (28)

Hence, the coefficient of correlation is

ρ = Corr(Nt, St) =
Cov(Nt, St)√
V ar(Nt)V ar(St)

=
ξ1√
ξ2

(29)

where V ar(Nt) = λt and V ar(St) = λtE(X2) = λtξ2.

2.3. Special Cases of the Univariate CPP

In this section we study some special cases of the univariate CPP. Expres-
sions for various moments and cumulants are presented. The Neyman type A,
B and Pólya-Aeppli are four major CPPs. The Neyman type A and B processes
are defined by Neyman (1939) as ‘contagious’. This definition implies that each
favourable event enhances the probability of each succeding event. The Pólya-
Aeppli process is derived by Getis (1974) to model the clustered point process.
Note that some examples of such processes with their corresponding probability
functions are discussed in Özel & Inal (2012).
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Example 1. The Neyman Type A Process: Let {Nt, t ≥ 0} be a homogeneous
Poisson process with parameter λ > 0 and let Xi, i = 1, 2, . . . be Poisson dis-
tributed with parameter ν in (1), then {St, t ≥ 0} is called a Neyman type A or
Poisson-Poisson process. First four moments and cumulants of the Neyman type
A process are given in Table 1 .

Table 1: First four moments and cumulants of the Neyman type A process.
µ′1 (λtv)

µ′2 (λtv)2 + [λt(v + v2)]

µ′3 (λtv)3 + 3(λtv)[λt(v + v2)] + [λt(v + 3v2 + v3)]

µ′4 (λtv)4 + 6(λtv)2[λt(v + v2)] + 4(λtv)[λt(v + 3v2 + v3)] + [λt(v + 7v2 + 6v3 + v4)]

µ1 (2λtv)

µ2 (2λtv)2 + [λt(v + v2)]

µ3 (2λtv)3 + 6(λtv)[λt(v + v2)] + [λt(v + 3v2 + v3)]

µ4 (2λtv)4 + 6(2λtv)2[λt(v + v2)] + 4(2λtv)[λt(v + 3v2 + v3)] + [λt(v + 7v2 + 6v3 + v4)]

κ1 (λtv)

κ2 [λt(v + v2)]

κ3 [λt(v + 3v2 + v3)]

κ4 [λt(v + 7v2 + 6v3 + v4)]

µ[1] (λtv)

µ[2] (λtv)2 + (λtv)

µ[3] (λtv)3 + 3(λtv)2 + (λtv)

µ[4] (λtv)4 + 6(λtv)3 + 7(λtv)2 + (λtv)

κ[1] (λtv)

κ[2] (λtv)

κ[3] (λtv)

κ[4] (λtv)

B1 (λtv)

B2 [(λtv)2 + (λtv)]/2!

B3 [(λtv)3 + 3(λtv)2 + (λtv)]/3!

B4 [(λtv)4 + 6(λtv)3 + 7(λtv)2 + (λtv)]/4!

Example 2. The Neyman Type B Process: Let {Nt, t ≥ 0} be a homogeneous
Poisson process with parameter λ > 0 and let Xi, i = 1, 2, . . . be binomial dis-
tributed with parameters m and p in (1), then {St, t ≥ 0} has a Neyman type B
or Poisson-binomial process. First four moments and cumulants of the Neyman
type B process are presented in Table 2.

Example 3. The Pólya-Aeppli Process: Let {Nt, t ≥ 0} be a homogeneous Poisson
process with parameter λ > 0 and let Xi, i = 1, 2, . . . be geometric distributed
random variables with parameter θ. Then, {St, t ≥ 0} has a Pólya-Aeppli or
geometric Poisson process. First four moments and cumulants of the Pólya-Aeppli
process are given in Table 3.
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Table 2: First four moments and cumulants of the Neyman type B process.
µ′1 (λtmp)

µ′2 (λtmp)2 + λt[mp+m(m− 1)p2]

µ′3 (λtmp)3 + 3(λtmp)2 + (λtmp) + 6[λtmp(m(m− 1)p2)] + [λt(m(m− 1)(m− 2)p3)]

(λtmp)4 + 6(λtmp)2[λt(mp+ (m− 1)p2)] + 4(λtmp)[λt(mp+ 3m(m− 1)p2

+m(m− 1)(m− 2)p3)]

µ′4 (λtv)4 + 6(λtv)2[λt(v + v2)] + 4(λtv)[λt(v + 3v2 + v3)] + [λt(v + 7v2 + 6v3 + v4)]

µ1 (2λtmp)

µ2 (2λtmp)2 + [λt(mp+m(m− 1)p2)]

µ3 (2λtmp)3 + 3(λtmp)[λt(mp+m(m− 1)p2)] + [λt(mp+ 3m(m− 1)p2

+m(m− 1)(m− 2)p3)]

µ4 (2λtmp)4 + 6(2λtmp)2[λt(mp+m(m− 1)p2)] + 4(2λtmp)[λt(mp+ 3m(m− 1)p2

+m(m− 1)(m− 2)p3)] + 3[λt(mp+m(m− 1)p2)]2 + [λt(mp+ 7m(m− 1)p2

+6m(m− 1)(m− 2)p3 +m(m− 1)(m− 2)(m− 3)p4)]

κ1 (λtmp)

κ2 [λt(mp+m(m− 1)p2)]

κ3 [λt(mp+ 3m(m− 1)p2 +m(m− 1)(m− 2)p3)]

κ4 [λt(mp+ 7m(m− 1)p2 + 6m(m− 1)(m− 2)p3 +m(m− 1)(m− 2)(m− 3)(m− 4)p4)]

µ[1] (λtmp)

µ[2] (λtmp)2 + (λtm(m− 1)p2)

µ[3] (λtmp)3 + 3(λtmp(mp+m(m− 1)p2))

+(λt(mp+ 3m(m− 1)p2 +m(m− 1)(m− 2)p3)

µ[4] (λtmp)4 + 6(λtmp)3[λt(mp+m(m− 1)p2)] + 4(λtmp)[λt(mp+ 3m(m− 1)p2

+m(m− 1)(m− 2)p3)] + 3[λt(mp+m(m− 1)p2)]2 + [λt(mp+ 7m(m− 1)p2

+6m(m− 1)(m− 2)p3 +m(m− 1)(m− 2)(m− 3)p4)]

κ[1] (λtmp)

κ[2] [λtm(m− 1)p2]

κ[3] [λtm(m− 1)(m− 2)p3]

κ[4] [λtm(m− 1)(m− 2)(m− 3)p4]

B1 (λtmp)

B2 [(λtmp)2 + (λtm(m− 1)p2)]/2!

B3 [(λtmp)3 + 3(λtmp)[λtm(m− 1)p2] + [λtm(m− 1)(m− 2)p3]]/3!

B4 [(λtmp)4 + 6(λtmp)2[λtm(m− 1)p2] + 4(λtmp)[λtm(m− 1)(m− 2)p3]

+3[λtm(m− 1)p2]2 + [λtm(m− 1)(m− 2)(m− 3)p4]]/4!

Note that the random variable X has infinite values both the Neyman type
A and the Pólya-Aeppli process. However, the moments and cumulants of these
processes can be obtained using (13), (18) and (31). This is due to the probability
P (Xi = j) and λj = λpj approach zero for j →∞.
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Table 3: First four moments and cumulants of the Pólya-Aeppli process.
µ′1 [λt(1− θ)/θ]
µ′2 [λt(1− θ)/θ]2 + [λt(1− θ)(2− θ)/θ2]
µ′3 [λt(1− θ)/θ]3 + 3[λt(1− θ)/θ][λt(1− θ)(2− θ)/θ2] + [λt(1− θ)(6 + θ(θ − 6))/θ3]

µ′4 [λt(1− θ)/θ]4 + 6[λt(1− θ)/θ]2[λt(1− θ)(2− θ)/θ2] + 4[λt(1− θ)/θ][λt(1− θ)
(6 + θ(θ − 6))/θ3] + 3[λt(1− θ)(2− θ)/θ2]2 + [λt(2− θ)(1− θ)(12 + (θ − 12)θ)/θ4]

µ1 [2λt(1− θ)/θ]
µ2 [2λt(1− θ)/θ]2 + [λt(1− θ)(2− θ)/θ2)]
µ3 [2λt(1− θ)/θ]3 + 3[2λt(1− θ)/θ][λt(1− θ)(2− θ)/θ2] + [λt(1− θ)(6 + θ(θ − 6))/θ3]

µ4 [2λt(1− θ)/θ]4 + 6[2λt(1− θ)/θ]2[λt(1− θ)(2− θ)/θ2] + 4[2λt(1− θ)/θ][λt(1− θ)(6+
θ(θ − 6))/θ3] + 3[λt(1− θ)(2− θ)/θ2]2 + [λt(2− θ)(1− θ)(12 + (θ − 12)θ)/θ4]

κ1 [λt(1− θ)/θ]
κ2 [λt(2− θ)(1− θ)/θ2]
κ3 [λt(1− θ)(6 + θ(θ − 6))/θ3]

κ4 [λt(1− θ)(2− θ)(12 + θ(θ − 12))/θ4]

µ[1] [λt(1− θ)/θ]
µ[2] [λt(1− θ)/θ]2 + [λt(2− θ)(1− θ)/θ2]
µ[3] [λt(1− θ)/θ]3 + 3[λt(2− θ)(1− θ)/θ2][λt(1− θ)/θ] + [λt(1− θ)(6 + (θ − 6)θ)/θ3]

µ[4] [λt(1− θ)/θ]4 + 6[λt(1− θ)/θ]2[λt(2− θ)(1− θ)/θ2] + 4[λt(1− θ)/θ)(λt(1− θ)
(6 + (θ − 6)θ)/θ3] + 3[λt(2− θ)(1− θ)/θ2]2 + [λt(2− θ)(1− θ)(12 + (θ − 12)θ)/θ4]

κ[1] [λt(1− θ)/θ]
κ[2] 2[λt(1− θ)/θ]2
κ[3] 6[λt(1− θ)/θ]3
κ[4] 24[λt(1− θ)/θ]4

B1 [λt(1− θ)/θ]
B2 [(λt(1− θ)/θ)2 + 2(λt(1− θ)/θ)2]/2!
B3 [(λt(1− θ)/θ)3 + 6(λt(1− θ)/θ)(λt(1− θ)/θ)2 + 6(λt(1− θ)/θ)3]/3!
B4 [(λt(1− θ)/θ)4 + 12(λt(1− θ)/θ)2(λt(1− θ)/θ)2 + 24(λt(1− θ)/θ)(λt(1− θ)/θ)3

+12(λt(1− θ)/θ)2 + 24(λt(1− θ)/θ)4]/4!

3. The Bivariate Compound Poisson Process

In this section, we turn now to the consideration of factorial moments, cu-
mulants, and the coefficient of correlation for the BCPP. Let {Nt, t ≥ 0} be a
homogeneous Poisson process with parameter λ > 0 and let Xi, Yi, i = 1, 2, . . ., be
mutually i.i.d. discrete random variables taking finite values with the probabilities
P (Xi = j) = pj , j = 0, 1, . . .m and P (Yi = k) = qk, k = 0, 1, . . . ` in (2). We start
by finding factorial moments µ[r,s] for r = 1, 2, . . ., s = 1, 2, . . . For this purpose,
we first compute the joint probability generating function (pgf) S(1)

t and S(2)
t as

follows

g
S

(1)
t ,S

(2)
t

(u1, u2) =

∞∑
s1=0

∞∑
s2=0

P

(
Nt∑
i

Xi = s1,

Nt∑
i

Yi = s2

)
us11 u

s2
2

=

∞∑
s1=0

∞∑
s2=0

∞∑
n=0

P

(
n∑
i

Xi = s1,

n∑
i

Yi = s2

)
PNt

(n)us11 u
s2
2

where PNt
(n) = P (Nt = n), n = 0, 1, . . ., is the probability function of the

homogeneous Poisson process. SinceXi, Yi, i = 1, 2, . . . are i.i.d. random variables,
we get
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g
S

(1)
t ,S

(2)
t

(u1, u2) = pNt(0) + pNt(1)

∞∑
s1=0

∞∑
s2=0

P (X1 = s1)P (Y1 = s2)u
s1
1 u

s2
2 + · · ·

= pNt(0) + pNt(1)gX1(u1)gY1(u2)

+ pNt(2)gX1+X2(u1)gY1+Y2(u2) + · · ·
= pNt(0) + pNt(1)gX(u1)gY (u2)

+ pNt
(2)[gX(u1)]

2[gY (u2)]
2 + · · ·

(30)

where gX(u1), gY (u2) are the common pgfs of Xi, Yi, i = 1, 2, . . ., respectively.
Using (30), it is more convenient to deal with

g
S

(1)
t ,S

(2)
t

(u1, u2) = gNt [gX(u1)gY (u2)]

= exp[λt[gX(u1)gY (u2)− 1]]

= exp(−λt) exp[λt(p0q0 + p0q1u2 + · · ·+ p0qlu
l
2 + p1q0u1

+ p1q1u1u2 + · · ·+ p1qlu1u
l
2 + pmq0u

m
1 + · · ·+ pmqlu

m
1 u

l
2)]

(31)

The joint pgf in (31) can be differentiated any number of times with respect
to r and s and evaluated at (0, 0) yielding

µ[r,s] =
∂r+sg

S
(1)
t ,S

(2)
t

(u1, u2)

∂ur1∂u
s
2

∣∣∣∣∣
u1=u2=1

(32)

Differentiating (31) and substituting in (32), after some algebraic manipula-
tions, the factorial moments of S(1)

t and S(2)
t are given by

µ[1,1] = (λtξ[1])(λtς[1]) + (λtξ[1]ς[1])

µ[2,1] = (λtξ[1])
2(λtς[1]) + (λtξ[1])(λtξ[1]ς[1]) + (λtξ[2])(λtς[1]) + (λtξ[2]ς[1])

µ[2,2] = (λtξ[1])
2(λtς[1])

2 + (λtξ[1])(λtς[1])(λtξ[1]ς[1]) + (λtξ[2])(λtς[1])
2

+ (λtς[1])(λtξ[2]ς[1]) + (λtξ[1])
2(λtς[2]) + (λtξ[1])(λtξ[1]ς[2])

+ (λtξ[1]ς[1])
2 + (λtξ[2])(λtς[2]) + (λtξ[2]ς[2])

µ[2,3] = (λtξ[1])
2(λtς[1])

3 + (λtξ[1])(λtς[1])
2(λtξ[1]ς[1]) + (λtξ[2])(λtς[1])

3

+ (λtς[1])
2(λtξ[2]ς[1]) + (λtς[1])(λtξ[1]ς[1])

2 + (λtξ[1])(λtς[1])(λtξ[1]ς[2])

+ (λtξ[1])
2(λtς[2])(λtς[1]) + (λtξ[2])(λtς[2])(λtς[1]) + (λtς[1])(λtξ[2]ς[2])

+ (λtξ[2])(λtξ[1]ς[1])(λtς[1]) + (λtς[2])(λtξ[2]ς[1]) + (λtξ[1]ς[1])(λtξ[1]ς[2])

+ (λtξ[1]ς[3])(λtς[1]) + (λtς[3])(λtξ[1])
2 + (λtξ[2])(λtς[3]) + (λtξ[2]ς[3])

(33)

where ξ[r] = E[X(X−1) . . . (X−(r−1))], r = 1, 2, . . ., is the rth factorial moment
of Xi, i = 1, 2, . . . and where ς[s] = E[Y (Y − 1) . . . (Y − (s − 1))], s = 1, 2, . . .,
is the sth factorial moment of Yi, i = 1, 2, . . . in (2). Note that µ[r,s] = µ[s,r] for
r = 1, 2, . . ., s = 1, 2, . . .
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Similar to univariate CPP, let Xi, Yi, i = 1, 2, . . ., have finite values with the
probabilities P (Xi = j) = pj , j = 0, 1, . . .m and P (Yi = k) = qk, k = 0, 1, . . . `.
(31) and (34) can be used when P (Xi = j) = pj and P (Yi = k) = qk approach to
zero for j, k →∞.

The joint cumulant generating function of S(1)
t and S(2)

t is given by

κ(u1, u2) = −λt+ λt[(p0q0 + · · ·+ p0qr exp(u
r
2)) + (p1q0 exp(u1) + · · ·

+ p1qr exp(u1) exp(u
r
2)) + (pmq0 exp(u

m
1 ) + · · ·

+ pmqr exp(u
m
1 ) exp(ur2))] (34)

From (35) we have

κr,s = λt(ξrςs), r = 1, 2, . . . , s = 1, 2, . . . (35)

where ξr = E(Xr), r = 1, 2, . . ., and ςs = E(Y s), s = 1, 2, . . ., are expected values
of Xi and Yi, i = 1, 2, . . ., respectively.

The covariance of S(1)
t and S(2)

t is obtained using (34)

Cov
(
S
(1)
t , S

(2)
t

)
= E

(
S
(1)
t S

(2)
t

)
− E

(
S
(1)
t

)
E
(
S
(2)
t

)
= λt(λt+ 1)ξ1ς1 − (λtξ1)(λtς1)

= λtξ1ς1

(36)

Then, the coefficient of correlation for S(1)
t and S(2)

t is given by

ρ = Corr
(
S
(1)
t , S

(2)
t

)
=

Cov
(
S
(1)
t , S

(2)
t

)
√
V ar

(
S
(1)
t

)
V ar

(
S
(2)
t

) =
λtξ1ς1√

[λtE (X2)] [λtE (Y 2)]

=
ξ1ς1√
ξ2ς2

(37)

4. Numerical Examples

To illustrate the usage of the univariate CPP and BCPP, we present two data
sets. The first data is taken from Meintanis (1997) and Özel & Inal (2010). It
corresponds to the number of traffic accidents and fatalities recorded on Sundays
of each month over the period 1997-2004 in the region of Groningen. In this
study the same data is used to show applicability of the univariate CPP the with
following random variables: Nt is the number of Sunday accidents which occurs in
Groningen between years 1997-2004; Xi, i = 1, 2, . . ., are the number of fatalities
the ith type of accident; St =

∑Nt

i Xi is the total number of fatalities in the time
interval (0, t].
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The homogeneous Poisson process provide an adequate fit to the number of
Sunday accidents (p − value < 0.01, χ2 = 2.94) for λ = 9.84 (in month). The
independency of Xi, i = 1, 2, . . ., and {Nt, t ≥ 0} is shown using the Spearman′s ρ
test (Spearman′s ρ = 0.084; p = 0.432). Then, we have to decide the best distri-
bution of Xi, i = 1, 2, . . . among the Poisson, binomial and geometric distributions
for the number of fatalities. For this aim, a goodness of fit test can be performed to
choose the correct distribution (Agresti 2002). However, one can take into consid-
eration the number of values of Xi, i = 1, 2, . . . If Xi, i = 1, 2, . . . have finite values,
the binomial distribution can be used. Similarly, geometric or Poisson distribution
can be more suitable when Xi, i = 1, 2, . . . have infinite values. The goodness of
fit test is applied to decide the best distribution. It is found seen that the Poisson
distribution with parameter ν = 0.53 (p− value < 0.001, χ2 = 0.20), the binomial
distribution with parameters m = 4, p = 0.12 (p − value < 0.01, χ2 = 1.52) and
the geometric distribution with parameter θ = 0.62 (p−value < 0.001, χ2 = 0.06)
fit the data. Then it can be said that {St, t ≥ 0} has a Pólya-Aeppli process.
Note that the goodness-of-fit are applied sequentially without taking into account
the dependence amongst these tests, which of course influences the overall size of
the test, i.e., when we test all hypothesis each at level α, the computation of the
overall level becomes more complicated.

The moments and cumulants for the Pólya-Aeppli process are computed from
Table 3 for the parameters λ = 9.84; θ = 0.62 and several values of t. The results
are presented in Table 4. Then, the values of the skewness, kurtosis, Cov(Nt, St)
and Corr(Nt, St) are computed for the Pólya-Aeppli process and the results are
given in Table 5.

Table 4: The moments and cumulants of the Pólya-Aeppli process for the traffic acci-
dents in Groningen.

t µ′1 µ′2 µ′3 µ′4 µ[1] µ[2] µ[3] µ[4]
0.5 3.02 15.81 109.04 922.47 3.02 12.79 67.66 396.66
1 6.03 49.80 613.16 7885.24 6.03 43.77 366.71 3352.23
2 12.06 172.34 3246.47 64054.05 12.06 160.28 2317.11 35671.34
3 18.09 367.62 9216.11 241607.41 18.09 349.53 7167.36 154264.24
4 24.12 635.66 19838.25 645397.44 24.12 611.53 16233.64 448189.00

µ1 µ2 µ3 µ4 κ[1] κ[2] κ[3] κ[4]
0.5 6.03 43.08 340.80 3513.44 3.02 18.19 164.52 1984.45
1 12.06 164.95 2458.88 41475.28 6.03 72.75 1316.17 31751.14
2 24.12 620.87 16855.10 487496.27 12.06 290.98 10529.37 508018.17
3 36.19 1367.78 53718.02 2201987.32 18.09 654.71 35536.61 2571841.99
4 48.25 2405.66 123577.01 6556890.97 24.12 1163.92 84234.93 8128290.74

κ1 κ2 κ3 κ4 B1 B2 B3 B4

0.5 3.02 6.71 20.90 86.33 3.02 6.39 11.28 16.53
1 6.03 19.45 41.80 172.67 6.03 21.88 61.12 139.68
2 12.06 38.91 83.61 345.33 12.06 80.14 386.18 1486.31
3 18.09 58.36 125.41 518.00 18.09 174.77 1194.56 6427.68
4 24.12 77.82 167.21 690.66 24.12 305.77 2705.61 18674.54
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Table 5: The skewness, kurtosis, covariance, and the coefficient of correlation of the
Pólya-Aeppli process for the traffic accidents in Groningen.

t
√
β1 β2 Cov(Nt, St) Corr(Nt, St)

0.5 0.002131 -1.107261 3.015484 0.52475
1 0.000274 -1.475558 6.030968
2 0.000035 -1.735354 12.061935
3 0.000010 -1.822979 18.092903
4 0.000004 -1.867004 24.123871

A second data set comes from earthquakes in Turkey which is given by Özel
(2011a) and Özel (2011b). The mainshocks with surface wave magnitudes Ms ≥
5.0 that occurred in Turkey between 1900 and 2009, their foreshock and aftershock
sequences are considered. For the construction of a model to explain the total
number of foreshocks and aftershocks with the BCPP in (2), the following random
variables are defined: Nt is the number of mainshocks that occurred in Turkey
between 1903 and 2009; Xi, i = 1, 2, . . . are the number of foreshocks of ith
mainshock; Yi, i = 1, 2, . . . are the number of aftershocks of the ith mainshock;

and
(
S
(1)
t =

Nt∑
i

Xi, S
(2)
t =

Nt∑
i

Yi

)
is the total number of foreshocks and aftershocks

for the mainshocks. The goodness of fit test is performed to compare the observed
frequency distribution to the theoretical Poisson distribution. Chi-square value
(χ2 = 0.051 with df = 9, p − value = 0.525) indicates that {Nt, t ≥ 0} fits
the Poisson process with parameter λ = 1.037 (in years) at the level of 0.05.
Spearman’s ρ test verifies the absence of correlation betweenNt andXi, i = 1, 2, . . .
(Spearman’s ρ = 0.071; p = 0.412). No correlation is also found betweenNt and Yi,
i = 1, 2, . . . (Spearman’s ρ = 0.034; p = 0.589). Similarly, it is shown that there is
no statistically significant dependence between Xi and Yi, i = 1, 2, . . . (Spearman’s
ρ = 0.048; p = 0.493). As discussed by Özel (2011b), if the occurrence of foreshock
sequences is assumed to be independent of the occurrence of mainshocks, then
the distribution of foreshocks can be treated as a binomial distribution. The
goodness-of-fit test for the binomial distribution provided an adequate fit with a
p-value of 0.999 and chi-squared value χ2 = 0.003 with 34 degrees of freedom.
This means that the binomial distribution with parameters (m = 35, p = 0.15)
fits the probability function of Xi, i = 1, 2, . . . It is pointed out that the number
of aftershocks of a mainshock has a geometric distribution (Christophersen &
Smith 2000). After obtaining the frequency distribution of aftershocks and the
goodness-of-fit test (χ2 = 1.587 with df = 35), it is seen that Yi, i = 1, 2, . . .
have a geometric distribution with parameter θ = 0.175. Then, we can write(
S
(1)
t =

Nt∑
i

Xi, S
(2)
t =

Nt∑
i

Yi

)
and suggest that (S

(1)
t , S

(2)
t ) has a BCPP. So, the

joint factorial moments and cumulants are calculated from (33) and (35) for the
parameters λ = 1.037; θ = 0.175; (m = 35, p = 0.15) and several values of t. Then,
Cov

(
S
(1)
t , S

(2)
t

)
and Corr

(
S
(1)
t , S

(2)
t

)
are computed from (34) and (36) and the

results are presented in Table 6.
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Table 6: The moments, cumulants, covariance, and coefficient of correlation of the
BCPP for the earthquakes in Turkey.

t µ[1,1] µ[2,1] µ[2,2] µ[2,3] κ1,1 κ2,1 κ2,2 κ2,3 Cov(Nt, St) Corr(Nt, St)

0.5 19.49 152.43 546.09 26543.35 12.83 78.28 816.35 3422.87 12.83 0.6237
1 52.28 551.27 713.82 128434.33 25.67 156.56 1632.71 6845.74 25.67
2 157.79 2522.87 11344.95 1118387.43 51.33 313.12 3265.42 13691.49 51.33

2.5 230.51 4313.00 27684.65 2578433.75 64.16 391.40 4081.77 17114.36 64.16
3 316.54 6784.23 57395.00 5330414.38 77.00 469.68 4898.13 20537.23 77.00

5. Conclusion

In this paper, the moments, cumulants, skewness, kurtosis and covariance of
the univariate CPP are derived. Some special cases of the univariate CPP are
provided and a numerical example based on the traffic accidents in Groningen is
given. Then, BCPP is defined and some important probabilistic characteristics
such as moments, cumulants, covariances, and the coefficient of correlation for the
BCPP are obtained.

Earthquake is an unavoidable natural disaster for Turkey. Application to the
earthquake data in Turkey is presented to illustrate the usage of the BCPP and its
properties. Earthquakes could be regarded as discrete events, representing some
real but not well-known tectonic process. Following that scheme and keeping in
mind the highly random characteristics of all earthquake parameters, it is quite
natural to consider a sequence of earthquakes as a stochastic process. The stochas-
tic modeling of the earthquake occurrence has proved very useful in earthquake
prediction studies, in understanding the nature of the earthquake phenomena, and
in assessing seismicity and seismic hazard. Existing approaches in the research of
seismic hazard assessment are generally based on the homogeneous Poisson pro-
cess. However, new studies have been done using CPP and BCPP and give more
information than homogeneous Poisson process. For this reason, the factorial mo-
ments and cumulants of BCPP, which are obtained in this study, can be a good
tool to understand earthquake behaviour.

[Recibido: marzo de 2012 — Aceptado: marzo de 2013]
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Abstract

Modeling income, wage, wealth, expenditure and various other social
variables have always been an issue of great concern. The Dagum distribu-
tion is considered quite handy to model such type of variables. Our focus in
this study is to derive the L-moments and TL-moments of this distribution
in closed form. Using L & TL-moments estimators we estimate the scale
parameter which represents the inequality of the income distribution from
the mean income. Comparing L-moments, TL-moments and conventional
moments, we observe that the TL-moment estimator has lessbias and root
mean square errors than those of L and conventional estimators considered
in this study. We also find that the TL-moments have smaller root mean
square errors for the coefficients of variation, skewness and kurtosis. These
results hold for all sample sizes we have considered in our Monte Carlo simu-
lation study.

Key words: Dagum distribution, L-moments, Method of moments, Para-
meter estimation, TL-moments.

Resumen

La modelación de ingresos, salarios, riqueza, gastos y muchas otras varia-
bles de tipo social han sido siempre un tema de gran interés. La distribución
Dagum es considerada para modelar este tipo de variables. Nos centraremos
en este artículo en la derivación de los momentos L y los momentos TL de
esta distribución de manera cerrada. Mediante el uso de los estimadores de
momentos L y TL, estimamos el parámetro de escala que representa la de-
sigualdad de la distribución de ingresos a partir de la media. Comparando los
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momentos L, los momentos TL y los momentos convencionales, concluimos
que los momentos TL tienen menor sesgo y errores cuadráticos medios. Tam-
bién concluimos que los momentos TL tiene la menor error cuadrático medio
para los coeficientes de variación, sesgo y curtosis. Estas conclusiones son
igualmente aplicables para todos los tamaños de muestras considerados en
nuestro estudio de simulación de Monte Carlo.

Palabras clave: distribución Dagum, estimacón de parámetros, momentos
TL, momentos L, método de momentos.

1. Introduction

Dagum (1977a, 1977b) studied the income, wage and wealth distribution using
the Dagum Distributions. Dagum Distribution (DD) belongs to the family of Beta
distributions. Kleiber (1996) showed that this family models income distribution at
the univariate level. Dagum (1690) considered DD to model income data of several
countries and found that it provides superior fit over the whole range of data. Perez
& Alaiz (2011) studied personal income data of Spain using DD and found this
model to be adequate. Quintano & Dagostino (2006) analyzed the single-person
household income distribution for four European countries, and concluded that
DD provide a better fit for all four countries. Bandourian, McDonald & Turley
(2003) showed that DD provide the best fit in the case of two or three parameter
distributions for data from 23 countries. Various other studies also support the
use of DD as model for income data.

Identifying the pattern of income distribution is very important because the
trend provides a guide for the assessment of living standards and level of income
inequality in the population of a country. Recently, there has been an increasing
interest in the exploration of parametric models for income distribution and DD
has proved to be quite useful in modeling such data. But this distribution has
yet not been studied and estimated assuming the L-moment and TL moment. It
is has been demonstrated that L & TL- moments provide accurate fit and more
exact parameter estimation compared to the other techniques. The method of L-
moments and TL-moments were introduced Hosking (1990) and Elamir & Seheult
(2003), respectively. TL-moments have some merits over L-moments because the
former can be calculated, even if mean data does not exist.

This paper seeks to derive the first four L & TL-moments of DD and coefficient
of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) es-
timators. To our knowledge, these moments for DD has not been derived and
evaluated. We estimate the scale parameter of DD assuming L & TL-moments
estimators and compare these with conventional moments. To achieve this objec-
tive, we measure the biasedness and RMSEs to recommend an efficient method of
estimation. We also estimate the CV, CS & CK with the central, L & TL-moments
estimators. e set up a Monte Carlo simulation study assuming different sample
sizes and parametric values.

TL-moment estimators (TLMEs), L-moments estimators (LMEs) are derived
and compared with the conventional method of moment estimators (MMEs) for
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DD. The rest of the study is organized as follows: Section two is about the intro-
duction of the population and sample TL-moments and L-moments. In Section
3, probability density function (pdf), distribution function, conventional moments
and some other details of DD are presented. The derivations of the first four L
& TL-moments is given in Section 4 and the coefficients are also presented. In
Section 5, we setup the Monte Carlo simulation study to compare the properties
of the TLMEs, LMEs and MMEs of DD. Finally we conclude our study in the
final section.

2. L-Moment and TL-Moments

Hosking (1990) introduced L-moments and showed that these moments provide
superior fit, parameter estimation, hypothesis testing and empirical description
of data. Bílková (2012) used the L-moment of lognormal distribution to model
the income distribution data of the Czech Republic in 1992–2007 and obtained
consistent results as compared to the other methods of estimation. Due to the
advantages of L-moments over the convention moments, many distributions are
analyzed by these moments. Linear combinations of the ordered data values are
used to compute L-moments. Furthermore, these moments are less sensitive in the
case of outlier (Vogel & Fennessey 1993). Hosking (1990) defined the rth popula-
tion L-moments (λr)as the linear combinations of probability weighted moments
of an ordered sample data(Y1:n ≤ Y2:n ≤ ... ≤ Yn:n), that is

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Yr−k:r) , r = 1, 2, 3, . . . (1)

For the real-numbered random variable Y with cumulative distribution function
(cdf) F (y); let y(F ) denote the quantile function of the ordered statistics of the
sample of size n; then E(Yj:r)is given by

E(Yj:r) =
r!

(1 − r)!(r − j)!

∫ 1

0

y(F )j−1(1 − F )r−jdF

=
r!

(1 − r)!(r − j)!

∫ ∞
−∞

yf(y) [F (y)]
j−1

[1 − F (y)]
r−j

dy; j = 1, 2, . . . , n

(2)

The first and second L-moments (λ1, λ2)are equal to the measure of location
and dispersion respectively. The ratio of the third L-moment (λ3) to the second
L-moment and ratio of the fourth L-moments (λ4)to the second L-moment are
the measure of skewness τLcs = λ3/λ2 and kurtosis, τLck = λ4/λ2 respectively. The
sample L-moments (lr)are l1 = d0, l2 = 2d1−d0, l3 = 6d2−6d1+d0andl4 = 20d3−
30d2 + 12d1 − d0and the sample L-skewness and L-kurtosis are tLcs = l3/l2, t

L
ck =

l4/l2respectively. These ratios are less biased than for the conventional moments
in estimation. The above mentioned dr (r = 1, 2, 3, 4) are given by

dr =
1

n

n∑
j=r+1

(j − 1)(j − 2) · · · (j − r)

(n− 1)(n− 2) · · · (n− r)
yj:n (3)
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where the size of data is n.

Elamir & Seheult (2003) introduced the TL-moments. TL-moments does not
have the assumption of the existence of the mean. The TL-moments for the
Cauchy distribution are derived by Shabri, Ahmad & Zakaria (2011), even though
the mean of this distribution does not exist. According to Elamir & Seheult (2003),
the rth TL-moments and sample TL-moment are given by

λ(t)r =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Yr+t−k:r+2t) ,

r = 1, 2, 3, . . .

t = 1, 2, 3, . . .
(4)

and

l(t)r =
1

r

n−t∑
j=t+1

[
r−1∑
k=0

(−1)kC

]
Yj:n (5)

where C =

(
r − 1

k

)(
j − 1

r + t− 1 − k

)(
n− j

t+ k

)/(
n

r + 2t

)
respectively.

The sample TL-skewness and TL-kurtosis are defined as t(t)cs = l
(t)
3

/
l
(t)
2 and t(t)ck =

l
(t)
4

/
l
(t)
2 , respectively.

3. Dagum Distribution

The Dagum distribution is a special case of the Generalized Beta type-II distri-
bution (DD(a, b, p) = GB2(a, b, p, 1))as mentioned by Kleiber (1996). It is often
used to model wage, wealth and income data. It was introduced by Dagum (1977b).
The pdf of the distribution is given by

f(y) =
ap (y)

ap−1

bap [1 + (y/b)a]
p+1 , (6)

where p > 0 and a > 0 are the shape parameters and b > 0 is the scale parameter.

The cdf and rth moment about zero are given by F (y) =
[
(y/b)

−a
+ 1
]−p

and
E(Y r) = brΓ(p+r/a)Γ(1−r/a)/Γp respectively. The three-parameter DD provides
a flexible distribution (Dagum & Lemmi 1988), and has better performace than
other commonly used models (Kleiber 1996).

To evaluate the best method of estimation among the considered methods,
we used the criteria of bias and RMSE. Bias is the expected difference between
estimated and true value of the parameter. According to Daud, Kassim, Desa &

Nguyen (2002) the RMSE =
[∑n

i=1
(yi−ŷi)
n−m

]1/2
, where yi is actual observations, ŷi

is the estimated value obtained from the fitted distribution, n−m is the difference
between the number of observations in the sample and the number of parameters
being estimated.
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4. L-Moments and TL-Moments for the DD

As mentioned earlier, to best of our knowledge, there is no derivation of the L &
TL-moments for DD in the literature. In this section, we derive L & TL-moments
of DD using a general rule. The derivation of the L & TL-moments is given in the
following Subsections 4.1-4.3.

4.1. L-moments of DD

Let Y1:n ≤ Y2:n ≤ Y3:n ≤ · · · ≤ Yn:n denote the order statistics from DD. The
expected value of the rth order statistics Yr:n is

E(Yr:n) =
n!ap

(r − 1)!(n− r)

∫
(yr:n/b)

ab
[
(yr:n/b)

−a
+ 1
]−pr−1

×
[
1 −

(
(yr:n/b)

−a
+ 1
)−p]n−r

dyr:n

(7)

where y(F ) = b
(
F−1/p − 1

)−1/a
is the quantile function of the DD. Now using the

general form of L-moments, we have the first four L-moments for DD as follows

λ1 = E(Y ) = bΓ(1 − α)G1 (8)

λ2 = bΓ(1 − α) (−G1 +G2) (9)

λ3 = bΓ(1 − α) (G1 − 3G2 + 2G3) (10)

λ4 = bΓ(1 − α) (−G1 + 6G2 − 10G3 + 5G4) (11)

where Gi = Γ(ip+ α)/Γip; i = 1, 2, 3, 4, 5.
Equating the population L-moments with sample L-moments and after simplifi-

cation, we get the following results that could be used for the parameter estimation
of DD

l1 = bp×Beta (1 − α, p+ α) (12)

l2 = −l1 + 2bp×Beta (1 − α, 2p+ α) (13)

l3 = −2l1 − 3l2 + 6bp×Beta (1 − α, 3p+ α) (14)

l4 = −15l1 − 24l2 − 10l3 + 20bp×Beta (1 − α, 4p+ α) (15)

where ‘Beta’ is the beta function (Beta(θ1, θ2) = Γθ1Γθ2/Γ(θ1 + θ2)).

4.2. TL-moments of DD

L-moments are the foundation of TL-moments. TL-moments are more robust
than L-moments (Elamir and Seheult, 2003) because they trim the extreme values
on the data. The close from of the first four TL-moments are

λ
(t)
1 = bΓ(1 − α) (3G2 − 2G3) (16)
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λ
(t)
2 = bΓ(1 − α) (3G2 + 6G3 − 3G4) (17)

λ
(t)
3 = (10bΓ(1 − α)/3) (G2 − 4G3 + 5G4 − 2G5) (18)

λ
(t)
4 = 15bΓ(1 − α) (−G2/4 + 5G3/3 − 15G4/4 + 7G5/2 − 7G6/6) (19)

4.3. L & TL Coefficient of Variation, Skewness and Kurtosis

The population coefficient of variation
(
τLcv
)
lies between 0 and 1, τLcs also has

the range 0 and 1, andτLckmeasure the peakness of any distribution, lies within the
range of

(
5
(
τLcs
)2 − 1

)
/4 ≤ τLck < 1 according to Hosking (1990) The τLcv, τLcsand

τLckof DD are expressed as follows:

τLcv =
G2

G1
− 1 (20)

τLcs =
G1 − 3G2 + 2G3

−G1 +G2
(21)

τLck =
−G1 + 6G2 − 10G3 + 5G4

−G1 +G2
(22)

The population TL-moments CV, CS and CK are represented with the notation
τ
(t)
cv , τ

(t)
cs and τ (t)ck of DD and expressed as follows:

τ (t)cv =
3G2 + 6G3 − 3G4

3G2 − 2G3
(23)

τ (t)cs =
10 (G2 − 4G3 + 5G4 − 2G5)

3 (3G2 + 6G3 − 3G4)
(24)

τ
(t)
ck =

5 (−G2 + 5G3 − 15G4 + 7G5 − 7G6)

(G2 + 2G3 −G4)
(25)

5. Monte Carlo Simulation Study

In this section, we use Monte Carlo simulated experiments to compare the three
methods of moment estimators, conventional, L & TL-moments estimators of DD.
This comparison is based on a measure of biasedness, root mean square estimators
(RMSEs), sample CV, sample CS and sample CK. We use MATLAB-7 software to
conduct our experiment. We perform our experiments for various sample sizes (15,
30, 50, 100, 500 and 1,000) as well as for different values of parameters. We have
repeated each of our experiment 10,000 times. We use same parametric values for
DD as were used by Ye, Oluyede & Pararai (2012).

In each case, for the estimation of b (scale parameter), we equate the sample
moments to the corresponding population moments, and finally get the biasness
and RMSEs of the b assuming the MMEs, LMEs & TLMEs of DD. Graphical
shapes of the distribution on the bases of these parameters are given in Figure 1.
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Figure 1: Dagum Distribution trend with different values of the parameters 
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Figure 1: Dagum Distribution trend with different values of the parameters.

The results are presented in the Table 1 - 5. We find that the method of mo-
ments estimator (MME) gave biased results of the scale parameter with higher
RMSEs. The L-moments estimator (LME) gave biased results with lower RM-
SEs than MME, and the TLMEs has a smaller bias with respect to the scale
parameter and with lowest RMSEs. TLME results are very close to the true
parametric values. So the TL-moments provide an unbiased estimator. Accord-
ing to the RMSEs, we can define the relation of these three moments estimators
asTLME < LME < MME. These results hold for all the sample sizes we have
considered. Therefore, the TL-moments provide precise and accurate estimates of
the scale parameters of DD. If we do not want to trim the extreme values then
L-moments provide better results.

The mean, L-moment standard deviation (LSD), τLcv, τLcsand τLck are computed
using equations (21), (22) and (23) respectively. TL-moment standard deviation
(TLSD),τTL

cv , τ
TL
cs and τTL

ck are also computed using equations (24), (25) and (26)
respectively. These results are presented in Table A.6, assuming the same para-
metric values as those used for the scale parameter estimation. We observe that L
& TL-moments coefficients are in the defined range and TL-moments coefficients
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have a relatively smaller value than the conventional and L-moments ones. We also
observe that the shape parameters (a and p)make some effect on the coefficients
value but for different values of scale parameters (b) coefficients remain constant.
Finally, we sum up all the above description in the favour of TL-moments for DD.

6. Conclusion

We have derived L and TL-moments for DD, compared parameter estimates
and descriptive statistics with the conventional methods of moment estimates,
assuming different parametric values for small to large samples. For parameter es-
timation, we found TL-moments provide unbiased and efficient results compared
to the remaining moments because it is more robust against outliers. L-moments
also provide more or less unbiased results and is more efficient than conventional
moments. In distribution fitting, according to the location, scale, RMSE, skew-
ness and kurtosis, TL-moments are better for DD parameter estimation. We find
that TL moments estimators are the best, and L-moments are better than conven-
tional moments for untrimmed data. These results hold for all sample sizes and
parametric values which we have considered in our study.
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Table 1: Biases and RMSEs of the parameter estimations for different types of estima-
tors assuming DD for b when b = 2.5

Parameters n = 50 n = 100
a p MME LME TLME MME LME TLME
2.5 2.5 Bias -0.0645 -0.0002 -0.0016 -0.0370 -0.0004 0.0003

RMSEs 0.4567 0.3497 0.3442 0.3268 0.2487 0.2430
3.5 Bias -0.0494 0.0016 0.0032 -0.0318 -0.0043 -0.0045

RMSEs 0.3571 0.3069 0.3264 0.2543 0.2141 0.2255
5.0 Bias -0.0034 -0.0222 0.0034 -0.0222 0.0004 0.001

RMSEs 0.3182 0.2893 0.3191 0.2222 0.1020 0.2204
3.5 2.5 Bias -0.0535 -0.0050 -0.0035 -0.0226 0.0021 0.0017

RMSEs 0.3422 0.2991 0.3215 0.2460 0.2123 0.2123
3.5 Bias -0.0427 -0.0014 -0.0036 -0.0215 -0.0002 -0.0010

RMSEs 0.2933 0.2741 0.3066 0.2086 0.1943 0.2164
5.0 Bias -0.0417 -0.0011 0.0011 -0.0196 0.0002 0.0012

RMSEs 0.2685 0.2634 0.3041 0.1899 0.1846 0.2118
5.0 2.5 Bias -0.0444 -0.0018 -0.0021 -0.0209 0.0002 -0.0002

RMSEs 0.2971 0.2815 0.3109 0.2067 0.1944 0.2145
3.5 Bias -0.0422 -0.0033 -0.0045 -0.0208 -0.0010 -0.0006

RMSEs 0.2680 0.2654 0.3074 0.1885 0.1860 0.2128
5.0 Bias -0.0325 0.0052 0.0033 -0.0213 -0.0022 -0.0020

RMSEs 0.2566 0.2594 0.3029 0.1810 0.1816 0.2103
Parameters n = 500 n = 1,000

a p MME LME TLME MME LME TLME
2.5 2.5 Bias -0.0051 0.0009 0.00003 -0.0039 -0.0002 -0.0004

RMSEs 0.1612 0.1107 0.1069 0.0754 0.0783 0.0754
3.5 Bias -0.0058 -0.0003 0.0001 -0.0040 -0.0011 -0.0010

RMSEs 0.1202 0.0983 0.1025 0.0843 0.0687 0.0717
5.0 Bias -0.0045 -.00001 -.00005 -0.0027 -0.0003 -0.0002

RMSEs 0.1023 0.0908 0.0978 0.0712 0.0631 0.0684
3.5 2.5 Bias -0.0056 -0.0004 0.00001 -0.0027 -0.0002 0.0001

RMSEs 0.1138 0.0953 0.1004 0.0815 0.0670 0.0699
3.5 Bias -0.0043 0.0002 0.0009 -0.0024 -0.0005 -0.0010

RMSEs 0.0958 0.0876 0.0958 0.0668 0.0612 0.0673
5.0 Bias -0.0044 -0.0006 -0.0009 -0.0026 -0.0007 -0.0008

RMSEs 0.0836 0.0813 0.0939 0.0602 0.0582 0.0665
5.0 2.5 Bias -0.0050 -0.0006 -0.0001 -0.0038 -0.0017 -0.0018

RMSEs 0.0945 0.088 0.0974 0.0665 0.0620 0.0679
3.5 Bias -0.0043 -0.0003 -0.0002 -0.0019 0.0001 0.0007

RMSEs 0.0844 0.0830 0.0943 0.0599 0.0588 0.0667
5.0 Bias -0.0040 -0.0002 0.0002 -0.0029 -0.0011 -0.0014

RMSEs 0.0801 0.0807 0.0934 0.0568 0.0573 0.0665
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Table 2: Biases and RMSEs of the parameter estimations for different types of estima-
tors assuming DD for b when b = 3.5

Parameters n = 50 n = 100
a p MME LME TLME MME LME TLME
2.5 2.5 Bias -0.0896 0.0022 0.0046 -0.0479 0.0012 0.0024

RMSEs 0.6254 0.4854 0.4810 0.4653 0.3447 0.3347
3.5 Bias -0.0701 0.0016 0.0017 -0.0409 -0.0048 -0.0057

RMSEs 0.5065 0.4349 0.4584 0.3680 0.3074 0.3200
5.0 Bias -0.0620 -0.0011 -0.0042 -0.0382 -0.0059 -0.0052

RMSEs 0.4364 0.3964 0.4377 0.3103 0.2805 0.3099
3.5 2.5 Bias -0.0686 -0.0010 -0.0019 -0.0319 0.0014 -0.0019

RMSEs 0.4849 0.4228 0.4483 0.3482 0.2971 0.3125
3.5 Bias -0.0689 -0.0094 -0.0102 -0.0349 -0.0041 -0.0032

RMSEs 0.4114 0.3858 0.4313 0.2870 0.2689 0.3014
5.0 Bias -0.0614 -0.0056 -0.0036 -0.0290 -0.0011 0.0003

RMSEs 0.3760 0.3678 0.4258 0.2654 0.2586 0.2967
5.0 2.5 Bias -0.0596 -0.0010 -0.0031 -0.0276 0.0016 0.0015

RMSEs 0.4127 0.3923 0.4346 0.2915 0.2739 0.3046
3.5 Bias -0.0504 0.0027 -0.0022 -0.0265 0.0003 -0.0016

RMSEs 0.3723 0.3686 0.4228 0.2635 0.2596 0.2963
5.0 Bias -0.0540 -0.0005 -0.0001 -0.0232 0.0031 0.0007

RMSEs 0.3608 0.3641 0.4256 0.2497 0.2522 0.2928
Parameters n = 500 n = 1,000

a p MME LME TLME MME LME TLME
2.5 2.5 Bias -0.0085 -.00003 -0.0012 -0.0052 0.0003 0.0004

RMSEs 0.2297 0.1563 0.1494 0.1649 0.1113 0.1064
3.5 Bias -0.0045 0.0023 0.0020 -0.0047 -0.0002 -0.0001

RMSEs 0.1693 0.1379 0.1431 0.1186 0.0973 0.1019
5.0 Bias -0.0061 -.00004 -0.0002 -0.0035 -0.0004 -0.0001

RMSEs 0.1403 0.1248 0.1362 0.0999 0.0885 0.0964
3.5 2.5 Bias -0.0062 0.0004 -.00004 -0.0038 -0.0007 -0.0009

RMSEs 0.1578 0.1316 0.1391 0.1126 0.0926 0.0971
3.5 Bias -0.0066 -0.0010 -0.0020 -0.0039 -0.0007 -0.0002

RMSEs 0.1327 0.1220 0.1343 0.0937 0.0861 0.0948
5.0 Bias -0.0053 0.0001 0.0003 -0.0045 -0.0018 -0.0020

RMSEs 0.1182 0.1147 0.1313 0.0843 0.0816 0.0927
5.0 2.5 Bias -0.0069 -0.0005 .00006 -0.0027 0.0003 0.0006

RMSEs 0.1316 0.1221 0.1333 0.0927 0.0862 0.0948
3.5 Bias -0.0034 0.0017 0.0015 -0.0022 0.0005 0.0005

RMSEs 0.1152 0.1151 0.1312 0.0847 0.0830 0.0937
5.0 Bias -0.0060 -0.0006 -0.0003 -0.0031 -0.0004 -0.0001

RMSEs 0.1116 0.1122 0.1303 0.0792 0.0797 0.0925
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Table 3: Biases and RMSEs of the parameter estimations for different types of estima-
tors assuming DD for b when b = 5

Parameters n = 50 n = 100
a p MME LME TLME MME LME TLME
2.5 2.5 Bias -0.1247 0.0074 0.0054 -0.0795 -0.0035 -0.0001

RMSEs 0.9049 0.7027 0.6920 0.6469 0.4887 0.4805
3.5 Bias -0.0996 -0.0019 -0.0076 -0.0528 -0.0013 -0.0007

RMSEs 0.7260 0.6181 0.6502 0.5265 0.4393 0.4588
5.0 Bias -0.0962 -0.0962 -0.0124 -0.0507 -0.0058 -0.0061

RMSEs 0.6166 0.5616 0.6176 0.4481 0.4047 0.4439
3.5 2.5 Bias -0.1018 -0.0061 -0.0101 -0.0451 0.0016 -0.0026

RMSEs 0.6879 0.6015 0.6371 0.5018 0.4248 0.4466
3.5 Bias -0.0937 -0.0105 -0.0159 -0.0378 0.0045 0.0053

RMSEs 0.5907 0.5554 0.6179 0.4201 0.3901 0.4309
5.0 Bias -0.0808 -0.0017 -0.0020 -0.0391 -0.0004 -0.0014

RMSEs 0.5389 0.5281 0.6078 0.3799 0.3698 0.4258
5 2.5 Bias -0.0875 -0.0045 -0.0051 -0.0464 -0.0037 -0.0036

RMSEs 0.5914 0.5611 0.6207 0.4152 0.3917 0.4342
3.5 Bias -0.0752 0.0024 0.0012 -0.0432 -0.0036 -0.0027

RMSEs 0.5409 0.5344 0.6110 0.3821 0.3771 0.4301
5.0 Bias -0.0750 0.0016 0.0047 -0.0386 -0.0003 0.00058

RMSEs 0.5133 0.5199 0.6120 0.3583 0.3613 0.4231
Parameters n = 500 n = 1,000

a p MME LME TLME MME LME TLME
2.5 2.5 Bias -0.0162 0.0015 0.0045 -0.0078 -0.0017 -0.0026

RMSEs 0.3183 0.2176 0.2121 0.2338 0.1558 0.1515
3.5 Bias -0.0111 -0.0013 -0.0020 -0.0060 -0.0003 0.0005

RMSEs 0.2371 0.1926 0.2023 0.1694 0.1366 0.1423
5.0 Bias -0.0091 -.00003 -0.0001 -0.0049 -0.0006 -0.0009

RMSEs 0.2046 0.1816 0.1957 0.1431 0.1269 0.1382
3.5 2.5 Bias -0.0117 -0.0014 -0.0012 -0.0078 -0.0023 -0.0021

RMSEs 0.2266 0.1883 0.1972 0.1598 0.1333 0.1404
3.5 Bias -0.0085 0.0003 0.0007 -0.0041 0.0002 0.0003

RMSEs 0.1869 0.1730 0.1925 0.1354 0.1238 0.1360
5.0 Bias -0.0074 0.0005 0.0016 -0.0042 -0.0005 -0.0011

RMSEs 0.1704 0.1654 0.1895 0.1201 0.1159 0.1319
5 2.5 Bias -0.0122 -0.0035 -0.0042 -0.0048 -.00028 0.00003

RMSEs 0.1869 0.1742 0.1901 0.1323 0.1231 0.1348
3.5 Bias -0.0076 0.0004 0.00155 -0.0041 -0.0004 -0.0010

RMSEs 0.1705 0.1676 0.1909 0.1200 0.1174 0.1328
5.0 Bias -0.0092 -0.0014 -0.0005 -0.0036 0.0002 0.00034

RMSEs 0.1623 0.1635 0.1896 0.1146 0.1150 0.1325
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Table 4: Biases and RMSEs of the parameter estimations for different types of estima-
tors assuming DD for b when b = 10

Parameters n = 50 n = 100
a p MME LME TLME MME LME TLME
2.5 2.5 Bias -0.2562 0.0065 0.0132 -0.1483 -0.0074 -0.0070

RMSEs 1.7869 1.3870 1.3742 1.3197 0.9804 0.9584
3.5 Bias -0.1635 -0.0045 -0.0097 -0.1153 -0.0129 -0.0188

RMSEs 1.4408 1.2335 1.2969 1.0372 0.8624 0.8994
5.0 Bias -0.1772 -0.0032 -0.0122 -0.0883 -0.0020 -0.0058

RMSEs 1.2469 1.1327 1.2507 0.8985 0.8096 0.8840
3.5 2.5 Bias -0.1964 -0.0037 -0.0100 -0.0901 0.0065 0.0053

RMSEs 1.3818 1.2082 1.2771 0.9798 0.8342 0.8827
3.5 Bias -0.1818 -0.0133 -0.0187 -0.0862 -0.0038 -0.0091

RMSEs 1.1858 1.1119 1.2317 0.8413 0.7762 0.8647
5.0 Bias -0.1586 -0.0010 0.0004 -0.0839 -0.0022 0.0060

RMSEs 1.0750 1.0537 1.2175 0.7585 0.7381 0.8469
5 2.5 Bias -0.1621 0.0052 -.00006 -0.0879 0.0010 0.0071

RMSEs 1.1603 1.1058 1.2293 0.8236 0.7823 0.8742
3.5 Bias -0.1635 -0.0045 -0.0097 -0.0826 -0.0043 -0.0060

RMSEs 1.0567 1.0512 1.2127 0.7544 0.7424 0.8457
5.0 Bias -0.1418 0.0104 0.01018 -0.0852 -0.0090 -0.0071

RMSEs 10.214 10.333 12.134 0.7252 0.7291 0.8485
Parameters n = 500 n = 1,000

a p MME LME TLME MME LME TLME
2.5 2.5 Bias -0.0310 -0.0004 0.0015 -0.0154 -0.0011 -0.0019

RMSEs 0.6482 0.4411 0.4260 0.4611 0.3135 0.3018
3.5 Bias -0.0247 -0.0026 -0.0004 -0.0068 0.0037 0.0056

RMSEs 0.4792 0.3910 0.4080 0.3467 0.2768 0.2851
5.0 Bias -0.0152 0.0021 0.00211 -0.0138 -0.0043 -0.0041

RMSEs 0.3983 0.3538 0.3866 0.2834 0.2529 0.2767
3.5 2.5 Bias -0.0236 -0.0027 -0.0035 -0.0108 -0.0007 0.0003

RMSEs 0.4556 0.3812 0.4035 0.3263 0.2682 0.2798
3.5 Bias -0.0163 0.0006 -0.0004 -0.0124 -0.0047 -0.0062

RMSEs 0.3777 0.3469 0.3830 0.2678 0.2459 0.2709
5.0 Bias -0.0159 0.0001 0.0002 -0.0093 -0.0021 -0.0042

RMSEs 0.3378 0.3290 0.3780 0.2397 0.2316 0.2638
5 2.5 Bias -0.0083 -0.0011 -0.0017 -0.0087 -0.0004 -0.0018

RMSEs 0.2654 0.2470 0.2733 0.2669 0.2483 0.2718
3.5 Bias -0.0165 -0.0005 -0.0008 -0.0094 -0.0021 -0.0037

RMSEs 0.3389 0.3332 0.3789 0.2414 0.2364 0.2671
5.0 Bias -0.0060 0.0017 0.0027 -0.0070 .00005 -0.0008

RMSEs 0.2279 0.2294 0.2668 0.2280 0.2283 0.2616
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Table 5: Mean, S.D, CV, CS and CK different parametric values assuming MMEs,
LMEs and TLMEs

Parameters Mean S.D CV CS CK
a b p Method of Moment Estimates

2.5
3.5
5.0
10

2.5 2.5 1.74618
1.87901
2.01460
2.22241

0.96423
0.73405
0.55391
0.31206

0.55219
0.39066
0.27495
0.14041

1.59264
0.87000
0.41096
-0.1101

9.96322
5.18644
3.83527
3.47769

2.5 2.5
3.5
5.0
10

2.5 1.74618
2.44465
3.49236
6.98473

0.96423
1.34992
1.92847
3.85693

0.55219
0.55219
0.55219
0.55219

1.59264
1.59264
1.59264
1.59264

9.96322
9.96322
9.96322
9.96322

2.5 2.5 2.5
3.5
5.0
10

1.74618
1.46679
1.23674
0.90892

0.96423
0.74442
0.59315
0.41060

0.55219
0.50751
0.47961
0.45174

1.59264
1.08950
0.81551
0.56301

9.96322
5.67080
4.25391
3.35399

a b p L-Moment Estimates
2.5
3.5
5.0
10

2.5 2.5 1.74618
1.87901
2.01460
2.22241

0.50944
0.40268
0.30854
0.17429

0.29174
0.21430
0.15315
0.07842

0.18854
0.11113
0.05080
-0.0220

0.16014
0.14526
0.14071
0.14334

2.5 2.5
3.5
5.0
10

2.5 1.74618
2.44465
3.49236
6.98473

0.50944
0.71321
1.01888
2.03776

0.29174
0.29174
0.29174
0.29174

0.18854
0.18854
0.18854
0.18854

0.16014
0.16014
0.16014
0.16014

2.5 2.5 2.5
3.5
5.0
10

1.74618
1.46679
1.23674
0.90892

0.50944
0.40484
0.32781
0.23011

0.29174
0.27600
0.26506
0.25316

0.18854
0.15103
0.12369
0.09272

0.16014
0.14100
0.12821
0.11494

a b p TL-Moment Estimates
2.5
3.5
5.0
10

2.5 2.5 1.65012
1.83426
1.99892
2.22625

0.25671
0.20651
0.15907
0.08958

0.15557
0.11258
0.07958
0.04024

0.10855
0.06144
0.02539
-0.01743

0.07708
0.07183
0.07064
0.07239

2.5 2.5
3.5
5.0
10

2.5 1.65012
2.31018
3.30025
6.60051

0.25671
0.35939
0.51342
1.02685

0.15557
0.15557
0.15557
0.15557

0.10855
0.10855
0.10855
0.10855

0.07708
0.07708
0.07708
0.07708

2.5 2.5 2.5
3.5
5.0
10

1.65012
1.40564
1.19619
0.88759

0.25671
0.20865
0.17147
0.12219

0.15557
0.14844
0.14334
0.13767

0.10855
0.08752
0.07193
0.05396

0.07708
0.06943
0.06422
0.05870
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Abstract

We consider an arbitrary continuous cumulative distribution function
F (x) with a probability density function f(x) = dF (x)/dx and hazard func-
tion hf (x) = f(x)/[1−F (x)]. We propose a new family of distributions, the
so-called proportional hazard distribution-function, whose hazard function
is proportional to hf (x). The new model can fit data with high asymmetry
or kurtosis outside the range covered by the normal, t-student and logistic
distributions, among others. We estimate the parameters by maximum like-
lihood, profile likelihood and the elemental percentile method. The observed
and expected information matrices are determined and likelihood tests for
some hypotheses of interest are also considered in the proportional hazard
normal distribution. We show an application to real data, which illustrates
the adequacy of the proposed model.

Key words: Hazard function, Kurtosis, Method of moments, Profile likeli-
hood, Proportional hazard model, Skewness, Skew-normal distribution.

Resumen

Consideramos una función de distribución continua arbitraria F (x) con
función de densidad de probabilidad f(x) = dF (x)/dx y función de riesgo
hf (x) = f(x)/[1− F (x)]. En este artículo proponemos una nueva familia de
distribuciones cuya función de riesgo es proporcional a la función de riesgo
hf (x). El modelo propuesto puede ajustar datos con alta asimetría o curtosis
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fuera del rango de cobertura permitido por la distribución normal, t-Student,
logística, entre otras. Estimamos los parámetros del modelo usando máxima
verosimilitud, verosimilitud perfilada y el método elemental de percentiles.
Calculamos las matrices de información esperada y observada. Consideramos
test de verosimilitudes para algunas hipótesis de interés en el modelo con
función de riesgo proporcional a la distribución normal. Presentamos una
aplicación con datos reales que ilustra que el modelo propuesto es adecuado.

Palabras clave: asimetría, curtosis, distribución skew-normal, función de
riesgo, método de los momentos, modelo de riesgo proporcional, verosimilitud
perfilada.

1. Introduction

When data originates from heavy-tailed or asymmetrical distributions, the
normality-based inferential processes are inadequate. In these situations many au-
thors choose to transform the variables in order to attain symmetry or normality.
These transformations produce unsatisfactory results because the interpretation of
the results becomes cumbersome. Although the class of elliptic distributions is a
good alternative for situations with heavy-tailed behavior, this is not appropriate
when the distribution is asymmetric. These circumstances prompted the search
for new distributions, better suited to fit data with high asymmetry or kurtosis.
The literature on families of flexible distributions has experienced great increase
in the last three or four decades. Some early results include Lehmann (1953),
Roberts (1966) and O’Hagan & Leonard (1976), among others. Azzalini (1985),
Durrans (1992), Fernandez & Steel (1998), Mudholkar & Hutson (2000), Gupta,
Chang & Huang (2002), Arellano-Valle, Gómez & Quintana (2004, 2005), Gómez,
Venegas & Bolfarine (2007), Arnold, Gómez & Salinas (2009), Pewsey, Gómez &
Bolfarine (2012) represent some of the important contributions.

Azzalini (1985) defines a probability density function of a random variable Z
with skew-normal distribution and parameter λ, given by

fSN (z;λ) = 2φ(z)Φ(λz), z ∈ R (1)

where φ and Φ denote the standard normal density and the cumulative distribu-
tion functions, respectively. The skewness is controlled by the parameter λ. We
denote this by Z ∼ SN(λ). The asymmetry and kurtosis coefficients for this dis-
tribution are in the intervals (−0.9953, 0.9953) and [3, 3.8692), respectively. The
skew-normal distribution was first introduced by O’Hagan & Leonard (1976) as
a prior distribution for estimating a normal location parameter. The density (1)
has also been studied widely by Henze (1986), Chiogna (1998), Pewsey (2000) and
Gómez et al. (2007).

Durrans (1992), in a hydrological context, introduced the fractional order
statistics distribution with density function given by

gF (z;α) = αf(z){F (z)}α−1, z ∈ R, α ∈ R+ (2)
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where F is an absolutely continuous distribution function, f is a corresponding
density function and α is a shape parameter that controls the amount of asymmetry
in the distribution. We refer to this model as the power distribution. We use the
notation Z ∼ AP (α).

Following the idea of Durrans, Gupta & Gupta (2008) we define the power-
normal distribution whose distribution function is given by

gΦ(z;α) = αφ(z){Φ(z)}α−1, z ∈ R, α ∈ R+ (3)

We use the notation Z ∼ PN(α). Pewsey, Gómez and Bolfarine (2012) showed
that the expected information matrix is nonsingular for the neighborhood of α = 1,
contrary to the skew-normal distribution where the information matrix is singular
under the symmetry hypothesis (λ = 0). They also found that the asymmetry and
kurtosis coefficients for this distribution are in the intervals [−0.6115, 0.9007] and
[1.7170, 4.3556], respectively.

Figure 1 shows how the parameters α and λ control the asymmetry and kurtosis
of the (1) and (3) models.
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Figure 1: Probability density function (a) PN(α) for α = 0.746 (dashed-dotted line),
1.626 (dotted line), 2.254 (dashed line) and 2.516 (solid line). (b) SN(λ) for
λ =-0.40 (dashed-dotted line), 0.60 (dotted line), 1.40 (dashed line) and 2.20
(solid line).

In this paper we present a new family of distributions so-called proportional
hazard distribution-functions. The paper is presented as follows. In Section 2 we
define the proportional hazard distribution-function, study some of its properties
and discuss maximum likelihood estimation. The location-scale extension for pro-
portional hazard distribution-function is presented in Section 3. In Section 4, we
define the location-scale proportional hazard normal model and different methods
for parameter estimation; we derive the information matrix and discuss likelihood
ratio tests for some hypotheses of interest. Further, the asymptotic distribution of
maximum likelihood estimators is obtained. The usefulness of the proposed model
is illustrated in an application to real data in Section 5. Finally, some concluding
remarks are found in Section 6.
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2. Proportional Hazard Distribution-Function

Let F (x) be a continuous cumulative distribution function with probability
density function f(x) and hazard function hf (x) = f(x)/(1 − F (x)). We will say
that Z has proportional hazard distribution-function associated with F and f and
parameter α > 0 if its probability density function is

ϕF (z;α) = αf(z){1− F (z)}α−1, z ∈ R (4)

where α is a positive real number and F is a continuous distribution function
with continuous density function f. We use the notation Z ∼ PHF (α). The
distribution function of the PHF model is given by

F(z) = 1− {1− F (z)}α, z ∈ R (5)

We observe that the name “proportional hazard distribution-function” is ap-
propriate because its hazard function with respect to the density ϕF is

hϕF
(x, α) = αhf (x)

The inversion method can be used to generate a PHF (α) distribution. Thus,
if U is a uniform random variable on (0, 1),

Z = F−1(1− (1− u)1/α)

obeys a PHF (α) distribution, whose median, Z0.5, can be found from the inverse
of F through

Z0.5 = F−1

(
21/α − 1

21/α

)
where F−1 is the inverse of the distribution F . In general, the p-th percentile can
be computed by

Zp = F−1
(

1− (1− p)1/α
)

The distribution mode is the solution to the non-linear equation

[1− F (z)] f ′(z)− (α− 1)f2(z) = 0

where f ′ is the derivative of F .
In the next section we present some particular cases of the PHF distribution.

2.1. Proportional Hazard Normal Distribution

When F = Φ, the standard normal distribution function, we obtain the pro-
portional hazard normal distribution, which we denote by PHN(α). Its density
function is given by

ϕΦ(z;α) = αφ(z){1− Φ(z)}α−1, z ∈ R (6)
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This model is also an alternative to accommodate data with asymmetry and
kurtosis that are outside the ranges allowed by the normal distribution. The PHN
is a special case of Eugene, Lee & Famoye (2002)’s beta-normal distribution. A
simple comparison makes clear that PHN(1) = SN(0) = PN(1) = N(0, 1).

The survival function and the hazard function are given, respectively, by

S(t) = {1− Φ(t)}α and hϕΦ(t) = αhφ(t)

That is to say, the PHN model’s hazard function is directly proportional to
the normal model’s hazard function. It can then be said that the hazard function
is a non decreasing (and unimodal) function of T, but an increasing function of
parameter α. It can also be said that for α > 1, the PHN ’s model hazard is
greater than the normal’s model, while for α > 1 the opposite occurs.

In Figure 2-(a) we can see the behavior of the PHN(α) density and Figure 2-
(b) shows the model’s hazard function for a few values of the parameter α.
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Figure 2: (a) PHN(α) for α =0.75 (solid line), 1.0 (dashed line), 2.0 (dotted line), and
3.0 (dashed-dotted line) (b) hϕΦ(z) for α =0.25 (dashed line), 1.0 (solid line),
2.0 (dotted line), 3.0 (dashed-dotted line)

2.2. Proportional Hazard Logistic Distribution

The proportional hazard logistic distribution is defined by the probability den-
sity function

ϕL(z;α) = α exp(x)

{
1

1 + exp(x)

}α+1

(7)

We denote it by PHL(α). Figure 3 shows the behaviour of the this distribution
for diferents values of the α.
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Figure 3: PHL(α) distribution for α =0.75 (solid line), 1.0 (dashed line), 2.0 (dotted
line) and 3.0 (dashed-dotted line)

2.3. Proportional Hazard t-Student Distribution

The proportional hazard t-student distribution is defined by the probability
density function

ϕT (z;α, v) =
αΓ( v+1

2 )

(vπ)1/2Γ( v
2 )

[
1 + z2

v

]−(v+1)/2

{1− T (z)}α−1 (8)

where T is the cumulative distribution function of the t-student distribution and
v is the number of degrees of freedom. The notation we use is PHt(v, α). Figure
4 shows the behavior of this distribution.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Z

de
ns

ity

Figure 4: PHt(v, α) distribution for α =0.75 (solid line), 1.0 (dashed line), 2.0 (dotted
line) and 3.0 (dashed-dotted line)
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2.4. Proportional Hazard Cauchy Distribution

When v = 1 in PHt(v, α) gives the proportional hazard Cauchy distribution,
whose probability density function is

ϕC(z;α) = α
π[1+z2]

{
1
2 −

1
π arctan(z)

}α−1 (9)

We denote it by PHC(α). Figure 5 shows the behavior of this distribution for
different values of the α parameter.
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Figure 5: PHC(α) distribution for α =0.75 (solid line), 1.0 (dashed line), 2.0 (dotted
line) and 3.0 (dashed-dotted line)

2.5. Moments of the PHF

The moment generating function for the PHF distribution is given by

M(t) = α

∫ 1

0

exp
{
tF−1(y)

}
(1− y)α−1dy (10)

There is no closed form for the moments of a random variable Z with distri-
bution PHF (α); these are computed numerically.

The r -th Z moment for the random variable Y ∼ PHF can be obtained with
the expression

µr = α

∫ 1

0

{
F−1(y)

}r
(1− y)α−1dy, r = 0, 1, 2, . . . (11)

This expectation agrees with the expected value of the function
{
F−1(y)

}r where
Y is a random variable with a Beta distribution with parameters α and 1. The cen-
tral moments µ́r = E(Z−E(Z))r for r = 2, 3, 4 can be found from the expressions
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µ́2 = µ2 − µ2
1, µ́3 = µ3 − 3µ2µ1 + 2µ3

1 and µ́4 = µ4 − 4µ3µ1 + 6µ2µ
2
1 − 3µ4

1. Conse-
quently, the variance asymmetry and kurtosis coefficients are σ2 = V ar(Z) = µ́2,√
β1 = µ́3/[µ́2]3/2 and β2 = µ́4/[µ́2]2, respectively.

For F = Φ, that is, the case of the PHN(α) distribution, the r -th Z moment
is given by

µr = α

∫ 1

0

{
Φ−1(y)

}r
(1− y)α−1dy, r = 0, 1, 2, . . . (12)

Thus, for α values between 0.0005 and 9,000 the asymmetry and kurtosis coef-
ficients,

√
β1 and β2 of the variable Z ∼ PHN(α) belong to the intervals (-1.1578,

0.9918) and (1.1513,4.3023), respectively. Therefore the PHN distribution clearly
fits data with less negative asymmetry and more platykurtic than the SN and
PN distributions do. It also fits distributions with a higher positive asymmetry
than PN and more leptokurtic than SN . It is evident that the PHN distribution
fits data with as much positive asymmetry as SN distribution does and as much
kurtosis as PN distribution does.

3. Location-Scale PHF

Let Z ∼ PHF (α) with α ∈ R+. The family of PHF distributions with
location-scale parameters is defined as the distribution of X = ξ + ηZ for ξ ∈ R
and η > 0. The corresponding density function is given by

ϕF (x; ξ, η, α) =
α

η
f

(
x− ξ
η

){
1− F

(
x− ξ
η

)}α−1

, x ∈ R (13)

where ξ is the location parameter and η is the scale parameter. We use the notation
PHF (ξ, η, α).

3.1. Estimation and Inference for the Location-Scale PHF

We now deduce the maximum likelihood estimators (MLE) for the parame-
ters of the PHF (ξ, η, α) distribution and the respective observed and expected
information matrices.

For n observations, x = (x1, x2, . . . , xn)> from the PHF (ξ, η, α) distribution,
the log-likelihood function of θ = (ξ, η, α)′, given x, is

`(θ;x) = n log(α)− n log(η) +

n∑
i=1

log(f(zi)) + (α− 1)

n∑
i=1

log(1− F (zi))
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where zi = xi−ξ
η . Thus, under the assumption that the derivative of f exists, the

score function is given by:

U(ξ) = −1

η

n∑
i=1

f ′(zi)

f(zi)
+
α− 1

η

n∑
i=1

f(zi)

1− F (zi)
,

U(η) = −n
η
− 1

η

n∑
i=1

zi
f ′(zi)

f(zi)
+
α− 1

η

n∑
i=1

zi
f(zi)

1− F (zi)
,

U(α) =
n

α
+

n∑
i=1

log[1− F (zi)]

MLE estimators are the solutions to this system of equations usually solved by
iterative numerical methods. It is usual to use a software algorithm implemented
in R (R Development Core Team 2013).

3.1.1. Observed Information Matrix for the Location-Scale PHF

Assuming the existence of the second derivative of f and putting wi = f(zi)
1−F (zi)

,

si = f ′(zi)
1−F (zi)

, ti = f ′′(zi)
f(zi)

and vi = f ′(zi)
f(zi)

, the observed information matrix entries,
jξξ, jηξ, . . . , jαα, are obtained:

jξξ = − n

η2

{
(v2 − t) + (α− 1)

[
w2 + s

]}
jηξ = − n

η2
(v + t− v2) + n

α− 1

η2

[
zw2 + zs+ w

]
jηη = − n

η2
+

n

η2

[
−2zv − z2t+ z2v2

]
+ n

α− 1

η2

[
2zw + z2s+ z2w2

]
jαξ = −n

η
w jαη = −n

η
zw jαα =

n

α2

where t = 1
n

∑n
i=1 ti, v

2 = 1
n

∑n
i=1 v

2
i ,. . . ,z2w2 = 1

n

∑n
i=1 z

2
iw

2
i .

3.1.2. Expected Information Matrix for the Location-Scale PHF

The expected information matrix entries are n−1 times the expected value of
the observed information matrix elements, that is,

Iθrθp = n−1E

{
−∂

2`(θ;x)

∂θr∂θp

}
, r, p = 1, 2, 3, with θ1 = ξ, θ2 = η and θ3 = α.

Considering the notation below (Pewsey et al. 2012):

akj = E{zk (f(z)/[1− F (z)])
j}

bk = E{zkf ′(z)/[1− F (z)]}
ckj = E{zk(f ′(z)/f(z))j}
dk = E{zkf ′′(z)/f(z)} for k = 0, 1, 2 and j = 1, 2
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the observed information matrix elements these are given by

Iξξ = {(c02 − d0) + (α− 1)(a02 + b0)}/η2,

Iξη = {(c12 − c01 − d1) + (α− 1)(a12 + b1 + a01)}/η2

Iξα = E(w)/η = a01/η

Iηη = {(c22 − d2 − 2c11 − 1) + (α− 1)(a22 + b2 + 2a11)}/η2

Iηα = E(zw)/η = a11/η, and Iαα = 1/α2

In general, these expected values are computed using numerical integration.
When α = 1, we have ϕ(x; ξ, η, 1) = 1

ηf
(
x−ξ
η

)
, the location-scale f function

model, thus the matrix information is reduced to (c02 − d0)/η2 (c12 − c01 − d1)/η2 a01/η

(c12 − c01 − d1)/η2 (c22 − d2 − 2c11 − 1)/η2 a11/η

a01/η a11/η 1


The properties of this matrix depend on the function f .

4. Location-Scale Proportional Hazard Normal

A very special particular case of the PHF (ξ, η, α) model occurs when F = Φ,
the standard normal distribution function. In this case the probability density
function is

ϕΦ(x; ξ, η, α) =
α

η
φ

(
x− ξ
η

){
1− Φ

(
x− ξ
η

)}α−1

, x ∈ R (14)

which we call location-scale proportional hazard normal. Note that when α = 1 we
are in the case of the location-scale normal distribution.

In what follows we discuss estimation by moments, maximum likelihood, pro-
filed likelihood and elemental percentile method for the PHN(ξ, η, α) model and
show the respective observed and information matrices for a PHN random vari-
able.

4.1. Estimation by the Method of Moments for the Location-
Scale PHN

The mean (µ), variance (σ2) and asymmetry coefficient (
√
β1) in the location-

scale case are:

µ = ξ + ηΦ1(α), σ2 = η2Φ2(α) and
√
β1 =

µ′3
σ3

= Φ3(α)

Thus, the estimators for α, ξ and η can be obtained by substituting, in the
above expressions, µ, σ2 and

√
β1 for their respective sample moments ȳ, s2 and
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√
b1. First the α estimator is obtained as in the standard case and its value can be

used to estimate Φ1(α) and Φ2(α), leaving a simple 2×2 system of linear equations
to solve, whose solution gives the ξ and η estimators. The asymptotic distribution
of moment estimators is widely studied in Sen & Singer (1993) and Sen, Singer &
Pedroso de Lima (2010).

4.2. Maximum Likelihood Estimation for the Location-Scale
PHN

For n observations, x = (x1, x2, . . . , xn)> from the PHN(ξ, η, α) distribution,
the log-likelihood function of θ = (ξ, η, α)> given x is

`(θ;x) = n log(α)− n log(η) +

n∑
i=1

log(φ(zi)) + (α− 1)

n∑
i=1

log(1− Φ(zi))

where zi = xi−ξ
η . Thus, the score function, defined as the derivative of the log-

likelihood function with respect to each of the parameters, is:

U(α) =
n

α
+

n∑
i=1

log[1− Φ(zi)]

U(ξ) =
1

η

n∑
i=1

zi +
α− 1

η

n∑
i=1

φ(zi)

1− Φ(zi)

U(η) = −n
η

+
1

η

n∑
i=1

z2
i +

α− 1

η

n∑
i=1

zi
φ(zi)

1− Φ(zi)

Setting these expressions to zero, we get the corresponding score equations whose
numerical solution leads to the MLE estimators.

4.2.1. Observed information matrix for location-scale PHN

The observed information matrix follows from minus the second derivatives of
the log-likelihood function, which are denoted by jξξ, jξη, . . . , jαα, and are given
by

jξξ =
n

η2
+ n

α− 1

η2

[
w2 − zw

]
jξη =

2n

η2
z + n

α− 1

η2

[
−zw2 − z2w + w

]
jηη = − n

η2
+

3n

η2
z2 + n

α− 1

η2

[
2zw + z2w2 − z3w

]
jξα = −n

η
w jηα = −n

η
zw jαα =

n

α
, where wi =

φ(zi)

1− Φ(zi)

w = 1
n

∑n
i=1 wi, w2 = 1

n

∑n
i=1 w

2
i , zw = 1

n

∑n
i=1 ziwi . . . , z2w2 = 1

n

∑n
i=1 z

3
iw

2
i
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4.2.2. Expected Information Matrix for the Location-Scale PHN

Considering akj = E{zkwj}, the expected information matrix entries are:

Iξξ =
1

η2
[1 + (α− 1)(a02 − a11)] Iηξ =

2

η2
a10 +

α− 1

η2
[a01 − a02 + a12]

Iηη = − 1

η2
+

3

η2
a20 +

α− 1

η2
[a22 + 2a11 − a31]

Iαξ = −1

η
a01 Iαη = −1

η
a11 Iαα =

1

α2

The expected values of the above variables are generally calculated using nu-
merical integration. When α = 1, ϕ(x; ξ, η, 1) = 1

ηφ
(
x−ξ
η

)
, the location-scale

normal density function. Thus, the information matrix becomes

I(θ) =

 1/η2 0 −a01/η

0 2/η2 −a11/η

−a01/η −a11/η 1


Numerical integration shows that the determinant is

|I(θ)| = 1

η4
[2− a2

11 − 2a2
01] =

0.013687

η4
6= 0

so in the case of a normal distribution the information matrix of the model is non-
singular. The upper left 2× 2 submatrix is the normal distribution’s information
matrix for the normal distribution.

For large n and under regularity conditions we have

θ̂
A→ N3(θ, I(θ)−1)

and the conclusion follows that θ̂ is consistent and asymptotically approaches the
normal distribution with I(θ)−1 as the covariance matrix, for large samples.

4.3. Profile Likelihood Estimation for the Location-Scale PHN

Maximum likelihood estimators of the PHN(ξ, η, α) distribution parameters
usually display high levels of bias in the estimation of the shape parameter α when
the sample size is small. Other estimation techniques can be used that result in
a more consistent estimation of α. Among these are the profile likelihood and
the modified profile likelihood (see Barndorff-Nielsen 1983, Severini 1998). Thus,
calling τ = (ξ, η)> the vector of parameters of interest and φ = α the nuisance
parameter, the profile likelihood is

Lp(τ ) = L(τ , φ̂τ )
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where φ̂τ = α̂(ξ, η) = −n
{∑n

i=1 log
[
1− Φ

(
xi−ξ
η

)]}−1

. Substituting α̂(ξ, η) in
the original likelihood we obtain the profile log-likelihood, defined as the logarithm
of the profile likelihood:

`p(ξ, η) = n

[
log(n)− log

(
−

n∑
i=1

log [1− Φ (zi)]

)
− log(η)− 1

2
log(2π)− 1

]

− 1

2

n∑
i=1

z2
i −

n∑
i=1

log [1− Φ (zi)] (15)

where zi = (xi − ξ)/η.
Consequently, the profiled maximum likelihood estimators for ξ and η, that is,

ξ̂p and η̂p, are the solutions to the nonlinear equations up(ξ) =
∂`p(ξ,η)
∂ξ = 0 and

up(η) =
∂`p(ξ,η)
∂η = 0, which are obtained with iterative numerical methods.

Since sometimes the estimation of parameters by maximum likelihood can be
inconsistent or inefficient, Barndorff-Nielsen (1983) proposes a modified profiled
likelihood. Severini (2000) presents an alternative that is easier to apply in certain
models like PHN(ξ, η, α). The profiled likelihood is not an actual likelihood,
because some of the likelihood properties are not verified. for instance, the score
function may have a nonzero mean and the observed information can have a bias.
Nevertheless this function has go some interesting properties that make it look
like an actual likelihood. For more examples, properties and uses of estimation by
modified or unmodified profiled likelihood see Farias, Moreno & Patriota (2009).

4.4. Estimation by the Elemental Percentile Method for the
Location-Scale PHN

The elemental percentile method can also be used in the estimation of the
PHN(ξ, η, α) parameters applying the theory developed in Castillo & Hadi (1995).

Estimation of ξ and η when α is known. If the shape parameter α is known,
the elemental percentile method for two order statistics x(i) and x(j), with i < j,
leads to the equations

η̂(i, j) =
x(j) − x(i)

Φ−1

(
1−

(
(n−j)+1
n+1

)1/α
)
− Φ−1

(
1−

(
(n−i)+1
n+1

)1/α
)

and

ξ̂(i, j) = x(j) − η̂(i, j)Φ−1

(
1−

(
(n− j) + 1

n+ 1

)1/α
)

Then, proceeding like in the previous case (for α), we select m samples of
two order statistics and estimate the parameters ξ and η and again using robust
statistics we finally get the estimators for these parameters.
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A second estimation method, in two steps, using percentiles is illustrated next.
It is motivated in the fact that the maximum likelihood method gives fairly good
estimations of the location and scale (ξ and η) parameters.

Initially it is assumed that the location and scale parameters are known and
their actual values are the MLE estimators, and we estimate α like in the standard
case. Once the α estimator is known, the second step is to suppose that this is the
actual value of the parameter and then we estimate the ξ and η values under the
assumption that α is known. The standard errors for the parameter estimations
can be computed using resampling techniques such as Jackknife or Bootstrap (see
Efron (1982, 1979)). In both cases above we took pi = i/(n + 1), given that we
know E(F) = i/(n+ 1).

4.5. Simulation Study

To study the MLE estimator properties of the PHN(ξ, η, α) distribution, a
simulation was carried out for α = 0.75, 1.5 and 3.0. Without loss of generality
the location and scale parameters were set at ξ = 0 and η = 1.

The sample sizes in the simulation were n = 50, 100, 200 and 500 with 2,000
replications in each case. The random variable X with distribution PHN(ξ, η, α)
was obtained with the algorithm

X = ξ + ηΦ−1(1− (1− u)1/α),

where u is a uniform random variable U(0, 1). In all cases, the bias and root mean
square errors of the MLE estimators were calculated.

The results shown in Tables (1) and (2) demonstrate that when the sample size
increases, the bias and root mean square error decrease, that is, the estimators
are asymptotically consistent. Still, a high bias in the shape parameter α for
small sample sizes is evident. In conclusion, this estimation process would be
recommended for very large sample sizes. Using the profiled likelihood estimation
method for α we found biases 0.2511 and 0.7241 for values α = 0.75 and 1.5
respectively with a sample size 100.

Table 1: Bias of the MLE from PHN model parameters.
α = 0.75 α = 1.5 α = 3.0

n ξ̂ η̂ α̂ ξ̂ η̂ α̂ ξ̂ η̂ α̂

50 0.1546 -0.0635 1.5529 0.0947 -0.0700 2.0300 -0.1128 -0.0915 1.9252
100 0.1523 -0.0061 0.4897 0.0899 -0.0163 1.4511 -0.0722 -0.0547 1.8106
200 0.0725 -0.0020 0.1831 0.0636 -0.0054 0.5113 0.0665 -0.0148 1.2823
500 0.0307 0.0001 0.0600 0.0321 -0.0005 0.1519 0.0325 0.0005 0.4562

Tables (3) and (4) show the behavior of estimators by the elemental percentile
method for the PHN(ξ, η, α) model. As can been seen, these also are asymptoti-
cally consistent and their biases are less than the biases of the maximum likelihood
estimators for a small sample. However, the bias of the α estimator is still too
large. For small sample sizes, Jackknife or Bootstrap estimators can be applied to
correct the bias of the MLE estimators (see, Efron 1982, Efron & Tibshirani 1993).
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Table 2:
√
MSE of the MLE from PHN model parameters.

α = 0.75 α = 1.5 α = 3.0

n ξ̂ η̂ α̂ ξ̂ η̂ α̂ ξ̂ η̂ α̂

50 1.5939 0.5583 3.6623 1.3763 0.4745 4.3718 1.1312 0.3808 4.5231
100 1.2367 0.4147 1.5684 1.0863 0.3440 3.4739 0.9468 0.2917 3.9510
200 0.8756 0.2945 0.7383 0.8353 0.2585 1.6110 0.7430 0.2169 3.4404
500 0.5102 0.1756 0.3607 0.5313 0.1633 0.7819 0.5374 0.1517 1.9056

Table 3: Bias of the PHN model percentile estimators.
α = 0.75 α = 1.5 α = 3.0

n ξ̂ η̂ α̂ ξ̂ η̂ α̂ ξ̂ η̂ α̂

50 0.1448 -0.0628 1.3740 0.0875 -0.0392 1.8700 -0.1013 -0.0740 1.6296
200 0.0902 0.0099 0.3897 0.0829 0.0107 0.7995 0.0533 0.0042 1.2500
500 0.0157 -0.0027 0.1018 0.0253 0.0038 0.2850 0.0511 0.0081 0.6931

1,500 0.0134 0.0020 0.0371 0.0118 0.0017 0.0811 0.0210 0.0039 0.2578
5,000 0.0040 0.0009 0.0104 -0.0003 0.0009 0.0178 0.0019 0.0004 0.0549

Table 4:
√
MSE of the PHN model percentile estimators.

α = 0.75 α = 1.5 α = 3.0

n ξ̂ η̂ α̂ ξ̂ η̂ α̂ ξ̂ η̂ α̂

50 1.6300 0.6170 3.5602 1.4147 0.4979 4.3722 1.1907 0.4184 4.5468
200 0.8751 0.2966 1.4306 0.8616 0.2674 2.4950 0.7802 0.2269 3.5839
500 0.5135 0.1781 0.5298 0.5466 0.1699 1.2777 0.5313 0.1515 2.4152

1,500 0.2810 0.0983 0.2516 0.2896 0.0904 0.5403 0.3256 0.0919 1.3219
5,000 0.1553 0.0539 0.1304 0.1580 0.0497 0.2708 0.1728 0.0494 0.6281

5. Illustration

In this illustration we use a dataset related to 1,150 heights measured at 1
micron intervals along a roller drum (i.e. parallel to the roller’s axis). This was
part of an extensive study of the roller’s surface roughness. It is available for
download at http://lib.stat.cmu.edu/jasadata/laslett.

The data set to illustrate the PHN model has the following summary statistics:
mean x̄ = 3.535 and variance s2 = 0.422. Teh quantities

√
b1 = −0.986 and

b2 = 4.855 correspond to sample asymmetry and kurtosis coefficients. According
to the asymmetry (

√
b1) and kurtosis (b2) values there is a strong evidence that

an asymmetric model may provide a better fit for these data. We see that the
skewness and kurtosis values are outside the range allowed by the SN and PN
models, and even though the kurtosis value is greater than the one found in this
paper for the PHN model, the latter may provide a better fit than the SN and
PN models.

We proceed then to fit the models PN , SN and PHN to the data set. Maxi-
mum likelihood estimators for each model are presented in Table (5), with standard
errors in parenthesis, obtained by inverting the observed information matrix. The
Kolmogorov-Smirnov test rejects the normality assumption (p-value = 0); while the
equality hypothesis of the roller variables’ mean is not rejected (p-value= 0.1308),
which justifies the fitness of the PHN model.
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Table 5: Parameter estimators (standard error) for N , PN , SN and PHN models.
Estimates N PN SN PHN
log(lik) -1135.866 -1085.241 -1071.362 -1066.994
AIC 2275.488 2176.482 2148.724 2139.988
ξ̂ 3.5347(0.0191) 4.5495(0.0572) 4.2503(0.0284) 7.0723(0.3194)
η̂ 0.6497(0.0135) 0.1982(0.0279) 0.9694(0.0304) 1.4380(0.0648)
α̂ – 0.0479(0.0156 -2.7864(0.2529) 86.8309(28.6166)

To implement model comparison between the models considered above, we use
the AIC (Akaike Information Criterion), which penalizes the maximized likelihood
function by the excess of model parameters (AIC = −2̂̀(·) + 2k, where k is the
number of parameters in the model), see Akaike (1974).

According to this criterion the model that best fits the data is the one with
the lowest AIC. By this criterion the PHN model gives the best fit to the roller
data set. Graphs for the fitted models are shown in Figure 6. Figure 7-(a) shows
the qqplot calculated with the roller’s variable percentiles and the percentile of the
PHN variable calculated with the estimates of the parameters, while Figure 7-(b)
shows the empirical cumulative distribution functions and the estimated PHN
model.
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Figure 6: Graphs for distributions: N(3.5347, 0.6497) (dashed dotted line),
PN(4.5495, 0.1982, 0.0479) (dashed line), SN(4.2503, 0.9694,−2.7864) (dot-
ted line) and PHN(7.0723, 1.4380, 86.8309) (solid line).

We also conducted a hypothesis test to compare the fitness of the normal (N)
model versus that of the PHN model. Formally we have the hypotheses

H0 : α = 1 versus H1 : α 6= 1

then, using the statistic likelihood of ratio,

Λ =
`N (ξ̂, η̂)

`PHN (ξ̂, η̂, α̂)
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Figure 7: (a) Q-Qplot roller variable (b) CDF, roller variable (dotted line), PHN vari-
able (solid line).

Substituting the estimated values, we obtain

−2 log(Λ) = −2(1135.866− 1066.994) = 137.744

which when compared with the 95% critical value of the χ2
1 = 3.84 indicate that

the null hypotheses is clearly rejected. The PHN model is a good alternative for
modelling data.

According to the AIC criterion the PHN model fits the roller data better than
the Normal, SN and PN models. So the PHN model captures the asymmetry
and kurtosis that the other models fail to capture. A reason for this situation is
in the fact that the asymmetry and kurtosis of these particular data are outside
the range allowed in the SN and PN models.

We also estimated the model parameters using the two-step percentile method,
obtaining: ξ̂p = 6.8219(0.0133), η̂p = 1.3574(0.0028) and α̂p = 75.3801(1.0902)
(where the estimation errors, in parentheses, were calculated with the Jackknife
method). Figure 8-(a) shows the PHN densities from MLE estimation (solid line)
and elemental percentile estimation (dash-dot line); Figure 8-(b) shows the corre-
sponding cumulative density functions. Note that this method provides estimates
that give a fairly good fit to the PHN model in comparison with the one fitted
by maximum likelihood, but the graphs of cumulative distributions give a better
fit to the distribution function estimated by maximum likelihood.

6. Concluding Remarks

We have defined a new family of distributions whose hazard function is propor-
tional to hazard function concerning to original distribution function. We discussed
several of its properties and provided and estimation of parameters via maximum
likelihood, profile likelihood and elemental percentile methods. This is supported
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Figure 8: (a) PHN(ξ, η, α) density: MLE (solid line), estimation by elemental per-
centile method (dash-dot line) (b) CDF, roller variable (dotted line), PHN
variable from estimation by elemental percentile method (solid line).

with an application to real data in which we show that the PHN model provides
consistently better fits than the SN and PN models. The outcome of this prac-
tical demonstration shows that the new family is very general, quite flexible and
widely applicable.
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Abstract

We present Intra-Table Correspondence Analysis using two approaches:
Correspondence Analysis with respect to a model and Weighted Principal
Component Analysis. In addition, we use the relationship between Cor-
respondence Analysis and the Log-Linear Models to provide a deeper in-
sight into the interactions that each Correspondence Analysis describes. We
develop in detail the Internal Correspondence Analysis as an Intra-Table
Correspondence Analysis in two dimensions and introduce the Intra-blocks
Correspondence Analysis. Moreover, we summarize the superimposed rep-
resentations and give some aids to interpret the graphics associated to the
subpartition structures of the table. Finally, the methods presented in this
work are illustrated by their application to the standardized public test data
collected from Colombian secondary education students in 2008.

Key words: Multidimensional contingency table, Principal component anal-
ysis.

Resumen

Para presentar los análisis de correspondencias intra-tablas, se usan los
enfoques del análisis de correspondencias con respecto a un modelo y del
análisis en componentes principales ponderado. Adicionalmente, se utiliza
la relación de los análisis de correspondencias con los modelos log-lineales
para entender mejor las interacciones que cada análisis de correspondencias
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describe. Se desarrolla de manera detallada el análisis de correspondencias
interno como un análisis de correspondencias intra-tablas en dos dimensiones
y se introduce el análisis de correspondencias intrabloques. Por otra parte,
se resumen las representaciones superpuestas y las ayudas para la inter-
pretación de las gráficas asociadas a la estructura de subparticiones de la
tabla. Finalmente, se ilustran los procedimientos con el análisis de una tabla
de contingencia construida a partir de los resultados de las pruebas de estado
realizadas a los estudiantes de educación media en Colombia en el año 2008.

Palabras clave: análisis en componentes principales, tabla de contingencias
multidimensional.

1. Introduction

Contingency tables (CT) with sub-partitions on rows and columns have row
and column categories defined from two nested factors. We use B(A) ×D(C) to
denote the table structure. The rows are formed by factors A and B, with B
categories nested into A categories. In the same way, C and D factors form the
columns, with D categories nested into C categories. Each A category defines a
row band and each C category defines a column band. A sub-table crossing a row
band with a column band is called a block.

The nesting may occur naturally, for example, in a table crossing subregions
and economic sub-sectors, where the subregions are aggregated into regions and
the economic sub-sectors are aggregated into sectors. In this case, we say that the
CT has a “true” sub-partition structure. In other applications, the researcher will
choose the variable defining the coarsest partition according to the objectives of the
study. For example, the notation age-group(sex) indicates that the categories of
the variables sex and age-group are codified interactively. The sex variable defines
the partition and the age-group categories are nested into the two categories of sex.
A four-way CT with factors A, B, C and D can be flattened into a two-way table
in different manners; for example, into the two-way CT denoted by B(A)×D(C).

We cite hereafter several examples of CT with row and column sub-partitions
extracted from the literature:

Hydrobiological studies: species(taxonomic groups)×places(dates), i.e. phau-
nistic tables, with row-species categorized into taxonomic groups and columns
places × dates), being the same places observed at different dates (Cazes,
Chessel & Doledec 1988).

Genomics: sequences(species)× codons(amino acids), a CT crossing sequences
aggregated into species and codons aggregated into amino acids (Lobry &
Chessel 2003, Lobry & Necsulea 2006).

Genetics: objects(populations) × aleles(loci), a CT with objects split in popu-
lations described using alleles clustered into several loci (Laloë, Moazami-
Gourdarzi & Chessel 2002).
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We aim at presenting different strategies, in the framework of Correspondence
Analysis (CA; Lebart, Piron & Morineau 2006, Ramírez & Martínez 2010), to
describe contingency tables endowed with sub-partition structures both in rows
and columns. Having this objective in mind, we do not discuss inferential methods
that might be used to analyze this kind of table.

From a contingency table crossing the row categories B(A) with the column
categories D(C), several CA can be performed, depending on the sub-partition
structures that are considered. Each CA can be seen as a particular CA with
respect to a model, using the generalization of CA proposed by Escofier (1983).
This point of view allows us to consider the relationship between Log-Linear Mod-
els and Correspondence Analysis applied to the analysis of a two way contingency
table. This table is obtained through flattening a four way CT, as described in
Van der Heijden (1987).

The structure of the CT, as well as the treatments applied to it, are deduced
from the objectives. Dolédec & Chessel (1991) lay out the use of these CA in the
environmental sciences.

The first example considers a faunal table in hydrobiology field. The row cat-
egories are nested as species(group). The authors apply Intra-group CA (row
bands) and argue both that the specialists have different skills to identify species
in each taxonomic group, and that, in such a method, the between-groups vari-
ability is eliminated. The Intra-date CA (column bands) shows, more clearly,
the associations between species and sites. The Internal Correspondence Analysis
(ICA) is both Intra-dates and Intra-groups, as proposed by Cazes et al. (1988) to
highlight the species-site associations.

Bécue-Bertaut, Pagès & Pardo (2005) present ICA as a double Intra-Table
CA and show that it can be computed either as a CA with respect to a model
or as a Weighed Principal Component Analysis. Furthermore, they propose to
project on the principal planes issued from this ICA, the “partial” rows (“partial”
columns), that is, the rows (columns) as seen from the different points of view
corresponding to each group of columns (rows). The superimposed representation
of the partial rows (partial columns) is obtained following the same rationale that
Multiple Factor Analysis (MFA: Escofier & Pagès (1982); Pagès (2004)). These
superimposed representations ease the comparison of the different viewpoints and
so enrich the interpretation of the results.

In this paper, the theoretical sections presented by Bécue-Bertaut et al. (2005)
are extended and Intra-Block Correspondence Analysis (IBCA) is presented. The
resulting methodology is applied to a CT built up from the results of the schools
standardized test scores answered by last grade Colombian students in secondary
education in 2008. The relationship between CA and Log-Linear Models are used
to show the interactions described by the different CA.

§2 defines the notation, taking into account the sub-partition structures of the
CT. In §3 we present the different CA as specific cases of both CA with respect
to a model and Weighted Principal Component Analysis. The superimposed rep-
resentations are detailed in §4. The interest of the methodology is shown in §5,
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by its application to the schools standardized tests scores in Colombia in 2008. In
the Appendix, the demonstrations of some formulae are detailed.

2. Notation

The notation adopted in this work is close to this used by Bécue-Bertaut et al.
(2005). Let B(A)×D(C) be a CT with I rows and K columns. The factors A and
C have L and J factors, respectively. The L categories from A are sub-partitioned
into I1, . . . , Il, . . . , IL categories, respectively; and, similarly, the J categories from
C into K1, . . . ,Kj , . . . ,KJ categories. We use the same symbols to indicate sets
and their cardinality. Thus, I is both the set and the number of rows, that is,
the categories of B(A); K is both the set and the number of the columns. The
categories of D(C); Il is both the set and number of categories that are nested
into the category l from A. From the CT, the relative frequencies table F is built
up. It is structured as shown in Figure 1.

1 K1 1 Kj 1 KJ Margin
1 j J

Global Table F

1

I1

1

Il

1

IL

1

l

L

Margin

f lj
ik

f ·j
·k

f l·
i·

1

1 Kj

j

Margin

Column Bandj : F∗j

1

I1

1

Il

1

IL

1

l

L

Margin

f lj
ik f lj

i·

f ·j
·k f ·j

··

1 K1 1 Kj 1 KJ Margin
1 j J

Row Bandl : Fl∗

1

Il

l

Margin

f lj
ik f l·

i·

f lj
·k f l·

··

1 Kj

j

Margin

Block l, j : Flj

1

Il

l

Margin

f lj
ik f lj

i·

f lj
·k f lj

··

Figure 1: Table F with sub-partition structures in the rows and in the columns

——————————————————————————–

1

Figure 1: Table F with sub-partition structures in the rows and in the columns.

The general term of F is noted by f ljik and its row and column margins by f l·i·
and f ·j·k , respectively. Fl∗ is the row band l and F∗j the column band j. The
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total of the row band Fl∗ is f l··· =
J∑
j=1

f lj·· and the total of the column band F∗j is

f ·j·· =
L∑
l=1

f lj·· .

The block (l, j), noted Flj , has Il rows and Kj columns. Its row and column
margins are f lji· =

∑
k∈Kj

f ljik and f lj·k =
∑
i∈Il

f ljik; and its total is f lj·· =
∑
i∈Il

∑
k∈Kj

f ljik.

A cell of F is identified by the block lj , as superscript, and the specific cell into
the block ik, as subscript.

F can be analyzed though the different CA presented in this work: a Simple
Correspondence Analysis (SCA); two Intra-Table CA, called here ‘analysis in only
one dimension’: the Intra-Column Bands CA and the Intra-row Bands CA; the
Internal Correspondence Analysis (ICA) or double Intra-analysis; the Intra-blocks
Correspondence Analysis (IBCA).

To avoid misinterpretations, we use the expression ‘Intra-Tables CA’, when
the structure only concerns one dimension. When the structure concerns the two
dimensions, we use the term ‘Internal Correspondence Analysis’ (ICA) rather than
‘Double Intra-Tables CA’. ICA was proposed, with this denomination, by Cazes
et al. (1988). Pagès & Bécue-Bertaut (2006) use the term ICA for referring to
Intra-Tables CA only in one dimension because, in this case, the two methods are
equivalent.

The clouds of points, associated with CA, are noted by using the letter N and
a subscript, referring to both the set of points and its cardinality. For example,
NI is the cloud of the I row points and NIl is the cloud of the Il points belonging
to the row band l.

3. Correspondence Analysis (CA)

We summarize the use of CA to describe a CT endowed with sub-partitions
both in rows and columns. Each CA is presented as a Weighted Principal Com-
ponent Analysis, denoted PCA(X,M,D). X is the data matrix, issued from the
original data possibly conveniently transformed; M is a diagonal matrix corre-
sponding to both the metric in the row space and the column weights. D is a
diagonal matrix corresponding to both the metric in the column space and the
row weights. PCA(X,M,D) is also called, in French literature, the general factor
analysis (Lebart, Morineau & Warwick 1984, Escofier & Pagès 1992, Pagès 2004)
or duality diagram (Cailliez & Pagès 1976, Tenenhaus & Young 1985). This ap-
proach emphasizes the geometric point of view of PCA leading to call several
statistical measures as in Physics. For example, the barycentre or centroid corre-
sponds to the vector of means, the inertia corresponds to the generalized variance.
Active and illustrative elements are considered; the former are taken into account
to compute the principal axes while the latter, if present, are projected on the
principal axes previously computed from the active elements.
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3.1. Simple Correspondence Analysis (SCA)

SCA describes the residuals of F with respect to the independence model. The
independence model is defined as the product of the marginal terms. SCA applied
to F is also PCA(X,M,D) being X the matrix with the general term:

xljik =
f ljik − f l·i·f

·j
·k

f l·i·f
·j
·k

(1)

and M and D the matrices:

D = diag(f l·i· ) and M = diag(f ·j·k) (2)

M (respectively, D) is the metric matrix (matrix of weights) in row (column) space
and the matrix of weights (metric matrix) in the column (row) space.

3.1.1. Centroids of the Subclouds as Illustrative Elements

In the row space induced by CA, the cloud NI can be considered as the union
of the L subclouds NIl formed, each of them by the points belonging to the row
band Il. The weight of the row point (l, i) within the subcloud NIl is f l·i·/f l··· ; thus,
the coordinate (j, k) of the centroid of the subcloud NIl is:

∑
i∈Il

f l·i·
f l···

(
f ljik
f l·i·f

·j
·k
− 1

)
=

f lj·k
f l··· f

·j
·k
− 1 (3)

In the same way, the coordinate (l, i) of the centroid of the subcloud NKj
in

the column space is:

∑
k∈Kj

f ·j·k
f ·j··

(
f ljik
f l·i·f

·j
·k
− 1

)
=

f lji·
f ·j·· f l·i·

− 1 (4)

3.1.2. Inertia Decomposition from the SCA

The partition of the cloud NK into J subclouds NKj induces the inertia de-
composition into BetweenInertia+ IntraInertia:

• Between subclouds NKj
Inertia:

∑
l,i

f l·i·
∑
j

f ·j··

(
f lji·
f l·i·f

·j
··
− 1

)2

=
∑
l,i

∑
j

(
f lji· − f l·i·f

·j
··
)2

f l·i·f
·j
··

(5)

• Intra subclouds NKj Inertia:

∑
l,i

f l·i·
∑
j

f ·j··
∑
k∈Kj

f ·j·k
f ·j··

(
f ljik
f l·i·f

·j
·k
− f lji·
f ·j·· f l·i·

)2

=
∑
l,i

∑
j

∑
k∈Kj

(
f ljik −

f ·j·kf
lj
i·

f ·j··

)2
f l·i·f

·j
·k

(6)
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Through exchanging the subscripts i and j, we obtain the decomposition of
the inertia of the cloud NI into between-clouds NIl inertia and Intra-clouds NIl
inertia.

3.2. Correspondence Analysis with Respect to a Model

Let A be the model matrix with general term aljik, with the same dimensions
and margins as F. The CA of F with respect to the model A, noted CA(F,A), is
equivalent to PCA(X,M,D), with M and D defined above, in (2), and X with
general term:

xljik =
f ljik − a

lj
ik

f l·i·f
·j
·k

(7)

CA with respect to a model keeps almost all of the properties of the classical
CA when the model margins are equal to F margins (Escofier 1984). This is the
case for Intra-Tables CA.

The inertia of both clouds NI and NK associated to CA(F,A) is:

Inertia(NI) = Inertia(NK) =
∑
l,j

∑
i∈Il,k∈Kj

(f ljik − a
lj
ik)

2

f l·i·f
·j
·k

(8)

The SCA of F is obtained if the independence model H = (f l·i·f
·j
·k) is used in

the Formula (7).

3.2.1. Decomposition of the Inertia Associated to the SCA when A
Model is Considered

Equation (8) is also the chi-square distance centered in H between the con-
joint probability distributions F and A, noted d2χ2

H
(F,A) (Cailliez & Pagès 1976,

p.449).
It is possible to perform a SCA with respect to model A, denoted CA(A,H).

The associated clouds NI and NK have inertia:

Inertia(NI) = Inertia(NK) =
∑
l,j

∑
i∈Il,k∈Kj

(aljik − f l·i·f
·j
·k)

2

f l·i·f
·j
·k

(9)

The inertia (9) is also the chi−square distance, centered in H, between the
conjoint probability distributions A and H: d2χ2

H
(A,H).

If A and F have the same margins and

∑
l,i,j,k

(
f ljik − a

lj
ik

)
aljik

f l·i·f
·j
·k

= 0 (10)
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the inertia associated to CA(F,H) is the sum of the inertias associated to CA(F,A)
and CA(A,H):

d2χ2
H
(F,H) = d2χ2

H
(F,A) + d2χ2

H
(A,H) (11)

The demonstration can be found in the Appendix (§Appendix A.1).
In particular, the models associated with CA Intra-bands and ICA, presented

hereafter, fulfill the conditions to obtain the inertia decomposition of SCA shown
in (11).

3.2.2. Correspondence Analysis and Log-Linear Models

CA(F,A) describes the residuals with respect to model A. Hence, it is possible
to perform specific CA to analyze the residuals of a log-linear model or to eliminate
some interactions in SCA to better describe the non-eliminated ones (Van der
Heijden 1987, Van der Heijden, de Falguerolles & de Leeuw 1989).

The saturated log-linear model associated to a four-way table is:

ln(πljik) = u+ u
A(l)

+ u
B(i)

+ u
C(j)

+ u
D(k)

+

u
AB(li)

+ u
CA(lj)

+ u
AD(lk)

+ u
BC(ij)

+ u
BD(ik)

+ u
CD(jk)

+

u
ABC(lij)

+ u
ABD(lik)

+ u
CAD(lkj)

+ u
BCD(ijk)

+ u
ABCD(lijk)

(12)

where πljik is the probability of the cell (.)ljik and the u terms are the model
parameters.

If F (Figure 1) is the “flattened” B(A) × D(C) of a four-way CT, the inde-
pendence model H corresponds to the log-linear model [AB][CD]1 estimation (A
and B are jointly independent from C and D). This model is the sum of the four
main effects and the first order interactions AB and CD. Then, the CA of F
(CA(F,H)) describes the interactions AC, AD, BC, BD and those of superior
order.

From a ‘true’ sub-partition structure, the row factors A and B and the column
factors C and D are nested and, therefore, have no interactions between each
couple. The saturated model (12) is reduced to:

ln(πljik) = u+u
A(l)

+u
B(i)

+u
C(j)

+u
D(k)

+u
CA(lj)

+u
AD(lk)

+u
BC(ij)

+u
BD(ik)

(13)

In this case, the H model represents all the main effects and the SCA is the
description of all the interactions in (13).

3.3. Intra-Table Analysis

We denominate Intra-Row Band/Column Analysis, the two Intra-Table Anal-
ysis that are possible to perform on the F table. We only summarize the Intra-
Column Band Analysis, because the other one can be symmetrically deduced.

1 With this notation, the model includes the whole interactions between the variables that
belong to the same square brackets. For example, the [AB][C] model represents the main effects
and the interactions between A and B.
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F is considered as the juxtaposition of the J column bands, as shown by Bécue-
Bertaut & Pagès (2004) in the Multiple Factor Analysis of Contingency Tables
(MFACT):

F = [F∗1 · · ·F∗j · · ·F∗J ]

The Intra-Column Band CA is the CA of F with respect to the Intra-Bands Inde-
pendence Model, denoted AJ, with general term:

(aJ)ljik =
f lji· f

·j
·k

f ·j··
(14)

This is the estimation of the log-linear model [ABC][CD] (A and B are jointly
independent from D, when C is given). This model includes the interactions AB,
AC, BC, CD and ABC; thus, the CA(F,AJ) describes the interactions, AD, BD,
ABD, ACD and ABCD. If the subpartition structure is ‘true’, the CA(F,AJ)
describes the interactions AD and BD (see §3.2.2).

Symmetrically, the Intra-Row Band Independence Model AL, [AB][ACD] (C
and D are jointly independent from B, given A), includes AB, AC, AD, CD and
CAD. Thus, the CA(F,AL) describes the interactions BC, BD, ABD, ABC and
ABCD.

The Intra-Column Bands Analysis, CA(F,AJ), is computed as PCA(X,M,D),
where X is the matrix with general term:

xljik =
f ljik
f l·i·f

·j
·k
− f lji·
f l·i·f

·j
··

(15)

and M and D are metric and weight matrices already defined in (2).

We observe that (15) is equal to (1) - (4): in the Intra-Column Bands CA, the
subclouds NKj in the space RI are translated such as their centroids are in the
origin. Figure 2a. shows the centroids of the subclouds in SCA and Figure 2b. the
same subclouds, but centered in the origin. By centering, the associated inertia to
CA(F,AJ) is the Intra subclouds NKj

inertia from the SCA of F.

RI

NK1

NK2

NK3

RI

NK1 NK2

NK3

a. Subclouds associated to SCA b. Centered subclouds (Intra-Column Bands CA)
Figure 1: Subclouds in RI , associated to the three column bands.

——————————————————————————–

1

Figure 2: Subclouds in RI , associated to the three column bands.
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3.3.1. Inertia Decomposition of SCA of F

In the SCA of F, the inertia of the NK cloud in RI can be expressed as the
sum of the between and intra-inertias subclouds NKj

obtained replacing A by AJ

in (11):
d2χ2(F,H) = d2χ2(AJ,H) + d2χ2(F,AJ) (16)

The two right terms in (16) are associated, respectively, to the following CA
(see Appendix Appendix A.2):

• CA(AJ,H), which is also the SCA of the table TJ, with general term f lji·
and dimension I × J .

• CA(F,AJ), which is the Intra-Column Bands CA of F.

3.3.2. Subclouds NIl ∈ RK from the Intra-Column Bands CA

In the Intra-Column Bands CA it is possible to obtain the centroids of the
subclouds NIl ∈ RK and to project them as illustrative elements. The general
term of the coordinate (j, k) of the centroid of the sub cloud NIl is:

∑
i∈Il

f l·i·
f l···

(
f ljik
f l·i·f

·j
·k
− f lji·
f l·i·f

·j
··

)
=

f lj·k
f l··· f

·j
·k
− f lj··

f l··· f
·j
··

(17)

3.4. Internal Correspondence Analysis (ICA)

The Double Intra Bands CA is obtained by centring the subclouds NIl of the
Intra-Column Bands CA. Then, the general term of X is equal to (15) - (17):

xljik =
f ljik
f l·i·f

·j
·k
−

f lj·k
f ·j·kf

l···
− f lji·
f l·i·f

·j
··

+
f lj··

f l··· f
·j
··

(18)

The Formula (18) can also been obtained centering the subclouds NKj
in the

Intra-Row Bands CA.
The double Intra CA or Internal Correspondence Analysis (ICA) is the CA(F,C),

where C is the model with general term:

cljik =
f lj·kf

l·
i·

f l··̇
+
f lji· f

·j
·k

f ·j··
−
f l·i·f

·j
·kf

lj
··

f l··· f
·j
··

(19)

We denote E the matrix with general term
f l·i·f

·j
·kf

lj
··

f l··· f
·j
··

, then C can be written

AJ +AL −E and expressed as:

C = [AJ −E] + [AL −E] +E (20)
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The inertia of the SCA of F can be decomposed as follows:

d2χ2(F,H) = d2χ2(E,H) + d2χ2(AJ,E) + d2χ2(AL,E) + d2χ2(F,C) (21)

Following Sabatier (1987), the right hand terms in (21) are ( see §Appendix
A.2 in the Appendix):

• SCA of table T formed by the sum of the blocks (l, j), with general term f lj··
and dimension L× J . This CA describes the interactions AC, i.e. between
the factors defining the row and column bands.

• Intra-Tables CA of TJ, with general term f lji· and dimension I × J . TJ is a
three-way table, since it is the margin of the column bands of F, so factor
D disappears. The Intra-Tables CA of TJ corresponds to the residuals with
respect to the model [AB][AC] (B is independed of C, given A). The model
contains the interactions AB and AC; thus, the Intra-Tables CA describes
the interactions BC and ABC.

• Intra-Tables CA of TL, with the general term f lj·k and dimension L × K.
Table TL is the margin of the row bands of F, hence, it is a three way table.
This Intra-Table CA describes the interactions AD and ACD, that are the
residuals with respect to the model [AC][CD] (A is an independent from D,
when C is given).

• ICA of F (CA(F,C)). C is not the estimation of a log-linear model, its
structure is additive instead of multiplicative. Because the four CA contain
all of the interactions from the CA(F), the ICA describes the interactions
that are not in the three former CA, i.e. BD, ABD, BCD and ABCD.

In other words, the SCA of F is a global analysis that can be decomposed into
four CA, where the first order interactions present in the SCA of F, are separated.
The inertias associated with the four CA and their relative contributions to the
inertia from the SCA are indicators of the importance of these associations.

3.4.1. Intra-Bands CA as Particular Cases of ICA

Intra-Row Bands CA is a particular case of ICA because it can be obtained
by considering the L row bands but only one column band with K columns. The
Intra-Column Band CA can be obtained considering the J column bands but only
one row band with I rows. In the former case, the terms 1 and 3 from (19)
cancel one another; in the second case the terms 2 and 3 cancel one another.
This justifies the name of “Internal Correspondence Analysis” (ICA) given to one
dimension Intra-Tables CA by Pagès & Bécue-Bertaut (2006).

3.4.2. ICA as a Weighted PCA

ICA is the CA(F,C), i.e. the PCA(X,M,D), where X has the general term
given in (18) and M and D are defined in (2). In this analysis, the representa-
tions in spaces RK and RI are symmetric: in RK the cloud NI is divided into L
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subclouds NIl ; in RI the cloud NK is divided into J subclouds NKj
. Without loss

of generality, the properties are presented below in the space RK .

3.4.3. Row Clouds in RK

In ICA, the cloud NI of the I rows is formed by the union of the L subclouds
NIl , each centered in the origin. So, the coordinate of a point (l, i) represents the
deviation of the point with respect to the centroid of the subcloud NIl to which it
belongs (Figure 2).

Distances: the square distance between two row points is:

d2[(l, i), (l′, i′)] =
∑
j,k

1

f ·j·k

(
f ljik − c

lj
ik

f l·i·
−
f l
′j
i′k − c

l′j
i′k

f l
′·
i′·

)2

(22)

Two points (l, i) and (l′, i′) are close to one another if their deviations to the
respective model, weighted with the inverse of f ·j·k , are similar for every (j, k). A
point (l, i) is located far from the origin if row (l, i) in table F differs from the
model C (Escofier 2003, p. 120).

Transition Formulae: a row coordinate Fs(l, i) on a factorial axis s is a function
of the column coordinates Gs(j, k) (see §Appendix A.3):

Fs(l, i) =
1√
λs

∑
j

∑
k∈Kj

(
f ljik
f l·i·
−
f lj·k
f l···

)
Gs(j, k) (23)

Formula (23) indicates that a row (l, i) lies on the same side that the columns (j, k)
whose coordinates are greater than the coordinates of the homologous columns in
the l band margin.

Aids to the Interpretation: the contribution to the inertia and the quality of
representation on the axes are calculated for each row point. Moreover, aids to
the interpretation are defined for each subcloud NIl :

• Weight subcloud: f l··· .

• Quality of representation on axis s: Inertias(NIl)/Inertia(NIl).

Inertias(l, i) = f l·i· (Fs(l, i))
2

Therefore:
Inertias(NIl) =

∑
i∈Il

f l·i· (Fs(l, i))
2

In RK the contribution of a row point to the inertia of cloud NI is:

Inertia(l, i) = f l·i·x
′
liMxli

where x′li is the row (l, i) of X and M = diag(f ·j·k).
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• Contribution to axis inertia: the sum of the inertia of the points belonging
to the subcloud.

3.5. Intra-blocks Correspondence Analysis (IBCA)

Intra-blocks Correspondence Analysis of F, denoted IBCA(F), is defined as
the CA with respect to the Intra-blocks Independence Model B, using the same
metrics as the SCA of F. The general term of B is defined by:

bljik =
f lji· f

lj
·k

f lj··
(24)

B is the estimation of the log-linear model [ABC][ACD] (B is independent of
D, when AC is given). This model includes the interactions AB, AC, BC, CD,
AD, ABC and CAD; thus, the IBCA (CA(F,B)) describes the interactions BD,
ABD, BCD and ABCD.

If the CT has a ‘true’ partition structure, the interactions AB, CD and those
of superior order including them do not exist. Hence, the model B contains only
the interactions AC, BC and AD and IBCA describes the interactions BD (see
§3.2.2).

IBCA(F) is the PCA(X,M,D) with:

• M= diag(f ·j·k)

• D= diag(f l·i· )

• X with general term given by:

xljik =
f ljik − b

lj
ik

f l·i·f
·j
·k

=

f ljik −
f lji· f

lj
·k

f lj··
f l·i·f

·j
·k

(25)

3.5.1. Centered Clouds and Subclouds

The cloud NI formed by the I points is centered, because the margins of table
F and model B are equal.

Each subcloud NIl formed by the Il points belonging to the row band l are

centered, using the weights
f l·i·
f l···

:

1

f l···

∑
i∈Il

f l·i·

f ljik −
f lji· f

lj
·k

f lj··
f l·i·f

·j
·k

=
1

f l···

(∑
i∈Il

f ljik
f ·j·k
−
∑
i∈Il

f lji· f
lj
·k

f lj·· f
·j
·k

)
=
f lj·k − f

lj
·k

f l··· f
·j
·k

= 0
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3.5.2. Distances

The square distance between two row points is:

d2[(l, i), (l′, i′)] =
∑
j,k

1

f ·j·k

(
f ljik − b

lj
ik

f l·i·
−
f l
′j
i′k − b

l′j
i′k

f l
′·
i′·

)2

(26)

Two points (l, i) and (l′, i′) are close to each other if they similarly differ from
the model. Each difference is pondered by 1/f ·j·k . Therefore, a point (l, i) is far
from the origin when the row (l, i) of table F strongly differs from the model B
(Escofier 2003, p.120).

3.5.3. Transition Formulae

The formulae allowing the simultaneous representation of row and column
points, as well as their interpretation, are:

Fs(l, i) =
1√
λs

∑
j,k

(
f ljik − b

lj
ik

f l·i·

)
Gs(j, k) ;

Gs(j, k) =
1√
λs

∑
l,i

(
f ljik − b

lj
ik

f ·j·k

)
Fs(l, i)

(27)

Attractions between row and column profiles exist when the observed frequen-
cies are greater than the values in the model.

3.5.4. Aids to the Interpretation

The aids to interpretation used in CA are also available in IBCA, i.e. con-
tribution to the axis inertia and square cosines. Similarly, the aids associated to
subclouds NKj

and NIl are expressed in ICA.

3.5.5. Intra-Blocks CA only in one Dimension

If only one dimension structure is considered, model B becomes the intra-
row bands independence or the intra-column bands model, depending of the case.
Thus, the Intra Bands CA can also be considered as Intra-Blocks Analysis in one
single dimension.

IBCA has the advantage of being associated with a log-linear model, while ICA
allows us to split the inertia of the clouds associated to SCA in four addends, each
corresponding to a CA (see 3.4).
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4. Superimposed Representation of the Partial and
Global Clouds over a Common Referential

In ICA or IBCA, the global representation of the cloud NI , in the row space,
is obtained considering the whole K coordinates for each row point (l, i). The
sub-partition of the columns into J bands also permits to consider each row from
the point of view of each J band. Thus, there are J points, denoted (l, i)j and
called partial points, considered and projected as illustrative points. The simul-
taneous projections of global and partial points are denominated superimposed
representations.

4.1. Projection of the Partial Clouds

The projections of the partial clouds are defined as done by Pagès (2004) in
the frame of multiple factor analysis (MFA).

• Each column j induces the partial cloud N j
I ⊂ RKj ⊂ RK=

⊕
j

RKj , Mj is

the metrics in RKj obtained from M, the coordinates of the points N j
I are

the rows of X∗j and the coordinates of these points in RK are the rows of
the matrix X̃∗j defined as:

X̃∗j = [0 · · · 0 X∗j 0 · · · 0]

• The union of the J partial clouds form the cloud NJ
I with IJ points, that

can also be considered as the union of the I clouds NJ
(l,i), each with J partial

points (l, i)j belonging to the same row (l, i).

• The inertia of the cloud NJ
I can be expressed as WithinInertia + BetweenIn-

ertia subclouds NJ
(l,i).

• The cloud of the centroids of the I partial clouds NJ
(l,i) is

1

J

∑
j

X̃j . To force

Fs(i) to lie at the centroid of the J partial points F js (i), the rows of X̃j ,
called partial, are projected as illustrative but dilated by J .

4.2. Restricted Transition Formulae

In (23), each addend j is the restricted formula to the columns Kj belonging
to its band. This formula allows us to interpret the position of the partial rows
(l, i)j on the factorial axis s, similarly to the global coordinates:

Fs(l, i)
j =

1√
λs

∑
k∈Kj

(
f ljik
f l·i·
−
f lj·k
f l···

)
Gs(j, k) (28)
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Formula (28) indicates that a row (l, i)j is placed on the same side that columns
k ∈ Kj whose profile coordinates obtained from the F table are greater than the
profile coordinates obtained from the margin of its band l. The interpretation of
the superimposed representations is mainly supported by these formulae. In the
graphic representations, the coordinates are amplified by J .

By exchanging the indices, the restricted transition formulae for the partial
columns are deduced.

4.3. Aids to the interpretation of the Partial Clouds

In the superimposed representation, for each factorial axis s there are:

• IJ partial coordinates F js (l, i)

• I global coordinates Fs(l, i)

These points form different projected clouds:

• I partial clouds NJ
(l,i), each with centroid Fs(l, i)

• J partial clouds N j
I

• L clouds NIl : {Fs(l, i); i ∈ Il}.

Since the partial rows (l, i)j are illustrative they do not contribute to the inertia
of the axes. For the partial clouds, the aids to the interpretation are defined as
detailed hereafter.

4.3.1. Quality of the Representation of the Partial Clouds

The quality of representation on axis s of each partial cloud N j
I is computed

as the ratio between the projected inertia and the inertia in RK .

4.3.2. Similarity Measure between Partial Clouds

The total inertia of NJ
I can be decomposed into within and between inertia of

clouds NJ
(l,i).

The ratio BetweenInertia/TotalInertia, computed for each factorial axis s,
is a measure of the proximity of the partial points belonging to the same row and
therefore of the global similarity between the J partial clouds projected on axis s.
If this ratio is close to 1, the homologous points {(l, i)j ; j = 1, . . . , J} are close to
each other and the axis s represents a structure common to the different column
bands (Pagès 2004, pp.8-9).
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4.3.3. Row Contributions to the Within-Inertia

The within-inertia can be decomposed into the contributions of each row, in
order to detect differences between the several points of view represented by the
column bands. Then, it is possible to identify both the most heterogeneous and
homogeneous, in order to interpret the global relations.

It is possible to calculate the contribution to the within-inertia of NJ
I for the

cloud associated with a partial row NJ
(l,i).

4.4. Zero Partial Points into the Blocks in ICA versus IBCA

Zero Row Inside a Block: in ICA, if the values of the row (l, i) belonging to a
column band j of the contingency table are zeros, the partial point does not always
lie at the origin. In fact: if f ljik = 0, ∀k ∈ Kj , then f

lj
i· = 0 but the general term

of X (18) for the cells of row (l, i) in column band j is xljik =
1

f l···

(
f lj··

f ·j··
−
f lj·k
f ·j·k

)
,

and this term is not necessarily zero.

In this case, the interpretation of the superimposed representations becomes
difficult. Some points belonging to null profiles can lie close to points belonging
to non-null profiles.

IBCA solves this problem because the partial point associated with a row of
zeros lies at the origin: as f ljik = 0; ∀k ∈ Kj then f

lj
i· = 0, thus the cells of X (25)

belonging to the row (l, i) into the column band j are zeros.

Zero Column Inside a Block: in ICA, if the values of a column (j, k) belonging
to a row band l of the contingency table are zeros, the partial point is not at the
origin, while in IBCA, it is always at the origin. These results can be obtained by
exchanging the indices in the former paragraph.

A Block of Zeros: when all the cells inside block Flj are zeros, the cells of the
model (Clj) inside the block are also zeros; then, the cells of the block Xlj are
also zeros. In this block, the cells of model Blj are not defined, but this problem
can be solved defining these cells as zeros.

4.5. Outliers

When few profiles strongly differ from the others, the first axis of the SCA
enhance that difference and might hide the differences among the rest of the points.
In this case, there are two ways to proceed: 1) to observe the differences on
the following axes or 2) to perform the analysis again without the outliers and
eventually project them as illustrative elements. These ways to proceed can be
used in Intra-Tables CA, ICA and IBCA.
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5. Example: Colombia Regional Scores for Secondary
Education Standardized Tests

The Instituto Colombiano para el fomento de la Educación Superior (ICFES)
performs nation-wide secondary education quality assessment based on public
standardized tests. Schools are classified into seven levels, according to their scores,
ranging from: very inferior, inferior, low, medium, high, superior to very superior.
The first two categories were joined into one named inferior and the last three
into another named high, leaving four levels. Thus, score is a categorical variable
with four levels.

To illustrate the application of the methods proposed in the first sections, the
schools classification from their scores in the 2008 tests was used, together with
the following information:

1. School attendance shifts: full day, morning and afternoon including evening,
Saturdays and Sundays;

2. The Colombian administrative system: Colombia is divided into 33 depart-
ments, including Bogotá as capital district. The five departments with less
than one hundred thousand inhabitants were collapsed to form a “fictitious
department” named P01, thus leaving 29 departments.

3. Population size: the departments are grouped into 5 categories depending
on their population: P5 more than two million inhabitants, P4 between one
and two million, P3 between five hundred thousand and one million and P2
between one hundred thousand and five hundred thousand. Department P01
is included into size-group P2.

Our prime objective is the comparison of the departments according to their
schools standardized tests scores. The departments are grouped according to their
population size, since this variable may hide regional differences. The same ratio-
nale leads us to consider the school attendance shifts because, generally, students
attending full day tuition present advantages over their peers attending partial
shifts.

To achieve the main objective, the contingency table (CT) is structured as
department (group)×score (school attendance shift) (Table 1). According to the
notations used in the first sections, four factors are considered: A department size-
group, B department, C school attendance shift and D score. Since the depart-
ments are nested into size-groups, the rows have a “true” sub-partition structure.
We have to deal with a CT with I = 29 rows andK = 12 columns. The 29 rows are
the departments divided into L = 4 size groups with I1 = 7, I2 = 8, I3 = 7, I4 = 7,
according to their population.

The 12 columns correspond to the cross categories of school attendance shifts×
scores. We consider these 12 columns as divided into J = 3 groups according to
the three school attendance shifts. Each of the 12 blocks corresponds to a subtable
with, in rows, the departments of a given size-group and, in columns, the scores
of a given school attendance shift.
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The profile for the Choco department is an outlier, not considered as active in
the analysis. Being located far from the other departments, it is not projected as
illustrative. The table shows the high count of Chocó’ schools classified into an
inferior score. Therefore, the active table has I = 28 departments and I4 = 6.

Table 1: Colombian schools classified by departments, school attendance shift and stan-
dardized public tests score in 2008.

SCHOOL ATTENDANCE SHIFT
FULL DAY MORNING AFTERNOON

GRO COD. DEPART infe low med high infe low med high infe low med high
UP MENT rior ium rior ium rior ium

BOG Bogotá 5 40 101 309 9 79 219 241 15 171 179 61
ANT Antioquia 63 180 116 105 38 105 96 90 125 156 84 29
VAL Valle 35 93 72 81 51 140 118 132 62 113 55 19

P5 CUN Cundi. 19 80 81 103 11 90 114 50 40 84 33 7
ATL Atlántico 31 48 22 37 72 62 48 48 106 61 32 15
SAN Santander 7 27 51 61 10 40 78 79 30 51 24 20
BOL Bolívar 31 31 8 25 90 67 28 30 77 59 14 11
NAR Nariño 8 15 21 16 31 50 63 56 21 33 26 10
COR Córdoba 18 32 18 11 35 54 16 9 41 38 13 3
TOL Tolima 8 19 30 26 28 77 57 28 29 40 21 7

P4 CAU Cauca 36 56 27 8 24 53 32 24 18 27 13 11
NSA NorSantander 6 39 20 23 11 40 37 31 31 20 20 7
BOY Boyacá 6 48 74 40 4 31 52 25 14 39 21 8
MAG Magdalena 31 19 4 6 58 53 14 12 58 37 6 2
HUI Huila 7 37 42 29 1 16 27 12 24 30 14 10
CAL Caldas 11 37 26 26 8 38 54 21 10 18 8 2
CES César 0 16 8 11 9 50 23 15 36 37 19 3
RIS Risaralda 2 14 14 20 0 25 30 24 12 28 14 5

P3 MET Meta 4 12 15 6 7 45 24 19 22 21 10 7
SUC Sucre 9 6 5 3 29 51 19 9 30 28 10 5
LAG Guajira 7 6 7 8 12 30 6 7 24 10 3 1
QUI Quindio 0 6 7 12 1 17 31 18 10 20 7 1
CHO Chocó 23 9 6 1 26 10 3 1 20 5 0 0
CAQ Caquetá 8 10 5 1 2 21 11 7 14 9 5 1
PUT Putumayo 1 7 10 10 4 6 7 4 4 5 2 0

P2 CAS Casanare 3 12 10 6 2 16 16 4 8 13 1 1
ARA Arauca 3 1 5 2 3 7 12 7 7 5 3 1
GUV Guaviare 0 2 2 0 1 4 1 2 0 2 1 0
PO1 <100 inh. 6 16 7 2 2 7 3 3 3 4 2 0

Department size groups (inhabitants in millions): P5: more than two,
P4: between one and two, P3: between 0.5 and one, P2: less than 0.5.

5.1. Simple CA on the Global Table

In the factorial planes, each axis inertia and the corresponding percentage in
relation to the global inertia are specified.

The simple CA total inertia is equal to 0.2648. The first three axes retain
84.2%: 0.15 (59.9%), 0.5 (18.7%) and 0.02 (8.6%). The first two axes retain an
inertia over than the average. According to the sub-partitions structure associated
to the CT, the inertia is decomposed into (see §3.4):
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• 0.0062 (2.3%) department group - school attendance shift association;

• 0.0442 (16.7%) department group - score and department group - perfor-
mance - school attendance shift associations;

• 0.0281 (10.6%) department - school attendance shift association;

• 0.1863 (70.4%) department - score and department - performance - school
attendance shift associations.

Figure 3a. shows the representation of the departments, and the size-groups
as illustrative, on the first factorial plane issued from simple CA applied to the
table crossing departments and scores × school attendance shifts. Figure 3b.
shows the representation of the scores× school attendance shifts and the school
attendance shifts as illustrative, on the same plane. A Guttman (parabola) effect
is observed, more tidy in the scores trajectories corresponding to full day and
morning shifts. The scores are sorted out on the first axis. The second axis
opposes full day shift (on the positive part) to morning and afternoon shifts (on
the negative part). Since the sub-clouds are not centered on their own centroid,
the second axis opposes departments with a high proportion of full day attendance
schools to departments with a high proportion of morning or afternoon attendance
shifts. The former are mostly concentrated in the less populated size-groups of
departments. This opposition is of no interest in the context of our study.

5.2. Intra-School-Attendance-Shift Analysis

The Intra-school-attendance-shift CA allows for removing the variability due
to the different profiles of the school-attendance-shifts from one department to
another. In this analysis, the inertia is equal to 0.2143 (80.9% of the simple
CA’s inertia), corresponding basically to the relationship between departments
and scores. The first factorial plane retains 83.4% of the inertia and, according to
the eigenvalue structure, well synthesizes the results of this analysis.

This analysis differs from the simple CA because of the re-centering of the
school attendance-shift clouds so that their centroids coincide with the global
centroid. In this latter analysis, the departments are more clearly sorted out
depending on their schools scores because the interaction between departments
and school attendance shifts has been eliminated (Figure 4). The Guttman effect
also becomes clearer with this recentering. The departments’ scores seem to be
linked to their population size. The ICA and the IBCA will allow us compare the
scores of the size-groups from an internal point of view.

5.3. ICA and IBCA

The ICA and IBCA results are very similar with total inertias equal to 0.1863
and 0.1856, respectively (70.4 % and 70.1 % of the simple CA’s inertia). IBCA
main results are described, since they allow for better superimposed representa-
tions (§4.4).
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Figure 3: First factorial plane of the Simple Correspondence Analysis.

Two axes (75.6% of inertia) are retained in the IBCA. Table 2 presents the
aids to interpret sub-clouds for both school attendance and department groups.
The influence of the sub-clouds in the analysis depends on the weight of each band
which is proportional to the percentage of schools that they contain (weight).

Figure 5 shows the simultaneous global representation of rows and columns
on the IBCA first factorial plane. This graph synthesizes the CT’s analysis. The
departments are sorted out by scores issued from the public standardized tests,
along a parabola. Bogotá obtained the best scores while Bolivar and Magdalena
obtained the worst. Results show that the departments of Bolivar, Magdalena,
Atlántico, La Guajira, Sucre and Cordoba, all from the Caribbean Region, ob-
tained inferior results. Cordoba stands out in this region because it has a greater

Revista Colombiana de Estadística 36 (2013) 115–144



136 Campo Elías Pardo, Mónica Bécue-Bertaut & Jorge Eduardo Ortiz

po1

Factor 2: 0.0339 (15.8%)

−0.5 0.0 0.5

−0.4

−0.2

0.0

0.2

0.4

put
 P4 

MAG

ATL

COR
LAG

SUC

CAU

VAL

NSA

TOL
ara

ANT

NAR

 p2 

cas

CES

caq
CALMET

RIS

CUN

HUI

SAN

BOL

 P5 

BOG

Factor 1: 0.1449 (67.6%)

QUI

guv

 P3 

BOY

Factor 1: 0.1449 (67.6%)

Finf

Minf

Factor 2: 0.0339 (15.8%)

−0.5 0.0 0.5

−0.4

−0.2

0.0

0.2

0.4

Fhigh

Mhigh

Alow

Ahigh Amed

Mmed

Flow

Mlow

Fmed

Ainf

Figure 4: First factorial plane of the Intra-school-attendance-shift CA.

Table 2: Aids to the interpretation of row and column bands in the IBCA of schools

A. School attendance (column bands)
Total Comp1 Comp2 Plane

Cont.Inertia Cont.Inertia Cali Cont.Inertia Cali Cali Weight
School day x10000 % x10000 % dad % x10000 % dad % dad % %
Full 636 34.3 376 29.0 59.2 153 60.3 24.0 83.2 30.5
Morning 806 43.4 611 47.0 75.9 90 35.5 11.2 87.0 40.5
Afternoon 414 22.3 312 24.0 75.3 11 4.2 2.6 77.9 29.0
Total 1856 100.0 1299 100.0 254 100.0 100.0

B. Department groups (row bands)
Total Comp1 Comp2 Plane

Cont.Inertia Cont.Inertia Cali Cont.Inertia Cali Cali Weight
Group x10000 % x10000 % dad % x10000 % dad % dad % %
P5 1162 62.6 872 67.1 75.0 197 77.7 17.0 92.0 58.0
P4 459 24.7 310 23.9 67.5 33 12.9 7.1 74.7 25.2
P3 179 9.6 108 8.3 60.6 14 5.6 7.9 68.4 13.1
P2 56 3.0 9 0.7 16.1 10 3.8 17.4 33.5 3.7
Total 1856 100.0 1299 100.0 254 100.0 100.0

percentage of schools in medium levels. As a rule, the most standing out de-
partments belong to the Andean region. Among the less populated size-group of
departments, Arauca (Llanos Orientales) and Putumayo (Amazonia) stand out.
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One hypothesis is that these last two departments have succeeded in transferring
part of the oil production royalties to the educational system.
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Figure 5: First factorial plane of the IBCA for CT department(group)× score(shift).

5.4. Superimposed Representations in the IBCA

The first axis is a dispersion axis common to the three partial clouds of depart-
ments (one for each school attendance shift; ratio BetweenInertia/WithinInertia
= 81.1%). Concerning the four score clouds (one for each group of departments,
ratio BetweenInertia/WithinInertia = 46.9%), this axis corresponds both to com-
mon and specific effects of the clouds. On the second axis, only one third of the
inertia corresponds to a common effect to both shift (ratio = 29.9%) and groups
of departemts (ratio = 28.8%) (see §4.3.2).

5.4.1. Departments

Three partial points correspond to each department in the superimposed rep-
resentations, one for each shift. The global point is the average of those three
points. Figure 6a. shows this representation for the most populated department
group.

Bolivar is the partial cloud with the greatest dispersion (0.0028 of within in-
ertia), morning shift has the lowest average score among the departments of the
most populated size-group. Table 3 shows that 41.9% of the schools with morning
shifts are classified into the inferior category, more than three times the average
of the most populated departments (12.6%). In Bolivar, the percentages of these
schools classified in medium and high categories are less than half the average.
Bogotá has obtained the best results in all three shifts, being the full day shift the
most outstanding with 67.9% of its schools in high level, over the average equal to
38.7%. Bogotá and Santander are more alike from the morning shift point of view
than for the full day shift. Atlántico and Bolivar’s scores are similar in full day
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and afternoon shifts but they differ from the morning shift, with better scores for
Atlántico.

5.4.2. Columns: score(shift)

Each global point represents one shift and one score category. The global point
is the centroid of four partial points (one for each group of departments). Figure
6b. shows the superimposed representation of the score categories corresponding
to full day shift (see §4). In this shift, the scores differ mostly from the most
populated departments (P5 and P4).
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Figure 6: Superimposed representation on the IBCA first factorial plane.

5.5. Separate CA for the 12 Blocks

ICBA can be considered as a comparison method for the profiles corresponding
to each block. For a given block, the Intra-blocks independence model is the
independence model of the table considered separately. The changes in the IBCA,
in relation to the separate CA of each block, concerning metrics and weights, are
the price that must be paid to have a common reference framework. Figure 7 shows
some of the 12 separate correspondence analyses. The axes have been rotated for
an easier comparison to one another and to IBCA.

For instance, the planes corresponding to the three shifts in the most populated
departments (P5) show similar trends that are kept in IBCA.

6. Conclusions

Various correspondence analyses, useful for the description of contingency ta-
bles with sub-partition structures both in rows and columns were demonstrated.
An extension concerning the theoretical sections presented in Bécue-Bertaut et al.
(2005), was made, putting emphasis on the Double Intra Correspondence Analysis
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Figure 7: First factorial planes of some separate CA.

or Internal Correspondence Analysis (ICA) (§3.4). The Intra-Block Correspon-
dence Analysis (IBCA) was proposed (§3.5). The Intra-Row Bands and Intra-
Column-Bands CA are particular cases of ICA and IBCA, whenever the sub-
partition structure is considered in one single dimension (§3.4.1 and §3.5.5).

The decomposition of a simple CA for a CT with sub-partition structure in
rows and columns, presented by Sabatier (1987), was demonstrated, based on the
inertia decomposition of the simple CA into four addends. Thus, the four CA to
each addend were derived (§3.1.2 and Appendix A.2).

The relation between correspondence analysis and log-linear models applied to
multiple ways contingency tables were used to show the interactions described by
the ICA and IBCA (§3.2.2).

In the superimposed representation of ICA, some points belonging to null pro-
files, inside a block, which can lie close to points belonging to non-null profiles.
IBCA solves this problem because the partial points belonging to null profiles
which always lay at the origin (§4.4).

The methods presented in this work were illustrated by their application to the
standardized public test data collected from the Colombian secondary education
students in 2008. IBCA provides, in a synthesized way, the regional differences
between departments regarding the schools scores. The superimposed represen-
tations allow us to compare, on the one hand, the departments scores through
the different shifts and, on the other hand, the score-shifts through the groups of
departments (§5).
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Appendix A. Some Proofs

Appendix A.1. Proofs of Formulae (11) and (10), p.122

The CA inertia can be decomposed as:

∑
l,i,j,k

(
(f ljik − a

lj
ik) + (aljik − f l·i·f

·j
·k)
)2

f l·i·f
·j
·k

=
∑
l,i,j,k

(f ljik − a
lj
ik)

2

f l·i·f
·j
·k

+
∑
l,i,j,k

(aljik − f l·i·f
·j
·k)

2

f l·i·f
·j
·k

+

+
∑
l,i,j,k

(f ljik − a
lj
ik)(a

lj
ik − f l·i·f

·j
·k)

f l·i·f
·j
·k
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Then (11) is true if the last addend is equal to zero. We have:

∑
l,i,j,k

(f ljik − a
lj
ik)a

lj
ik − (f ljik − a

lj
ik)f

l·
i·f
·j
·k

f l·i·f
·j
·k

=
∑
l,i,j,k

(f ljik − a
lj
ik)a

lj
ik

f l·i·f
·j
·k

−
∑
l,i,j,k

(f ljik − a
lj
ik)

The last term is zero because the totals of F and A are equal to one another.

Appendix A.2. Decomposition of the Inertia Associated to
the SCA

Sabatier, Lebreton & Chessel (1989) demonstrated the decomposition of the
inertia using the correspondence analysis with respect to instrumental variables.
We show the inertia decomposition by expressing F−H as the sum of differences
and using these differences expressed as general terms to calculate the inertia.
Then, each inertia term is associated to a CA.

F−H = (F−C) + (AJ −E) + (AL −E) + (E−H)

The inertia associated to the SCA of F is:

∑
l,i,j,k

(f ljik − h
lj
ik)

2

hljik
=

(
(f ljik − c

lj
ik) + ((aJ)ljik − e

lj
ik) + ((aL)ljik − e

lj
ik) + (eljik − h

lj
ik)
)2

hljik

=
∑
l,i,j,k

(f ljik − c
lj
ik)

2

hljik
+
∑
l,i,j,k

((aJ)ljik − e
lj
ik)

2

hljik
+
∑
l,i,j,k

((aL)ljik − e
lj
ik)

2

hljik
+
∑
l,i,j,k

(eljik − h
lj
ik)

2

hljik
(29)

since all the crossed products are equal to zero. In what follows, the equality to
zero for the last crossed product is proved:

∑
l,i,j,k

((aL)ljik − e
lj
ik)(e

lj
ik − h

lj
ik)

hljik
=
∑
l,i,j,k

((aL)ljik − e
lj
ik)e

lj
ik

hljik
−
∑
l,i,j,k

((aL)ljik − e
lj
ik)h

lj
ik

hljik

The last term is zero because the totals of AL and E are both zero. The other
term is also zero, since:

∑
l,i,j,k

((aL)ljik − e
lj
ik)
f l·i·f

·j
·kf

lj
··

f ·j·· f l···
f l·i·f

·j
·k

=
∑
l,j

f l···
f ·j·· f l···

∑
i,k

((aL)ljik − e
lj
ik) = 0

Now, the CA associated to the inertias contained in the formula can be seen (29):

1. CA(F,C), i.e, ICA(F).
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2. CA(AJ,E), but the expression can be reduced adding over k:

∑
l,i,j,k

(
f lji· f

·j
·k

f ·j··
−
f l·i·f

·j
·kf

lj
··

f l··· f
·j
··

)2

f l·i·f
·j
·k

=
∑
l,i,j

(
f lji· −

f l·i·f
lj
··

f l·i·

)2

f l·i·f
·j
··

We note TJ the table of dimension I × J and with general term f lji· , this
inertia is associated to the Intra-Tables CA of TJ.

3. We can obtain an analogous result if we add on the subscript i, i.e. the
CA(AL,E) is the Intra-Tables CA of TL, with dimension L×K and general
term f lj·k .

4. The last addend is associated to the CA(E,H). In this case, it is possible to
add to both subscripts i and k:

∑
l,i,j,k

(
f l·i·f

·j
·kf

lj
··

f l··· f
·j
··
− f l·i·f

·j
·k

)2

f l·i·f
·j
·k

=
∑
l,j

(f lj·· − f l··· f
·j
·· )2

f l··· f
·j
··

This inertia is associated to the SCA of T, with dimension L×J and general
term f lj·· , i.e. the table formed by the totals of the blocks (l, j).

Appendix A.3. Proof of Formula (23), p.126

The coordinate of the row point over the s-axis, as a function of the coordinates
of the column points is (Escofier 1984):

Fs(l, i) =
1√
λs

∑
j,k

(
f ljik
f l·i·
−
cljik
f l·i·

)
Gs(j, k)

Replacing cljik (Formula (19), p.124), three sums appear but the two last are zero,
because the coordinates Gs(j, k) from each subcloud NKj are centered with the

weights
f ·j·k
f ·j··

:

∑
j

f lji·
∑
k∈Kj

f ·j·k
f ·j··

Gs(j, k) = 0 and
∑
j

f lj··
f l···

∑
k∈Kj

f ·j·k
f ·j··

Gs(j, k) = 0

then,

Fs(l, i) =
1√
λs

∑
j,k

(
f ljik
f l·i·
−
f lj·k
f l···

)
Gs(j, k)
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Abstract

This article considers the problem of estimating the population variance
using auxiliary information. An improved version of Singh’s exponential type
ratio estimator has been proposed and its properties have been studied under
large sample approximation. It is shown that the proposed exponential type
ratio estimator is more efficient than that considered by the Singh estimator,
conventional ratio estimator and the usual unbiased estimator under some
realistic conditions. An empirical study has been carried out to judge the
merits of the suggested estimator over others.
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Resumen

Este artículo considera el problema de estimar la varianza poblacional
usando información auxiliar. Una versión mejorada de un estimador expo-
nencial tipo razón de Singh ha sido propuesta y sus propiedades han sido
estudiadas bajo aproximaciones de grandes muestras. Se muestra que el esti-
mador exponencial tipo razón propuesto es más eficiente que el estimador de
Singh, el estimador de razón convencional y el estimador insesgado usual bajo
algunas condiciones realísticas. Un estudio empírico se ha llevado a cabo con
el fin de juzgar los méritos del estimador sugerido sobre otros disponibles.
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1. Introduction

The auxiliary information in sampling theory is used for improved estimation
of parameters thereby enhancing the efficiencies of the estimators.

Let (xi, yi), i = 1, 2, . . . , n be the n pair of sample observations for the auxil-
iary and study variables, respectively, drawn from the population of size N using
Simple Random Sampling without Replacement. Let X and Y be the population
means of auxiliary and study variables, respectively, and let x and y be the re-
spective sample means. Ratio estimators are used when the line of regression of y
on x passes through the origin and the variables x and y are positively correlated
to each other, while product estimators are used when x and y are negatively
correlated to each other; otherwise, regression estimators are used.

The sample variance estimator of the population variance is defined as

t0 = s2y (1)

which is an unbiased estimator of population variance S2
y = 1

N−1
∑N
i=1(Yi − Y )2

and its variance is
V (t0) = γ S4

y (λ40 − 1) (2)

where λrs = µrs

µ
r/2
20 µ

s/2
02

, µrs = 1
N−1

∑N
i=1(Yi − Y )r(Xi −X)s, and γ = 1

n .

Isaki (1983) proposed the ratio type estimator for estimating the population
variance of the study variable as

tR = s2y

(
S2
x

s2x

)
(3)

where

s2y =
1

n− 1

n∑
i=1

(yi − y)2, s2x =
1

n− 1

n∑
i=1

(xi − x)2, S2
x =

1

N − 1

N∑
i=1

(Xi −X)2

X =
1

N

N∑
i=1

Xi, Y =
1

N

N∑
i=1

Yi, x =
1

n

n∑
i=1

xi, y =
1

n

n∑
i=1

yi

The Bias (B) and Mean Squared Error (MSE ) of the estimator in (3), up to
the first order of approximation, are given, respectively, as

B(tR) = γS2
y [(λ40 − 1)− (λ22 − 1)] (4)

MSE(tR) = γS4
y [(λ40 − 1) + (λ04 − 1)− 2 (λ22 − 1)] (5)

Singh, Chauhan, Sawan & Smarandache (2011) proposed the exponential ratio
estimator for the population variance as

tRe = s2y exp

[
S2
x − s2x
S2
x + s2x

]
(6)
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The bias and MSE, up to the first order of approximation, respectively, are

B(tRe) = γ S2
y

[
3

8
(λ04 − 1)− 1

2
(λ22 − 1)

]
(7)

MSE(tRe) = γ S4
y

[
(λ40 − 1) +

(λ04 − 1)

4
− (λ22 − 1)

]
(8)

The usual linear regression estimator for population variance is

Ŝ2
lr = s2y + b(S2

x − s2x) (9)

where b = s2y(λ̂22−1)
s2x(λ̂04−1)

is the sample regression coefficient.

The MSE of Ŝ2
lr, to the first order of approximation, is

MSE(Ŝ2
lr) = γ S4

y

[
(λ40 − 1)− (λ22 − 1)2

λ04 − 1

]
(10)

Many more authors, including Singh & Singh (2001, 2003), Nayak & Sahoo
(2012), among others, have contributed to variance estimation.

2. Improved Exponential Type Ratio Estimator

Motivated by Upadhyaya, Singh, Chatterjee & Yadav (2011) and following
them, we propose the improved ratio exponential type estimator of the population
variance as follows:

The ratio exponential type estimator due to Singh et al. (2011) is given by

tRe = s2y exp

[
S2
x − s2x
S2
x + s2x

]
= s2y exp

[
1− 2s2x

S2
x + s2x

]
which can be generalized by introducing a positive real constant ‘α’ (i.e. α ≥ 0)
as

t
(α)
Re = s2y exp

[
1− αs2x

S2
x + (α− 1)s2x

]
= s2y exp

[
S2
x − s2x

S2
x + (α− 1)s2x

]
(11)

Here, we note that: (i) For α = 0, t(α)Re in (11) reduces to

t
(0)
Re = s2y exp [1] (12)

which is a biased estimator with the MSE larger than s2y utilizing no auxiliary
information as the value of ‘e’ is always greater than unity.

(ii) For α = 1, t(α)Re in (11) reduces to

t
(1)
Re = s2y exp

[
S2
x − s2x
S2
x

]
(13)
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(iii) For α = 2, t(α)Re in (11) reduces to Singh et al. (2011) ratio exponential type
estimator

tRe = s2y exp

[
S2
x − s2x
S2
x + s2x

]
(14)

Then, we have investigated for which value of α, the proposed estimator, t(α)Re ,
is more efficient than the estimators, t0, tR, and tRe.

3. The First Degree Approximation to the Bias and
Mean Squared Error of the Suggested Estimator

In order to study the large sample properties of the proposed class of estimator,
t
(α)
Re , we define s2y = S2

y (1 + ε0) and s2x = S2
x (1 + ε1) such that E (εi) = 0 for

(i = 0, 1) and E
(
ε20
)
= γ (λ40 − 1), E

(
ε21
)
= γ (λ04 − 1), E (ε0ε1) = γ (λ22 − 1).

To the first degree of approximation, the bias and the MSE of the estimator,
t
(α)
Re , are respectively given by

B(t
(α)
Re ) = γS2

y

(λ04 − 1)

2α2
[2α(1− λ)− 1] (15)

MSE(t
(α)
Re ) = γ S4

y

[
(λ40 − 1) +

(λ04 − 1)

α2
(1− 2αλ)

]
(16)

where λ = λ22−1
λ04−1 .

The MSE(t
(α)
Re ) is minimum for

α =
1

λ
= α0 (say) (17)

Substituting α = 1
λ into (11), we get the asymptotically optimum estimator

(AOE) in the class of estimators (t(α)Re ) as

(t
(α0)
Re ) = s2y exp

[
λ(S2

x − s2x)

λS2
x + (1− λ)s2x

]
(18)

The value of λ can be obtained from the previous surveys or the experience
gathered in due course of time, for instance, see Murthy (1967), Reddy (1973, 1974)
and Srivenkataramana & Tracy (1980), Singh & Vishwakarma (2008), Singh &
Kumar (2008) and Singh & Karpe (2010).

The mean square error of AOE (t
(α0)
Re ), to the first degree of approximation, is

given by

MSE(t
(α0)
Re ) = γ S4

y

[
(λ40 − 1)− (λ22 − 1)2

λ04 − 1

]
(19)

which equals to the approximate MSE of the usual linear regression estimator of
population variance.
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In case the practitioner fails to guess the value of ‘λ’ by utilizing all his re-
sources, it is worth advisable to replace λin (18) by its consistent estimate

λ̂ =
λ̂22 − 1

λ̂04 − 1
(20)

Thus, the substitution of λ̂ in (18) yields an estimator based on estimated ‘λ’
as

(t
(α̂0)
Re ) = s2y exp

[
λ̂(S2

x − s2x)

λ̂S2
x + (1− λ̂)s2x

]
(21)

It can be shown to the first degree of approximation that

MSE(t
(α0)
Re ) =MSE(t

(α̂0)
Re ) = γ S4

y

[
(λ40 − 1)− (λ22 − 1)2

λ04 − 1

]
(22)

Thus, the estimator t(α̂0)
Re , given in (21), is to be used in practice as an alter-

native to the usual linear regression estimator.

4. Efficiency Comparisons of the Proposed
Estimator with the Mentioned Existing
Estimators

From (16) and (2), we haveMSE(t0)−MSE(t
(α)
Re ) = γ S4

y
(λ04−1)
α2 (1−2αλ) > 0,

if
α >

1

2λ
(23)

From (16) and (5), we haveMSE(tR)−MSE(t
(α)
Re ) = γ S4

y(λ04−1)(1− 1
α ) (1+

1
α − 2λ) > 0, if either

min

{
1,

1

2λ− 1

}
< α < max

{
1,

1

2λ− 1

}
, λ >

1

2
(24)

or
α > 1, 0 ≤ λ ≤ 1

2
. (25)

From (16) and (8), we have MSE(tRe)−MSE(t
(α)
Re ) = γ S4

y(λ04 − 1)( 12 −
1
α ) (

1
2 +

1
α − 2λ) > 0, if either

min

{
2,

2

4λ− 1

}
< α < max

{
2,

2

4λ− 1

}
, λ >

1

4
(26)

or
α > 2, 0 ≤ λ ≤ 1

4
(27)
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From (16) and (10), we have

MSE(t
(α)
Re )−MSE(Ŝ2

lr) = γ S4
y(λ04 − 1)

[
(λ04 − 1)

α
− (λ22 − 1)

]2
< 0

if
λ04 < 1 (28)

5. Numerical Illustrations

The appropriateness of the proposed estimator has been verified with the help
of the four data sets, given in Table 1 (Subramani & Kumarapandiyan 2012). In
Table 2, which gives the range of α and also the optimal value, α0, for the effi-
ciency condition of the proposed estimator, we see that (t(α)Re ), is quite wide as tRe;
whereas, from Table 3, which provides the Percent Relative Efficiencies (PREs) of
different estimators of the population variance with respect to the sample variance,
we observe that the proposed estimator is more efficient than tRe.

Table 1: Parameters of populations.
Parameters Population 1 Population 2 Population 3 Population 4
N 103 103 80 49
n 40 40 20 20
Y 626.2123 62.6212 51.8264 116.1633
X 557.1909 556.5541 11.2646 98.6765
ρ 0.9936 0.7298 0.9413 0.6904
Sy 913.5498 91.3549 18.3569 98.8286
Cy 1.4588 1.4588 0.3542 0.8508
Sx 818.1117 610.1643 8.4563 102.9709
Cx 1.4683 1.0963 0.7507 1.0435
λ04 37.3216 17.8738 2.8664 5.9878
λ40 37.1279 37.1279 2.2667 4.9245
λ22 37.2055 17.2220 2.2209 4.6977
λ 0.9969 0.9635 0.7748 0.7846

Table 2: Range of ‘α’ for (t
(α)
Re ) to be more efficient than different estimators of the

population variance.
Populations

Estimators 1 2 3 4
t0 α > 0.50 α > 0.52 α > 0.65 α > 0.64

tR α ∈ (1.00, 1.01) α ∈ (1.00, 1.08) α ∈ (1.00, 1.82) α ∈ (1.00, 1.76)

tRe α ∈ (0.67, 2.00) α ∈ (0.70, 2.00) α ∈ (0.95, 2.00) α ∈ (0.94, 2.00)

Common Range of α
for
(
t
(α)
Re

)
to be more α ∈ (0.67, 2.00) α ∈ (0.70, 2.00) α ∈ (0.95, 2.00) α ∈ (0.94, 2.00)

efficient than t0, tR, tRe
Optimum value of α α0 = 1.003 α0 = 1.038 α0 = 1.291 α0 = 1.275
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Table 3: Percent relative efficiencies (PREs) of different estimators of population vari-
ance with respect to sample variance t0 = s2y.

Populations
Estimators 1 2 3 4
t0 = s2y 100.00 100.00 100.00 100.00
tR 93,838.70 175.74 183.23 258.72
tRe 401.30 149.76 247.21 266.29
t
(α̂0)
Re 94,749.28 175.96 270.63 331.68

6. Conclusion

We have suggested an improved exponential ratio estimator for estimating the
population variance. From theoretical discussions, given in Section 4 and results in
Table 3, we infer that the proposed estimator is better than the mentioned existing
estimators in literature, the usual sample variance , traditional ratio estimator due
to Isaki (1983) and Singh et al. (2011) exponential ratio estimator in the sense of
having lesser mean squared error. We have also given the range of α along with
its optimum value for to be more efficient than different estimators. Hence, the
proposed estimator is recommended for its practical use for estimating the popu-
lation variance when the auxiliary information is available. In future articles, we
hope to adapt the proposed estimator here to the combined and separate methods
in the stratifed random sampling.
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Abstract

A methodology is proposed to jointly model treatments with quantita-
tive levels measured throughout time by combining the response surface and
growth curve techniques. The model parameters, which measure the effect
throughout time of the factors related to the second-order response surface
model, are estimated. These estimates are made through a suitable trans-
formation that allows to express the model as a classic MANOVA model,
so the traditional hypotheses are formulated and tested. In addition, the
optimality conditions throughout time are established as a set of specific
combination factors by the fitted model. As a final step, two applications
are analyzed using our proposed model: the first was previously analyzed
with growth curves in another paper, and the second involves two factors
that are optimized over time.

Key words: Growth curves, Multiple optimization, Response surfaces,
Second order models.

Resumen

En este artículo se propone una metodología para modelar conjunta-
mente tratamientos con niveles cuantitativos medidos en el tiempo, medi-
ante la combinación de técnicas de superficies de respuesta con curvas de
crecimiento. Se estiman los parámetros del modelo, los cuales miden el efecto
en el tiempo de los factores relacionados con el modelo de superficie de res-
puesta de segundo orden. Estas estimaciones se realizan a través de una
transformación que permite expresar el modelo como un modelo clásico de
MANOVA; de esta manera, se expresan y juzgan las hipótesis tradicionales.
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Además, las condiciones de optimización a través del tiempo son estableci-
das para un conjunto de factores específicos por medio del modelo ajustado.
Como paso final, se analizan dos aplicaciones utilizando el modelo propuesto:
la primera fue analizada mediante curvas de crecimiento en otro artículo, y
la segunda consiste en dos factores que son optimizados a lo largo del tiempo.

Palabras clave: curvas de crecimiento, optimización múltiple, superficies
de respuesta, modelos de segundo orden.

1. Introduction

Sometimes in experimentation, researchers interest focuses on analyzing data
over time to know the tendencies of an individual or groups of individuals. In
other cases, the goal is not only the trend but also to know what combination of
factors can optimize the process over time. This latter context is the starting point
for analysis of growth curves and response surface methodology (RSM). Response
surface and growth curves are statistical methods frequently used in the analysis
of experiments. The purpose of the first is to determine the optimum operating
conditions of a process, whereas the latter method is used to model the effect of
treatments throughout time.

Two applications of the above hybrid model approach are analyzed in this pa-
per. The first is an experiment to analyze the effect of dietary ingestion of sodium
Zeolite A (SZA) on the growth and physiology of sixty horses reported by Frey,
Potter, Odom, Senor, Reagan, Weir, Elsslander, Webb, Morris, Smith & Weigand
(1992). The horses were randomly assigned to four treatments: control and three
levels of dietary SZA (0.66%, 1.32% and 2%). In addition, plasma silicon concen-
tration was measured at the times: t = 0, 1, 3, 6, 9 hours after ingestion on eighty
four days into the diet. The second study is an experiment about the waste-water
treatment, in which is common adding inhibitory agents to reduce the negative
environmental impact generated by these substances discharged into the receiving
water bodies. In such cases, we study the biological oxygen demand (BOD) as
a water pollution measure. Montoya & Gallego (2012) performed a central com-
posite rotatable design adding combinations of detergent (D) and animal fat (AF)
to the residual water. The BOD, biomass growth and substrate consumption at
t = 24, 48, 72, 96, 120 hours after of mixture were observed.

In both experiments, we are interested in studying the optimum combination
of factors throughout time that optimizes our response variable. Therefore, in
these kinds studies, we want to observe if the growth curves can be represented
by a cubic, quadratic or linear polynomial in time, and if the response surface can
be expressed by a quadratic or linear polynomial in the treatments. Furthermore,
we want to obtain the confidence band(s) for the expected combination of factors
over time (response surface throughout growth curves).

A growth curve is a model of the evolution of a quantity over time. Growth
curves are widely used in biology for quantities such as population size, body height
or biomass. Growth curve experiments have been considered from various angles
by Rao (1959), Potthoff & Roy (1964), Khatri (1966), Khatri (1973), Verbyla
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& Venables (1988), Kshirsagar & Boyce (1995), Srivastava (2002), Pan & Fang
(2002), Chiou, Müller, Wang & Carey (2003) and Kahm, Hasenbrink, Lichtenberg-
Fraté, Ludwig & Kschischo (2010). All of these growth curve studies involve
successive and correlated measurements on the same individuals which are divided
into two or more groups of treatments. We use in this paper treatments that are
combinations of quantitative factors which are based on polynomial models in the
response surface.

RSM uses statistical models and therefore practitioners need to be aware that
even the best statistical model is an approximation to reality. In this way, if re-
searches are interested in modeling and analyzing situations to determine optimum
operating conditions for a process; this particular analysis is performed through
the RSM. It is widely applicable in the biological sciences, chemistry, social exper-
imentation agriculture, engineering, food sciences, quality control and economics,
among others. The RSM has been developed in experimental and industrial pro-
duction by Box & Wilson (1951), Hill & Hunter (1966), Mead & Pike (1975),
Lucas (1976), Box & Draper (1982), Draper & Ying (1994), Chiou, Müller &
Wang (2004) and Box & Draper (2007). These authors discussed some first-order
and second-order response surface designs from the point of view of their ability
to detect certain likely kinds of lack of fit for a higher’s degree polynomial than
has been fitted.

The two previous approaches to growth curve and RSM problems are now
mixed to give a solution to our two applications because we need to know what is
the combination of factors over time that best works in the optimization process.
Our methodology is derived from the theory of multivariate normal analysis of
variance, and it is based on polynomial models for both growth curve and response
surface. Moreover, we provide both confidence bands and the over-all tests of
significance for various kinds of compound hypotheses that involve the parameters
of the proposed model. Furthermore, we find the optimal operating conditions
over time.

This kind of problem was previously studied by Guerrero & Melo (2008) pro-
viding a solution where they combined the response surface and the growth curve
techniques using an univariate analysis. In this paper, the same is done to obtain
the functional relationship that exists between the treatment and time in order
to predict its effect in any future time. Although, there are several phenomena of
this kind where these two techniques may be used simultaneously, a procedure that
combines them at the same time is not known using multivariate analysis. This
analysis works better than the univariate approximation presented by Guerrero &
Melo (2008) because the different statistics for hypothesis testing are exact, which
does not always happen in the univariate approach.

The experiments to be considered are characterized by the presence of k fixed
quantitative factors, ζ1, ζ2, . . . , ζk, associated with a continuous variable of interest
Y , where the observed levels of each factor are equally spaced and the response
variable is measured on the same experimental units in several moments.
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The plan of the paper is the following: Section 2 presents the response surfaces
model in growth curves. Then in Section 3, parameter estimation, hypotheses
testing and test statistics are presented. Section 4 is dedicated to locating the
optimum; at first the model is reparametrized (Section 4.1), and then the optimal
point is found (Section 4.2). Finally, two applications of our procedure are showed
in Section 5, and the conclusions are exposed in Section 6.

2. Response Surfaces Model in Growth Curves

The growth curve model implies that there are g different groups or treatments
and a single growth variable y, which is measured at q time points t1, t2, . . . , tq
on nj individuals chosen at random from the j-th group (j = 1, 2, . . . , g). A
polynomial regression of degree (p − 1) for y on the time variable t is defined.
Thus,

E(yt) = φj0t
0 + φj1t

1 + · · ·+ φj(p−1)t
p−1 (1)

t = t1, t2, . . . , tq, q > p − 1, j = 1, 2, . . . , g. The observations yt1 , . . . , ytq on the
same individual are correlated, and come from a multivariate normal distribution
with unknown variance-covariance matrix Σ, equal for all the individuals. Let Y j

denote the nj × q matrix of the observations for the j-th group, and let

Y′ = [Y ′1,Y
′
2, . . . ,Y

′
g]

denote the q × n matrix for all the n = n1 + n2 + · · ·+ ng individuals. Then from
(1)

E(Y j) =


φjG

φjG
...

φjG

 = Jnj1φjG, j = 1, 2, . . . , g (2)

where φj = [φj0, φj1, . . . , φj(p−1)]
′ denotes the vector of the regression or growth

curve coefficients for the j-th group, and

G =


t01 t02 . . . t0q
t11 t12 . . . t1q
...

...
. . .

...
tp−11 tp−12 . . . tp−1q


and Ja×b denotes, in general, an a × b matrix with all unit elements. Further-
more, the matrix Gp×q relates the parameters of the curve with the corresponding
polynomial degree.

Revista Colombiana de Estadística 36 (2013) 153–176



Response Surfaces Optimization in Growth Curves 157

Combining (2) for all g groups, we now have

E(Y) =


Jn11φ1G

Jn21φ2G
...

Jng1φgG

 = AΦG (3)

where

Φ =


φ1

φ2
...
φg


is the g×p matrix of the growth curve coefficients, and A = diag[Jn11,Jn21, . . .Jng1]

is a block diagonal matrix of order n× g ‘group indicator’. Therefore, assuming
independence between individuals, we have that

V ar(V ec(Y)) = In ⊗Σq (4)

where ⊗ denotes the Kronecker product of two matrices (see Magnus (1988)).
The equations (3) and (4) conform to the growth curve model introduced by

Potthoff & Roy (1964), and later analyzed by Khatri (1966), Grizzle & Allen
(1969), Kabe (1974), and Khatri (1988), among many others.

2.1. Construction of Proposed Model

With the idea of making a joint modeling of growth curves and response sur-
faces, a couple of aspects were considered:

1. The matrix An×g, whose columns contain information about treatments,
was changed by a new matrix Xn×s, whose columns register the levels of
a factor and their interactions for each of the n individuals, just like in
second order response surfaces designs with k quantitative fixed factors and
s = 1 + k + (k +

(
k
2

)
) parameters in the surface.

2. For relating the parameters from the response surface with each of the
groups, a new matrix of parameters θs×g was included in the model where θlj
measures the effect of the l-th parameter in the surface for the j− th group.
Let Φg×p be the matrix that relates the groups with the growth curve co-
efficients, i.e., φjm is the parameter associated to the degree coefficient m
in the growth curve for the j-th group (l = 1, 2, . . . , s; j = 1, 2, . . . , g;m =
0, 1, . . . , p− 1).

Under the usual assumptions described above and maintaining the same struc-
ture and interpretation for the matrices Yn×q and Gp×q, the proposed model is
given by

E(Yn×q) = Xn×s θs×g Φg×p Gp×q (5)
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Notice that the model (5) is a classic model Potthoff & Roy (1964) adaptation
in which the matrix ξs×p = θs×gΦg×p, whose components are given by

ξml =

g∑
j=1

θljφjm

which is the parameter associated with the l-th component of the surface in the
m-th growth curve degree (l = 1, 2, . . . , s and m = 0, 1, . . . , p− 1). This allows to
write (5) as

E(Yn×q) = Xn×s ξs×p Gp×q (6)

Another form for writing this model is

E(yia) =

p−1∑
m=0

(
ξm0 +

k∑
r=1

ξmr xir +
k∑
r=1

k∑
r′=1

ξmrr′ xirxir′

)
tma (7)

or equivalently the model (6) can be written as

E(yia) =

( p−1∑
m=0

ξm0 t
m
a

)
+

k∑
r=1

xir

( p−1∑
m=0

ξmr t
m
a

)
+

k∑
r=1

k∑
r′=1

xirxir′

( p−1∑
m=0

ξmrr′t
m
a

)
(8)

with a = 1, 2, . . . , q and i = 1, . . . , n, and where ξmrr′ is the parameter that denotes
the effect of the interaction between the factors r and r′ in the m-th growth
curve degree (r, r′ = 1, 2, . . . , k and m = 0, 1, . . . , p− 1), xir and xir′ are encoded
explanatory variables associated to the factors r-th and r′-th, respectively, and yia
is the response variable associated to the i-th individual in the a-th time.

Note that the model (7) is in fact a growth curve whose coefficients are them-
selves a response surface of order two, and the model (8) is a response surface
whose parameters are growth curves. Moreover in (7), it is necessary to point out
that for a fixed m, all the parameters of the form ξm0 , ξmr , ξmrr′ (r, r′ = 1, 2, . . . , k)
belong to the m-th column of ξ. Similarly, in (8), each set of parameters of the
form ξm0 , ξmr , ξmrr′ with m = 0, 1, . . . , p− 1 and fixed r, r′, conforms the rows of ξ.
The remarks above are of great utility in section 3.2 for building the hypotheses
of interest on the model parameters.

3. Inference on the Model

3.1. Parameter Estimation

Parameter estimation is achieved by expressing the model (6) as a MANOVA
classic model, using the following transformation

Y4 = YP−1G′(GP−1G′)−1 (9)

with P any symmetric positive definite matrix, such that (GP−1G′)−1 exists.
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By applying the transformation (9) in (6), the next expression is obtained

E(Y4n×p) = Xn×s ξs×p (10)

V ar(Y4i ) = (GP−1G′)−1GP−1ΣP−1G′(GP−1G′)−1

= Σ4p , i = 1, 2, . . . , n

Potthoff & Roy (1964) found that taking P = Σ produces the minimum vari-
ance estimator for ξ; however, since Σ is unknown, in practice P is given by

P = S = Y′{I−X(X′X)−1X′}Y (11)

Note that P can take different forms which depend of the data correlation struc-
ture; a complete discussion about P can be found in Davis (2002), Molenberghs
& Verbeke (2005), and Davidian (2005).

Then, for model (10), the parameter estimators obtained with the maximum
likelihood method are given by

ξ̂ = (X′X)−1X′Y
4 (12)

From a slight extension of the result given by Rao (1967) in equation 50, we
can find that the unconditional covariance matrix of the elements of ξ̂ can be
expressed as

V ar
(
ξ̂ ′
)

= n−s−1
n−s−q+p−1 (X′X)

−1 ⊗Σ4 (13)

where ⊗ is the Kronocker product, and V ar(ξ̂ ′) denotes the covariance matrix of
the elements of ξ̂ taken in a columnwise manner.

It is easily shown that E(ξ̂) = ξ, and using a result given by Grizzle & Allen
(1969), we find that E((GS−1G′)

−1
) = (n−s−q+p)Σ4. From this last equation

and equation (13), it follows that an unbiased estimator of the variance of ξ̂ is

V̂ ar
(
ξ̂ ′
)

= n−s−1
n−s−q+p−1 (X′X)

−1 ⊗ Σ̂4 (14)

where
Σ̂4 =

1

n− s− q + p
(GS−1G′)−1

In next Subsection, we will present a classic technique for testing a hypothesis
of the form C ξU = 0 under the generalized expectation model (6), and also we
will obtain related confidence bounds.

3.2. Hypothesis of Interest and Test Statistics

As shown in the section 2.1, the model (6) can be written by expressions (7)
and (8), where it can be observed that the hypotheses of interest lie mainly on the
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rows or the columns of the matrix ξ. These and many other can be written in the
conventional general linear hypothesis form

H0 : C ξU = 0 vs H1 : C ξU 6= 0 (15)

where Cc×s and Up×u are known matrices of ranges c (≤ s) and u (≤ p), re-
spectively. The matrices that define the main hypotheses, together with their
corresponding interpretation, are shown in Table 1.

Table 1: Hypotheses more common over treatments and times.

H0 Interpretation C U

ξ = 0

The time-parameter
interaction adjusted
by the intercepts is
not significant.

(
0 01×s−1

0s−1×1 Is−1

) (
0 01×p−1

0p−1×1 Ip−1

)

ξ(m) = 0

The m-th column of
ξ is zero, indicating
that the degree m co-
efficient is not impor-
tant in the growth
curve.

Is (0, . . . , 1
↓

m−th

, . . . , 0)′p×1

ξ(l) = 0

The l-th row of ξ is
zero, indicating that
the parameter of the
surface is not signifi-
cant.

(0, . . . , 1
↓

l−th

, . . . , 0)1×s Ip

ξml = 0

The l-th component
of the surface does
not exercise influence
in the m-th degree of
the curve.

(0, . . . , 1
↓

l−th

, . . . , 0)1×s (0, . . . , 1
↓

m−th

, . . . , 0)′p×1

For the construction of the test statistics, the following two matrices should be
kept in mind

H = U′ξ̂ ′C ′[CR1C ′]−1Cξ̂U

E = U′(GS−1G′)−1U

where

R1 =
{
I + (X′X)−1X′YS−1

[
I−G′(GS−1G′)−1GS−1

]
Y′X

}
(X′X)−1

H and E play a decisive role in building the four classic multivariate test
statistics used in testing hypothesis (15) under the model (10): the Roy’s test uses
the largest characteristic root of (HE−1), the Lawley-Hotelling T 2 = tr(HE−1),
the trace of Bartlett-Nanda-Pillai V = tr(H(H + E)−1), and the statistic proposed
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by Wilks (1932), |E|/|H + E| ∼ Λ(u,c,m) with m = n− [s+(q−p)], which is known
as the λ-criterion.

The hypotheses in Table 1 involves one row vector or one column vector. There-
fore, we now state the general rule of rejecting a null hypothesis based on Wilks’s
Λ, using a level of significance α. To test the null hypothesis ξ(m) = 0, we use the
following test presented in Kshirsagar & Boyce (1995)

u1 =
1− Λ

Λ

ddf

ndf

where ddf is the denominator degree of freedom and ndf is the numerator degrees
of freedom. Then, the null hypothesis ξ(m) = 0 is rejected if u1 > F(α,ndf,ddf).

To test the null hypothesis ξ(l) = 0, we use the following test presented in
Kshirsagar & Boyce (1995)

c1 =
1− Λ

Λ

(
c+ ddf − u

u

)
Then, the null hypothesis ξ(l) = 0 is rejected if c1 > F(α,u,c+ddf−u).

On the other hand, simultaneous 100(1-α)% confidence bounds for the function
b′CξUf , ∀ b(c×1) and f(u×1), are given by

b′Cξ̂Uf ±
{(

hα
1−hα

)
(b′CR1C

′b)(f ′Ef)
}1/2

(16)

where the prediction is, of course, the first term of the equation (16) and hα
stands for the α fractile of the distribution for the Roy’s largest characteristic root
statistic tabulated by Heck (1960) with its three parameters (denoted by s, m and
n in Heck’s notation, but here denoted, respectively, by s∗, m∗ and n∗) equal to
s∗ = min(c, u), m∗ = (|c− u| − 1)/2 and n∗ = (n− s− (q − p)− u− 1)/2.

Other test statistics are presented in some works; for instance, Grizzle and
Allen’s statistic (1969) which considers a variant for the matrix associated the
hypothesis (relating to the herein presented). Singer & Andrade (1994) remarked
on the appropriate selection of error terms and presented a test statistic that
follows an exact F distribution (under H0). This was also used in the application
of Section 5, since it yielded the same decisions as the test statistics exposed there.

4. Location of the Optimum

The crucial goal of the response surface methodology is to find the optimal
operating conditions for the variable of interest, and in this scenario, their behavior
throughout time is added.

4.1. Reparameterization of the Model

In order to find the optimal operating conditions in presence of multiple re-
sponses, it is convenient to find an expression that us allows to distinguish the
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terms of order zero, one and two of the model (10). This model can be reparametrized
as

Ŷ4i1×p = b 01×p + (x′1×kb k×p) + (x′B(0)x,x′B(1)x, . . . ,x′B(p−1)x)

= b 01×p + (x′1×kb k×p) + (x′1×kBk×kp)(Ip ⊗ xk×1)
(17)

where xk×1 is the vector associated to the k factors of the response surfaces,
b 01×p is the vector whose components are the intercepts of each curve degree,
b k×p is the matrix that contains the coefficients associated to the k linear terms
of the response surface for each of the curve degrees, and Bk×kp is the matrix
(B(0),B(1), . . . ,B(p−1)) with B(m) (m = 0, 1, . . . , p − 1) being the k × k matrix
associated to the quadratic form of the response surface for the m-th growth curve
degree.

4.2. Optimization

The location of the optimal point is obtained by solving the equation system
resulting from the expression

∂Ŷ4i
∂x

= b k×p + 2[B(0)x
... B(1)x

... · · ·
... B(p−1)x] = 0 (18)

which is demonstrated using properties of differential matrix calculus.
By applying the vec operator in system (18), the following system of k variables

and kp equations is obtained

vec(b k×p) + 2


B(0)x

B(1)x
...

B(p−1)x

 = 0

B′x = −1

2
vec(b k×p),

which is solved by appending to it a pre-matrix B; hence, the stationary point is

x0 = −1

2
(BB′)−1Bvec(b k×p) (19)

and the non-singularity of BB′ is guaranteed by the linear independence of the
columns of X′X.

Let γ1, γ2, . . . , γk be the characteristic roots of the matrix BB′, then the nature
of the stationary point is determined by

• If γv > 0 ∀v = 1, 2, . . . , k, then x0 is minimum.

• If γv < 0 ∀v = 1, 2, . . . , k, then x0 is maximum.
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• In any other case, x0 is a saddle point.

Using (16) with C = I, U = I, b′ = x0 and f = G(m); the confidence bounds
for the predicted values of the optimal point in each moment are given by

x′0ξ̂G
(m) ±

{(
1

2n∗+2F(α,1,2n∗+2)

)
(x′0R1x0)

[
G(m) ′EG(m)

]}1/2

(20)

where G(m) is a column of the matrix G and n∗ = (n− s− 2)/2.

5. Applications

Two applications are analyzed in this Section: the first is an experiment to
analyze the plasma silicon concentration and its effect over the dietary ingestion
of SZA on the growth of sixty horses (Frey et al. 1992), and the second is an
experiment about the waste-water treatment, where the biological oxygen demand
(BOD) as a water pollution is studied (Montoya & Gallego 2012).

5.1. Plasma Silicon Concentration

An experiment to analyze the effect of dietary ingestion of SZA on the growth
and physiology of sixty horses was reported by Frey et al. (1992). The horses were
randomly assigned to four treatments: control (0%) and three levels of dietary
SZA (0.66%, 1.32% and 2%). In addition, the plasma silicon concentration was
measured in the times: t = 0, 1, 3, 6 and 9 hours after ingestion at eighty four days
into the diet. This data was previously analyzed by Kshirsagar & Boyce (1995)
employing growth curves, but they did not consider the surface responses part.
However, Guerrero & Melo (2008) presented an optimization process that combines
response surface and growth curves from a univariate approach. The last analysis
differs from the work in this paper because we make a parameter estimation which
does not depend on the transformation of equation (9). Additionally, the test
statistics used in Guerrero & Melo (2008) follow a F distribution approximately,
while under the multivariate perspective employed throughout this paper, these
tests follow an exact distribution of Wilks’s Λ.

Figure 1 shows profiles plot for these data. In this Figure, we see that the
silicon concentration in the plasma can be modeled as a cubic polynomial over
time. Also, the control group (0%) seems to have a different behavior than other
concentrations which suggest a difference among the four treatments.
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Figure 1: Profiles by time for plasma silicon concentration growth.

Fitting the model (6) to this data set, the parameter estimates given by (12)
and P as (11) are

ξ̂ =


3.267 −0.324 0.118 −0.010

3.169 0.151 0.192 −0.017

−0.921 −0.127 −0.024 0.002


where the rows are growth curves for the different parameters of the response
surface, and the columns correspond to response surfaces for the different growth
curve degrees. So, the first row contains the intercepts of the surfaces for the
polynomial degrees, the second row contains the linear component of the factor
(SZA), and the third row contains the quadratic component of the factor.

Now, the results of the hypotheses testing on the rows (surface parameters)
and the columns (curve coefficients) of ξ are shown in Table 2. The hypothesis
H0 : ξ(4) = 0 yields a p − value < 0.001; therefore, the hypothesis is rejected.
This means that the third-order coefficient of the fitted growth curve is significant
in the model (see right panel of Figure 2). The hypothesis H0 : ξ(3) = 0 also
yields a p − value < 0.001, denoting that the quadratic component of the factor
is important, too (see left panel of Figure 2). The hypothesis H0 : ξ(2) = 0 is
the only one that is not rejected, it corresponds to the linear component of the
curve. However, since the degree of the cubic growth curve is significant, the linear
component is also included due to the hierarchy of the fitted growth curve.
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Table 2: Hypotheses testing on the rows and columns for the effect of dietary ingestion
of SZA.

Hypothesis C U Λ Fc ndf ddf p− value
ξ(1) = 0 I3 (1, 0, 0, 0)′ 0.099 169.45 3 56 < 0.001

ξ(2) = 0 I3 (0, 1, 0, 0)′ 0.928 1.44 3 56 0.2407
ξ(3) = 0 I3 (0, 0, 1, 0)′ 0.584 13.29 3 56 < 0.001

ξ(4) = 0 I3 (0, 0, 0, 1)′ 0.471 20.98 3 56 < 0.001

ξ(1) = 0 (1, 0, 0) I4 0.350 24.57 4 53 < 0.001

ξ(2) = 0 (0, 1, 0) I4 0.290 32.38 4 53 < 0.001

ξ(3) = 0 (0, 0, 1) I4 0.510 12.74 4 53 < 0.001

0.0 0.5 1.0 1.5 2.0

3
4

5
6

7
8

9
1

0

x

y

t0
t1
t3
t6
t9

0 2 4 6 8

4
6

8
1

0

t

y

1.7%
0%
0.66%
1.32%
2%

Figure 2: Fitted response surfaces (left panel) and growth curves (right panel).

From the matrix of estimated parameters, it is possible to construct the es-
timated growth curves for the four treatments of the experimental design. For
example, for treatment 0.66%, the growth curve is given by the equation

(
1 0.66 0.662

)
3.267 −0.324 0.118 −0.010

3.169 0.151 0.192 −0.017

−0.921 −0.127 −0.024 0.002




1

t

t2

t3


= 4.957− 0.279t+ 0.233t2 − 0.019t3 (21)

For the four treatments, the fitted growth curves are summarized in Table 3
and on Figure 2 (right panel). In the same way, we can find the estimation of the
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response surface parameters at each point in time. From product matrix, ξ̂G, the
equations are derived and summarized in Table 4, and they are plotted on Figure
2 (left panel).

Table 3: Fitted growth curves for the effect of dietary ingestion of SZA.

Treatment (SZA) Growth curve

0.00 3.266− 0.323t+ 0.117t2 − 0.009t3

0.66 4.957− 0.279t+ 0.233t2 − 0.019t3

1.32 5.845− 0.345t+ 0.328t2 − 0.027t3

2.00 5.921− 0.529t+ 0.403t2 − 0.034t3

Table 4: Fitted response surfaces for the effect of dietary ingestion of SZA.

Time Response surfaces

t0 3.266 + 3.169(SZA)− 0.92(SZA)2

t1 3.051 + 3.495(SZA)− 1.07(SZA)2

t3 3.097 + 4.88(SZA)− 1.456(SZA)2

t6 3.051 + 7.292(SZA)− 2.038(SZA)2

t9 2.936 + 7.616(SZA)− 2.27(SZA)2

On the other hand, the level of SZA that maximizes the plasma silicon con-
centration regularly well throughout time obtained with (19) is 1.70%, where
b = (3.169, 0.151, 0.192,−0.017) and B = (−0.921,−0.127,−0.024, 0.002). The
confidence bounds in the optimal point constructed using (20) and x0 = (1, 1.7, 1.72)
are shown in Table 5.

Table 5: Parameter estimation and confidence bounds in the optimal point for the effect
of dietary ingestion of SZA.

t0 t1 t3 t6 t9

Estimated value 5.99 5.9 7.19 10.01 9.32

Lower limit 5.72 5.66 6.93 9.74 9.06
Upper limit 6.25 6.13 7.45 10.27 9.59

Under the same reasoning used in equation (21), it is possible to construct
the growth curve for the optimum point (1.7%), which is given by 5.99− 0.43t+
0.37t2 − 0.03t3. Figure 2 (right panel) shows the optimum supremacy over all
treatments throughout time.

According to the results obtained in this application, we can stand out three
facts:

1. in the solution via univariate developed by Guerrero & Melo (2008), in which
one time (t = 1) was removed to get that the remaining times (t = 0, 3, 6, 9)
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were equally spaced; the quadratic component SZA factor in the response
surface was not significant, and also a linear polynomial for the growth curve
was fitted.

2. the hypothesis H0 : ξ(3) = 0 is rejected, justifying the inclusion of the
quadratic component in the response surface to fit the plasma silicon con-
centration. Note that in our proposal the test statistic follows an exact F
distribution.

3. Figure 1 clearly suggests that we should fit a cubic model in the growth
curve, which is corroborated by the results of the hypothesis H0 : ξ(4) = 0.

5.2. Environmental Pollution

During waste-water treatment it is common inhibitory agents to reduce the
negative environmental impact generated by to add substances discharged into the
receiving water bodies. Montoya & Gallego (2012) performed a central composite
rotatable design adding combinations of detergent (D in ppm) and animal fat
(AF in ppm). They studied the residual water BOD and biomass growth and
substrate consumption at t = 12, 24, 36, 48, 60 hours after the mixture. These
components interfere with the biological degradation of organic material during
the process of waste-water treatment. In this case, we study the biomass (in mg/l)
growth as a water pollution measure. According to Montoya & Gallego (2012), the
presence of detergents and animal fat in the affluent waste-water affect the size and
shape of the resulting floccules, which produces as a result a decrease in biomass
concentration demanding more time for the system retention that translates into
a low BOD elimination.

A description of the behavior of the four factorial points (treatments) of the
experimental design throughout time is shown in Figure 3 (left panel). This Fig-
ure shows a slight increase of biomass between 12 and 24 hours after that the
treatments were applied. Furthermore, we see an accelerated growth between 24
and 48 hours and a slight decrease from 48 until 60 hours. This behavior can be
approximated by a cubic polynomial throughout time. Moreover, it is noted that
the profiles for the four treatments have a very similar behavior, which suggests
that there is not a differential effect for factors D and AF.

In order to observe the behavior of biomass growth at each time point, we
fitted the univariate response surfaces for each time (see Figure 4). We can see
that the fitted surfaces for the first two times (t = 12, 24) have a convex shape
unlike the three last times (t = 36, 48, 60), which have concave shape. The points
that optimize each response surface are shown in Table 6; there is a change in the
optimal location point between two convex curves and three concave curves.
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Figure 3: Profiles throughout time for the biomass growth (left panel), and fitted
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(right panel).
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Figure 4: Fitted univariate response surfaces.
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Table 6: Univariate optimal surfaces.

Time AF D Characterization

t12 100.7 50.8 Minimum
t24 102.7 54.7 Minimum
t36 100.3 104.6 Maximum
t48 183.2 188.7 Maximum
t60 109.2 92.7 Maximum

To fit the model (6), we first analyzed the structure of the matrix P given in
equation (9). Then, we evaluated several possible covariance structures considering
the fit to the data and comparing them in terms of Akaike information criterion
(AIC). So, it was found that the best covariance structure was an AR(1) with
parameter estimates: φ̂ = 0.676 and σ̂ = 23.51, and the smallest AIC was 492.1.
Thus, the estimated parameters matrix using the equation (12) is

ξ̂ =



66.3998 0.5581 0.0241 −0.0010

1.4689 −0.3724 0.0131 −0.0001

−1.1473 0.1479 −0.0050 0.0000

−0.0146 0.0029 −0.0001 0.0000

−0.0111 0.0018 0.0000 0.0000

0.0245 −0.0036 0.0001 0.0000


whose first row represents the estimates of the response surface intercepts (ξm0 )
in the four degrees of growth curve following the expression (7). The second and
third rows are associated with the linear effects of factors AF and D, while the
third and the fourth rows are associated with the quadratic effects of the factors,
and finally; the sixth row estimates the interaction of two factors in all degrees of
the growth curve.

Once the above is done, we show in Table 7 the results of the hypotheses
testing on the rows (surface parameters) and the columns (curve parameters) of ξ.
According to the hypothesis ξ(4) = 0, a cubic polynomial fit to the growth curve
is suitable (p − value = 0.0039), while for the hypothesis ξ(2) = 0, . . . , ξ(6) = 0,
we do not find evidence of a significant difference between the effects generated by
AF and D factors in the experimental design. This is consistent with the behavior
seen in Figure 3 (left panel) for the four treatments of central composite rotatable
design; however, these factors could be interacting with the time (see Figure 3,
left panel) so these components will be kept in the model.
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Table 7: Hypotheses testing on the rows and columns for the biomass.

Hypothesis C U Wilks Fc ndf ddf p− value
ξ(1) = 0 I6 (1, 0, 0, 0)′ 0.057 11.074 6 4 0.018
ξ(2) = 0 I6 (0, 1, 0, 0)′ 0.046 13.849 6 4 0.012
ξ(3) = 0 I6 (0, 0, 1, 0)′ 0.028 22.996 6 4 0.005
ξ(4) = 0 I6 (0, 0, 0, 1)′ 0.026 24.865 6 4 0.004

ξ(1) = 0 (1, 0, 0, 0, 0, 0) I4 0.768 0.075 4 1 0.978
ξ(2) = 0 (0, 1, 0, 0, 0, 0) I4 0.438 0.320 4 1 0.848
ξ(3) = 0 (0, 0, 1, 0, 0, 0) I4 0.831 0.051 4 1 0.988
ξ(4) = 0 (0, 0, 0, 1, 0, 0) I4 0.271 0.671 4 1 0.710
ξ(5) = 0 (0, 0, 0, 0, 1, 0) I4 0.492 0.258 4 1 0.879
ξ(6) = 0 (0, 0, 0, 0, 0, 1) I4 0.327 0.514 4 1 0.764

From the matrix for the estimated parameters the estimated growth curves for
the four treatments are constructed. For example, for the treatment AF=140 and
D=120, the growth curve is given by the equation

(
1 140 120 1402 1202 140(120)

)
ξ̂


1

t

t2

t3


= 99.30− 10.86t+ 0.45t2 − 0.0043t3 (22)

For the four treatments, the estimated growth curves are summarized in Table
8 and Figures 5 and 3 (right panel). Figure 5 compares the estimated curve fitting
with the observed profiles where we see that the fitted growth curves provide a
good fitting for the data.

Table 8: Fitted growth curves for the biomass.

AF D Growth curve

60 40 96.99− 11.10t+ 0.44t2 − 0.004t3

60 120 −19.37 + 7.10t− 0.17t2 + 0.001t3

140 40 58.61− 5.74t+ 0.25t2 − 0.002t3

140 120 99.30− 10.86t+ 0.45t2 − 0.004t3

In the same way, we can find estimates for the response surfaces at each point
in time; these equations are derived from product matrix ξ̂G and are summarized
in Table 9 and in Figure 6. This Figure shows contour plots constructed for the
biomass growth at each point in time.
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Figure 5: Observed and fitted profiles growth curves for the biomass.

It is stressed that the fitted surfaces in the times t = 12, 24, 48, 60 capture the
behavior concave or convex observed in univariate surface plots (see Figure 4).
Moreover, we can conclude from the contour plots that a point located approxi-
mately at the coordinate (100, 60) optimizes the process regularly well through-
out time, minimizing the fitted surfaces at t = 12, 24 and maximizing them at
t = 48, 60.

Table 9: Fitted response surfaces for the biomass

Time Response surface

t12 74.75− 1.30AF − 0.01D + 0.0072AF 2 + 0.0029D2 − 0.0029AF ∗D
t24 79.20− 1.44AF + 0.22D + 0.0080AF 2 + 0.0045D2 − 0.0063AF ∗D
t36 68.88− 0.10AF + 0.08D − 0.0001AF 2 − 0.0004D2 + 0.0018AF ∗D
t48 32.99 + 1.59AF + 0.11D − 0.0104AF 2 − 0.0059D2 + 0.0089AF ∗D
t60 −39.43 + 2.48AF + 0.84D − 0.0124AF 2 − 0.0060D2 + 0.0025AF ∗D

When the model is reparameterized using the expression (17), we obtain the
following matrices

b =

(
1.4689 −0.3724 0.0131 −1.104e−4

−1.1473 0.1479 −0.0050 5.190e−5

)
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B(0) =

(
−0.0146 0.0123

0.0123 −0.0111

)
B(1) =

(
0.0029 −0.0018

−0.0018 0.0018

)

B(2) =

(
−1.030e−4 6.371e−5

6.371e−5 −6.445e−5

)
B(3) =

(
9.144e−7 −6.066e−7

−6.066−7 5.798e−7

)
where b is constructed using the linear effect estimations for the two factors (second
and third rows of the estimated parameters matrix, ξ̂). B(0), B(1), B(2) and B(3)

are conformed by the elements of the estimated parameters matrix and kept the
reparameterization structure used in the univariate response surface model i.e.
the diagonal terms are equivalent to the quadratic effects for each factor, and the
off-diagonal elements are equivalent to half of the estimated interaction effects.
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Figure 6: Fitted surface and contour plots for each time in the biomass study.

Thus, following the expression (19), the coordinates for the optimal point
that optimizes the process throughout time are found. These are AF= 96.6
and D= 55.3 which are within the observation region of the central composite
rotatable design and are in accordance with the behavior seen in the previous
contour plots. The confidence bounds for optimum constructed using (20) and
x0 = (1, 96.6, 55.3, 96.62, 55.32, 96.6(55.3)) are shown in Table 10.

Under the same reasoning used in equation (22), it is possible to construct the
growth curve for the optimum found (AF= 96.6 and D= 55.3), which is given by
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equation 105.2− 13.7t+ 0.53t2 − 0.005t3. This growth curve allows evaluation of
the optimization achieved throughout time, minimizing the growth of biomass for
times t = 12, 24 and maximizing relatively well for time t = 36, 48, 60 (see Figure
3, right panel).

Table 10: Parameter estimation and confidence bounds in the optimal point for the
biomass.

t12 t24 t36 t48 t60

Estimated value 9.14 15.16 71.26 125.42 125.62

Lower limit 0.00 0.00 48.84 101.63 101.34
Upper limit 33.42 38.95 93.68 149.21 149.90

6. Conclusions

A joint modelling procedure that gives additional information regarding the
interaction of the studied methodologies, as opposed to analyzing them indepen-
dently, was proposed. In this way, the functional relationship of the response
surface parameters with time was modeled by condensing the information of the
groups of the usual growth curves analysis. Also, parameter estimation, hypothe-
sis testing, test statistics and confidence bounds were obtained. Finally, under the
proposed model, the optimal point that optimizes the response variable regularly
well throughout time was found.

In both applications, we studied the optimum combination of factors that opti-
mized our response variable throughout time. Therefore, we fitted a cubic growth
curve and a quadratic response surface for the treatments in both situations. In
plasma silicon concentration study, it was optimized at a level of dietary ingestion
of SZA 1.7% throughout time, so we can say that the plasma silicon concentration
has a good growth in horses using this level. In biomass growth, we found that the
optimum condition was in the combination of animal fat at a level 96.6 ppm and
detergent at a level 55.3 ppm; consequently, using this combination between animal
fat and detergent, we optimize this inhibitory behavior during aerobic treatment
of waste-water.

Acknowledgments

The authors gratefully acknowledge the comments and suggestions of the anony-
mous referees that helped to improve the paper immensely. This work was partially
supported by Applied Statistics in Experimental Research, Industry and Biotech-
nology (Universidad Nacional de Colombia).

[
Recibido: septiembre de 2011 — Aceptado: mayo de 2013

]
Revista Colombiana de Estadística 36 (2013) 153–176



174 Felipe Ortiz, Juan C. Rivera & Oscar O. Melo

References

Box, G. E. P. & Draper, N. R. (1982), ‘Measures of lack of fit for response surface
designs and predictor variable transformations’, Technometrics 24, 1–8.

Box, G. E. P. & Draper, N. R. (2007), Response Surfaces, Mixtures, and Ridge
Analyses, Wiley Series in Probability and Statistics, New York.

Box, G. E. P. & Wilson, K. B. (1951), ‘On the experimental attainment of the
optimum conditions’, Journal of the Royal Statistical Society 13, 1–45.

Chiou, J., Müller, H. & Wang, J. (2004), ‘Functional response models’, Statistica
Sinica 14, 675–693.

Chiou, J., Müller, H., Wang, J. & Carey, J. (2003), ‘A functional multiplicative
effects model for longitudinal data, with application to reproductive histories
of female medflies’, Statistica Sinica 13, 1119–1133.

Davidian, M. (2005), Applied Longitudinal Data Analysis, Chapman and hall,
North Carolina state university.

Davis, C. S. (2002), Statistical Methods for the Analysis of Repeated Measurements,
Springer-Verlag, New York.

Draper, N. & Ying, L. H. (1994), ‘A note on slope rotatability over all directions’,
Journal of Statistical Planning and Inference 41, 113–119.

Frey, K. S., Potter, G. D., Odom, T. W., Senor, M. A., Reagan, V. D., Weir,
V. H., Elsslander, R. V. T., Webb, M. S., Morris, E. L., Smith, W. B. &
Weigand, K. E. (1992), ‘Plasma silicon and radiographic bone density on
weanling quarter horses fed sodium zelolite A’, Journal of Equine Veterinary
Science 12, 292–296.

Grizzle, J. E. & Allen, D. M. (1969), ‘Analysis of growth and dose response curves’,
Biometrics 25, 357–381.

Guerrero, S. C. & Melo, O. O. (2008), ‘Optimization process of growth curves
through univariate analysis’, Revista Colombiana de Estadística 31(2), 193–
209.

Heck, D. L. (1960), ‘Charts of some upper percentage points of the distribu-
tion of the largest characteristic root’, The Annals of Mathematical Statistics
31(3), 625–642.

Hill, W. J. & Hunter, W. G. (1966), ‘A review of response surface methodology:
A literature review’, Technometrics 8, 571–590.

Kabe, D. G. (1974), ‘Generalized Sverdrup’s lemma and the treatment of less than
full rank regression model’, Canadian Mathematical Bulletin 17, 417–419.

Revista Colombiana de Estadística 36 (2013) 153–176



Response Surfaces Optimization in Growth Curves 175

Kahm, M., Hasenbrink, G., Lichtenberg-Fraté, H., Ludwig, J. & Kschischo, M.
(2010), ‘grofit: Fitting biological growth curves with R’, Journal of Statistical
Software 7, 1–21.

Khatri, C. A. (1966), ‘A note on a MANOVA model applied to problems in growth
curves’, Annals of the Institute of Statistical Mathematics 18, 75–86.

Khatri, C. A. (1973), ‘Testing some covariance structures under growth curve
model’, Journal Multivariate Analysis 3, 102–116.

Khatri, C. A. (1988), ‘Robustness study for a linear growth model’, Journal Mul-
tivariate Analysis 24, 66–87.

Kshirsagar, A. M. & Boyce, S. (1995), Growth Curves, Marcel Dekker, New York.

Lucas, J. M. (1976), ‘Which response surfaces is best?’, Technometrics 18, 411–
417.

Magnus, J. R. (1988), Matrix Differential Calculus with Applications in Statistics
and Econometrics, John Wiley, New York.

Mead, R. & Pike, D. J. (1975), ‘A review of responses surface methodology from
a biometric viewpoint’, Biometrics 31, 830–851.

Molenberghs, G. & Verbeke, G. (2005), Models for Discrete Longitudinal Data,
Springer, New York.

Montoya, C. & Gallego, D. (2012), Modelo matemático que permita evaluar el
cambio de la DBO5 soluble debido a agentes inhibitorios en un proceso de
lodos activados, Master’s thesis, Facultad de minas. Universidad Nacional de
Colombia.

Pan, J. & Fang, K. (2002), Growth Curve Models and Statistical Diagnostics,
Springer Series in Statistics, New York.

Potthoff, R. & Roy, S. (1964), ‘A generalized multivariate analysis of variance
model useful especially for growth curve problems’, Biometrika 51, 313–326.

Rao, C. R. (1959), ‘Some problems involving linear hypothesis in multivariate
analysis’, Biometrika 46, 49–58.

Rao, C. R. (1967), Least squares theory using an estimated dispersion matrix and
its applications to mesurement of signals, in ‘Proceeding of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability’, Vol. I, University of
California Press, Berkeley, pp. 355–372.

Singer, J. M. & Andrade, D. F. (1994), ‘On the choice of appropiate error terms
in profile analysis’, Royal of Statistical Society 43(2), 259–266.

Srivastava, M. S. (2002), ‘Nested growth curves models’, Sankhyã: The Indian
Journal of Statistics, Series A, Selected Articles from San Antonio Conference
in Honour of C. R. Rao 64(2), 379–408.

Revista Colombiana de Estadística 36 (2013) 153–176



176 Felipe Ortiz, Juan C. Rivera & Oscar O. Melo

Verbyla, A. P. & Venables, W. N. (1988), ‘An extension of the growth curve
models’, Biometrika 75, 129–138.

Wilks, S. S. (1932), ‘Certain generalizations in the analysis of variance’, Biometrika
24, 471–494.

Revista Colombiana de Estadística 36 (2013) 153–176



Revista Colombiana de Estadística
Junio 2013, volumen 36, no. 1, pp. 177 a 192

Partial Least Squares Regression on Symmetric
Positive-Definite Matrices

Regresión de mínimos cuadrados parciales sobre matrices simétricas
definidas positiva

Raúl Alberto Pérez1,a, Graciela González-Farias2,b

1Escuela de Estadística, Facultad de Ciencias, Universidad Nacional de Colombia,
Medellín, Colombia

2Departamento de Probabilidad y Estadística, CIMAT-México Unidad Monterrey,
Monterrey Nuevo León, México

Resumen

Recently there has been an increased interest in the analysis of different
types of manifold-valued data, which include data from symmetric positive-
definite matrices. In many studies of medical cerebral image analysis, a
major concern is establishing the association among a set of covariates and
the manifold-valued data, which are considered as responses for characteriz-
ing the shapes of certain subcortical structures and the differences between
them.

The manifold-valued data do not form a vector space, and thus, it is not
adequate to apply classical statistical techniques directly, as certain opera-
tions on vector spaces are not defined in a general Riemannian manifold. In
this article, an application of the partial least squares regression methodol-
ogy is performed for a setting with a large number of covariates in a euclidean
space and one or more responses in a curved manifold, called a Riemannian
symmetric space. To apply such a technique, the Riemannian exponential
map and the Riemannian logarithmic map are used on a set of symmetric
positive-definite matrices, by which the data are transformed into a vector
space, where classic statistical techniques can be applied. The methodology
is evaluated using a set of simulated data, and the behavior of the technique
is analyzed with respect to the principal component regression.

Palabras clave: Matrix theory, Multicollinearity, Regression, Riemann
manifold.
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Abstract
Recientemente ha habido un aumento en el interés de analizar diferentes

tipos de datos variedad-valuados, dentro de los cuáles aparecen los datos de
matrices simétricas definidas positivas. En muchos estudios de análisis de
imágenes médicas cerebrales, es de interés principal establecer la asociación
entre un conjunto de covariables y los datos variedad-valuados que son con-
siderados como respuesta, con el fin de caracterizar las diferencias y formas
en ciertas estructuras sub-corticales.

Debido a que los datos variedad-valuados no forman un espacio vecto-
rial, no es adecuado aplicar directamente las técnicas estadísticas clásicas,
ya que ciertas operaciones sobre espacio vectoriales no están definidas en
una variedad riemanniana general. En este artículo se realiza una aplicación
de la metodología de regresión de mínimos cuadrados parciales, para el en-
torno de un número grande de covariables en un espacio euclídeo y una o
varias respuestas que viven una variedad curvada llamada espacio simétrico
Riemanniano. Para poder llevar a cabo la aplicación de dicha técnica se
utilizan el mapa exponencial Riemanniano y el mapa log Riemanniano so-
bre el conjunto de matrices simétricas positivas definida, mediante los cuales
se transforman los datos a un espacio vectorial en donde se pueden aplicar
técnicas estadísticas clásicas. La metodología es evaluada por medio de un
conjunto de datos simulados en donde se analiza el comportamiento de la
técnica con respecto a la regresión por componentes principales.

Key words: multicolinealidad, regresión, teoría de matrices, variedad
Riemanniana.

1. Introduction

In studies of diffusion tensor magnetic resonance imaging (TD-MRI), a diffusion
tensor (DT) is calculated in each voxel of an imaging space, which describes the
local diffusion of water molecules in various directions over this region of the brain.
A sequence of images is used to measure this diffusion. The sequence includes a
noise that produces uncertainty in the tensor estimation and in the estimation of
certain quantities inherent to water molecules, such as eigenvalues, eigenvectors,
the anisotropic fraction rate (FA) and the fiber trajectories, which are constructed
based on these last parameters. The diffusion-tensor imaging (DTI) is a powerful
tool to quantitatively evaluate the integrity of the anatomic connectivity in the
white matter of clinical populations. The methods used for the analysis of DTI
at a group level include the statistical analysis of certain invariant measures, such
as eigenvalues, eigenvectors or principal directions, the anisotropic fraction, and
the average diffusivity, among others. However, these invariant measures do not
capture all of the information about the complete DTs, which leads to a decrease in
the statistical power of the DTI to detect subtle changes in white matter. Hence,
new statistical methods are being developed to fully analyze the DTs as responses
and to establish their association with a set of covariates (Li, Zhu, Chen, Ibrahim,
An, Lin, Hall & Shen 2009, Zhu, Chen, Ibrahim, Li & Lin 2009, Yuan, Zhu,
Lin & Marron 2012). In some of these development the log-euclidean metric has
been used with the transformation of the DTs from a non-linear space into their
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logarithmic matrices on a Euclidean space. Semi-parametrical models have been
proposed to study the relationship between the set of covariates and the DTs as
responses. Estimation processes and hypotheses test based on test statistics and re-
sampling methods have been developed to simultaneously evaluate the statistical
significance of linear hypotheses throughout large regions of interest (ROI).

An appropriate statistical analysis of DTs is important to understand the nor-
mal development of the brain, the neurological bases of neuropsychiatric disorders
and the joined effects of environmental and genetic factors on the brain struc-
ture and function. In addition, any statistical method for complete diffusion ten-
sors can be directly applied to positive-definitive tension matrices in computa-
tional anatomy to understand the variations in shapes of brain-structure imaging
(Grenander & Miller 1998, Lepore, Brun, Chou, Chiang, Dutton, Hayashi, Luders,
Lopez, Aizenstein, Toga, Becker & Thompson 2008).

Symmetric positive-definite (SPD) matrix-valued data occur in a wide variety
of applications, such as DTI for example, where a SPD 3x3 DT, which tracks the
effective diffusion of the water molecules in certain brain regions, is estimated at
each voxel of an imaging space. Another application of SPD matrix-valued data
can be seen in studies on functional magnetic resonance imaging (fMRI), where
an SPD covariance matrix is calculated to delineate the functional connectivity
between different neuronal assembles involved in the execution of certain complex
cognitive tasks or in perception processes (Fingelkurts & Kahkonen 2005). De-
spite the popularity of SPD matrix-valued data, there are few statistical methods
to analyze SPD matrices as response variables in a Riemannian manifold. Data
considered as responses with a small number of covariates of interest in a Euclid-
ian space can be found from the following studies in the literature for statistical
analysis using regression models of SPD matrices: Batchelor, Moakher, Atkinson,
Calamante & Connelly (2005), Pennec, Fillard & Ayache (2006), Schwartzman
(2006), Fletcher & Joshi (2007), Barmpoutis, Vemuri, Shepherd & Forder (2007),
Zhu et al. (2009) and Kim & Richards (2010). However, because the SPD matrix
data do not form a vector space, classical multivariate regression techniques can-
not be applied directly to establish the relationship between these types of data
and a set of covariates of interest.

In a setting with a large number of covariates with a high multicollinearity pres-
ence and few available observations, no regression methods have been previously
proposed to study the relationship between such covariates and the response vari-
ables of SPD matrices living in non-Euclidian spaces. In this article, partial least
squares (PLS) regression is proposed using a strategy of exponential and Rieman-
nian logarithmic maps to transform data into Euclidian spaces. The development
of the technique is similar to the scheme for the analysis of SPD matrices data
as responses in a classical regression model and in a local polynomial regression
model, as proposed in Zhu et al. (2009) and Yuan et al. (2012). The PLS regression
model is initially evaluated using a set of simulated data and statistical validation
techniques which currently exist, such as cross validation techniques. The behavior
of the PLS regression technique is analyzed by comparing it to that of the classic
dimension-reduction technique, called principal component (PC) regression.
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The article is structured as follows: In Section 2, a brief revision of the existing
theory for PC and the PLS regression classical model is outlined. In Section 3, some
properties of the Riemannian geometric structure of SPD matrices are reviewed.
An outline of the regression models, as well as the estimation methods of their
regression coefficients are also presented. In Section 4, our PLS regression model
is presented, along with the estimation process used and their application and
evaluation on a simulated-data set. In Section 5, conclusions and recommendations
for future work are given.

2. Regression Methods

2.1. Classical Regression

We will examine the following data set {(xi, yi) : i = 1, 2, . . . , n}, composed
of a response yi and a k × 1 covariate vector xi = (xi1, xi2, . . . , xik)

T , where the
response can be continuous, discrete, or qualitative observations, and the covariates
can be qualitative or quantitative. A regression model often includes two key
elements: A link function µi(β) = E[y|xi] = g(xi,β) and a residual ϵi = yi−µi(β),
where βq×1 is a regression-coefficients vector and g(. , .): from Rk × Rq → R,
(xi,β) → g(xi,β) with q = k + 1, can be known or unknown according to the
type of model: Parametric, not-parametric or semi-parametric. The parametric
regression model can be defined as: yi = g(xi,β) + ϵi, with g(xi,β): Known and
E[ϵi|xi] = 0, ∀i = 1, 2, . . . , n, where the expectation is taken with respect to the
conditional distribution of ϵ given x. The non-parametric model can be defined as
yi = g(xi) + ϵi, with g(xi): Unknown and E[ϵi|xi] = 0.

For inference on β in the parametric case (or on g(.), in the non-parametric
case), at least three statistical procedurals are needed. First, an estimation method
needs to be developed to calculate the estimate of the coefficients of vector β,
denoted by β̂. Second, it needs to be proven that β̂ is a consistent estimator of
β and that it has certain asymptotic properties. Third, test statistics need to be
developed for testing hypotheses with the form:

H0 : Hβ = b0 v.s Ha : Hβ ̸= b0

where normally Hr×s, βs×1 and b0r×1 are a constant matrix, a regression-coefficients
vector and a constant vector respectively.

2.2. Regression in Sub-Spaces of Variables

In many practical situations, the number of variates is much greater than the
quantity of available observations in the data set for a regression model, caus-
ing the problem of multicollinearity between the predictors. Among the available
options for handling this problem are techniques based in explicit or implicit sub-
spaces and the Bayesian approach, which includes additional information about
the parameters of the model. In the case of the sub-spaces, the regression is
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realized within a feasible space of a lesser dimension. The sub-space may be con-
structed explicitly with a geometric-type motivation derived from the use of latent
variables, or implicitly using regularization techniques to avoid the problem of
multicollinearity. A latent variable is a non-observable variable that is inferred
from other variables by being directly observed and measured. The introduction
of latent variables allows to capture more relevant information about the covari-
ates matrix, denoted by X, or information about the structure of the interaction
between X and the response variables matrix, denoted by Y.

In this approach, latent, non-correlated variables are introduced, denoted by
t1, t2, . . . , ta and u1,u2, . . . ,ua, where a is the number of componets retained. The
use of latent variables allows for the factorization of low ranges of the predictor
and/or the response matrix, which allows for the adjustment of a linear regression
model by least squares upon this set of latent variables.

The vectors loadings pk and qk, with k = 1, 2, . . . , a, generate a-dimensional
spaces, where the coefficients tk n×1 and uk n×1 are considered as latent variables.
Among the approaches based on latent variables are PCR and PLS regression,
which are briefly described below.

In PC regression, which was introduced in Massy (1965), latent variates called
principal components are obtained out of the correlation matrix X, denoted by R.
PC regression avoids the problem of multicollinearity by reducing the dimension
of the predictors. The loadings {pk}ak=1 are taken as a-first eigenvectors of the
spectral decomposition of R matrix, and these vectors are the directions that
maximize the variance of the principal components. The principal components
are defined using the projections of the X’s upon these directions. That is, the
ith principal component of X is defined as tk = Xpk so that pk maximizes the
variance of tk,

max
pk

⟨Xpk,Xpk⟩ = max
pk

pT
kX

TXpk

with pT
k pk = 1 y pT

k pl = 0, l < k. The principal components represent the
selection of a new coordinate system obtained when rotating the original system of
axes, X1, X2, . . . , Xp. All of the loadings or principal directions are then obtained,
P = [p1|p2| · · · |pa]p×a, as are the projections of the X ′

is on p′
ks, that is, all of the

principal components, T = [t1|t2| · · · |ta]n×a, with the restrictions ⟨tk, tl⟩ = 0 and
⟨tk, tk⟩ = V ar(tk) = λk, with λk: the eigenvalues associated with the eigenvectors
Pk with λ1 ≥ λ2 ≥ . . . , λa. A regression model of Y is then adjusted against
the latent variates T. Then, the response for Y-new ones is predicted associated
with new observations of the predictors vector. In PC regression, the principal
components in the predictor space X’s are used without taking into account the
information of the responses Y’s.

PLS regression was introduced in Wold (1975) and applied in the economic
and social sciences fields. However, due to the contributions made by his son
in Wold, Albano, Dunn, Edlund, Esbensen, Geladi, Hellberg, Johansson, Lind-
berg & Sjöström (1984), it gained great popularity in the area of chemometrics,
where data characterized by many predictor variables with multicollinearity prob-
lems and few available observations are analyzed. This happens in many studies
of imaging analysis. The PLS regression methodology generalizes and combines
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characteristics of Principal Component Analysis (PCA) and Multiple Regression
Analysis (MLR). Its demand and evidence has increased and it is being applied in
many scientific areas. PLS regression is similar to the canonic correlation analysis
(CCA), but instead of maximizing the correlation, it maximizes the covariance
between the components. That is, p and q directions are found so that

max
p,q

⟨Xp,Yq⟩ = max
p,q

pTXTYq

subject to ∥p∥ = ∥q∥ = 1

In general, the PLS regression is a two-phase process. First, the predictor ma-
trix X is transformed with the help of the vector of response variables, Y, in a
matrix of latent, non-correlated variables T = (t1, t2, . . . , tp), called PLS compo-
nents. This distinguishes it from the PLS regression, in which the components
are obtained using only the predictor matrix, X. Second, the estimated regression
model is adjusted using the original response vector and the PLS components as
predictors, and then, response for Y’new ones associated with future observations
of the repetition vector are of predict. A reduction of dimensionality is obtained
directly on the PLS components because they are orthogonal, and the number of
components necessary for the regression analysis is much lower than the number
of original predictors. The process of maximizing the covariance instead of the
correlation prevents the possible problem of numeric instability that can appear
when using correlation, which is due to the division of covariances by variances
that may be too small. The directions of the maximum covariance p and q among
the PLS components can be found by the following eigen-decomposition problem:

XTYYTXp = λp and YTXXTYq = λq

with ∥p∥ = ∥q∥ = 1. The latent variates (or PLS components) are calculated
by projecting the X and Y data in the p and q directions, that is, t = Xp and
u = Yq results in all latent components being obtained such that T = XP and
U = YQ.

3. Geometrical Structure of Sym+(m)

A summary will now be given of some of the basic results of (Schwartzman
2006) on the geometric structure of the Sym+(m) set as a Riemannian manifold.
The Sym+(m) space is a sub-manifold of the Euclidian space Sym(m). Geometri-
cally, the Sym+(m) and Sym(m) spaces are differential manifolds of m(m + 1)/2
dimensions, and they are homeomorphically related by an exponential and log-
arithmic transformation matrix. For any matrix A ∈ Sym(m), its exponential
matrix is given by exp(A) =

∑∞
k=1

Ak

k! ∈ Sym+(m). Reciprocally, for any matrix
S ∈ Sym+(m), there is a log(S) = A ∈ Sym(m), such that exp(A) = S.

For responses in Euclidian spaces in non-parametric standard regression mod-
els, E[S|X = x] is estimated. However, for responses on a curved space, the con-
ditional expectancy of S, given x = x, cannot be defined. For µ(x) = E[S|X = x],
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a tangent vector is introduced in µ(x) on Sym+(m). For a small scalar δ > 0,
the differentiable map C : (−δ, δ) −→ Sym+(m), t → C(t), is considered such
that C(0) = µ(x). A tangent vector in µ(x) is defined as the derivative of the
soft curve C(t), with respect to t, valued at t = 0. The set of all tangent
vectors in µ(x) is called the tangent space of Sym+(m) in µ(x), and it is de-
noted by Tµ(x)Sym+(m). This space can be identified by a copy of Sym(m).
The Tµ(x)Sym+(m) space is equipped with an internal product ⟨ . , . ⟩, called
a Riemannian metric, which varies softly from point to point. For example, the
Frobenius metric can be used as a Riemannian metric. For a given Riemannian
metric, ⟨u , v⟩ is calculated for any u and v in Tµ(x)Sym+(m), and then, the
length of the soft curve C(t) : [t0, t1] −→ Sym+(m) is calculated, which is equal

to: ∥C(t)∥ =
∫ t1
t0

√
⟨
.

C(t),
.

C(t)⟩dt, where
.

C(t) is the derivative of C(t), with re-
spect to t. A geodesic is a soft curve in Sym+(m) with tangent vectors that do
not change in length or direction along the curve. For any u ∈ Tµ(x)Sym+(m),
there is a single geodesic, denoted by γµ(x)(t;u), with a dominion that contains
the range [0, 1], such that γµ(x)(0;u) = µ(x) and

.
γµ(x)(0;u) = u.

The exponential Riemannian map is defined as

Expµ(x) : Tµ(x)Sym+(m) −→ Sym+(m) ; u −→ Expµ(x)(u) = γµ(x)(1;u) (1)

The inverse of the exponential Riemannian map, called a Riemannian logarithmic
map, is defined as

Logµ(x) : Sym+(m) −→ Tµ(x)Sym+(m) ; S −→ Logµ(x)(S) = u (2)

such that Expµ(x)(u) = S. Finally, the shortest distance between 2 points µ1(x)

and µ2(x) in Sym+(m), is called the geodesic distance and is denoted by
g(µ1(x), µ2(x)), which satisfies

d2g(µ1(x), µ2(x)) = ⟨Logµ1(x)µ2(x),Logµ1(x)µ2(x)⟩ = ∥Logµ1(x)µ2(x)∥2g (3)

where d2g(. , .), denoted the geodesic distance.
The residual from S with respect to µ(x), denoted by εµ(x), is defined as

εµ(x) = Logµ(x)S ∈ Tµ(x)Sym+(m). The vectorization of C = [cij ] ∈ Sym(m) is

defined as Vecs(C) =
[
c11 c12 . . . c1m c22 . . . c2m . . . cmm

]T ∈ R
m(m+1)

2 .
The conditional expectancy of S, given x = x, is defined as the matrix µ(x) ∈
Sym+(x), such that

E[Logµ(x)S|X = x] = E[εµ(x)|X = x] = 0m×m (4)

where the expectancy is taken component by component with respect to the m(m+

1)-vector aleatory multivaried Vecs[Logµ(x)S] ∈ R
m(m+1)

2 .

3.1. Regression Model for Response Data in Sym+(m)

Because the DTs are in a non-linear space, it is theoretically and computation-
ally difficult to develop a formal statistical framework that includes estimation
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theory and hypothesis tests where by a set of covariates are used to directly pre-
dict DTs as responses. With the recently developed log-Euclidian metric Arsigny,
Fillard, Pennec & Ayache (2006), DTs can be transformed from non-linear space
into logarithmic matrices in a Euclidian space. Zhu et al. (2009) developed a
regression model with the log-transformation of the DTs as the response. The
model was based on a semi-parametric method, which avoids the specification
of parametric distributions for aleatory log-transformed DTs. Inference processes
have been proposed for estimating the regression coefficients and test statistics of
this model to contrast linear hypotheses of unknown parameters as well as to test
processes based on re-sampling methods to simultaneously evaluate the statisti-
cal significance of linear hypotheses throughout large ROIs. The procedure for
the laying out of the local intrinsic polynomial regression model (RPLI) for SPD
matrices as a response is described below, ver Zhu et al. (2009).

The procedure to estimate µ(x) = E[S|X = x0] in the RPLI model will now
be described. Because µ(x) is on a curved space, it cannot be directly expand to
µ(x) in x = x0 using a Taylor series. Instead, the Riemannian logarithmic map of
µ(x) in µ(x0) on the space Tµ(x)Sym+(m) is considered, that is, we are considering
Logµ(x0)µ(x) ∈ Tµ(x)Sym+(m). Because Logµ(x0)µ(x) occupies a different tangent
space for each value of X, it can be transported from the common tangent space
TImSym+(m) through the parallel transport given by:

Φµ(x0) : Tµ(x0)Sym+(m) −→ TImSym+(m);

Logµ(x0)µ(x) −→ Φµ(x0)(Logµ(x0)µ(x)) = Y (x) (5)

Its inverse is given by Logµ(x0)µ(x) = Φ−1
µ(x0)

(Y (x)) ∈ Tµ(x0)Sym+(m).

For Logµ(x0)µ(x0) = Om ∈ Tµ(x0)Sym
+(m), because Φµ(x0)(Om) = Y (x0) =

Om and because Y (x) y Y (x0) are in the same tangent space TImSym+(m), a
Taylor series expansion can be used for Y (x) in x0. The following is obtained:

Logµ(x0)µ(x) = Φ−1
µ(x0)

(Y (x)) ≈ Φ−1
µ(x0)

(
k0∑
k=1

Y (k)(x0)(x− x0)
k

)
(6)

with k0 as a whole and Y (k) as the kth derivative of Y (x) with respect to x divided
by por k!. Equivalently,

µ(x) = Expµ(x0)

(
Φ−1

µ(x0)
(Y (x))

)
=

Expµ(x0)

(
Φ−1

µ(x0)

(
k0∑
k=1

Y (k)(x0)(x− x0)
k

))
= µ (x, α(x0), k0) (7)

where α(x0)-contains all the parameters in {µ(x0), Y
(1)(x0), . . . , Y

(k)(x0)}.
For a set of vectors in Tµ(x)Sym+(m), various Riemannian metrics can be de-

fined. Among these metrics is the log-Euclidian metric, and some of its basic
properties will now be reviewed. Notations exp(.) and log(.) are used to rep-
resent the exponential and log matrices, respectively; Exp and Log are used to
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represent the exponential and logarithmic maps, respectively. The differential of
the logarithmic matrix in µ(x) ∈ Sym+(m) is denoted by ∂µ(x)log.(u), which acts
on an infinitesimal movement u ∈ Tµ(x)Sym+(m). The log-Euclidian metric on
Sym+(m) is defined as:

⟨u,v⟩ := tr
[
(∂µ(x)log.u)(∂µ(x)log.v)

]
(8)

for u,v ∈ Tµ(x)Sym+(m).
The geodesic γµ(x)(t;u)-is given by:

γµ(x)(t;u) := exp
[
log(µ(x)) + t∂µ(x)log.v

]
, ∀t ∈ R (9)

The differential of the exponential matrix is denoted by ∂log(µ(x))exp.(A), in
log(µ(x)) ∈ Sym(m) = Tµ(x)Sym+(m) which acts on an infinitesimal movement
A ∈ Tlog(µ(x))Sym+(m). The exponential and logarithmic Riemannian maps are
defined, respectively, as follows: for S ∈ Sym+(m),

Expµ(x)(u) := exp
[
log(µ(x)) + ∂µ(x)log.(u)

]
;

Logµ(x)(S) := ∂log(µ(x))exp [log(S)− log(µ(x))] (10)

For µ(x) and S ∈ Sym+(m), the geodesic distance is given by:

d2g(µ(x),S) := tr
[
(log µ(x)− log(S))⊗2

]
(11)

with a⊗2 = aaT and with a-vector. For two matrices µ(x) and µ(x0) ∈ Sym+(m)
and any uµ(x0) ∈ Tµ(x0)Sym+(m), the parallel transport is defined as follows:

Φµ(x0) : Tµ(x0)Sym+(m) −→ TImSym+(m);

uµ(x0) −→ Φµ(x0)(uµ(x0)) := ∂µ(x0)log.
(
Uµ(x0)

)
If uµ(x0) = Logµ(x0)µ(x) ∈ Tµ(x0)Sym+(m), then

Y (x) = Φµ(x0)

(
Logµ(x0)µ(x)

)
= log µ(x)− log µ(x0) (12)

and µ(x) = exp [log µ(x0) + Y (x)].
The residual of S with respect to µ(x) is defined as: εµ(x) := log(S)− log(µ(x))

with E[logS|X = x] = log µ(x). The model RPLI is defined as:

log(S|x) = log(µ(x)) + εµ(x) (13)

with E[εµ(x)] = 0, which indicates that E[logS|X = x] = log(µ(x)).

4. The PLS Regression Model

Suppose we have n DTs, denoted by Ti : i = 1, 2, . . . , n, obtained from a voxel
correspondent with a normalized and especially re-oriented DTI from n subjects.
The log-transformation of Tk is then obtained, which is denoted by

LT,i = (Li
T(1,1)

, Li
T(1,2)

, Li
T(1,3)

, Li
T(2,2)

, Li
T(2,3)

, Li
T(3,3)

)T (14)
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where Li
T(j,k)

-denotes the (j, k)-element of the logarithm matrix of Tk. For each
individual, a set of covariates of interest is observed as well.

In studies of medical images, many demographic or clinical measurements are
normally observed for different patients considered in a certain study. The amount
of available information is abundant, and there may be problems of linear depen-
dences between the covariates of interest, which generates the problem of multi-
collinearity. In addition, available data to analyze the information are scarce. For
the log-transformed DTs, a linear model is considered, which is given by:

LT,i
1×6

= xi
1×p

β
p×6

+ εi
1×6

, i = 1, 2, . . . , n (15)

or
LT
n×6

= X
n×p

B
p×6

+ ε
n×6

(16)

with E[ε|x] = 0n×p and Cov(ε|x) = Σnp×np and where X, Y=L, B, ε and Σ, are
matrices representing the covariates, responses, regression coefficients, the model
errors and covariance of ε|x.

Compared to the general lineal model, the model, based on the conditional
mean and covariance in equation (16)does not assume any distributional supposi-
tions for the image measurements.

If θθθ(6p+21)×1 is the vector of unknown parameters contained in β and Σ, then
to estimate θ, the objective function given by:

ln(θθθ) = −1

2

n∑
i=1

(
log|Σ|+ (LT,i − βxi)

TΣ−1(LT,i − βxi)
)

(17)

is maximized using the iterative algorithm proposed by Li et al. (2009).
The regression model (16) has been adjusted using existing algorithms for PC

and PLS regression, following the steps described in Section 2.2 and taking into
account the log-transformations on the original data to transfer them to a Euclidian
space.

4.1. Evaluation of the PLS Regression Model with Simulated
Data

The behavior of the PLS regression model is evaluated with sets of simulated
data, and predicted results are compared with those obtained using the PC tech-
nique in the case of a design matrix of full range.

The settings considered to simulate the data are the following. First, a sample
of SPD matrices with a size of n = 20 with k = 15 covariates was generated from
a multivariate normal distribution with a mean of zero and a covariance structure
given by Σ = 0.6I6. Then, the sample size was increased to n = 30, and the
number of covariates was increased from k = 15 to k = 40, with a covariance
structure given by Σ = 0.3I6 + 0.6161

T
6 , with 16, a vector of ones. In both

settings, the values for the coefficients of beta were used in the matrix given by
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p× 6, βk = [1+ 0.1× (k− 1)]T . The exponential of Σ was calculated to ensure its
positive definiteness. Results obtained in each scenario are expounded below.

For the first setting, shown in Table 1, the percentages of variance explained
by each of the latent components through PC and PLS regression demonstrate
that PC explains more of the variability of X than PLS regression, which is a
typical result. In Table 2, the PLS components explain a higher percentage of the
variability of Y than the PC components; with two components, more than 80%
of the variability in Y and approximately 20% of the variability in X is explained.
Figure 1 shows the graphs of the square root of the prediction middle quadratic
error (RMSEP) against the number of components used in the cross validation
(CV). Here, it can be observed that in PC, approximately four components would
be needed to explain a majority of the variability in the data. However, in PLS re-
gression, three components are needed in most cases. In general, few repetition are
shown through this illustration of the repetition results obtained by each method,
when compared with the simulation. Figure 2 shows the graphs of the predicted
data with the observed responses. A greater precision in the adjustment can be
observed when PLS regression is used. For the second setting, Table 3 shows the
percentages of variance explained by each of the latent components using PC and
PLS regression. Again, PC explains more of the variability of X than PLS regres-
sion. Table 4 shows that the PLS components explain a greater percentage of the
variability of Y than the PLS components. In five components, more than 60% of
the variability in Y and approximately 35% of the variability in X is explained.
Figure 3 shows the graphs for the RMSEP against the number of components. It
can be observed that in PC, approximately 7 components would be needed to ex-
plain most of the variability of the data, while in PLS regression, five components
are needed in most cases. Figure 4 shows the graphs of the predicted data along
with the observed values of the responses; a greater precision in the adjustment
can be observed when PLS regression is used.

Table 1: Percentages of variance explained by each component.
Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8

PC 17.57 15.55 13.59 12.46 11.16 9.16 6.81 4.64
PLS 14.27 9.93 10.16 13.45 12.60 5.75 4.46 7.07
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Figure 1: RMSEP versus number of components by PC regression and PLS regression

Table 2: Percentages of variance explained cumulated of X and Y for the components
by PC and PLS regression.

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8
PC X 17.57 33.11 46.70 59.16 70.32 79.48 86.28 90.93
PLS X 14.27 24.20 34.37 47.82 60.43 66.17 70.64 77.70
PC Y1 7.69 18.38 33.74 51.79 52.72 52.91 54.64 57.04
PLS Y1 66.85 82.64 88.85 89.51 90.13 91.21 95.17 95.26
PC Y2 14.95 22.65 36.98 58.96 60.99 61.09 62.21 62.29
PLS Y2 74.87 87.30 96.16 96.35 96.46 97.01 98.04 98.05
PC Y3 7.45 20.12 34.30 55.21 56.38 56.43 56.44 56.77
PLS Y3 70.51 88.00 94.72 95.05 96.33 97.57 97.67 97.78
PC Y4 7.30 19.10 41.57 58.71 60.19 60.20 61.57 61.78
PLS Y4 74.39 91.05 95.78 96.90 96.92 97.87 99.36 99.39
PC Y5 7.44 19.65 45.13 60.30 60.66 61.30 62.61 62.93
PLS Y5 74.38 89.10 93.22 95.70 96.19 96.62 97.51 98.38
PC Y6 13.89 20.83 40.31 62.35 63.45 63.46 63.46 63.47
PLS Y6 77.35 90.32 97.51 97.60 97.63 99.12 99.12 99.38

Table 3: Percentages of variance explained by each component, 2.
Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10

PC 12.81 9.33 8.74 7.42 7.22 6.39 6.33 5.12 4.97 4.44
PLS 10.63 8.65 6.39 5.21 3.85 5.34 4.88 5.36 5.32 5.00

5. Conclusions and Recommendations

A PLS linear regression model is proposed in this article to study the relation-
ship between a large set of covariates of interest in a Euclidian space with a set of
response variables in a symmetric Riemannian space. The theory of exponential
and Riemannian maps has been used to transform data from a non-Euclidian space
into a Euclidian space of symmetrical matrices, where the methodology has been
developed. Results indicate support for the proposed methodology as compared to
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a technique using regression by major components, as has been observed in classic
situations of data analysis in euclidean spaces with matrices of covariates present-
ing high multicollinearity, or in problems with a low number of observations and
many covariates. In future works, we will investigate more realistic models, such
as non-linear PLS models for the types of SPD matrix data discussed in this study
and other types of manifold-valued data, such as data obtained by geometric repre-
sentations of objects via medial axial representation (m-rep), orthogonal rotation
groups, and other methods. The illustration presented in this article for simulated
data favorably sheds light on the results that can be obtained by applying these
types of models to real data.

5 10 15

−4
−2

0
2
4

Y
1

5 10 15

−4
−2

0
2
4
6

Y
2

5 10 15

−5

0

5

Y
3

5 10 15

−5

0

5

Y
4

5 10 15

−5

0

5

10

Observations

Y
5

5 10 15

−5

0

5

Observations

Y
6

(a) PC regression

5 10 15

−4
−2

0
2
4

Y
1

5 10 15

−4
−2

0
2
4
6

Y
2

5 10 15

−5

0

5
Y

3

5 10 15

−5

0

5

Y
4

5 10 15

−5

0

5

10

Observations

Y
5

5 10 15

−5

0

5

Observations

Y
6

(b) PLS regression

Figure 2: Predicted values with the observables values by PC regression and PLS re-
gression. Solid lines: Observed, dashed lines: Predicted.

Table 4: Percentages of variance explained cumulated of X and Y for the components
by PC and PLS regression, 2.

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10
PC X 12.81 22.14 30.88 38.30 45.52 51.90 58.23 63.35 68.33 72.77
PLS X 10.63 19.28 25.67 30.88 34.73 40.07 44.95 50.32 55.64 60.64
PC Y1 26.52 50.85 51.17 56.31 59.51 59.69 79.40 80.74 80.83 82.65
PLS Y1 83.70 93.81 97.39 98.80 99.37 99.59 99.66 99.66 99.66 99.67
PC Y2 26.97 51.87 51.99 57.41 61.87 62.25 80.86 82.42 82.52 83.83
PLS Y2 84.85 94.65 97.57 98.58 99.09 99.19 99.37 99.72 99.74 99.74
PC Y3 24.82 50.72 51.34 57.02 61.40 61.56 81.08 82.05 82.05 83.70
PLS Y3 83.92 95.16 97.72 98.91 99.38 99.38 99.52 99.54 99.70 99.73
PC Y4 27.00 51.74 52.05 57.50 61.39 61.65 80.51 81.84 81.99 84.23
PLS Y4 84.74 94.50 97.54 98.67 99.23 99.44 99.66 99.73 99.74 99.81
PC Y5 25.11 50.70 50.90 56.36 59.61 59.97 81.14 81.93 81.96 83.96
PLS Y5 83.80 94.97 97.77 98.77 99.14 99.37 99.38 99.54 99.74 99.75
PC Y6 26.75 53.38 53.80 59.58 63.02 63.15 82.70 83.96 84.18 85.90
PLS Y6 86.10 95.97 98.12 99.03 99.37 99.53 99.69 99.71 99.73 99.85
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Figure 3: RMSEP versus number of components by PC regression and PLS regression,
2.
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Figure 4: Predicted values with the observables values by PC regression and PLS re-
gression, 2. Solid lines: Observed, dashed lines: Predicted.
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